ECO 310: Empirical Industrial Organization Lecture 3: PRODUCTION FUNCTIONS: THE SIMULTANEITY PROBLEM

Victor Aguirregabiria (University of Toronto)

September 22, 2022

Victor Aguirregabiria

Introduction

September 22, 2022

OUTLINE

- 1. Simultaneity problem: Definition
- 2. Simultaneity problem: Bias of OLS
- 3. Simultaneity problem: Solutions
 - 3.1. Fixed Effects estimation
 - 3.2. Instrumental variables estimation

4 1 1 1 4 1 1 1

1. Simultaneity Problem: Definition

э

(日) (四) (日) (日) (日)

SIMULTANEITY PROBLEM

• Consider the Cobb-Douglas PF in logarithms:

$$y_{it} = \alpha_L \ \ell_{it} + \alpha_K \ k_{it} + \omega_{it} + e_{it}$$

- We want to estimate parameters α_L and α_K . These parameters represent the causal effects of labor and capital on output.
- When the manager decides the optimal (k_{it}, ℓ_{it}) she has some information about log-TFP ω_{it} .
- This means that there is a correlation between the observable inputs (k_{it}, ℓ_{it}) and the unobservable ω_{it} .
- This correlation implies that the OLS estimates of α_L and α_K are biased and inconsistent.

SIMULTANEITY PROBLEM: GENERAL DESCRIPTION

• Consider a Linear Regression Model (LRM) with one regressor:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

 We have an simultaneity problem (or endogeneity problem) if the regressor x_i is correlated with the error term ε_i.

Endogeneity problem $\Leftrightarrow \mathbb{E}(x_i \ \varepsilon_i) \neq 0$

 It is a problem because it implies that the OLS estimator of β is not consistent: it does not give us the causal effect of x on y.

N / · · ·	A -	
Victor	Δσillrega	hiria
VICLOI	/ iguini cgu	Dillia
	0. 0.	

The Simultaneity Problem: Definition

SIMULTANEITY PROBLEM: GENERAL DESCRIPTION

Victor Aguirregabiria

Introduction

September 22, 2022

< □ > < □ > < □ > < □ > < □ > < □ >

э

2. Simultaneity Problem: Biased OLS

Victor Aguirregabiria

Introduction

September 22, 2022

э

7/26

A D N A B N A B N A B N

SIMULTANEITY PROBLEM: BIAS OF OLS

• The OLS estimator of the slope parameter β is defined as:

$$\widehat{\beta}_{OLS} = \frac{\sum_{i=1}^{N} (y_i - \overline{y}) \quad (x_i - \overline{x})}{\sum_{i=1}^{N} (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

• According to the model:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

$$\overline{y} = \alpha + \beta \overline{x} + \overline{\varepsilon}$$

Such that

$$(y_i - \overline{y}) = \beta \ (x_i - \overline{x}) + (\varepsilon_i - \overline{\varepsilon})$$

and

$$(y_i - \overline{y}) (x_i - \overline{x}) = \beta (x_i - \overline{x})^2 + (\varepsilon_i - \overline{\varepsilon}) (x_i - \overline{x})^2$$

Image: A matrix

4 1 1 4 1 1 1

SIMULTANEITY PROBLEM: BIAS OF OLS (2/2)

• This implies that:

$$\sum_{i=1}^{N} (y_i - \overline{y}) (x_i - \overline{x}) = \beta \sum_{i=1}^{N} (x_i - \overline{x})^2 + \sum_{i=1}^{N} (\varepsilon_i - \overline{\varepsilon}) (x_i - \overline{x})$$

• Or:

$$S_{xy} = \beta \ S_{xx} + S_{x\varepsilon}$$

• Therefore, dividing in this expression by S_{xx} , we have that:

$$\widehat{\beta}_{OLS} \equiv \frac{S_{xy}}{S_{xx}} = \beta + \frac{S_{x\varepsilon}}{S_{xx}}$$

- $\hat{\beta}_{OLS}$ is a measure of the correlation between x and y. In general, this measure of correlation does not give us the causal effect of x on y, as measured by the parameter β .
- Only if $S_{x\varepsilon} = 0$ we have that $\hat{\beta}_{OLS} = \beta$ and the OLS is a consistent estimator of the causal effect β .

