CRITICAL POINT THEORY FOR DISTANCE FUNCTIONS

KARSTEN GROVE

INTRODUCTION

One of the fundamental themes in riemannian geometry is to relate properties
of a riemannian manifold as a metric space to differential topological properties of
it as a smooth manifold.

It is well known that the topology of a smooth manifold is intimately related
to the smooth functions it supports via Morse theory (cf. [47]). Applying this
fact to functions associated with the manifold as a metric space, such as distance
functions, would seem to provide a natural bridge between geometry and topology.
The only problem with such a program is that distance functions generally are
non smooth, and much less Morse functions. Nonetheless, there is a notion of
regular/critical points for distance functions, which is equivalent to the usual notion
for smooth functions (cf. 1.1). The importance of this idea, which was conceived
in [37], lies primarily in the observation that some basic principles for smooth
functions remain valid for distance functions. In particular, the level set of a regular
value is a (topological) submanifold, and the region between two regular levels is
(topologically) a product if it contains no critical points (cf. 1.7, 1.8 and 1.14).
Moreover, we show that with these techniques a complete Lusternik-Schnirelman
theory for distance functions is available (cf. 1.16 - 1.20).

Although the theory has applications in curvature free settings, (cf. e.g. [14],
[15], [16], [17], [18], [28], [29], [39], [41], [42] and [71]), it becomes particularly pow-
erful when used in conjunction with Toponogov’s comparison theorem, i.e. when

a lower curvature bound is present. However, in contrast to carlier work in global
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riemannian geometry (cf. [20] and [9]), which was based on getting (good) a priori
estimates for the injectivity radius, an upper bound for the curvature is irrelevant
for this theory. Rather than trying to cover a majority of applications, we will focus
on four simple principles, the convezity -, regularity -, criticality -, and shrinking
principle - (cf. 1.3, 2.5, 2.8 and 2.10). The utility of these principles is then
illustrated in different types of problems, namely recognition -, structure -, and

finiteness problems (cf. sections 3, 4 and 4).

There are two natural ways in which to extend this theory. One of them is
to consider more than one distance function and develop a similar ”calculus”, in
particular an implicit function theorem. Although this has not yet been done
systematically, applications of this sort of idea may be found in e.g. [49], [66], and
[67]. The other extension is to distance functions on Aleksandrov spaces, i.e. inner
metric spaces with a lower curvature bound in the sense of distance comparison (cf.
[66]). This extension is actually related to the first. In fact, an ”inverse function
theorem” for n distance functions on an n-dimensional Aleksandrov space, together
with an inverse induction argument form the basis for getting a suitable theory for
one function in this setting (cf. forthcoming work of Perelman announced in [6]).
- For lack of space and focus, we confine our discussion here to the simplest case
of one distance function on a complete riemannian manifold. Strong applications
are to be expected, however, when these ideas are used in conjunction with ideas
of Gromov-Hausdorff convergence (cf. [30], [33], [34] and [36]), and critical point

theory for distance functions on Aleksandrov (limit) spaces.

This paper was written during a visit to Aarhus University. It is a pleasure
to thank the department for its hoépitality and SNF for its support. Parts of
the presentation have been directly influenced by questions and comments from
W. Browder , M. Bockstedt, I. Madsen, P. Petersen, J. Tornehare and B. Williams.
Also, our discussion of Lusternik-Schnirelman theory owes much to the beautiful

expositions given by Palais in [50] and [51]. An apology is due for omitting much of
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the beautiful work involving ideas related to those discussed here. In an attempt to
make up ‘for this, at least in part, we have included an expanded list of references.
At the same time we also refer to the treatments of critical point theory given in
the lecture notes by Cheeger 7] and Meyer [46]. — For basic results and tools from
riemannian geometry that will be used freely we refer to e.g. [9], [20], [27], [40] or
[43].

0. PRELIMINARIES

Throughout M will denote a smooth connected n-dimensional manifold with

riemannian metric g. The distance function, dist : M x M — R is defined by
dist(p, ¢) = inf length(c),

where the infimum is taken over all piecewise C!-curves c: [0,1] — M, with

C(O) =p,c(l) =g and

length (c) = /0 NCOXON D

Ascoli’s theorem implies that if (M,dist) is a complete metric space, then any
p,q € M can be joined by a segment in M, i.e. a shortest path parametrized
proportional to arc length. Curves that are everywhere locally segments are called
geodesics. Every geodesic is a smooth curve uniquely determined by any one of
its velocity vectors. We assume throughout, that (M,dist) is a complete metric
space, or equivalently, by the Hopf- Rinow theorem, that every geodesic extends
indefinitely in either direction.

For every tangent vector v € T,M C TM at p € M, let ¢, : R — M denote the
unique geodesic determined by ¢,(0) = v. The ezponential map, exp : TM — M is
then defined by

exp (v) = ¢y(1),
and its restriction to T, M will be denoted by exp,. A vector v € T, M belongs

to the tangent cut locus, tancut(p) C Tp,M if and only if ¢, : [0,1] — M is a seg-

ment, but ¢, : [0,1 4+ €] — M is not for any € > 0. The cut locus, cut(p) C M
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of p in M is then by definition cut(p) = exp,(tancut(p)). If the segment do-
main, seg(p) C T, M is the starshaped subset of T, M bounded by tancut(p), then
exp, : seg(p) — M is surjective and its restriction to intseg(p) = seg(p) — tancut(p)
provides a diffeomorphism with M — cut(p). In particular, the distance function
from p,dist, : M — R is smooth when restricted to M — cut(p) U p. Moreover,
according to the so-called Gauss lemma, its gradient is the unit radial vector
field on this set, i.e. at ¢ = expp(v) € M — cut(p) U p we have grad(dist,) =
é(1)/ || é0(1) Jl€ TyM. However, dist, is clearly not differentiable at points
g € cut(p) that are joined to p by more than one segment. Nevertheless, it turns
out that if these segments do not spread out too much as seen from g, then dist,
behaves as a smooth function near ¢ with r = dist(p, ¢) as regular value (cf. section
1).

More generally we need to consider closed subsets A C M. In this case

dist(A, ¢) = min dist(p, )
pEA

for all ¢ € M. The open and closed r-neighborhoods of A will be denoted by
Bu(r) = {:c € M | dist(4,z) <r}

and
Da(r) ={z € M | dist(4,z) <r}

respectively. Similarly we set
Sa(r) ={z € M | dist(4,z) =r}.

As usual, if A is compact, its diameter is defined by

diamA = ma dist
max max dis (p,9)

whereas its radius is

radA = min maxdist )
min ma (p,9)

Clearly radA < diamA < 2radA4 and A C Dp(diamA) for all p € A, whereas
A C Dy(radA) for some p € A.
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1. LUSTERNIK-SCHNIRELMAN THEORY

In this section we will discuss the notion of critical points for distance functions,
and show how all of the classical Lusternik-Schnirelman theory for smooth functions
on a manifold carries over to this case.

