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COMPARISON THEORY FOR RICCATI EQUATIONS
by

J.-H. Eschenburg and E. Heintze

We give a short new proof for the comparison theory of the matrix valued Riccati
equation B'+B?4+R=0 with singular initial values. Applications to Riemannian

geometry are briefly indicated.

Let F be a finite dimensional real vector space with inner product {,) and
S(E) the space of self adjoint linear endomorphisms of E . For a given smooth
coeflicient curve R : R — S(E) we consider solutions B : (0,t9) — S(E) of the
Riccati differential equation (cf.[R]})

(R) B'+B*+R=0.

In Riemannian geometry, this is the evolution equation for the shape operators
of a familiy of parallel hypersurfaces if R denotes the curvature tensor in normal
direction. It has been used to estimate principal curvatures and volumes of spheres
and tubes (cf. [Gn], [HE], [Eb], [E1], [HIH], [K1], [GM], [Gr], [Gv], [K2], [E2]). If
two coefficient curves Ry, Ry : R — S(FE) with Ry > R; (i.e. Ry — R, positive

semidefinite) are given, one may compare solutions By, B; : (0,t) — S(E) of
(R;) Bj+B}+R;=0

with suitable initial conditions. This has been done in [E2] by first assuming
R; > R; and then passing to the limit. But the method was not good enough to
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discuss equality. In this paper, we give a different and more natural proof of the

comparison theorem including the equality discussion.

Theorem. Let R, R; : R — S(E) be smooth with Ry > Ry . Forj = 1,2, let
B; : (0,t;) — S(E) be a solution of (R;) with maximal t; € (0,00 , such that
U := By — B, has a continuous extension to 0 with U(0) > 0. Then t; < t; and
By < B; on (0,11) . Moreover, d(t) := dimker{U(#)) is monotoneously decreasing
on (0,t1) . In particular, if B1(s) = Ba(s) for some s € (0,t,) , then B; = By and
Ri=Ryon|0,s].

Proof. Let tq = min{¢;,t2} . By (R;),(R,), U satisfies

(1) U'=X-U+U-X+S

on (0,t9) , where X = —%(Bz + By) and S = Ry — Ry 2 0 . Since Bj is bounded
from below (B; > —R;), we get that X is bounded from above near 0 , i.e.
X <a.-IforsomeacR.

Let g : (0,t0) — End(E) be a nonsingular solution of the homogeneous equa-

tion
(2) g=X-.g.

In fact, any matrix solution g of (2) which is nonsingular at some sg € (0,tg) 1s
nonsingular everywhere on (0, 1) since the solution § : (0,tp) — End(E) of the
initial value problem

g =~g X, g(s0) = g(s0)”"
satisfies (¢g)' = 0 . Now any solution U of (1) is obtained as
U=g-V-g¢'
where V' : (0,1¢) — S(E) satisfles
3) Vi=g™- S (7).
From S > 0 we get V' > 0 on (0,1,) .

Next we have to show that }in%V(t) exists and is positive semidefinite. We
have

(Va,o) = (g7 U-(g7")'a,a) = (U he,ha)

for any z € E , where h = (¢7!)" , and therefore,

(V)| < JUI-|lhe))® .
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This is bounded near 0 : From {g7!) = —(¢7!)- X we get b’ = —X - h and

therefore the function f = ||hz||? is bounded near 0 since it satisfies
f =2z, hz) =-2(X -hz,hz) > -2a- f.

Consequently, since (V(t)z, z) is monotone in ¢ , the limit V(0) = }in(l) V(t) exists.
Moreover, there exists a sequence s; — 0 such that yx := h(sp)z converges to
some y € F as k — oo . Thus

(V(0)z,z) =Lm{U(za)yr,yx) = (U(O)y,y) 20.

Now from V(0) > 0 and V' > 0 we get V > 0 and hence U > 0. Thus B; < B,
on (0,%p) . If t < oo, then (Ry) implies that (B(t)z,z) — —oo for some z as
t — t3 , and therefore, t; > t; is impossible. Hence ty = t; <15 .

Since V/(t) is monotonously decreasing, so is dim ker V(t) , but dimker V() =
dimkerU(t) = d(2) .