Victor Aguirregabiria

SIMULTANEITY PROBLEM: HOW DO WE KNOW?

- How do we know whether $\mathbb{E}(x_i \ \varepsilon_i) = 0$ or $\mathbb{E}(x_i \ \varepsilon_i) \neq 0$?
- In general we don't know, but in many cases we can have serious suspicion of omitted variables that are correlated with the regressor(s).
- Only when the observable regressor comes from a randomized experiment we can be certain that E(x_i ε_i) = 0.
- But data from randomized experiments are still rare in many applications in economics.

10 / 26

< □ > < 同 > < 三 > < 三 >

SIMULTANEITY PROBLEM: HOW DO WE KNOW? (2/2)

- In models with **simultaneous equations**, the model itself can tell us that some regressors are correlated with the error term: $\mathbb{E}(x_i \ \varepsilon_i) = 0$.
- For instance, this is the case in the production function model once we take into account the firm's optimal demand for inputs.

11/26

SIMULTANEITY PROBLEM: EXAMPLE (1/3)

• A Cobb-Douglas PF only with labor input:

$$Y_i = A_i L_i^{\alpha_L}$$

- The amounts of output (*Y_i*) and labor (*L_i*) are endogenous variables which are determined by the conditions of profit maximization.
- Firms operate in the same markets for output and inputs. Same output and input prices: *P* and *W*.
- A firm's profit is:

$$\pi_i = P Y_i - W L_i$$

• A firm's Labor Demand is the amount L_i that maximizes profit:

$$\frac{d\pi_i}{dL_i} = 0 \rightarrow MP_{L_i} = \frac{W}{P} \rightarrow \alpha_L \frac{Y_i}{L_i} = \frac{W}{P}$$

September 22, 2022

SIMULTANEITY PROBLEM: EX

EXAMPLE (2/3)

• The complete model consists of the Production Function (PF) and the Labor Demand equation (LD):

(PF)
$$Y_i = A_i L_i^{\alpha_L}$$

(LD) $L_i = \alpha_L \frac{Y_i}{W/P}$

- This is a system of two equations with two endogenous variables.
- We can take logarithms in these equations to have a model that is linear in parameters (a linear regression model):

(log-PF)
$$y_i = \alpha_0 + \alpha_L \ell_i + \omega_i$$

(log-LD)
$$\ell_i = \gamma_0 + y_i$$

where α_0 is the mean value of $\ln(A_i)$; $\omega_i = \ln(A_i) - \alpha_0$; and $\gamma_0 = \ln(\alpha_L P/W)$.

SIMULTANEITY PROBLEM: EXAMPLE (3/3)

• Solving for the endogenous variables in the system of equations,

$$(\mathsf{log-PF}) \quad y_i = \alpha_0 + \alpha_L \ \ell_i + \omega_i$$

$$(\text{log-LD}) \quad \ell_i = \gamma_0 + y_i$$

• we obtain the solution:

$$y_i = \frac{\omega_i + \alpha_0 + \alpha_L \gamma_0}{1 - \alpha_L}$$
$$\ell_i = \frac{\omega_i + \alpha_0 + \gamma_0}{1 - \alpha_L}$$

• This solution shows that ℓ_i is correlated with ω_i :

$$Cov(\ell_i, \omega_i) = rac{Var(\omega_i)}{(1-\alpha_L)^2} > 0$$

14 / 26

SIMULTANEITY PROBLEM: EXAMPLE – BIASED OLS

 Following up with this example, we can show that the OLS estimator of *α_L* is biased.

$$\widehat{\alpha}_{L}^{OLS} = \frac{S_{\ell y}}{S_{\ell \ell}} = \frac{\sum_{i=1}^{N} (y_{i} - \overline{y}) \left(\ell_{i} - \overline{\ell}\right)}{\sum_{i=1}^{N} \left(\ell_{i} - \overline{\ell}\right)^{2}}$$

• The model implies that:

$$y_i - \overline{y} = \frac{\omega_i}{1 - \alpha_L}$$

$$\ell_i - \overline{\ell} = \frac{\omega_i}{1 - \alpha_L}$$

• Such that $\widehat{\alpha}_{L}^{OLS} = \frac{S_{\ell y}}{S_{\ell \ell}} = 1$, and $Bias(OLS) = 1 - \alpha_{L}$.