Fix a closed subset A of a complete connected riemannian manifold M. The

distance function from A will be denoted by dist 4, 1.e.
dist4 : M — R, p — dist(p, 4)

for all p € M. As for smooth functions, where the Taylor expansion can be applied,
we say that p € M is a regular point for dist4 , or simply for A, if and only if there

is a unit vector v € S, C T, M and a ¢ > 0 such that

(1.1) dist a(cy(t)) > dist 4(co(0)) +c- ¢

for all sufficiently small t > 0. If p € M is not a regular point for dist 4 it is called

critical.
A simple argument based on standard local distance comparison, shows that
definition 1.1 above is equivalent to the following more commonly used character-

ization. A point p € M is regular for A if and only if there is a v € §p such
that

(1.1) £(v,&0)) > /2

for any segment ¢ from p to A. Similarly, p € M is a critical point for dist 4 if and
only if every vector u € S, makes an angle < 7/2 to some segment from p to A.
Thus, whether a point p is regular or critical for A depends entirely on the
geometry of segments from p to A, seen from p. More precisely, if Spa C Sp
denotes the set of directions for segments from p to A, then p is regular if and only
if Sp4 is contained in an open hemisphere of S, and p is critical if and only if Sp4

is a weak 7/2-netin S,, i.e. any u € S, has distance at most 7/2 to some point of

Spa.
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Remark 1.2. In a riemannian manifold it is of course equivalent to say that there is
aveE 5',,‘ so Sp4 is contained in the complement of the closed hemisphere centered
at v, and to say that there is a u € S, such that S,4 is contained in the open
hemisphere centered at u. This is not the case, however, in singular spaces like
orbit - and limit spaces, where the theory works as well with the definition (1.1')
above.

Example 1.3 (Convexity principle) From the work of Cheeger and Gromoll in
[10], it is well known that any convex set C C M has the structure of a topological
manifold with (possibly empty) boundary, C. Moreover, the interior intC' =
C — 9C is smooth and totally geodesic. If 9C # 0, every p € OC has a supporting
halfspace, i.e. there is a v € Sp so that any segment from p to an interior point of
C makes an obtuse angle with v. In particular, if A C intC, then any p € 0C is a
regular point for A.

Example 1.4 (Cut locus). A point p € M — A is called a cut point for A if and
only if no segment from p to A can be extended as a segment to A beyond p. The
set of all cut points for A, cut(A) is called the cut locus of A. It is clear from 1.1
that any critical point for A4 is in cut(A). The converse, however, is usually not
true. This in fact, is one of the main reasons for the introduction and utility of the
concept.

A simple first variation argument yields the following basic

Lemma 1.5. Let a : [0,a] — M be a differentiable curve parametrized by arc

length. Suppose there is a 6 € [0,7/2) such that for any t € [0, 4]
L(a(t),v) > m -6
for some v € Sq(t)a. Then
dista(e(t)) > dista(a(0)) + t - cos b,

and a(t) is a regular point for each t € [0, al.
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This lemma also shows that if « is a differentiable curve parametrized by arc
length, then Sy(s) 4 is completely contained in one of the closed half spaces in To 4y M
determined by &(t)1, unless a(t) is a local mazimum point for dist4 o a. So far,

however, a reasonable notion of indez of a critical point is known only in special

cases.

In the most important applications of 1.5, « is a curve where Z(&(t),v) > 7 — 0
for all v € Sy(1ya. Indeed, suppose X is a unit vector field on some open set UcM
and Z(Xp,Spa) = m— 0,0 < 0 < «/2, for all p € U. Then any integral curve «
of X will satisfy the conditions in 1.5. When allowing 6 to depend on p € U, such
a gradient like vector field exists on all of U = M — crit(A), where crit(A4) is the
closed subset of M consisting of all the critical points for dist4. This is a direct
consequence of 1.1’ and a partition of unity argument. The existence of a fixed ¢

is of course guaranteed on any compact subset of U.

The first immediate consequence of this discussion is the following important

observation, which predates the general idea of critical points as presented here

Proposition 1.6 (Berger Lemma). Any local maximum point for dist4 is crit-

ical.

In analogy to the case of smooth functions, regular level sets of dist4 have the

following structure.

Proposition 1.7 (Implicit Function Theorem). Let r > 0 be a regular value
for dist, i.e. dist7*(r)Ncrit(4) = 0. Then dist}'(r) = Sa(r) is a topological n—1

dimensional manifold, locally flatly embedded in M (cf. also 1.14).

Proof. Fix a point p € dist;'(r). Let X be a unit vector field defined in an open
neighborhood U of p and satisfying Z(X,S44) > 7 — 6 for all ¢ € U and some
fixed positive 8 < 7/2. Choose a local hypersurface H through p and transversal

to X. For ¢ > 0 sufficiently small, the flow of X defines a diffeomorphism @ :
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H x (—¢,¢) = W C M, where W is an open neighborhood of p € M. By 1.5
dist 4(®(p, €)) > dist 4(®(p,0)) + ecos@ = r + ¢cos §

and similarly dist4(®(p, —€)) < r — ecosd. Therefore, for H small enough cach
integral curve ®(q,t),q¢ € H,t € (—¢,¢) intersects dist;'(r) in exactly one point,
®(q, f(q)), and f : H — (—¢, €) defined this way is obviously continuous. For ¢ > 0
sufficiently small, the map H x (—¢,¢) — M,(g,t) — ®(q, f(¢g) + t) defines the

desired submanifold chart for dist;' near p. O
As in Morse and Lusternik-Schnirelman theory one has the following key result.

Proposition 1.8 (Isotopy Lemma). Let A C M be a compact subset of M, and
suppose [r1,m2] C Ry contains only regular values for dista. Then all the levels

dist3'(r),r € [r1,72] are homeomorphic, and the annulas
R(ri,r2) = Da(r2) — Ba(r1) = {g € M|ry < dista(q) < r2}

is homeomorphic to dist;'(ry) X [ry,r2] (cf. also 1.14).

Proof. Compactness of A implies that the sets D4(r) = {g € M | dista(q) <r},r 2
0 are compact. In particular, if X is a gradient like vector field on M — crit(4),
then Z(Xp,Spa) > m — 6, for a fixed 0 < 6 < 7/2 and all p in R(r1,r2). It now

suffices to invoke 1.5 to complete the proof. O
The proof of 1.8 also applies to the case r; = oo, i.e.

Corollary 1.9 (Finite Type Lemma). Let M be a complete non compact rie-
mannian manifold and A C M a compact subset. If dist4 has no critical points
in M — Bu(r), then D4(r) is a compact manifold with boundary Sa(r) and M is

diffeomorphic to the interior, Ba(r) of D 4(r).

In the other extreme case where r; = 0, we have
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Corollary 1.10 (Soul Lemma). Let A C M be a compact submanifold in M
without boundary. If there are no critical points in Da(r) — A, then Ba(r) is

diffeomorphic to the normal bundle of A in M.

Proof. First pick € > 0 so that D 4(e) Ncut(A) = §. In particular, there is a unique
segment from each p € 8D 4(e) = dist;'(e) to A. Using this it is easy to construct
a gradient like vector field X on D4(r) — A which is radial near A. The desired
diffeomorphism takes each normal segment emanating from A to the corresponding

integral curve of X. O
As a trivial combination of 1.9 and 1.10 we get

Theorem 1.11 (Disc Theorem). Let M be a complete noncompact riemannian
n-manifold. If there is a p € M so that dist, has no critical points (other than p),
then M is diffeomorphic to R™.

The compact version of this is contained in

Theorem 1.12 (Sphere Theorem). Let M be a closed riemannian
n-manifold. If there is a p € M so that dist, has only one critical point (other
than p), then M is homeomorphic to S™.

Proof. By assumption, there is only one point ¢ at maximal distance from p, say
d(p,q) = ro. Pick € > 0 smaller than the injectivity radii at p and at ¢. From the
isotopy lemma it then follows that D,(r) is homeomorphic (in fact diffeomorphic,
cf. 1.14), to D™ for any 0 < r < ro. If therefor M — By(r) C By(¢) for some r,

our claim is a consequence of 1.7 and the Generalized Schoenflies theorem (cf. e.g.
[57]). Now assume on the contrary, that M —By(r) ¢ By(e) for any r < rp i.e., there
is a sequence of points z, € M with dist(p,zn) — 7o and dist(g,z,) > € for all n.
Since M is compact we find an accumulation point z € M with dist(p,z) = r¢ and

dist(x, ¢) > e. This contradicts the assumption that only ¢ was critical for dist,. [
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It should be mentioned that any twisted (exotic) sphere has a riemannian metric
which safisﬁes the hypotheses in 1.12. This follows from a general construction due
to Weinstein (cf. [4, p. 231]).

