EMPIRICAL INDUSTRIAL ORGANIZATION (ECO 310)
 Fall 2022 - Victor Aguirregabiria
 SOLUTION TO PROBLEM SET 2

November 20, 2022

INSTRUCTIONS. Please, follow these instructions for the submission of your completed problem set.

1. Write your answers electronically in a word processor.
2. For the answers that involve coding in STATA, include in the document the code in STATA that you have used to obtain your empirical results.
3. Convert the document to PDF format.
4. Submit your problem set in PDF online via Quercus.
5. You should submit your completed problem set by Sunday, November 20, 11:59pm.
6. You can discuss about the problem set with you classmates, but your answers and code should be written individually.

The total number of marks is 200.

To answer the Questions in this Problem Set, you need to use the datafile datafile_problemset_02_2022.dta that you can download from the course website in Quercus. Use this dataset to implement the estimations described below. Please, provide the STATA code that you use to obtain the results.

This dataset contains information on the retail wine industry in a Canadian province. It is a panel dataset with three dimensions: wine product, retail store, and month. It includes 11,033 wine products, 623 stores, and 12 months, and a total of $6,180,915$ product-store-month observations.

The following Table provides a brief description of all the variables in this dataset.

	Description of datafile datafile_problemset_02_2022.dta
Variable name	Description
product	Wine Product ID Number
store	Store ID Number
period	Month count: from 1 to 12
qunit	Quantity (750ml bottles) sold of product in store and month
price_750ml	Price of Product per 750ml bottle
alc	Alcohol percentage points of Wine Product
sugar_gpl	Sugar (gram per litter) of Wine Product
redwine	Dummy for Red Wine
whitewine	Dummy for White Wine
num_country	Country of origin of Wine Product
ontario	Dummy for Ontario origin of Wine Product
winerack	Dummy for Wine Product belongs Wine Rack Brand
wineshop	Dummy for Wine Product belongs Wine Shop Brand
otherontario	Dummy for Ontario Wine other than Wine Rack or Wine Shop
local_msize	Market size (in bottles of wine) at store-month

For the rest of this problem set, we use the following subindexes: j for product, m for store (local market), and t for month.

Consider the following Logit Demand Model:

$$
\begin{equation*}
\ln \left(\frac{s_{j m t}}{s_{0 m t}}\right)=-\alpha p_{j t}+\mathbf{x}_{j} \boldsymbol{\beta}+\xi_{j m t} \tag{1}
\end{equation*}
$$

Variable $s_{j m t}$ is the market share of product j in store m and month t, that is, $s_{j m t}=$ $\frac{\text { qunit }}{\text { localmsize }}$. Variable $p_{j t}$ represents the price of product j at month t, that is, $p_{j t}=$ price 750 ml . Note that, in this province, the price of a product is the same across all the local markets (stores). Finally, vector \mathbf{x}_{j} contains the following product characteristics:
$\mathbf{x}_{j}=($ alc, sugargpl, redwine, whitewine, winerack, wineshop, otherontario, Country dummies)

QUESTION 1. [20 points]. (A) Construct market shares $s_{j m t}$ and $s_{0 m t}$, and variable $y_{j m t}=$ $\ln \left(s_{j m t} / s_{0 m t}\right)$. (B) Present a figure with the histogram of y.

ANSWER: These are the lines of code in STATA.

```
gen share = qunit/local_msize
egen sumshare = sum(share), by(store period)
gen share0 = 1 - sumshare
gen y = ln(share)-ln(share0)
hist y
```

This is the figure with the histogram of y.

QUESTION 2. [20 points]. Obtain the OLS estimates of parameters α and β in equation (11). In this regression, include store fixed effects and month fixed effects. When reporting your table of estimation results, please do not include estimated coefficients for store dummies and month dummies.

ANSWER: These are the lines of code in STATA.

```
reghdfe y price_750ml alc sugar_gpl redwine whitewine winerack wineshop otherontario
i.num_country, a(store period)
gen alpha_q2 = -_b[price_750ml]
```


This is the table of estimation results.

. reghdfe y price_750ml alc sugar_gpl redwine whitewine winerack wineshop otherontario i.num_country, a(store period) (MWFE estimator converged in 4 iterations)