SIMULTANEITY PROBLEM: GRAPHICAL REPRESENTATION

- Graphical representation of structural equations in space (ℓ, y) .
- Graphical interpretation of the bias of the OLS estimator.
- With sample variation in the log-real-wage *w_i* the bias will be reduced, but it will be always present.

3. Simultaneity Problem: Solutions

э

(日) (四) (日) (日) (日)

SOLUTIONS TO THE SIMULTANEITY PROBLEM

- We are going to consider two possible solutions to the endogeneity problem.
 - 1. Control function / Fixed effects estimation
 - 2. Instrumental variables estimation.
- First, we will see these potential solutions in a general regression model, and then we will particularize them to the estimation of PFs.

18 / 26

CONTROL FUNCTION METHOD

Consider the LRM

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + \varepsilon_i$$

where we are concerned about the endogeneity of regressor x_{1i} , i.e., $\mathbb{E}(x_{1i} \ \varepsilon_i) \neq 0$.

- Suppose that the researcher has sample data for a variable c_i ("the control") that satisfies **two conditions**.
- **[Control]** $\varepsilon_i = \gamma c_i + u_i$ such that u_i is independent of x_{1i} and c_i .
- **[No multicollinearity]** We cannot write c_i as a linear combination of the exogenous regressors x_{2i} , ..., x_{Ki} .
- Under these conditions we can construct a consistent estimator of β₁, β₂, ..., β_K: the Control Function (CF) estimator.

CONTROL FUNCTION ESTIMATOR

• To obtain the CF estimator we simply include the CF variable *c_i* in the regression and apply OLS:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + \gamma c_i + u_i$$

- Under the "Control" condition, the new error term u_i is not correlated with the regressors.
- And under the "No multicollinearity" condition all the regressors (including c_i) are not linearly independent.
- Therefore, this OLS estimator is consistent.
- The CF approach uses observables to control for the part of the error that is correlated with the regressor.

< □ > < □ > < □ > < □ > < □ > < □ >

SOLUTIONS TO SIMULTANEITY: INSTRUMENTAL VARIABLES

Consider the LRM

$$y_i = \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + \varepsilon_i$$

where we are concerned about the endogeneity of regressor x_{1i} , i.e., $\mathbb{E}(x_{1i} \ \varepsilon_i) \neq 0$.

- Suppose that the researcher has sample data for a variable z_i ("the instrument") that satisfies **two conditions**.
- [Relevance] In a regression of x_{1i} on $(z_i, x_{2i}, ..., x_{Ki})$, regressor z_i has a significant effect on x_{1i} .
- **[Independence]** z_i is NOT correlated with ε_i : $\mathbb{E}(z_i \ \varepsilon_i) = 0$.
- Under these conditions we can construct a consistent estimator of β_1 , β_2 , ..., β_K : the IV or Two-state Least Square (2SLS) estimator.

TWO STAGE LEAST SQUARES (2SLS or IV ESTIMATOR)

- The IV or 2SLS can be implemented as follows.
- **[Stage 1]** Run an OLS regression of x_{1i} on $(z_i, x_{2i}, ..., x_{Ki})$. Obtain the fitted values from this regression:

$$\widehat{x}_{1i} = \widehat{\gamma}_0 + \widehat{\gamma}_1 z_i + \widehat{\gamma}_2 x_{2i} + \dots + \widehat{\gamma}_K x_{Ki}$$

- [Stage 2] Run an OLS regression of y_i on (x̂_{1i}, x_{2i}, ..., x_{Ki}). This OLS estimator is consistent for β₁, β₂, ..., β_K.
- The first stage decomposes x_{1i} in two parts: $x_{1i} = \hat{x}_{1i} + e_{1i}$, where e_{1i} is the residual from this first-stage regression.
- Since x̂_{1i} depends only on exogenous regressors, it is not correlated with ε_i.