In the absence of a good notion of index for critical points, there is nothing to
predict the change in topology when crossing a critical level. Rather than pursuing
Morse Theory any further, we proceed to show that Lusternik-Schnirelman Theory

is valid for distance functions. The key to this is the following

Lemma 1.13 (Deformation Lemma). Let M be a complete ricimannian man-
ifold and A C M a compact subset. Suppose r > 0 is an isolated critical value of
dist 4. For every open neighborhood U of crit(A) Ndist;;"(r) there is an € > 0, such
that Da(r + €) — U can be isotoped into D 4(r — ¢).

Proof. Asin the proof of 1.7 we see that for each p € dist;'(r)—U, thereisan ¢, > 0
and a neighborhood U, of p in M, such that U, N R(r — €, 7+ €) is homeomorphic
to (Up Ndist 3'(r)) X [r — €y, 7+ €p]. By compactness, cover dist 3 (r) = U by finitely
many sets Up, N dist;'(r),s = 1,...,4. With ¢ = miinep,. ,and W = Li)UP'. clearly
W N R(r — €, + €) is homeomorphic to (W Ndist ;' (r)) X [r —¢,7+ €] and WUU D
dist7*(r). By possibly choosing a smaller ¢ we can assume R(r—e,r+€) C WUU.

In particular R(r — ¢,r +¢) — U C W N R(r — €,7 + ¢€) and the proof is completed.

O
Remark 1.14. A simple modification of the argument given above shows that
the isotopy in 1.13 can be chosen globally on M and fixing everything outside an
arbitrarily small neighborhood of WNR(r —¢,r +¢€). Note also, that if r in 1.13 isa
regular value, then U can be chosen empty. By 1.8 and smoothing theory (cf. [44])
it then follows that dist3;'(r) has a smooth structure. Moreover, if in 1.8 dist 7' (r)
is a smooth submanifold for some r € [r1,72], then all the other levels are smooth
as well, and R(ry,79) is diffeomorphic to dist;'(r) x [r1,72].
The deformation lemma helps in locating critical points other than the obvious

minimum and maximum points. The method for this is referred to as the minimaz
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principle. Let F be a family of subsets of M. Define the minimax of dist4 over F
by

(1.15) Minmax(dist4,F) = l%relf}_ sup {dist4(p)|p € F'}
or equivalently
(1.15") Minmax(dist 4, F) = inf{r € R4|3F € Fwith F C D(r)}.

A family F is called isotopy invariant if every isotopy of M takes any subset of M

from F to a subset of M from F. From 1.13 (and 1.14) we now get immediately:

Theorem 1.16 (Minimax Principle). Suppose A C M is compact and that F
is an isotopy invariant family of subsets in M. Then Minmax(dista,F) is a critical

value of dist 4.

There are many interesting examples of isotopy invariant families. We mention

here only a few of the most important ones.

Examples 1.17 (Isotopy Invariant Families)

(i) Let S be any topological space and [S, M] the set of homotopy classes of
maps from S to M. For fixed f : § — M, the family Fj5 = {g(S) C M|g €
[f]} is clearly an isotopy invariant family.

(a) I S = M is closed we have Minmax(dist 4, Fjiq)) = Max dista.

(b) If S = {point} then Minmax(dista, F[}) = Min dist4 = 0.

(¢) If S = S*, the minimax principle associates to each element [f] €
mr(M) of the k’th homotopy group of M a critical value,
Minmax(dist 4, Fiy) of dista.

(ii) Let Hx(M, R) be the k’th singular homology module of M with coefficients
in aring R. For each k-cycle z let F{,; = {carrier of w|w a k-cycle with [w] =
[z] € Hp(M)}. Here the carrier of a singular k-chain, ¢ = ) nq0q,04 :
Ay — M is simply goa(Ak) C M.
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(a) If [M]e H,(M) is a fundamental class, clearly

Minmax (dist 4 Fjps)) = Max dist 4.
(b) If [] € Ho(M),then Minmax (dist4, F[)) = Min disty = 0.
(iii) Recall that a subset X C M has Lusternik-Schnirelman category,
cat(X; M) = m if it can be covered by m (but not fewer) closed sub-
sets of M, each of which is contractible to a point inside M. For each
m < cat(M) := cat(M; M) let Fp, be the family of subsets X C M with

cat(X; M) > m. By the minimax principle
ca(m) = Minmax(dist 4, )

is a critical value for each m < cat(M).

Since obviously
cat(X; M) <cat(Y;M)if X CY
we can also write
ca(m) = inf{r € Ry|cat(Da(r); M) > m}.
From this or Fip+1 C Fin we get

0=ca(l) < - <ca(m) <ca(m+1) <+ < ca(cat(M)) < Max dist 4.
In the last example it can of course happen that equality occurs. For example
if M = RP? with constant curvature 1 and A = {p} then 0 = c(;}(1) < ¢(;3(2) =
c(p}(3) = 7/2 (if instead A = RP! C RP? then 0 = crp1(1) = crp:(2) < crp1(3) =
7/2). However, if equality does occur, one gets the following remarkable compen-

sation.

Theorem 1.18 (Main Theorem of L. - S. Theory). Let M be a complete

riemannian manifold and A C M a compact subset. For each m < cat(M),

ca(m) = inf{r € Ry|cat(Da(r); M) > m}
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is a critical value of dist 4 and
O0=ca(l)<---<ca(m)<---<ca(m+k) < .- < ca(catM).

If moreover, ca(m) = ca(m+k) = ¢, then cat(crit4(c); M) > k+1 and in particular

dim crit4(c) > k.

Proof. It remains to consider the case ¢ = ca(m) = ca(m + k). From this and the

definition of the c4’s we have
cat(Da(c—€); M) <m—1 and cat(Da(c+e);M)>m+k

for any € > 0. Now let U be a neighborhood of crit 4(¢) and choose € > 0 as in 1.13.

From trivial properties of cat(-, M) we then get
cat(U; M) > cat(Da(c+e)UU; M) — cat(Da(c+¢€) — U; M)
> cat(Da(c+€); M) — cat(Da(c —€); M)
>k+1

for every U D crita(c). The desired inequality then follows once we have seen
that there is a U with cat(U; M) = cat(crita(c); M) = £. For this let crita(c) C
Fy U ... U Fy, where each F;,i: = 1,--- ,£ is closed and there are homotopies ¢; :
F; x[0,1) — M with ¢;(p,0) = p and pi(p,1) =pi € M,forallpe F;,1 =1,--- L.
By the homotopy extension property of M we may assume that each ; is defined
on all of M x [0,1]. For each 7 = 1,--- ,£ let O; be a neighborhood of p; with O;
contractible, and U; an open neighborhood of F; with U; C ¢i(-,1)71(0;). Then
U=U U---UU; D crita(c) has category £ because cat(U;; M) = cat(U;; M) <
cat(pi(U;;1); M) < cat(O; M) = cat(O;; M) = 1.

The claim dimecrit4(c) > k now follows since cat(X; M) < dim X + 1 for any
closed subset X C M (cf. e.g. [50]). O

For any compact subset A C M we see in particular that dist4 has at least

cat(M) critical points.
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Example 1.19. Let M be the real projective plane RP? with riemannian metric
so that M is an ellipsoid in R® with three different axes. If A = {p} is the point in
M corresponding to the pair at maximal distance in M, then clearly dist4 : M — R

has exactly 3 = cat(RP?) critical points (including of course A = p itself).

