COMPARISON THEORY FOR RICCATI EQUATIONS

by

J.-H. Eschenburg and E. Heintze

Abstract

We give a short new proof for the comparison theory of the matrix valued Riccati equation $B^{\prime}+B^{2}+R=0$ with singular initial values. Applications to Riemannian geometry are briefly indicated.

Let E be a finite dimensional real vector space with inner product \langle,$\rangle and$ $S(E)$ the space of self adjoint linear endomorphisms of E. For a given smooth coefficient curve $R: \mathbb{R} \rightarrow S(E)$ we consider solutions $B:\left(0, t_{0}\right) \rightarrow S(E)$ of the Riccati differential equation (cf. $[R]$)

$$
\begin{equation*}
B^{\prime}+B^{2}+R=0 \tag{R}
\end{equation*}
$$

In Riemannian geometry, this is the evolution equation for the shape operators of a familiy of parallel hypersurfaces if R denotes the curvature tensor in normal direction. It has been used to estimate principal curvatures and volumes of spheres and tubes (cf. [Gn], [HE], [Eb], [E1], [HIH], [K1], [GM], [Gr], [Gv], [K2], [E2]). If two coefficient curves $R_{1}, R_{2}: \mathbb{R} \rightarrow S(E)$ with $R_{1} \geq R_{2}$ (i.e. $R_{1}-R_{2}$ positive semidefinite) are given, one may compare solutions $B_{1}, B_{2}:\left(0, t_{0}\right) \rightarrow S(E)$ of

$$
\begin{equation*}
B_{j}^{\prime}+B_{j}^{2}+R_{j}=0 \tag{j}
\end{equation*}
$$

with suitable initial conditions. This has been done in [E2] by first assuming $R_{1}>R_{2}$ and then passing to the limit. But the method was not good enough to
discuss equality. In this paper, we give a different and more natural proof of the comparison theorem including the equality discussion.

Theorem. Let $R_{1}, R_{2}: \mathbb{R} \rightarrow S(E)$ be smooth with $R_{1} \geq R_{2}$. For $j=1,2$, let $B_{j}:\left(0, t_{j}\right) \rightarrow S(E)$ be a solution of $\left(R_{j}\right)$ with maximal $t_{j} \in(0, \infty]$, such that $U:=B_{2}-B_{1}$ has a continuous extension to 0 with $U(0) \geq 0$. Then $t_{1} \leq t_{2}$ and $B_{1} \leq B_{2}$ on $\left(0, t_{1}\right)$. Moreover, $d(t):=\operatorname{dim} \operatorname{ker}(U(t))$ is monotoneously decreasing on ($0, t_{1}$). In particular, if $B_{1}(s)=B_{2}(s)$ for some $s \in\left(0, t_{1}\right)$, then $B_{1}=B_{2}$ and $R_{1}=R_{2}$ on $[0, s]$.

Proof. Let $t_{0}=\min \left\{t_{1}, t_{2}\right\} . \operatorname{By}\left(R_{1}\right),\left(R_{2}\right), U$ satisfies

$$
\begin{equation*}
U^{\prime}=X \cdot U+U \cdot X+S \tag{1}
\end{equation*}
$$

on $\left(0, t_{0}\right)$, where $X=-\frac{1}{2}\left(B_{2}+B_{1}\right)$ and $S=R_{1}-R_{2} \geq 0$. Since B_{j}^{\prime} is bounded from below ($B_{j}^{t} \geq-R_{j}$), we get that X is bounded from above near 0 , i.e. $X \leq a \cdot I$ for some $a \in \mathbb{R}$.

Let $g:\left(0, t_{0}\right) \rightarrow \operatorname{End}(E)$ be a nonsingular solution of the homogeneous equation

$$
\begin{equation*}
g^{\prime}=X \cdot g \tag{2}
\end{equation*}
$$

In fact, any matrix solution g of (2) which is nonsingular at some $s_{0} \in\left(0, t_{0}\right)$ is nonsingular everywhere on $\left(0, t_{0}\right)$ since the solution $\bar{g}:\left(0, t_{0}\right) \rightarrow \operatorname{End}(E)$ of the initial value problem

$$
\bar{g}^{\prime}=-\bar{g} \cdot X, \bar{g}\left(s_{0}\right)=g\left(s_{0}\right)^{-1}
$$

satisfies $(g \bar{g})^{\prime}=0$. Now any solution U of (1) is obtained as

$$
U=g \cdot V \cdot g^{t}
$$

where $V:\left(0, t_{0}\right) \rightarrow S(E)$ satisfies

$$
\begin{equation*}
V^{\prime}=g^{-1} \cdot S \cdot\left(g^{-1}\right)^{t} \tag{3}
\end{equation*}
$$