HDFE Linear regression Absorbing 2 HDFE groups			Number F(39 Prob > R-squa Adj R- Within Root M	of obs 5233560) ed quared R -sq. E	$\begin{array}{lr} = & 5,234,233 \\ = & 39136.46 \\ = & 0.0000 \\ = & 0.4251 \\ = & 0.4250 \\ = & 0.2258 \\ = & 1.1166 \end{array}$	
y	Coefficient	Std. err.	t	$P>\|t\|$	[95\% conf.	interval]
price_750ml	-. 0400237	. 0000443	-904.15	0.000	-. 0401104	-. 0399369
alc	-. 0718711	. 0002776	-258.91	0.000	-. 0724152	-. 0713271
sugar_gpl	. 0018357	. 000021	87.41	0.000	. 0017946	. 0018769
redwine	. 2939236	. 0019097	153.91	0.000	. 2901807	. 2976665
whitewine	. 2419486	. 0019394	124.76	0.000	. 2381475	. 2457497
winerack	. 0059154	. 0034163	1.73	0.083	-. 0007804	. 0126112
wineshop	. 0889334	. 0035737	24.89	0.000	. 0819291	. 0959377
otherontario	-. 8095651	. 0031035	-260.85	0.000	-. 8156478	-. 8034823
num_country						
Australia	-. 0493464	. 0029291	-16.85	0.000	-. 0550874	-. 0436054
Austria	-1.663765	. 0154882	-107.42	0.000	-1.694122	-1.633409
Bulgaria	-. 5142011	. 0243035	-21.16	0.000	-. 5618351	-. 466567
Canada	. 0435827	. 0037798	11.53	0.000	. 0361745	. 0509909
Chile	-. 0138141	. 0032518	-4.25	0.000	-. 0201875	-. 0074407
France	-. 2946378	. 0029452	-100.04	0.000	-. 3004103	-. 2888653
Georgia	-1.088462	. 0398413	-27.32	0.000	-1.16655	-1.010375
Germany	-. 2864667	. 0045466	-63.01	0.000	-. 2953779	-. 2775556
Greece	-. 8517643	. 0087705	-97.12	0.000	-. 8689542	-. 8345743
Hungary	-. 4024938	. 0091775	-43.86	0.000	-. 4204814	-. 3845061
Israel	-. 9708158	. 0179022	-54.23	0.000	-1.005903	-. 9357282
Italy	-. 0251114	. 0028027	-8.96	0.000	-. 0306045	-. 0196182
Jamaica	-. 7160749	. 0287141	-24.94	0.000	-. 7723536	-. 6597963
Japan	-. 8304819	. 0094734	-87.66	0.000	-. 8490494	-. 8119145
Lebanon	-1.922526	. 0761997	-25.23	0.000	-2.071875	-1.773177
Luxembourg	-. 7329813	. 0714058	-10.27	0.000	-. 8729343	-. 5930284
Mexico	-. 5580269	. 0245101	-22.77	0.000	-. 6060659	-. 5099879
Montenegro	-. 8259244	. 0333839	-24.74	0.000	-. 8913557	-. 7604932
New Zealand	-. 2916938	. 0044912	-64.95	0.000	-. 3004963	-. 2828912
Poland	-. 5890749	. 0270352	-21.79	0.000	-. 642063	-. 5360868
Portugal	-. 3176446	. 004158	-76.39	0.000	-. 3257941	-. 309495
Republic of Macedonia	-. 8692797	. 0325435	-26.71	0.000	-. 9330638	-. 8054956
Romania	-. 4582615	. 0243662	-18.81	0.000	-. 5060183	-. 4105047
Serbia	-. 4705951	. 0163173	-28.84	0.000	-. 5025765	-. 4386137
South Africa	-. 1961989	. 0038493	-50.97	0.000	-. 2037435	-. 1886543
South Korea	-1.204587	. 0321621	-37.45	0.000	-1.267623	-1.14155
Spain	-. 4254888	. 0038105	-111.66	0.000	-. 4329572	-. 4180205
Switzerland	-1.501503	. 1183965	-12.68	0.000	-1.733556	-1.26945
USA	-. 0059063	. 0029572	-2.00	0.046	-. 0117023	-. 0001103
Ukraine	-1.00718	. 0794732	-12.67	0.000	-1.162945	-. 8514152
United Kingdom	-. 2732882	. 0320088	-8.54	0.000	-. 3360242	-. 2105521
_cons	-6.193492	. 0045431	-1363.27	0.000	-6.202396	-6.184588

QUESTION 3. [20 points]. Based on your estimates in Question 2, provide an estimate of the willingness to pay (in dollars per 750 ml bottle) of the average consumer for the following changes.

ANSWER: Let me start providing a general description of the calculation of a consumer maximum willingness to pay (WTP) for switching from a product with characteristics \mathbf{x}_{j} to other product with characteristics \mathbf{x}_{k}. The WTP is equal to the change in price that leaves the consumer indifferent (same utility) between buying product j and product k. That is, the equation that defines the WTP is:

$$
\mathbf{x}_{j} \boldsymbol{\beta}-\alpha p_{j}=\mathbf{x}_{k} \boldsymbol{\beta}-\alpha\left(p_{j}+W T P\right)
$$

Solving for WTP, we have:

$$
W T P=\frac{\left(\mathbf{x}_{k}-\mathbf{x}_{j}\right) \boldsymbol{\beta}}{\alpha}
$$

For instance, if the only difference between \mathbf{x}_{k} and \mathbf{x}_{j} is that k is red wine and j is white wine, we have:

$$
W T P=\frac{\beta_{\text {redwine }}-\beta_{\text {whitewine }}}{\alpha}
$$

a. A reduction in alcohol content of 1 percent point.