A lower bound for cat(M) is provided by the so called cuplength of M. Here
cuplong(M) is the largest integer £, such that for some field F' there are £ cohomol-
ogy classes wy,--- ,wp € H*(M; F) each of positive degree and w; U --- Uwp # 0.
The following comparison between cat(M) and cuplong(M) is proved for metric

and path connected spaces M in [5).

Theorem 1.20. For any riemannian manifold M, cuplong (M) + 1 < cat(M) <
dim M + 1.

This concludes our general discussion of critical point theory for distance func-
tions. In the next sections we will see how to use this in conjunction with comparison

theory.

2. COMPARISON THEORY AND CRITICAL POINTS

The utility of critical point theory, as discussed in Section 1, has been particularly
apparent so far, in the presence of a lower (sectional) curvature bound. Before we
attempt to isolate a few essential ideas behind this, we recall the basic results from
comparison theory that are used.

Following [56] we let S? denote the simply connected n-dimensional space form
of constant curvature k. Points in S} will be written as p, ¢ etc. rather than p,q
etc., which will continue to denote points in a general manifold M.

There are several equivalent formulations of the basic distance comparison the-
orem, usually referred to as Toponogov’s triangle comparison theorem. Here are

three of them

Theorem 2.1 (Toponogov). Let M be a complete riemannian manifold with sec-

tional curvature, sec M satisfying sec M > k. The following equivalent statements
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hold

(A) For every geodesic triangle (co,c1,c2) in M with minimal sides, there is a
triangle (o,¢1,¢2) in S? with Length(c;) = Length(c;),i = 0,1,2 and for
corresponding angles 0; > 6,1 =0,1,2.

(A) Let (co,c1;60) be any geodesic hinge in M with minimal sides, and
(€, ¢i,0) the corresponding hinge in S%. Then for the hinge endpoints
(p1,po) and (p1, o), dist(p1, p2) < dist(py, o).

(T) Consider any pair (co; po ), where co is a minimal geodesic in M and po € M.
Let (o;po) be the corresponding pair in S}, i.e. the distances from py to
the endpoints of ¢y are the same as from pg to the endpoints of co. Then

dist(po,q) > dist(po,q) for any q € co and corresponding § € Co.

In each of these statements ¢y does not need to be minimal, only Length(co) <
7/VE if k > 0. In this case, however, the angle comparison in (A) holds only for
the angles adjacent to c.

There are important rigidity éompanions to (T) and (A) above in cases of equal-

ity:

[A] Suppose 0 < 8 < wanddist(py,po) = dist(p1,P0). Then (co,c1) spans a
surface in M isometric to the unique triangular surface in S} spanned by
(¢o,¢1), and with totally geodesic interior.

[T) Assume po ¢ co and dist(po, q) = dist(po, ) for some interior ¢ € co. Then
every minimal geodesic ¢, from py to q spans together with co a unique
surface isometric to the triangular surface in S? spanned by ¢y and py, and

with totally geodesic interior.

One advantage with the T-version of 2.1 is that it makes sense in more general
inner metric spaces where angles are not a priori defined (cf. [56]). If § is such a
space with curvS > k, i.e. local distance comparison 4la 2.1 holds in S, then indeed

global distance comparison holds as well (see [6]). The corresponding rigidity results
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have been proved and applied recently in [30].

It is sometimes useful to interpret (A) in terms of the exponential maps as in [34]:
If p € M and rad(p) = maxdist, we endow Do(rad(p)) C T,M with the constant
curvature k metric obtained from the euclidean metric by a radial conformal change
(when k > 0 and rad(p) = =/ vk we interpret Do(rad(p)) as S¢). In this way we

view the segment domain seg(p) as a subset of S§. Clearly 2.1(A) is equivalent to
(2.1 exp, : seg(p) — M is distance nonincreasing.

This is the basis also for volume comparison of various important metrically defined
subsets of M. We mention only two examples of this, both of which are special cases
of one general result from [33] (cf. also [11]).

Example 2.2 (Half spaces). Fix p € M and a closed subset @ C M. Let
p = exp,'(p) and Q = exp;(Q) in seg(p) C Si. For the half-spaces H(p,Q) =
{ € M|dist(z,p) < dist(z,Q)} and H(p, Q) in M and S} respectiv;ely we then

have

vol H(p, Q) < vol H(p, ).

Example 2.3 (Swiss Cheeses). With p and Q asin 2.2 fix R > 0 and an arbitrary
function r : Q — R4. By definition the swiss cheese K = K((@,7); (p, R)) in D,(R)
relative to r is the set K = Dy(R) — UgeqBqy(r(q)). Then

vol K((Q,7); (p, R)) < vol K((Q,7); (P, R))

where 7 =r o exp, : @ — Ry.

The volume estimates given in 2.2 and 2.3 do not hold under the weaker curva-
ture assumption Ric M > (n — 1)k. This, however, is sufficient for the following

simple extension of the so-called Bishop-Gromov volume comparison theorem (cf.

e.g. [7).
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Theorem 2.4 (Relative Volume Comparison). Let M be a complete riemann-
ian n-manifold with Ric M > (n — 1)k and suppose QQ C M is compact. If we set
vE(R) = vol Dp(R) in S}, then

R — volDg(R)/vi(R)
is a nonincreasing function.

We are now ready to present some principles frequently used in the detection of
critical or regular points.

Throughout we fix a complete riemanﬁian n-manifold M with sec M > k.

In the regularity principle we consider two points p,q € M and fix p,§ € S
with dist(p, ¢) = dist(p, §). Except for the single case where k > 0,d(p,q) = 7/Vk
and in particular M = S}, there is a continuous map T': M — S} defined by the
requirement dist(p, z) = dist(p, T(z)) and dist(g,z) = dist(g, T(z)) for all z € M.

T is unique up to reflection in the segment, pg from p to g in SZ. If
reg(p,9) = {Z € S¢|4(p,2,9) > 7/2}
(cf. figure 2.6) we have
Lemma 2.5 (Regularity Principle). For any p,q € M the set
reg(p, q) := T~ (reg(p, 7))

consists of regular points for p as well as for q.

Proof. Let z € T~ (reg(p,q)). Then by 2.1(A), the angle at z between any two

segments from z to p and from z to ¢ is obtuse. O
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reg (p,q) for k=0

FIGURE 2.6

In the special case where k > 0 and dist(p,q) = 7/2Vk,reg(p,q) C St has two/fr
connected components, one of which is B(p,7/2Vk) N B(Q,W/Q\/E)? If dist(p, q) =
D > n/2Vk then S2 — seg(p,§) = seg(—p,q) U seg(—q,p), and in particular
seg(p,q) D Bs(D) N By(D) (cf. figure 2.7).

reg (p,q) for k > 0 and dist (p,§) > x/2Vk

FIGURE 2.7
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In the criticality principle we consider points p,¢ € M where ¢ € crit(p). Fix
correspor;ding points p,§ € S? and for each r > dist(p,q) = dist(p,q) = d let
7 € S{ be the unique point (up to reflection in segment pg) with dist(p,7) = r
and £(p,q,7) = w/2 (cf. figure 2.9 below). If 6x(r,d) = Z(7,p,q) then 6;(r,d) is
increasing in r and decreasing in d (if k¥ > 0 we assume here d < r < 7/2vk). With

this notation:

Lemma 2.8 (Criticality Principle). Let p € M and suppose q € crit(p) with
dist(p,q) = d. Then for all x € M with dist(p,z) = r > d, the angle between any

pair of segments from p to q and from p to z is at least Ox(r, d).

