ECO 310: Empirical Industrial Organization

Lecture 2: Production Functions:
Introduction

Victor Aguirregabiria (University of Toronto)

September 15, 2022

Outline

1. MODEL
2. DATA
3. WHAT DETERMINES PRODUCTIVITY?
4. ESTIMATION: THE SIMULTANEITY PROBLEM

1. MODEL

WHAT IS A PRODUCTION FUNCTION (PF)?

- It is a function that relates the amount of physical output of a production process (Y) to the amount of physical inputs or factors of production (X).
- Estimation of PFs plays a key role in empirical questions such as:
- Estimation of Firms' Costs.
- Measurement of Firms' Productivity (and its growth).
- Misallocation of inputs. Do more productive firms use more inputs?
- Evaluating the effects of adopting new technologies.
- Measurement of Learning-by-doing.

PRODUCTION FUNCTIONS

- A standard representation of a PF is:

$$
Y=A \times f\left(X_{1}, X_{2}, \ldots, X_{J}\right)
$$

- Y is the firm's output (physical units per year).
- X_{1}, X_{2}, \ldots, and X_{J} are measures of J firm inputs.

Labor, capital, energy, materials, ...

- A represents the firm's Total Factor Productivity.

Anything else affecting output that we do not observe as researchers: managerial ability, organization of production, quality of inputs, quality of land, ...

- The marginal productivity of input j is: $M P_{j}=\frac{d Y}{d X_{j}}=A \frac{d f}{d X_{j}}$.
- Note that TFP increases proportionally the MP of all the inputs.

COBB-DOUGLAS PRODUCTION FUNCTION

- A common specification is the Cobb-Douglas PF:

$$
Y=A X_{1}^{\alpha_{1}} X_{2}^{\alpha_{2}} \ldots X_{J}^{\alpha_{J}}
$$

$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{J}$ are technological parameters (all positive).

- For the Cobb-Douglas PF the marginal productivity of input j is:

$$
M P_{j}=\frac{d Y}{d X_{j}}=\alpha_{j} X_{1}^{\alpha_{1}} \ldots X_{j}^{\alpha_{j}-1} \ldots X_{J}^{\alpha_{J}}=\alpha_{j} \frac{Y}{X_{j}}
$$

- In this PF, $M P_{j}$ increases with the amount of any other input $k \neq j$. This means that all the inputs are complements in production.

$$
\frac{d M P_{j}}{d X_{k}}=\frac{\alpha_{j}}{X_{j}} \frac{d Y}{d X_{k}}==\frac{\alpha_{j} \alpha_{k} Y}{X_{j} X_{k}}>0
$$

PRODUCTION FUNCTION AND COST FUNCTION

- Given a firm's PF and input prices, its cost function $C(Y)$ is defined as the minimum cost of producing the amount of output Y :

$$
C(Y)=\left[\begin{array}{c}
\min _{\left\{X_{1}, X_{2}, \ldots, X_{J}\right\}} W_{1} X_{1}+W_{2} X_{2}+\ldots+W_{J} X_{J} \\
\text { subject to: } Y=\operatorname{Af}\left(X_{1}, X_{2}, \ldots, X_{J}\right)
\end{array}\right]
$$

where $W_{1}, W_{2}, \ldots, W_{J}$ are inpit prices.

- Or using a Lagrange representation:

$$
C(Y)=\min _{\left\{\lambda, X_{1}, \ldots, X_{J}\right\}} W_{1} X_{1}+\ldots+W_{J} X_{J}+\lambda\left[Y-A f\left(X_{1}, \ldots, X_{J}\right)\right]
$$

where λ is the Lagrange multiplier of the output restriction.

- The marginal conditions of optimality imply that for every input j :

$$
W_{j}-\lambda M P_{j}=0
$$

COST FUNCTION FOR THE COBB-DOUGLAS PF

- Remember that for the Cobb-Douglas PF $M P_{j}=\alpha_{j} \frac{Y}{X_{j}}$.
- Therefore, the marginal condition of optimality for input j implies:

$$
W_{j} X_{j}=\lambda \alpha_{j} Y
$$

- And the total cost is equal to:

$$
\sum_{j=1}^{J} W_{j} X_{j}=\lambda \alpha Y, \text { where } \alpha \equiv \sum_{j=1}^{J} \alpha_{j}
$$

- Parameter α measures the Returns to Scale in the PF.
- Returns to Scale: constant if $\alpha=1$, decreasing if $\alpha<1$, and increasing if $\alpha>1$.