ANSWER: This is equal to $\frac{-\beta_{\text {alc }}}{\alpha}$. Note that it is a REDUCTION in alcohol content, and this is why the negative sign multiplying $\beta_{a l c}$. Note also that $\alpha=-_b[$ price $]$. The line of code in STATA is:

```
dis (-_b[alc])/(-_b[price])
```

And the result is:
1.7957159

The average consumer is willing to pay $\$ 1.79$ more per bottle if the alcohol content is reduced in 1 percent point.
b. An increase in sugar content of 1 gram per liter.

ANSWER: This is equal to $\frac{\beta_{\text {sugar_gpl }}}{\alpha}$. The line of code in STATA is:

```
dis _b[sugar_gpl]/(-_b[price])
```

And the result is:
0.04586609

The average consumer is willing to pay only 4 cents more per bottle if the sugar content increases in 1 gram per liter.
c. Switching from a white wine to a read wine.

ANSWER: This is equal to $\frac{\beta_{\text {redwine }}-\beta_{\text {whitevoine }}}{\alpha}$. The line of code in STATA is:
dis (_b[redwine]-_b[whitewine])/(-_b[price])

And the result is:
1.2986066

The average consumer is willing to pay $\$ 1.29$ more for a bottle of red wine than for a bottle of white wine.
d. Switching from "otherontario" wine to "wineshop" wine.

ANSWER: This is equal to $\frac{\beta_{\text {wineshop }}-\beta_{\text {otherontario }}}{\alpha}$. The line of code in STATA is:
dis (_b[wineshop]-_b[otherontario])/(-_b[price])

And the result is:
22.449176

The average consumer is willing to pay $\$ 22.44$ more for a bottle of Wineshop wine than for a bottle of otherontario wine. The average consumer perceives a very large difference in quality between Ontario wines of the WineShop brand and Ontario wines that do not belong to WineShop or WineRack brands (otherontario).
e. Switching from a French wine to a Canadian wine.

ANSWER: This is equal to $\frac{\beta_{\text {Canada }}-\beta_{\text {France }}}{\alpha}$. To obtain this WTP in STATA, it is important to see that "Canada" corresponds to num_country $==6$, and "France" corresponds to num_country $==9$. The line of code in STATA is:

```
dis (_b[6.num_country]-_b[9.num_country])/(-_b[price])
```

And the result is:
8.4505123

The average consumer is willing to pay $\$ 8.45$ more for a bottle of Canadian wine than for a bottle of French wine. It could be interpreted in terms of average quality differences, but also in terms of preference bias towards domestic products.

QUESTION 4. [10 points]. Based on the estimates in Question 2, obtain a variable with the estimated own-price demand elasticity $-\frac{d s_{j m t}}{d p_{j m t}} \frac{p_{j m t}}{s_{j m t}}$ for every observation (j, m, t) in the data. Present the mean and median of this variable, and a figure with its histogram.

ANSWER: For the logit model, the derivative $\frac{d s_{j m t}}{d p_{j m t}}$ is equal to $-\alpha s_{j m t}\left(1-s_{j m t}\right)$. Therefore, the own-price demand elasticity $-\frac{d s_{j m t}}{d p_{j m t}} \frac{p_{j m t}}{s_{j m t}}$ is equal to $\alpha p_{j m t}\left(1-s_{j m t}\right)$. The lines of code in STATA are:

```
gen elast_q2 = alpha_q2 * (1-share) * price_750ml
sum elast_q2, detail // Summary statistics
hist elast_q2 // Histogram
```

This is the table of Summary Statistics.
. sum elast_q2, detail // Summary statistics

elast_q2				
	Percentiles	Smallest		
1%	.2390613	.1561722		$6,180,915$
5%	.2630428	.1580908		Obs
10%	.2918696	.1590348	Sum of wgt.	$6,180,915$
25%	.3780208	.1605566		.6209684
			Mean	.5163205
50%	.5178548		Largest	Std. dev.
		7.984651		
75%	.66789	7.994168	Variance	.2665869
90%	.9584959	8.002663	Skewness	5.020582
95%	1.402332	8.002674	Kurtosis	39.68019

The mean elasticity is 0.62 and the median elasticity is 0,51 . This is the Histogram of estimates elasticities.

QUESTION 5. [20 points]. Suppose that $\xi_{j m t}$ follows an $\operatorname{AR(1)~process:~} \boldsymbol{\xi}_{j m t}=\rho \xi_{j m, t-1}+$ $a_{j m t}$. Obtain the OLS Cochrane-Orcutt estimates of parameters $\rho, \alpha, \rho \alpha$, and $(1-\rho) \beta$. In this regression, include store fixed effects and month fixed effects. Do not report coefficients for store dummies and month dummies.