Proof. Let co be a segment from p to ¢, ¢1 a segment from p to z and ¢, a segment
from ¢ to z. If Z(¢o(0),¢1(0)) < Ox(r,d) so is the comparison angle in the triangle
(€0,€1,¢2) by 2.1(A). By definition of 8x(r,d), therefore, Z(—&o(d), & (0)) > 7/2.
This means, howevér, that also Z(—¢o(d),¢é2(0)) > /2 by 2.1(A). Since c¢q was

arbitrary, this contradicts the assumption ¢ € crit(p). Thus Z(¢é0(0),¢1(0)) >
0x(r,d) as claimed. O

=3

FIGURE 2.9

The shrinking principle below is based on 2.1’ as applied in the volume estimates

2.2 and 2.3.
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Lemma 2.10 (Shrinking Principle). Let p € M and suppose q € crit(p) with
dist(p, q) = d. Then

(i) vol H(g;p) < volH(g,{po,p1}), where H(g,{po,P2}) C Dq(rad(q)) C 5%,
g is the midpoint of segment popy and dist(g, pi) = d.
(i) vol(M — By(r)) < vol(D4(rad(q)) — (Bpo(r) U By, (r))) for any r > 0.

rroof. From 2.2 and 2.3 we have volH(g;p) < vol H(q, equf](p)) and
vol (M — By(r) < volK((exp;'(p),r);(g,rad(g))). It remains to see that if we
replace expgl(p) by {Po,P1} chosen as in 2.10, then we get subsets in Sp with
(possibly) even bigger volume. For this observe that Sgp C TqM forms a weak
7/2 — net in the unit sphere S; C T, M because ¢ € crit(p). From 2.4 we conclude
that vol Ds,,(6)/v}~1(8) > vol Sep(m[2)/o} H(7/2) = vol S7- 1 fui~1(w/2) = 2
for all § < 7/2, where Ds,,(f) C S is the f-neighborhood of 5 in S, = Sph.
Thus vol Dg,,(6) > vol Dyyg,0,}(0) , Where vo,v1 € S, is any antipodal pair. By
integrating the reverse inequality for the corresponding complements we derive our

claim.

H(g; {po,D1}) C Dy(R)

FIGURE 2.11
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Remark 2.12. The shrinking lemma has a natural generalization, where instead
of assuming ¢ to be a critical point for p, one assumes that S, is a weak %7r +0
net in Sy for some 0 < § < 7/2. In this case the points o, 5; must be chosen so

that Z(pogp1) = 7 — 26, where the corresponding {vo,v;} form a weak 1w+ 0 net

in Sy.

In the subsequent sections we will apply these principles to different types of

problems in riemannian geometry.

3. RECOGNITION THEOREMS

In this section we give examples of situations where critical point theory is used
to determine the type of the manifold. The simplest and first such application was

given ‘n [36]:

Theorem 3.1 (Diameter Sphere Theorem). Any complete riemannian mani-

fold M with secM > 1 and diam M > 7 /2 is a twisted sphere.

Proof. Choose p,q € M with dist(p,q) = diam M. By the regularity principle 2.5
all points in M — {p, ¢} are regular for p as well as for ¢ (cf. also fig. 2.7). The

conclusion then follows from 1.12. O

We point out that in the special case of 3.1, one does not have to appeal to the
generalized Schoenflies Theorem as we did in 1.12. It suffices to observe that a
gradient like vector field X can be constructed on M — {p, ¢} which is radial near

p and ¢. We also note that the following question remains open.

Problem 3.2. Is theread = d(n) < 7 so that any complete riemannian n-manifold

M with secM > 1 and diam M > d is diffeomorphic with S™?

Ifin this problem we replace the diameter by the radius, an affirmative answer has
been given in [65]. The idea here is to show that when sec M > 1 and radM ~ ,
then M is metrically close to S7* in the Gromov-Hausdorff, and hence Lipschitz

sense (cf. [70]).
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Except for the question about existence of different differentiable structures on
manifolds M as in 3.1, it is well known that the diameter sphere theorem is optimal.
However, when diam M > /2 is replaced by diam M > 7/2 one has the following

essentially complete metric classification proved in [21] and [22].

Theorem 3.3 (Diameter Rigidity). Let M be a complete riemannian manifold
with secM > 1 and diam M = /2. Then, either M is a twisted sphere or else
(i) If my(M) =T # {1}, M is isometric to
(a) The unique Zj-quotient of a complex odd dimensional projective
space, or |
(b) S7/T, where I' = 0(n + 1) is reducible.
(i) If m (M) = {1}, M is isometric to a projective space, except possibly if M

has the cohomology ring of the Cayley plane, Co P2,

In this theorem, one would also have rigidity in the exceptional case where

H*(M) = H*(C,P?), provided the following holds

Conjecture 3.4. Any riemannian submersion $1* — M® is congruent to the Hopf

map S3° — S§.

The proof of 3.3 is rather long and intricate. Here we only give an outline in
order to show how critical point theory enters:
As in 3.1 we begin by choosing points p,q € M with dist(p,¢) = diam M == /2.
Then
A = {z € M|dist,(z) = 7/2} and 4 = {z € M|dista(z) = 7/2}

are both non-empty, and totally 7-convex by 2.1 (T), i.e. any geodesic in M of
length < 7 and with endpoints in A (resp. A) is entirely contained in A (resp. A).

The regularity principle 2.5 shows that all points in M — (AU A) are regular
for dists as well for dist;. In particular, for any € > 0, M — Ba(€) U By(e) is
homeomorphic to dist7*(€) x [0,1]. Moreover, from the structure of convex sets (cf.

1.3) A(resp.A) is either a closed smooth totally geodesic submanifold of M or else a
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compact topological submanifold with 04 # @ and smooth totally geodesic interior.
In the first case, B4(e) is diffeomorphic to the normal bundle of A in M by 1.10. If
on the other hand 84 # 0, then distgs : A — R is strictly concave since sec M > 0
(cf. [10]). In particular there is a unique point s € intA at maximal distance from
OA and all points in A are s-regular as explained in 1.3. Thus for € > 0 sufficiently
small, all points in D 4(€) are regular for dist, and therefor D 4(¢) is diffeomorphic
to the dimM dimensional euclidean disc by 1.10. — All in all we conclude that there
are totally geodesic smooth submanifolds of M (possibly points), so that M is the

union of their tubular neighborhoods.
Observe in particular, that if 4 # 0, and A # 0§ then M is a twisted sphere.

Ncw suppose M is not a sphere. We claim that A = A = 0 i.e., A and A are
smooth totally geodesic submanifolds of M (one of them possibly a point). Indeed,
if say OA # 0 pick p € A arbitrarily and let ¢ be a segment from p to A. By the
rigidity comparison theorem 2.1 [A], it follows that any normal vector u € T,At
which is obtained from —&(w/2) € Te(x /Z)A‘L by parallel translation along a curve
in A, defines a segment ¢, from q € A to p. Moreover, this set U ¢ TAL of normal
vectors to A is a smooth closed submanifold of the unit normal bundle SA* to
A with fiber F C U being the orbit of —é(7/2) in S¢(x /2)AJ' under the normal
holonomy group. By assumption SAL ~ dist;(e) =~ distil(e) is diffeomorphic to
the dim M —1 dimensional sphere. If therefore SAL+—U # 0, the (normal) projection
U — A is homotopic to a constant map U — pt € 4? Using the homotopy lifting
property of U — A we get a homotopy h : U x [0,1] — U where hy = 1dy and
hi(U) C F. Since U and F C U are closed manifolds this is impossible and hence [
U = SAL. This on the other hand implies that every normal vector to A defines a |
segment from A to p € A. Since p € A was chosen arbitrarily this yields the desired

contradiction.