DERIVATION OF COST FUNCTION FOR COBB-DOUGLAS [2]

- We need to obtain the value of the Lagrange multiplier λ. For this, we solve the marginal conditions $X_{j}=\lambda \alpha_{j} Y / W_{j}$ into the PF:

$$
Y=A\left(\frac{\lambda \alpha_{1} Y}{W_{1}}\right)^{\alpha_{1}}\left(\frac{\lambda \alpha_{2} Y}{W_{2}}\right)^{\alpha_{2}} \ldots\left(\frac{\lambda \alpha_{J} Y}{W_{J}}\right)^{\alpha_{J}}
$$

- Solving in this expression for the Lagrange multiplier:

$$
\lambda=\left(\frac{W_{1}}{\alpha_{1}}\right)^{\frac{\alpha_{1}}{\alpha}}\left(\frac{W_{2}}{\alpha_{2}}\right)^{\frac{\alpha_{2}}{\alpha}} \ldots\left(\frac{W_{J}}{\alpha_{J}}\right)^{\frac{\alpha_{J}}{\alpha}}\left(\frac{Y}{A}\right)^{\frac{1}{\alpha}} \frac{1}{Y}
$$

- Plugging this expression of the multiplier into the equation $C(Y)=\lambda \alpha Y$ for the cost, we obtain the cost function:

$$
C(Y)=\alpha\left(\frac{Y}{A}\right)^{\frac{1}{\alpha}}\left(\frac{W_{1}}{\alpha_{1}}\right)^{\frac{\alpha_{1}}{\alpha}}\left(\frac{W_{2}}{\alpha_{2}}\right)^{\frac{\alpha_{2}}{\alpha}} \ldots\left(\frac{W_{J}}{\alpha_{J}}\right)^{\frac{\alpha_{J}}{\alpha}}
$$

COST FUNCTION FOR THE COBB-DOUGLAS PF

$$
C(Y)=\alpha\left(\frac{Y}{A}\right)^{\frac{1}{\alpha}}\left(\frac{W_{1}}{\alpha_{1}}\right)^{\frac{\alpha_{1}}{\alpha}}\left(\frac{W_{2}}{\alpha_{2}}\right)^{\frac{\alpha_{2}}{\alpha}} \ldots\left(\frac{W_{J}}{\alpha_{J}}\right)^{\frac{\alpha_{J}}{\alpha}}
$$

- The marginal cost is:

$$
C^{\prime}(Y)=Y^{\frac{1}{\alpha}-1}\left(\frac{1}{A}\right)^{\frac{1}{\alpha}}\left(\frac{W_{1}}{\alpha_{1}}\right)^{\frac{\alpha_{1}}{\alpha}}\left(\frac{W_{2}}{\alpha_{2}}\right)^{\frac{\alpha_{2}}{\alpha}} \ldots\left(\frac{W_{J}}{\alpha_{J}}\right)^{\frac{\alpha_{J}}{\alpha}}
$$

- The sign of $C^{\prime \prime}(Y)$ is equal to the sign of $\frac{1}{\alpha}-1$.

$$
\begin{aligned}
& \alpha=1 \text { (constant returns): } C^{\prime \prime}(Y)=0^{\alpha}(\text { Constant } M C) \\
& \alpha<1 \text { (decreasing returns): } C^{\prime \prime}(Y)>0 \text { (Increasing MC) } \\
& \alpha>1 \text { (increasing returns): } C^{\prime \prime}(Y)<0 \text { (Decreasing MC). }
\end{aligned}
$$

MORE ON THE COBB-DOUGLAS

- A nice property of the Cobb-Douglas (for the purpose of estimation) is that its logarithm transformation is linear in parameters:

$$
\ln (Y)=\ln (A)+\alpha_{1} \ln \left(X_{1}\right)+\alpha_{2} \ln \left(X_{2}\right)+\ldots+\alpha_{J} \ln \left(X_{J}\right)
$$

- We will represent $\log (Y)$ and $\log (X)$ using the lower letters y and x, resp., and the log-TFP using ω, such that:

$$
y=\omega+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{J} x_{J}
$$

- Differences in log-TFP (in ω) are in percentage terms:

Example: Consider two firms, 1 and 2, using the same amount of inputs X but with $\omega_{1}=1.1$ and $\omega_{2}=1.5$ such that $\omega_{2}-\omega_{1}=0.4$. Therefore, firm 2 is 40% more productive than firm 1.