ANSWER: The Cochrane-Orcutt transformation of the model is a "Quasi-first-difference": we multiply the equation at period $t-1$ times ρ and substract this equation to the equation at period t. We obtain the following regression equation:

$$
y_{j m t}=\gamma_{1} y_{j m, t-1}+\gamma_{2} p_{j m t}+\gamma_{3} p_{j m, t-1}+\mathbf{x}_{j} \gamma_{4}+a_{j m t}
$$

where $\gamma_{1}=\rho, \gamma_{2}=-\alpha, \gamma_{3}=\rho \alpha$, and $\gamma_{4}=(1-\rho) \beta$. We apply OLS with Fixed Effects to this regression equation. These are the lines of Code in STATA.

```
// Construction of lagged y
sort product store period
gen y_1 = y[_n-1] if (product==product[_n-1]) (store==store[_n-1])
// Construction of lagged price
gen price_1 = price[_n-1] if (product==product[_n-1]) (store==store[_n-1])
// OLS - Cochrane-Orcutt regression
reghdfe y y_1 price_750ml price_1 alc sugar_gpl redwine whitewine winerack wineshop
otherontario i.num_country, a(store period)
gen alpha_q5 = -_b[price_750ml]
```

This is the Table with the Cochrane-Orcutt FE estimates.
. reghdfe y y_1 price_750ml price_1 alc sugar_gpl redwine whitewine winerack wineshop otherontario i.num_country, a(store period) (MWFE estimator converged in 4 iterations)

HDFE Linear regression
Absorbing 2 HDFE groups

| Number of obs | $=4,524,065$ |
| :--- | :--- | ---: |
| F 41,4523391$)$ | $=194654.85$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.7314$ |
| Adj R-squared | $=0.7314$ |
| Within R-sq. | $=0.6383$ |
| Root MSE | $=0.7553$ |

y	Coefficient	Std. err.	t	$P>\|t\|$	[95\% conf. interval]	
y_1	. 7328674	. 0003234	2266.08	0.000	. 7322335	. 7335012
price_750ml	-. 2354997	. 0005655	-416.45	0.000	-. 236608	-. 2343913
price_1	. 2244183	. 0005674	395.51	0.000	. 2233062	. 2255304
alc	-. 0191792	. 0002017	-95.08	0.000	-. 0195746	-. 0187838
sugar_gpl	. 0004285	. 0000154	27.85	0.000	. 0003983	. 0004586
redwine	. 0626643	. 001406	44.57	0.000	. 0599085	. 0654201
whitewine	. 0633322	. 001427	44.38	0.000	. 0605353	. 0661291
winerack	. 0128959	. 0024634	5.23	0.000	. 0080677	. 0177242
wineshop	. 0293741	. 0025705	11.43	0.000	. 0243361	. 0344122
otherontario	-. 214636	. 0022605	-94.95	0.000	-. 2190666	-. 2102055
num_country						
Australia	-. 0258695	. 0021431	-12.07	0.000	-. 0300699	-. 0216692
Austria	-. 468588	. 0117506	-39.88	0.000	-. 4916188	-. 4455572
Bulgaria	-. 1408248	. 0173303	-8.13	0.000	-. 1747916	-. 1068581
Canada	-. 0047509	. 0027476	-1.73	0.084	-. 0101361	. 0006344
Chile	-. 009832	. 00237	-4.15	0.000	-. 0144772	-. 0051869
France	-. 0891188	. 0021644	-41.17	0.000	-. 093361	-. 0848766
Georgia	-. 3444855	. 0362721	-9.50	0.000	-. 4155775	-. 2733935
Germany	-. 0884129	. 0032878	-26.89	0.000	-. 0948569	-. 0819689
Greece	-. 2353675	. 0065117	-36.15	0.000	-. 2481303	-. 2226047
Hungary	-. 1111851	. 0066636	-16.69	0.000	-. 1242455	-. 0981247
Israel	-. 1852285	. 0139085	-13.32	0.000	-. 2124886	-. 1579683
Italy	-. 0098927	. 0020529	-4.82	0.000	-. 0139163	-. 0058692
Jamaica	-. 2098928	. 0205262	-10.23	0.000	-. 2501234	-. 1696621
Japan	-. 2330154	. 0068837	-33.85	0.000	-. 2465072	-. 2195236
Lebanon	-. 4351287	. 0727157	-5.98	0.000	-. 5776489	-. 2926086
Luxembourg	-. 2092075	. 0619266	-3.38	0.001	-. 3305814	-. 0878337
Mexico	-. 2236182	. 0189948	-11.77	0.000	-. 2608473	-. 186389
Montenegro	-. 2488628	. 0238747	-10.42	0.000	-. 2956563	-. 2020693
New Zealand	-. 0738408	. 0033309	-22.17	0.000	-. 0803693	-. 0673123
Poland	-. 1746559	. 0193909	-9.01	0.000	-. 2126613	-. 1366506
Portugal	-. 0875834	. 0030301	-28.90	0.000	-. 0935223	-. 0816445
Republic of Macedonia	-. 227967	. 0232284	-9.81	0.000	-. 2734939	-. 18244
Romania	-. 1661927	. 0182541	-9.10	0.000	-. 20197	-. 1304153
Serbia	-. 1395491	. 0116603	-11.97	0.000	-. 1624028	-. 1166953
South Africa	-. 0488728	. 002813	-17.37	0.000	-. 0543862	-. 0433594
South Korea	-. 3392482	. 0236212	-14.36	0.000	-. 3855449	-. 2929515
Spain	-. 1269013	. 0028143	-45.09	0.000	-. 1324173	-. 1213853
Switzerland	-. 5430372	. 1315132	-4.13	0.000	-. 8007983	-. 2852761
USA	-. 0016444	. 002173	-0.76	0.449	-. 0059033	. 0026146
Ukraine	-. 4844619	. 0720937	-6.72	0.000	-. 6257631	-. 3431607
United Kingdom	-. 0981158	. 0229296	-4.28	0.000	-. 143057	-. 0531745
_cons	-1.626884	. 0038495	-422.62	0.000	-1.634429	-1.619339