An elaboration of the argument just given shows that cut(A) = A and cut(4) =
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A. Moreover, for each p € A the map
SpAt — A, v — expy(n/2-7)

is a riemannian submersion from the euclidean unit normal sphere, S A+ onto A.
An essentially complete metric classification of such fibrations was given in [22].
The only case left is when S;A+ = S}% and A is a simply connected 8-dimensional
manifold ~ S8 (cf. 3.4).

The remaining part of the proof of 3.3 is separated into the cases (i) m1(M ) =
T # {1} and (ii) (M) = {1}. - The topological decomposition of M obtained
via critical point theory is used together with Morse theory for geodesics to show
that when m; (M) is trivial so are m(A) and 71(A). In this case, the classification
of fibrations SyA+ — A gives in particular that A and A are rank 1 symmetric
spaces and then that M itself is such a space. — When m1(M) # {1}, one considers
the universal cover M of M. Clearly sec M > 1 and diam M > n/2. In view of
the classification given already for simply connected manifolds the remaining case
of interest is when diam M > 7/2. In particular, M is a topological sphere by 3.1,
which is decomposed similarly using the lifts fi,f:l of A, A. By a second variation
argument of Synge type we have in general dim A +dim A < dim M —1. However,
when M is a sphere a simple transversality argument then implies dim A+dimA =
dim M — 1. The riemannian fibrations constructed above are then local isometries.
It is now fairly easy to show that fi,/i is an orthogonal pair of totally geodesic

subspheres in the unit sphere M. This concludes the outline of 3.3. |

Before leaving the class of manifolds M with sec M > 1 and diam M 2> 7/2 we
like to point out some interesting volume problems related to critical point theory.

The first is a natural analogue of a classical area problem due to A. D. Aleksandrov

(cf. [34])

Conjecture 3.5. Let M be a closed riemannian n-manifold with sec M > 1 and

diam M = d > 7/2. Then volM < 2v}(d/2), and this estimate is optimal. Note
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that volX = 2 v}(d/2) for the singular spherical space X obtained by gluing to
copies of D}(d/2) C ST together along their boundary.

If in 3.5 we replace the diameter by the radius an optimal estimate has been
found in [34]. There it was also proved that if sec M > 1 and rad M > /2, then
every dist,, p € M has exactly two critical points (including p itself). This then
gives a lower bound for the Filling Radius, and hence the volume of M (cf. [24]).

The optimal lower bound, however, is not known. The following was proposed in

[34].

Conjecture 3.6. If M is a closed riemannian n-manifold with sec M > 1 and
rad M = r > w/2, then volM > Vol.'S'(”ﬂ,/r)2 , 1.e., the volume of M 1is at least the

volume of the constant curvature n-sphere with diameter r.

We close this section with a recognition theorem for exotic spheres. Following

the terminology of [3], the ezcess function associated with p,q € M is given by
(3.7) excp q() = dist(p, z) + dist(z, ¢) — dist(p, ¢)
for all £ € M. Based on this we define the ezcess of M, excM as in [34] by

(3.8) excM = min max excp ().
Py

Other excess type invariants have been introduced in [48], [59] and [30]. Observe
that excM = 0 if and only if there are points p,q € M such that cut(p) = {q}
and cut(¢) = {p}. In particular M is a twisted sphere. Conversely, any twisted
sphere has a riemannian metric with excess = 0 (cf. [4,p.231]). However, it is
easy to see that small excess has no topological significance in general: Simply take
any manifold M and concentrate all of its topology in a tiny metric ball whose
complement is the complement of a tiny ball in the unit sphere. In this simple
construction there is of course no curvature control. The following problem posed

in [35] appears to be significant.
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Problem 3.9. For fixed ¥k € R and D € Ry describe all closed riemannian n-

manifolds with sec M > k, diam < D and excM arbitrarily small.
By excluding the possibility of collapse one has the following answer from [35].

Theorem 3.10 (Exotic Sphere Theorem). Given an integern > 2, areal k and
v, D > 0. There is an ¢ = ¢(n, k, D,v) such that any closed riemannian n-manifold
M with sec M > k, diamM < D and vol M > v is a homotopy sphere whenever

exc M < e.

Proof. Pick p,q € M with max exc,, = excM. A simple application of the
regularity principle 2.5 shows that for every é > 0 there is an € = (6, k,D) so
that M — B,(6) U By(6) consists of regular points for p as well as for ¢, when-
ever exc M < e. In view of the isotopy lemma 1.8, therefore, it suffices to show
that B,(6) and By(6) are contractible to points inside M: Indeed, in this case
M = X; UX,, where X; = M — By(6) and X; = M — By(§) are contractible
in M. Then H*(M,X;) — H*(M) is surjective for = 1,2 and therefor H*(M)
has trivial cup product structure for any coefficient ring. Using Z; as coefficient
field, it follows from Poincaré duality that, in particular Hi (M;Z4) = 0. From the

Mayer-Victoris sequence
0— Ho(X1 N Xz;Zz) — Ho(Xl;Zz) D H(](.X2; Zz) - Ho(M; Zz) — 0

we conclude that X; N Xo is connected. This in turn implies that m (M) = {1} by
Van Kampen’s theorem. Now any simply connected homology sphere is a homotopy
sphere by theorems of Hurewicz and Whitehead. The proof of 3.10 is therefor
complete once the following basic local geomeiric contractibility result has been

established. O

Theorem 3.11 (LGC-Lemma). Given an integern 2 2, a real k and D,v > 0.
There is a § = §(n,k,D,v) such all points (p,q) € M x M with dist(p,q) < 6 are
regular for the diagonal A(M) C M x M. In particular, for each p € M, Dy(9) is

contractible in M to a point.
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Proof. Assume (p,q) € M x M is A-critical and dist(p,q) = d. Then clearly p is
g-critical and ¢ is p-critical. By the shrinking principle 2.10, vol M = vol H (p;q) +
vol H(g;p) < 2vol H(g; {Po,p1}), where H(g; {Po,p1}) = {Z € Dy(D)|dist(¢,7) <
dist(Z, {fo,p1})} C SF and § is the midpoint of pop1 and dist(g,p:) = d (f. fig.
2.11 with 8 = 0). Since obviously vol H(g; {Po,p1}) — 0 and d — 0 this proves the
first claim. — The deformation retraction defined near A C M x M by following the
integral curves of a gradient like vector field for dista, will also provide the desired

deformation of D,(6) via the embedding Dp(68) C {p} x Dp(8) C M x M. O

Remark 3.12 (Contractibility functions). By appealing to the more general 6-
version 2.12 of the shrinking lemma, one gets an important sharpening of the LGC-
lemma above: There are § = §(n,k,D,v) > 0 and 8 = 6(n,k, D,v) > 0 such that
any point (p,q) € M x M with dist(p,q) < 6 is 6-regular, i.e. S(pg)a is contained
ina m — 6 ball in S M x M. From 1.5 we then find an R = R(n,k,D,v) so
that any r-ball in M with r < § is contractible inside the concentric ball of radius

R-r.

The local geometric contractibility control described above is crucial for example
in the derivation of homotopy - and homeomorphism finiteness results (cf. section
5).

Remark 3.13. An application of the relative volume comparison theorem 2.4
shows that any n-manifold M with RicM > (n—1) and diamM > 7 —e¢ has small
excess. Theorem 3.10 therefor has a diameter Ricci curvature sphere theorem as

corollary (cf. [35]).

4., STRUCTURE THEOREMS

Tt is too optimistic to expect a recognition type solution to the excess problem
mentioned in 3.9. Rather, one would hope to at least be able to find restrictions
for the structure of such manifolds. The applications of critical point theory given

in this section are to problems of that kind.
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Although all manifolds M in this section will be complete and non compact,
the idea in the following observation due to Gromov plays a key role in the Betti-

number finiteness theorm of section 5.