From $S \geq 0$ we get $V^{\prime} \geq 0$ on $\left(0, t_{0}\right)$.
Next we have to show that $\lim _{t \rightarrow 0} V(t)$ exists and is positive semidefinite. We have

$$
\langle V x, x\rangle=\left\langle g^{-1} \cdot U \cdot\left(g^{-1}\right)^{t} x, x\right\rangle=\langle U \cdot h x, h x\rangle
$$

for any $x \in E$, where $h=\left(g^{-1}\right)^{t}$, and therefore,

$$
|\langle V x, x\rangle| \leq\|U\| \cdot\|h x\|^{2}
$$

This is bounded near 0: From $\left(g^{-1}\right)^{\prime}=-\left(g^{-1}\right) \cdot X$ we get $h^{\prime}=-X \cdot h$ and therefore the function $f=\|h x\|^{2}$ is bounded near 0 since it satisfies

$$
f^{\prime}=2\left\langle h^{\prime} x, h x\right\rangle=-2\langle X \cdot h x, h x\rangle \geq-2 a \cdot f .
$$

Consequently, since $\langle V(t) x, x\rangle$ is monotone in t, the limit $V(0)=\lim _{t \rightarrow 0} V(t)$ exists. Moreover, there exists a sequence $s_{k} \rightarrow 0$ such that $y_{k}:=h\left(s_{k}\right) x$ converges to some $y \in E$ as $k \rightarrow \infty$. Thus

$$
\langle V(0) x, x\rangle=\lim \left\langle U\left(x_{k}\right) y_{k}, y_{k}\right\rangle=\langle U(0) y, y\rangle \geq 0
$$

Now from $V(0) \geq 0$ and $V^{\prime} \geq 0$ we get $V \geq 0$ and hence $U \geq 0$. Thus $B_{1} \leq B_{2}$ on $\left(0, t_{0}\right)$. If $t_{2}<\infty$, then $\left(R_{2}\right)$ implies that $\left\langle B_{2}(t) x, x\right\rangle \rightarrow-\infty$ for some x as $t \rightarrow t_{2}$, and therefore, $t_{1}>t_{2}$ is impossible. Hence $t_{0}=t_{1} \leq t_{2}$.

Since $V(t)$ is monotonously decreasing, so is $\operatorname{dim} \operatorname{ker} V(t)$, but dim $\operatorname{ker} V(t)=$ $\operatorname{dim} \operatorname{ker} U(t)=d(t)$.

Remark 1. Of course, the way we solved (1) is the well known variation of constant method. In general, this can be stated as follows. Let V be a vector space and $\varrho: G \rightarrow$ Aut (V) a representation of a (matrix) Lie group G on V with Lie algebra \underline{G}. Let $X: I \rightarrow \underline{G}$ and $s: I \rightarrow V$ be smooth curves, where I is some real interval. The solutions $u: I \rightarrow V$ of the linear ODE

$$
\begin{equation*}
u^{\prime}=\varrho_{*}(X) u+s \tag{1}
\end{equation*}
$$

can be written as $u=\varrho(g) v$ where $v: I \rightarrow V$ is smooth and $g: I \rightarrow G$ be a solution of the homogeneous equation

$$
\begin{equation*}
g^{\prime}=X \cdot g \tag{2}
\end{equation*}
$$

(This is matrix notation. For an abstract Lie group, $X \cdot g$ has to be replaced by $\left(R_{g}\right)_{*} X$ where R_{g} denotes the right translation.) Since $\varrho(g)^{\prime}=\varrho_{*}(X) \varrho(g)$, we get $u^{\prime}=g_{*}(X) u+\varrho(g) v^{\prime}$. Hence u is a solution if and only if $\varrho(g) v^{\prime}=s$, i.e. iff

$$
\begin{equation*}
v^{\prime}=\varrho\left(g^{-1}\right) s \tag{3}
\end{equation*}
$$

We have applied this to the vector space $V=S(E)$ and the Lie group $G=$ Aut (E) with the representation $\varrho(g) u=g \cdot u \cdot g^{t}$ where $u \in V, g \in G$. Note that $\varrho_{*}(X) u=X \cdot u+u \cdot X^{t}$ for $X \in \underline{G}, u \in V$. Thus (1) has the form (1)'.

Remark 2. Acutally, an arbitrary solution B of (R) in $\left(0, t_{0}\right)$ has the following behavior at 0 :

$$
B(t)=P / t+C(t)
$$

where P is an orthogonal projection (i.e. $P \in S(E), P^{2}=P$) and $C(t)$ extends continuously at $t=0$ with $\operatorname{im} P \subset \operatorname{ker} C(0)$ (see the following proposition). Thus, the initial condition of the theorem may be stated as follows:

$$
P_{1}=P_{2} \quad \text { and } \quad C_{2}(0) \geq C_{1}(0)
$$

where $B_{j}(t)=P_{j} / t+C_{j}(t)$. This fits nicely to the geometric situation alluded to in the introduction. In fact, if we interpret $B(t)$ as the shape operator of the tube of distance t around some submanifold L along a geodesic γ_{v} perpendicular to L in some Riemannian manifold, then $N=\operatorname{im} P$ is the normal space perpendicular to v and $T=\operatorname{ker} P$ the tangent space of L, and $C(0) \mid T$ is the shape operator of L in the direction v.