- $\rho={ }^{\prime} b\left[y_{1}\right]=0.7328$. There is substantial serial correlation in the demand unobservables $\xi_{j m t}$.
- $\alpha=-_[\text {price_750 ml }]=0.2354$. This estimate of the price coefficient is six times larger the OLS-FE in Question 2 (0.040). This is consistent with strong simultaneity bias in the OLS-FE in Question 2 due to correlation between $p_{j m t}$ and $\xi_{j m t}$, and more specifically, due to correlation between $p_{j m t}$ and $\rho \xi_{j m, t-1}$. By including $y_{j m, t-1}$ and $p_{j m, t-1}$ as regressors, the Cochrane-Orcutt FE estimator is controlling for $\rho \xi_{j m, t-1}$, and therefore, it does not suffer of bias because correlation between $p_{j m t}$ and $\rho \xi_{j m, t-1}$. The Cochrane-Orcutt FE estimator can be still biased because correlation between $p_{j m t}$ and $a_{j m t}$, but this source of bias is also present in the OLS-FE estimator in Question 2. There is a solid argument for Cochrane-Orcutt FE estimator to be substantially less biased than OLS-FE.
- Cochrane-Orcutt model implies the over-identifying restriction: $\gamma_{1} \gamma_{2}+\gamma_{3}=0$. The estimate of $\gamma_{1} \gamma_{2}+\gamma_{3}$ (display _b[y_1]*_b[price_750ml] +_b[price_1]) is equal to 0.0518, which is "close to zero", given the magnitude of the parameter estimates. However, with this large sample, parameter estimates are very precise, and the test of this over-identifying restriction (testnl _b [y_1] *_b [price_750ml] +_b [price_1] $=0)$ clearly resjects it, with a p-value smaller than 0.01%.
- To compare the estimates in Questions 2 and 5 of parameters for product characteristics other than price (the variable in vector \mathbf{x}_{j}). we need to take into account that $\gamma=(1-\rho) \beta$. For instance, in Question 5, $\gamma_{\text {alc }}=-0.0191$, that implies $\beta_{\text {alc }}=\gamma_{\text {alc }} /(1-\rho)=-0.0191 /(1-0.7328)=-0.07179$. This is almost identical to the estimate of $\beta_{\text {alc }}$ in Question 2 which is -0.07187 .

QUESTION 6. [10 points]. Based on the estimates in Question 5, obtain a variable with the estimated own-price demand elasticity $-\frac{d s_{j m t}}{d p_{j m t}} \frac{p_{j m t}}{s_{j m t}}$ for every observation (j, m, t) in the data. Present the mean and median of this variable, and a figure with its histogram.

ANSWER: For the logit model, the derivative $\frac{d s_{j m t}}{d p_{j m t}}$ is equal to $-\alpha s_{j m t}\left(1-s_{j m t}\right)$. Therefore, the own-price demand elasticity $-\frac{d s_{j m t}}{d p_{j m t}} \frac{p_{j m t}}{s_{j m t}}$ is equal to $\alpha p_{j m t}\left(1-s_{j m t}\right)$. The lines of code in STATA are:

```
gen elast_q5 = alpha_q5 * (1-share) * price_750ml
sum elast_q5, detail // Summary statistics
hist elast_q5 // Histogram
```

This is the table of Summary Statistics.

Now, the mean elasticity is 3.65 and the median elasticity is 3.04 . These elasticities are around six times the ones in Question 4.

This is the histogram of elasticities.

QUESTION 7. [10 points]. Taking into account potential endogeneity, interpret the different estimates of α and of the corresponding demand elasticities in Questions 2 and 5. Based on this interpretation, select between one of these two demand estimations. Justify your choice.