イロト 不得 トイヨト イヨト 二日

CONSISTENCY OF IV / 2SLS

- To illustrate how this approach give us a consistent estimator, consider the model with a single regressor: y_i = α + β x_i + ε_i.
- Remember that:

$$(y_i - \overline{y}) = \beta \ (x_i - \overline{x}) + (\varepsilon_i - \overline{\varepsilon})$$

• Such that multiplying by $(z_i - \overline{z})$:

$$(y_i - \overline{y})(z_i - \overline{z}) = \beta(x_i - \overline{x})(z_i - \overline{z}) + (\varepsilon_i - \overline{\varepsilon})(z_i - \overline{z})$$

• And summing over observations *i*:

$$S_{zy} = \beta S_{zx} + S_{z\varepsilon}$$

• Since $S_{z\varepsilon} = 0$, we have that, for large N:

$$\frac{S_{zy}}{S_{zx}} = \beta$$

CONSISTENCY OF IV /2SLS (2/3)

- This means that the estimator $\widehat{\beta}_{IV} = \frac{S_{zy}}{S_{zx}} = \frac{\sum_{i=1}^{N} (y_i \overline{y}) \quad (z_i \overline{z})}{\sum_{i=1}^{N} (x_i \overline{x}) (z_i \overline{z})}$ is a consistent estimator of β .
- It remains to show that this $\hat{\beta}_{IV} = \frac{S_{zy}}{S_{zx}}$ is identical to the 2SLS described above.
- By definition:

$$\widehat{\beta}_{2SLS} = \frac{S_{\widehat{x}y}}{S_{\widehat{x}\widehat{x}}} = \frac{\sum_{i=1}^{N} (y_i - \overline{y}) \quad \left(\widehat{x}_i - \overline{\widehat{x}}\right)}{\sum_{i=1}^{N} \left(\widehat{x}_i - \overline{\widehat{x}}\right) \left(\widehat{x}_i - \overline{\widehat{x}}\right)}$$

where
$$\hat{x}_i = \hat{\gamma}_0 + \hat{\gamma}_1 z_i$$
, with $\hat{\gamma}_1 = \frac{S_{zx}}{S_{zz}}$

CONSISTENCY OF IV /2SLS (3/3)

• Therefore,
$$\hat{x}_i - \overline{\hat{x}} = \hat{\gamma}_1(z_i - \overline{z}) = \frac{S_{zx}}{S_{zz}}(z_i - \overline{z}).$$

Such that

$$\widehat{\beta}_{2SLS} = \frac{\sum\limits_{i=1}^{N} (y_i - \overline{y}) \ \frac{S_{zx}}{S_{zz}} (z_i - \overline{z})}{\sum\limits_{i=1}^{N} \frac{S_{zx}}{S_{zz}} (z_i - \overline{z}) \ \frac{S_{zx}}{S_{zz}} (z_i - \overline{z})} = \frac{S_{yz}}{S_{zz}} \frac{S_{zx}}{S_{zz}} \frac{S_{zx}}{S_{zz}}}{S_{zz}} = \frac{S_{yz}}{S_{zx}}$$

• The 2SLS is equivalent to the IV estimator as defined above.

Victor	 A ~	comp burgs
vicio	APUIL	egauna

25 / 26

< A[™]

HOW DO WE FIND INSTRUMENTS?

- A simultaneous equation model may suggest valid instruments.
- For instance, consider the PF with only labor input, but now firms operate in different output/labor markets with different prices.

$$(\mathsf{PF}) \quad y_i = \alpha \ \ell_i + \omega_i$$

$$(LD) \quad \ell_i = \ln(\alpha) + y_i - w_i$$

with $w_i = \ln(W_i/P_i)$.

- Suppose that the researcher observes w_i.
- It is clear that *w_i* satisfies the **relevance condition**: it does not enter in the PF as a regressor; it has an effect on labor.

• Under the condition $\mathbb{E}(w_i \ \omega_i) = 0$ it is a valid instrument.

Victor	Δσurrega	hiria
VICTOR	/ Guillega	Dilla

26 / 26