Theorem 4.1. Let M be a non compact riemannian manifold with sec M > 0.

Then M is diffeomorphic to the interior of a compact manifold with boundary.

Proof. We claim that for any p € M, there is an r > 0 so that dist, has no critical
points in M — Bp(r). In fact, if this is not the case let ¢i,2 =1,2,... be a sequence
of points in crit(p) with say dist(p, gnt+1) > 2dist(p, ¢n). By the criticality principle
2.8 the angle between any segment from p to ¢; and from p to gj, is bounded
below by 85(1,2)(= 6o(d, 2d) for any d > 0) independent of 7,j. This is of course
impossible since S, C TpM is compact. The claim now follows from the finite type

lemma 1.9. : O

The following much stronger structure theorem is due to Cheeger and Gromoll

[10]:

Theorem 4.2 (Soul Theorem). Any complete non compact riemannian manifold
M with sec M > 0, is diffeomorphic to the normal-bundle of some compact totally
geodesic submanifold S C M.

The dominating feature in the proof of this result is convexity. Here is an outline:

Choose p € M arbitrarily and let ¢ : [0,00] = M be a ray in M, i.e. c|[s,t] is
a segment for any s,t. The existence of such a ray is a simple consequence of the
Hopf-Rinow theorem. For each t > 0, Hy(c) = M — ch(t+ s)(8) is called the half
space associated with c: [t,00) — M (cf. figure 4.3).

Let co : [0,4) — M be a geodesic in M with co(0) = q1,¢0(£) = g2 € Hi(c). If
co(r) € By(tts5)(s0) for some so then dist(co(r),c(t + s)) < s — € for some € > 0
and all s > s¢ by the triangle inequality. Since dist(pi,c(t + s) > s for all s > 0
this contradicts Toponogov’s theorem 2.1 (T). Thus H(c) is totally convex for all
t > 0.
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FIGURE 4.3

Now consider the compact totally convex subsets C; = QHt(c), where the inter-
section is taken over all rays ¢ emanating from p. Clearly U;>o Cy = M, and for
each t > 0, 0C,; # 0.

If C C M is a convex set with 8C # 0 then distac : C — Ris a concave function
because sec M > 0, [10]. In particular C; = {z € C|distac(z) > a} is convex for all
a < ap = max distsc. Moreover dim C? < dim C. This construction terminates
in finitely many steps when one arrives at a convex set S C C without boundary.

By applying the above construction to one of the sets Cy, t > 0 we get a totally
geodesic, closed submanifold § C C; C M. Such an S is called a soul of M. It
is now easy to see that each £ € M — S lies on the boundary of some convex set

C O S. By the convexity principle 1.3, z is a regular point for dists : M — R. The

soul theorem is then a consequence of 1.9 and 1.10. a

It is not known if the converse to 4.2 holds, i.e.

Problem 4.4. Does the total space E of any vector bundle E — M over a closed

riemannian manifold M with sec M > 0, carry a complete metric with sec E > 07

This problem remains unsolved even when M = S™ (cf. [10], [54], [55]).
In trying to extend some of these ideas to complete noncompact manifolds M

with sec M > k, k < 0, we reinterpret some of the above constructions for k = 0.
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Specifically we observe that dist, : M — R has no critical points outside the
compact set Cy = QHt(c) for any ¢t > 0. In fact any point ¢ € M — C; belongs
to LsJBc(H-s)(S) for some ray c¢ : [0,00) — M with ¢(0) = p. Now LSJBC(HS)(S) C
LSJ reg(c(t), ¢(t + 2s)) by 2.1 and the regularity principle 2.5 applies.

With this in mind suppose M is a complete non compact riemannian manifold
with sec M > —k,k > 0 and finitely many ends. For fixed p € M and r > 0 let
R(p,r) = {c(r)|c : [0,00) — M ray, ¢(0) = p} C dist,'(r). Following [7] we define

the essential diameter of ends at distance r from p, esdi(p,r) as

R

(4.5) esdi(p,r) = sup diam Z 3
"

where the supremum is taken over all connected components 3. of dist;*(r) with
>, NR(p,7) # 0 (corresponding to the boundary of unbounded components of
M — D(p,r)). The essential end diameter of M is then

(4.6) esdio(M) = iI;f lim sup esdi(p, ).

r=—00

Of course esdig (M) = oo in general. In view of the discussion of sec M > 0 above,

however, the following result of Shen [59] can be interpreted as a generalization of

4.1.

Theorem 4.7 (Bounded End Theorem). Suppose M is a complete non com-
pact riemannian manifold with finitely many ends and sec M > —k,k > 0. If
esdio(M) < Vl—zlog(gizﬁ), then M is diffeomorphic to the interior of a compact

manifold with boundary.

Proof. By assumption there is a p € M and an R > 0 so that diam ) <
—\%c-log(ﬁizl@) for all connected components ), C dist;!(r) with 37 NR(p,r) #
@, > R. In particular dist(z, R(p,r)) < Vlzlog(ﬁzlé) for all z in such }’s. An
easy application of the regularity principle 2.5 (cf. figure 4.8), then shows that all
points of 3 C dist;*(r) with 35 NR(p,r) # 0,r > R are regular points for p. af

now U is one of the finitely many unbounded connected components of M — D,(R),
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there is a ray c : [0,00) — M emanating from p with ¢(r) € U for any r > R. The
isotopy lemnma 1.8 then implies that all 3,7 > R determined by c(r) € 3 _ are
homeomorphic and in fact U is homeomorphic to Y~ 5 X(R, 00). From this and the
fact that M — D,(R) has at most finitely many bounded components, we conclude
that there is an R; > R so that all points in M — B,(R,) are regular points for

dist,. ]

b2 &(r) e(t)

Tn 57, reg(,2) = U reg(p, &(t)) = U disty™ () N Bogry(6e(r))

cosh® Vkr — sinh® vVEr

1
here §i(r) = —= cosh™!
where 8x(r) cosh™( cosh Vi

Vk

).

FIGURE 4.8

When the essential end diameter (4.6) is indefinite (or violates the assumption
in 4.7), the regularity argument used above does not apply directly. However,
existence of p-critical points in M — By(r) for any r, restricts suitable excess-
invariants of M severely. This was first observed in [3] (cf. also [59] and [7]. Abresh
and Gromoll also made the fundamental discovery that excess functions can be
controlled in terms of Ricci curvature. If the end diameter growth function 4.5 is
not too big, this excess control, then violates the restrictions stemming fromn the

existence of critical points in M — B,(r) for all r. More precisely [3],
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Theorem 4.9. Let M be a complete non compact riemannian n-manifold with
sec M > —k,k > 0 and end diameter growth satisfying

1 n-1

inf limsup esdi(p,r) - r~% < k=%,
P rooo 8

Then M is diffeomorphic to the interior of a compact manifold with boundary if

also RicM > 0.

For other similar results involving intermediate curvatures and volume restric-
tions see [59] and [62].

It should also be mentioned here, that examples due to Sha and Yang [58], show
that the diameter growth assumption in 4.9 is necessary. For more details about

all of this we refer to the survey article by Gromoll [19] in these proceedings.

Remark 4.10. In the framework of this survey, there are so far no general structure
theorems for natural classes of closed manifolds, e.g. positively or non negatively
curved manifold. There is reasonable hope, however, that results of this type may
emerge via our increased understanding of the Gromov-Hausdorff topology on such

natural classes of closed manifolds. For more about this we refer to the surveys by

Petersen [52], and Fukaya [13].

5. FINITENESS THEOREMS

It is not unreasonable to view a finiteness theorem as a first step in a recognition
process, or for that matter as an approximation to a structure theorem.
In the results we will discuss here, the following simple packing lemma plays a

crucial role.