ANSWER:

The CO-FE estimates of α and of price elasticities in Question 5 are six times larger the OLS-FE estimates in Question 2. This is consistent with strong simultaneity bias in the OLS-FE in Question 2 due to correlation between $p_{j m t}$ and $\xi_{j m t}$, and more specifically, due to correlation between $p_{j m t}$ and $\rho \xi_{j m, t-1}$. By including $y_{j m, t-1}$ and $p_{j m, t-1}$ as regressors, the Cochrane-Orcutt FE estimator is controlling for $\rho \xi_{j m, t-1}$, and therefore, it does not suffer of bias because correlation between $p_{j m t}$ and $\rho \xi_{j m, t-1}$. The Cochrane-Orcutt FE estimator can be still biased because correlation between $p_{j m t}$ and $a_{j m t}$, but this source of bias is also present in the OLS-FE estimator in Question 2. There is a solid argument for Cochrane-Orcutt FE estimator to be substantially less biased than OLS-FE. Between these two estimators, I would choose CO-FE.

For the remaining questions, we consider the following assumptions.
A. Each wine product is produced by a single manufacturer, and that each manufacturer produces only one wine product. Therefore, j indexes both products and firms.
B. Firms (i.e., wine manufacturers) compete in prices a la Nash-Bertrand.
C. Each store m is a separate geographic market where firms (i.e., wine manufacturers) compete with each other.
D. Every firm can choose a different for its wine product at each store.
E. The marginal cost of product j in market m at month $t, M C_{j m t}$, is constant: that is, $M C_{j m t}$ does not depend on the amount of output $q_{j m t}$.

QUESTION 8. [10 points].

a. Obtain the expression for the first order condition of profit maximization for firm j in market m at month t.

ANSWER: Under conditions A to E , the profit of firm j in store m at period t is:

$$
\pi_{j m t}=H_{m t}\left(p_{j m t}-M C_{j m t}\right) s_{j m t}
$$

where $H_{m t}$ represent market size (number of consumers) in m at period t. Under Nash-Bertrand competition, the first order condition for profit maximization is:

$$
\frac{d \pi_{j m t}}{d p_{j m t}}=H_{m t} s_{j m t}+H_{m t}\left(p_{j m t}-M C_{j m t}\right) \frac{d s_{j m t}}{d p_{j m t}}=0
$$

For the logit demand model, $\frac{d s_{j m t}}{d p_{j m t}}=-\alpha s_{j m t}\left(1-s_{j m t}\right)$. Pluging this expression into the equation for the marginal condition for profit maximization, we get:

$$
H_{m t} s_{j m t}-H_{m t}\left(p_{j m t}-M C_{j m t}\right) \propto s_{j m t}\left(1-s_{j m t}\right)=0
$$

b Based on this condition, obtain a "pricing equation" for price $p_{j m t}$ in terms of $M C_{j m t}$ and a price-cost margin term that depends only on α and $s_{j m t}$.

ANSWER: In the F.O.C. for profit maximization, we have divide both sides of the equation by $H_{m t} s_{j m t}$ to obtain:

$$
1-\left(p_{j m t}-M C_{j m t}\right) \propto\left(1-s_{j m t}\right)=0
$$

Solving for $p_{j m t}$, we get the pricing equation:

$$
p_{j m t}=M C_{j m t}+\frac{1}{\alpha\left(1-s_{j m t}\right)}
$$

The term $\frac{1}{\alpha\left(1-s_{j m t}\right)}$ represents the Price-Cost Margin in dollars.
c. Define the price-cost margin $P C M_{j m t}$ as $\frac{p_{j m t}-M C_{j m t}}{p_{j m t}}$. Obtain an expression for the price-cost margin in terms only of $\alpha, s_{j m t}$, and $p_{j m t}$.

ANSWER: $P C M_{j m t} \equiv \frac{p_{j m t}-M C_{j m t}}{p_{j m t}}$ is the Price-Cost Margin as a percentage of the price. It is also denoted the Lerner Index. Using the pricing equation in Question 8(b), we have that:

$$
P C M_{j m t} \equiv \frac{p_{j m t}-M C_{j m t}}{p_{j m t}}=\frac{1}{\alpha p_{j m t}\left(1-s_{j m t}\right)}
$$

QUESTION 9. [20 points]. Use the expressions in Question 8 to obtain estimates of $M C_{j m t}$ and of $P C M_{j m t}$ for every observation (j, m, t). Use your favorite estimate of α. Obtain the mean and median of PCM. Present a histogram of the estimated PCMs.