Remark 1. Of course, the way we solved (1) is the well known variation of constant
method. In general, this can be stated as follows. Let V be a vector space and
p:G — Aut (V) arepresentation of a (matrix) Lie group G on V with Lie algebra
G .Let X:I— Gands: I — V besmooth curves, where I is some real interval.
The solutions u : I — V of the linear ODE

1y u = g (X)u+s

can be written as u = p(g)v where v : I — V is smooth and g : I — G be a

solution of the homogeneous equation
2y 9=X-9g.

(This is matrix notation. For an abstract Lie group, X - g has to be replaced by
(Rg)«X where R, denotes the right translation.) Since o(g)' = o.(X)o(g) , we get
u' = g.{X)u+ o(g)v' . Hence u is a solution if and only if p(g)v' = s , i.e. iff

3) v' =g )s .

We have applied this to the vector space V = S(E) and the Lie group G = Aut (E)
with the representation p(g)u = g-u-g¢* where u € V , g € G . Note that
pu(X)u=X -u+u-X'for X € G, u€V . Thus (1) has the form (1)

Remark 2. Acutally, an arbitrary solution B of (R) in (0,tg) has the following

behavior at 0 :

B(t) = P/t + C(t)
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where P is an orthogonal projection (i.e. P € S(E), P? = P) and C(t) extends
continuously at ¢t = 0 with im P C ker C(0) (see the following proposition). Thus,

the initial condition of the theorem may be stated as follows:
P] = Pz and C2(0) 2 C](O)

where B,(t) = P;/t + C;(t) . This fits nicely to the geometric situation alluded to
in the introduction. In fact, if we interpret B(t) as the shape operator of the tube
of distance t around some submanifold L along a geodesic v, perpendicular to L
in some Riemannian manifold, then N = im P is the normal space perpendicular
to v and T = ker P the tangent space of L , and C(0)|T is the shape operator of

L in the direction v .

Remark 3. A slight modification of the proof of the theorem shows that the conti-
nuity of U at 0 is not necessary to assume: Let u(t) be the smallest eigenvalue of

U(t) . Then we may replace the assumption U(0) > 0 by
liminfu(t) > 0.
t—0

Thus, in the geometric application where B; corresponds to a submanifold L; ,

one can also treat cases where dim L, > dim L, .

Proposition. Let B : (0,t5) — S(V) be a solution of (R) . Then there is a
projection P € S(V), P? = P | such that

C(t) := B(t) - P/t

has a continuous extension tot =0, and im P C ker C(0) .

Proof. Let sq € (0,25) and Y : (0,t9) — End (V') the solution of
Y'=B-Y,Y(s)=1.
Then Y has inverse Y =1 = Z which is the solution of
Z'=-Z-B, Z(so)=1.
Thus B = Y'Y ™1 | Differentiating (R) we see that Y also satisfies
Y'+R-Y=0,Y(so)=1I, Y'(s0) = B(s0),
and so Y extends smoothly to all of R |, and

Y(t)=Y(0)+t-V(t)
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where V' is smooth with V(0) = Y'(0) . Since Y- Y’ = Y"'. B .Y is symmetric,
it vanishes on W := ker(Y) . Thus Y(W+) L Y/(W) and consequently Y (W) +
Y!'(W) = E . (Since Y solves a second order equation, we have ker(Y) Nker(Y"') =

0 .) Now for an orthonormal basis e,,...,e, of E , where e;,...,ex is a basis of

W(0) = ker Y(0) , we have that
t=F . det Y(t) = det(V(t)ey,..., V(H)er, Y ()exs1,. ., Y (t)en)

has smooth extension to 0 with nonzero limit. Thus t*-Y ~!(t) and hence t*- B(t)

have smooth extensions to 0 . So there are B,,...,Bx € S(E) and a smooth
C :[0,tg) — S(E) such that

B(t)=t"%.By+...+t71 - B, +C(t) .
Using (R) to compare coefficients we see that only B; is nonzero, and moreover,
B!=B,, B,-C(0)+C(0)-B; =0 .

Thus, P := B, is a projection, and Cj := C(0) vanishes on the image of P since
y = Co Pz is in the (—1)— eigenspace of P which is zero (note that Py = PCyz =
—CoPz = —y) .
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