Lemma 5.1 (Packing Lemma). Fix an integer n > 2, and k € R. For every
&,D > 0 there is an N = N(n,k,¢, D) such that any D-ball in a riemannian n-

manifold M with Ric M > k(n — 1) can be covered by < N e-balls.

Proof. Let {zi,...,zn} be the centers of a maximal set of disjoint €/2-balls in

the given D-ball in M. By maximality, the corresponding e-balls provide a cover.
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Moreover, the relative volume comparison lemma 2.4 yields
N < op(D)/vi(¢/2) = N(n,k,¢, D).

a

Tt is useful to know that when an e-cover is chosen as efficiently as in the proof
of 5.1, the number of e-balls with non-empty intersection is also a priori bounded
independent of ¢ ! This is another simple consequence of 2.4 (cf. e.g. [31)).

We now have all the ingredients used in the proof of the following result (cf.

[31)).

Theorem 5.2 (Homotopy Finiteness). Given an integer n > 2, a real k and
positive D,v. There are at most finitely many homotopy types among closed rie-

mannian n-manifolds M satisfying sec M > k,diamM < D and volM 2 v.

Proof. By the local geometric contractibility lemma 3.11 (3.12), there are constants
r = r(n,k,D,v) > 0 and L = (n,k,D,v) > 0, such that any pair (p1,p2) €
M x M with dist(p1,p2) = € < r is joined by a path op,p, : [0,1] = M depending
continuously on (p;,p2) and with Length(op,p,) < L - e. This allows us to think
of 0p,p,(t) as the ”center of mass” of the points pi1, pz with ”"weights” 1 — ¢ and ¢
respectively. For any integer £ > 2 it is clear that by iterating this construction,
we can assign to any ordered £-tuple (p1,...,p¢) in M a map gy,,..p, : D¢ — M of
the standard £ — simplex AZ, "spanning” (p1,...,pe) and depending continuously
on (p1,...,pe), whenever dist(pi,p;j) < e =¢€(6,r,L) <1, 0,5 = 1,. A

As pointed out after 5.1 there is an £ = £(n, k, D) such that in any Vefficient”
cover of M by e-balls at most £ such balls meet, independent of e. With this l,
choose ¢ = ¢(£,7,L) = €(n,k,D,v) as above and fix for each closed riemannian
n-manifold M with sec M > k,diam M < D and volM > v, an "efficient” cover
by ¢/2-balls, B(p1,€/2),...,B(pm,€/2). According to the packing lemma 5.1, m <
N = N(n,k,D).
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For each m € {1,...,N} consider all the manifolds M that are covered by
exactly m €/2-balls as above, and ‘A{here the corresponding nerves have isomorphic
1-skeleta, i.e. ball number 7 intersects ball number j in all M, or ball number ¢ does
not intersect ball number j in any M. This obviously divides our class of manifolds
M into finitely many subclasses. From the above choices and constructions it
now follows that by choosing a partition of unity subordinate to each fixed €/2-
cover we get continuous maps, f, f' between any two manifolds M, M' from the
same subclass. Moreover, by construction dist(f' o f,idy) < C - ¢, for some C' =
C(L,£) = C(n,k,D,v). Making sure that also C - € < r, then shows that our maps

f, f' are homotopy equivalences. This completes the proof. a

The conclusion in 5.2 can actually be sharpened considerably (cf. [36] and the
announcement in [6] of recent work of Perelman). This relies heavily on Gromov-
Hausdorff convergence techniques and geometric topology, and goes beyond the

main topic discussed here (see [52]).

Theorem 5.3 (Topological Finiteness). For fixed n,k,D and v as above the
class .of closed riemannian n-manifolds M with sec M > k,diamM < D and

vol M > v contains at most finitely many homeomorphic types.

Since any closed topological manifold of dimension n # 4 has at most finitely
many differentiable structures [44], the above theorem yields actually finiteness of
diffeomorphism types when n # 4. Therefore 5.3 generalizes Cheeger’s finiteness

theorem [8] except for n = 4.

Question 5.4. Are there k € R,D,v > 0, and infinitely many diffeomorphism

types of closed riemannian 4-manifolds M satisfying sec M > k,diamM < D and

volM > v?

The volume assumption in 5.2 (5.3) prevent the phenomenon called collapsing.
It is remarkable that even without this assmuption, one has the following general

finiteness theorem due to Gromov [23].
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Theorem 5.4 (Betti Number Theorem). Given an integer n > 2, a real k
and positive D. There is a C = C(n,k,D) so that for every field, F of coeffi-
cients, dim H,(M;F) < C when M is any closed riemannian n- manifold satisfying

sec M > k and diamM < D.

Note that since sec M > 0 is a scalings invariant property, it follows that in this
theorem the diameter assumption is superfluous when k = 0.

Besides the original proof of this theorem in [23] (cf. also [1],[2]), detailed proofs
have been given in lecture notes by Cheeger [7] and Meyer [46]. Here, therefore, we
will only attempt to elaborate on the main ideas and strategies of the proof:

First observe that if for some reason one could control the homology of all e-
balls for some a priori €, then the packing lemma combined with a Mayer-Victoris
type argument would give control on the homology of all M™ with sec M > k and
diam M < D. For fixed k, however, there is a small ¢ = ¢(k) so that all comparison
arguments applied to such e-balls are essentially the same as comparison arguments
used for k = 0. This then ”reduces” the proof to the case sec M > 0 and no diameter
assumption. Now, however, one needs to be able to control the homology of all balls
B. 1t is important that all of the above ideas work if one replaces dim H.(B) (which

could be infinite) by the finite number
contB = rank(i, : Ho(B) — H«(5B)),

called the content of B. Here 5B is concentric with B and has 5 times larger radius.
The only significance of 5 is that it is a fixed number > 1.
In order to estimate cont(B), one makes the following simple but basic observa-

tion: If B can be isotoped inside 5B to a ball B’ with 5B’ C 5B, then
cont B < cont B'.

In this case we say that B can be compressed to B'. If rad B’ < %radB we say

that B is compressible. Thus, B is incompressible if it does not compress to any B’

with rad B' < %rad B.
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Obviously, if a ball B can be compressed sufficiently many times, so as to end
up in a contractible ball (e.g., a ball with radius smaller than inj(M)) its content
is 1.

If on the other hand B,(r) is incompressible then by the isotopy lemma 1.8 any

point z € 2B has a critical value in the interval [3r,r + dist(z,p)] (cf. figure 5.5).

FIGURE 5.5

Now cover B,(r) efficiently with balls of radius say r/10 as in the packing lemma
5.1. If all of these balls have content 1 we get an a priori estimate for cont By(r).
Otherwise we find a ¢ € By(357) so that all 2’ € 2B,y(r"),r" < r have critical
values in the interval [ &1/, Z-r'+dist(z', )] as well as in the interval [ir,r+d(z',p)]
from before. By the criticality principle 2.8, this process must terminate after a
finite a priori number of steps where all involved balls have content 1. The a priori

control on the number of such balls needed, then gives via the Mayer-Victoris type

argument alluded to above the desired conclusion. a

We point out that the constructive proofs discussed above yield explicit esti-

mates, although probably very far from being sharp. The following conjecture has

been formulated by Gromov.

Conjecture 5.6. Any complete riemannian n-manifold M with sec M > 0

must have dim H,(M; F) < dim H,(T"; F) = 2™.
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Another natural question is whether the product structure of Hy(M; F) is con-

trolled for manifolds M in the class sec M > k and diam M < D. In particular

Question 5.7. Given an integer n > 2,k € R and D > 0. Are there only

finitely many rational homotopy types among closed simply connected riemann-

ian n-manifold M, satisfying sec M > k and diam M < D?

®
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