ANSWER: These are the lines of code in STATA:

```
gen MCest = price_750ml - 1/(alpha_q5 * (1-share))
gen PCMest = (price_750ml - MCest)/price_750ml
sum PCMest, detail
hist PCMest
```

This is the table of summary statistics for PCMest:

```
. sum PCMest, detail
```

PCMest				
	Percentiles	Smallest		
1%	.056618	.0212369		$6,180,915$
5%	.1211925	.0212369		Obs
10%	.1773113	.0212595	Sum of wgt.	$6,180,915$
25%	.2544613	.0212848		
			Mean	.3588846
50%	.328185		Largest	Std. dev.
		.1512186		
75%	.4495841	1.058519		
90%	.5822879	1.068647	Variance	.0228671
95%	.6461005	1.075028	Skewness	.3753284
99%	.7109144	1.088236	Kurtosis	2.682985

The mean PCM is 35.8%, and the median is 32.8%. This is the Histogram of PCMs:

For Question 10 below, take into account the equation for market share in a demand logit model:

$$
\begin{equation*}
s_{j m t}=\frac{a_{j m t} \exp \left\{-\alpha p_{j m t}+w_{j m t}\right\}}{1+\sum_{i=1}^{J} a_{i m t} \exp \left\{-\alpha p_{i m t}+w_{i m t}\right\}} \tag{2}
\end{equation*}
$$

where $a_{j m t} \in\{0,1\}$ is a binary variable that indicates whether product j is available in store m at month t. i.e., $a_{j m t}$ is the indicator of $q_{j m t}>0$. Variable $w_{j m t}$ is equal to $\mathbf{x}_{j} \boldsymbol{\beta}+$ $\xi_{j m t}$, and it can be interpreted as an index of product quality. Also, note that in the logit demand model, taking into account equation (1), we can obtain $w_{j m t}$ using the following equation:

$$
\begin{equation*}
w_{j m t}=\ln \left(\frac{s_{j m t}}{s_{0 m t}}\right)+\alpha p_{j t} \tag{3}
\end{equation*}
$$

QUESTION 10. [60 points]. Given your estimates of demand parameters and MCs, we are interested in evaluating the effects on quantities, prices, firms' profits, and consumer welfare of a hypothetical (counterfactual) increase in the tax of alcohol. Suppose that the tax increase is equal to 1 cent of a dollar per percentage of alcohol in the product, i.e., taxchange $_{j}=\$ 0.01 *$ alc $_{j}$.
a. [5 points] Calculate new variable taxchange with taxchange $_{j m t}$ for every observation (j, m, t). Add taxchange to the estimated marginal cost to obtain the new (counterfactual) marginal cost for every observation (j, m, t).

ANSWER: These are the lines of code in StATA.

```
// Calculate taxchange
gen taxchange = 0.01 * alc
// Calculate New Marginal Cost
gen newMC = MCest + taxchange
```

b. [5 points] Using equation (3), calculate a new variable wquality with $w_{j m t}$ for every observation (j, m, t).

ANSWER: This is the line of code in StATA.

```
gen wquality = y + alpha_q5 * price_750ml
```

c. [20 points] Obtain an approximation to the new (counterfactual) equilibrium prices and market shares using the following iterative procedure.

Step 1. Use the pricing equation in Question $8(\mathrm{~b})$ to obtain new prices, say $p_{j m t}^{I T E R} 1$, using the new MCs, your estimate of α, and $s_{j m t}$ in the data.
Step 2. Use equation (2) for market shares, your estimates for product qualities $w_{j m t}$, and new prices $p_{j m t}^{I T E R 1}$ to calculate new market shares, say $s_{j m t}^{I T E R 1}$.
Step 3. Similar as Step 1 but using market shares $s_{j m t}^{I T E R ~} 1$ instead of the shares in the data. Let $p_{j m t}^{I T E R ~} 2$ be the prices you obtain after applying this iteration.
Step 4. Similar to Step 2 but using prices $p_{j m t}^{I T E R 2}$ instead of $p_{j m t}^{I T E R 1}$. Let $s_{j m t}^{I T E R ~} 2$ be the shares you obtain after applying this iteration.

ANSWER: These are the lines of code in STATA.

```
// Step 1
gen p_iter_1 = newMC + 1/(alpha_q5 * (1-share))
// Step 2
gen buff = exp(-alpha_q5 * p_iter_1 + wquality)
egen agg_buff = sum(buff), by(store period)
gen s_iter_1 = buff/(1 + agg_buff)
```

```
drop buff agg_buff
// Step 3
gen p_iter_2 = newMC + 1/(alpha_q5 * (1-s_iter_1))
// Step 4
gen buff = exp(-alpha_q5 * p_iter_2 + wquality)
egen agg_buff = sum(buff), by(store period)
gen s_iter_2 = buff/(1 + agg_buff)
drop buff agg_buff
```

d. [30 points] Suppose that $p_{j m t}^{I T E R 2}$ and $s_{j m t}^{I T E R ~} 2$ are prices and market shares after the implementation of this counterfactual tax change. Calculate the following statistics at the aggregate annual and province level:

- Median price change.