Remark 3. A slight modification of the proof of the theorem shows that the continuity of U at 0 is not necessary to assume: Let $u(t)$ be the smallest eigenvalue of $U(t)$. Then we may replace the assumption $U(0) \geq 0$ by

$$
\lim _{t \rightarrow 0} \inf u(t) \geq 0
$$

Thus, in the geometric application where B_{j} corresponds to a submanifold L_{j}, one can also treat cases where $\operatorname{dim} L_{1} \geq \operatorname{dim} L_{2}$.

Proposition. Let $B:\left(0, t_{0}\right) \rightarrow S(V)$ be a solution of (R). Then there is a projection $P \in S(V), P^{2}=P$, such that

$$
C(t):=B(t)-P / t
$$

has a continuous extension to $t=0$, and im $P \subset \operatorname{ker} C(0)$.
Proof. Let $s_{0} \in\left(0, t_{0}\right)$ and $Y:\left(0, t_{0}\right) \rightarrow$ End (V) the solution of

$$
Y^{\prime}=B \cdot Y, Y\left(s_{0}\right)=I
$$

Then Y has inverse $Y^{-1}=Z$ which is the solution of

$$
Z^{\prime}=-Z \cdot B, Z\left(s_{0}\right)=I
$$

Thus $B=Y^{\prime} Y^{-1}$. Differentiating (R) we see that Y also satisfies

$$
Y^{\prime \prime}+R \cdot Y=0, Y\left(s_{0}\right)=I, Y^{\prime}\left(s_{0}\right)=B\left(s_{0}\right)
$$

and so Y extends smoothly to all of \mathbb{R}, and

$$
Y(t)=Y(0)+t \cdot V(t)
$$

where V is smooth with $V(0)=Y^{\prime}(0)$. Since $Y^{t} \cdot Y^{\prime}=Y^{t} \cdot B \cdot Y$ is symmetric, it vanishes on $W:=\operatorname{ker}(Y)$. Thus $Y\left(W^{\perp}\right) \perp Y^{\prime}(W)$ and consequently $Y\left(W^{\perp}\right)+$ $Y^{\prime}(W)=E$. (Since Y solves a second order equation, we have $\operatorname{ker}(Y) \cap \operatorname{ker}\left(Y^{\prime}\right)=$ 0.) Now for an orthonormal basis e_{1}, \ldots, e_{n} of E, where e_{1}, \ldots, e_{k} is a basis of $W(0)=\operatorname{ker} Y(0)$, we have that

$$
t^{-k} \cdot \operatorname{det} Y(t)=\operatorname{det}\left(V(t) e_{1}, \ldots, V(t) e_{k}, Y(t) e_{k+1}, \ldots, Y(t) e_{n}\right)
$$

has smooth extension to 0 with nonzero limit. Thus $t^{k} \cdot Y^{-1}(t)$ and hence $t^{k} \cdot B(t)$ have smooth extensions to 0 . So there are $B_{1}, \ldots, B_{k} \in S(E)$ and a smooth $C:\left[0, t_{0}\right) \rightarrow S(E)$ such that

$$
B(t)=t^{-k} \cdot B_{k}+\ldots+t^{-1} \cdot B_{1}+C(t) .
$$

Using (R) to compare coefficients we see that only B_{1} is nonzero, and moreover,

$$
B_{1}^{2}=B_{1}, B_{1} \cdot C(0)+C(0) \cdot B_{1}=0
$$

Thus, $P:=B_{1}$ is a projection, and $C_{0}:=C(0)$ vanishes on the image of P since $y=C_{0} P x$ is in the (-1)- eigenspace of P which is zero (note that $P y=P C_{0} x=$ $-C_{0} P x=-y$).

References

[Eb] P. Eberlein: When is a geodesic flow Anosov? I. J.Differential Geometry 8, 437-463 (1973)
[E1] J.-H. Eschenburg: Stabilitätsverhalten des Geodätischen Flusses Riemannscher Mannigfaltigkeiten. Bonner Math. Schr. 87 (1976)
[E2] J.-H. Eschenburg: Comparison theorems and hypersurfaces. Manuscripta math. 59, 295-323 (1987)
[Gr] A. Gray: Comparison Theorems for the volume of tubes as generalizations of the Weyl tube formula. Topology 21, 201-228 (1982)
[Gn] L.W. Green: A theorem of E. Hopf. Mich. Math. J. 5, 31-34 (1958)
[GM] D. Gromoll \& W. Meyer: Examples of complete manifolds with positive Ricci curvature. J. Differential Geometry 21, 195-211 (1985)
[Gv] M. Gromov: Structures metriques pour les variétés riemanniennes. CedicNathan 1981

ESCHENBURG - HEINTZE

[HE] S.W. Hawking, G.F.R. Ellis: The Large Scale Structure of Spacetime. Cambridge 1973
[HIH] E. Heintze \& H.C. Im Hof: Geometry of horospheres. J. Differential Geometry 12, 481-491 (1977)
[K1] H. Karcher: Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509-541 (1977)
[K2] H. Karcher: Riemannian Comparison Constructions. S.S. Chern (ed.) Global Differential Geometry. M.A.A. Studies in Mathematics vol. 27
[R] W.T.Reid: Riccati Differential equations. Academic Press 1972

Institut für Mathematik
Universitätsstr. 8
D - 8900 Augsburg