ANSWER: These are the lines of code in STATA.

```
// d. Median Price Change
gen price_change = p_iter_2 - price_750ml
sum price_change, detail
```

This is the table of summary statistics:

```
. sum price_change, detail
```

price_change				
	Percentiles	Smallest		
1%	.0600023	.0480013		$6,180,915$
5%	.0949984	.0498319		Obs
10%	.1119576	.0499992	Sum of wgt.	$6,180,915$
25%	.1199932	.0499992		.1275753
			Mean	.0185573
50%	.129981		Largest	Std. dev.
		.4699974		
75%	.1349945	.4699974	Variance	.0003444
90%	.1399879	.4699974	Skewness	.5621972
95%	.1449966	.4699974	Kurtosis	23.46936

The median price change is 0.13

COMMENTS: The median of taxchange is 0.13 and the median price change is 0.13 . Therefore, at the median there is a complete pass-through of the tax to prices "as if" there were a perfectly competitive market. However, this is not the case over the whole distribution of prices.

- Change in annual sales of wine in this province.

ANSWER: These are the lines of code in STATA.

```
// d. Change in annual sales of wine in this province
gen change_q = (s_iter_2 - share) * localmsize
egen agg_change_q = sum(change_q)
sum agg_change_q
```

This is the table of summary statistics:
. sum agg_change_q

Variable	Obs	Mean	Std. dev.	Min	Max
agg_change_q	$6,180,915$	-2344767	0	-2344767	-2344767

The change in annual sales of wine is of $2,344,767$ bottle of wine. The annual sales before the tax was 161 million bottles, so this change represents a reduction of 1.4%.

- Government annual revenue from this tax increase.

ANSWER: These are the lines of code in STATA.

```
// d. Government annual revenue from this tax increase.
gen gov_revenue = taxchange * s_iter_2 * local_msize
egen agg_gov_revenue = sum(gov_revenue)
sum agg_gov_revenue
```

This the table of summary statistics:
. sum agg_gov_revenue

| Variable | Obs | Mean | Std. dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| agg_gov_reve | $6,180,915$ | $1.96 e+07$ | 0 | $1.96 e+07$ | $1.96 e+07$ |

The Government annual revenue from this tax increase is $\$ 19.6$ million.

- Change in total annual firms' profits in this province.

ANSWER: These are the lines of code in STATA.
// d. Change in total annual firms' profits in this province.
gen profit_data $=($ price_750ml - MCest) $*$ share $*$ local_msize
gen profit_tax = (p_iter_2 - newMC)* s_iter_2 * local_msize
gen change_profit = profit_tax - profit_data
sum agg_change_profit

This the table of summary statistics:

- Sum agg_change_profit

| Variable | Obs | Mean Std. dev. | Min | Max | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| agg_changent | $6,180,915$ | -9995187 | 0 | -9995187 | -9995187 |

The change in total annual firms' profits is $\$ 10$ million. This is almost half of the increase in government revenue. So, half of the government revenue is at the expense of firms profits.

- Change in annual Consumer Surplus in this province.

ANSWER: These are the lines of code in STATA.

```
// d. Change in annual Consumer Surplus in this province
gen change_csurplus = - price_change * s_iter_2 * local_msize + 0.5 *
price_change * change_q
egen agg_change_csurplus = sum(change_csurplus)
sum agg_change_csurplus
```

This the table of summary statistics:
. sum agg_change_csurplus

| Variable | Obs | Mean | Std. dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| agg_changens | $6,180,915$ | $-1.98 e+07$ | | $-1.98 e+07$ | $-1.98 e+07$ |

The change in in annual Consumer Surplus is $\$ 19.8$ million. The reduction of consumer surplus is dramatic and it is even larger than the increase in government revenue.
COMMENTS:

- Annual Deadweight Loss of this tax: Change in consumer surplus + Change in firms' profits + Change in government revenue.

ANSWER: These are the lines of code in STATA.

```
// d. Annual Deadweight Loss of this tax
// Change in consumer surplus + Change in firms' profits + Change in
government revenue
gen DWL = change_csurplus + change_profit + gov_revenue
egen agg_DWL = sum(DWL)
sum agg_DWL
```

This the table of summary statistics:

Variable	Obs	Mean Std. dev. Min Max	Min		
agg_DWL	$6,180,915$	$-1,01 e+07$	0	$-1,01 e+07$	$-1,01 e+07$

The DWL is 0 million, which is almost half of the government revenue. That is, for every dollar of government revenue there is 50 cents of net loss in social welfare.

Hint to obtain the change in Consumer Surplus. You can approximate the change in consumer surplus applying the following formula for each observation (j, m, t). Let $\left(p^{\text {data }}, q^{\text {data }}\right)$ be price and quantity in the data, and let $\left(p^{\operatorname{tax}}, q^{t a x}\right)$ be price and quantity after the tax. Define the change in price as $\Delta p \equiv p^{\operatorname{tax}}-p^{\text {data }}$, and the change in quantity as $\Delta q \equiv q^{t a x}-q^{\text {data }}$. Then, the change in consumer surplus can be obtained using the following triangular approximation:

$$
\begin{equation*}
\Delta C S \equiv C S^{t a x}-C S^{\text {data }}=-\Delta p q^{t a x}+\frac{1}{2} \Delta p \Delta q \tag{4}
\end{equation*}
$$