MORE ON THE COBB-DOUGLAS

- Most empirical applications that we will see in this course consider two inputs: Labor (L) and Capital (K):

$$
y=\alpha_{L} \ell+\alpha_{K} k+\omega
$$

with $\ell \equiv \ln (L)$ and $k \equiv \ln (K)$.

- Sometimes the specification also includes Materials (M) :

$$
y=\alpha_{L} \ell+\alpha_{K} k+\alpha_{M} m+\omega
$$

with $m \equiv \ln (M)$.

2. DATA

DATA

- Panel Data of N firms over T time periods with information on output, labor, and capital (in logs):

$$
\left\{y_{i t}, \ell_{i t}, k_{i t}: i=1,2, \ldots, N ; t=1,2, \ldots T\right\}
$$

- We are interested in the estimation of the parameters α_{L} and α_{K} in the Cobb-Douglas PF (in logs):

$$
y_{i t}=\alpha_{L} \ell_{i t}+\alpha_{K} k_{i t}+\omega_{i t}+e_{i t}
$$

- $\omega_{i t}=$ log-TFP. Unobserved inputs (for the researcher) which are known to the firm when it decides K and L: e.g., managerial ability, quality of land, different technologies.

OBSERVING REVENUE INSTEAD OF PHYSICAL OUTPUT

- Revenue $=R_{i t}=P_{i t} Y_{i t}$ such that:

$$
\ln \left(R_{i t}\right)=\ln \left(P_{i t}\right)+\ln \left(Y_{i t}\right)=p_{i t}+y_{i t}
$$

but the researcher only observes $\ln \left(R_{i t}\right)$.

- "Solution" 1
- Proxy $\ln \left(P_{i t}\right)$ using industry-level price index, $\ln \left(P_{\text {Industry }, t}\right)$.
- $\ln \left(P_{i t}\right)=\ln \left(P_{\text {Industry }, t}\right)+u_{i t}$, where $u_{i t}$ is measurement error.
- This measurement error can interpreted as part of the TFP $\omega_{i t}$.

OBSERVING REVENUE INSTEAD OF PHYSICAL OUTPUT [2]

- "Solution" 2
- Assume isoelastic demand \& monopolisitc competition:

$$
y_{i t}=b_{i t}-\beta p_{i t}
$$

$b_{i t}$ is unobservable to the researcher and β is the demand elasticity.

- Then, $p_{i t}=\frac{b_{i t}-y_{i t}}{\beta}$ and:

$$
\ln \left(R_{i t}\right)=p_{i t}+y_{i t}=\frac{b_{i t}}{\beta}+\left(1-\frac{1}{\beta}\right) y_{i t}
$$

such that:

$$
\ln \left(R_{i t}\right)=\alpha_{L}^{*} \ell_{i t}+\alpha_{K}^{*} k_{i t}+\omega_{i t}^{*}+e_{i t}
$$

with $\alpha_{L}^{*}=\left(1-\frac{1}{\beta}\right) \alpha_{L}, \alpha_{K}^{*}=\left(1-\frac{1}{\beta}\right) \alpha_{K}$, and $\omega_{i t}^{*}=\omega_{i t}+\frac{b_{i t}}{\beta}$.

- This is very relevant for interpretation of results and of "log-TFP".
- For instance, $\alpha_{L}^{*}+\alpha_{K}^{*}=\left(1-\frac{1}{\beta}\right)\left(\alpha_{L}+\alpha_{K}\right) \leq \alpha_{L}+\alpha_{K}$.

3. What determines Total Factor Productivity?

TOTAL FACTOR PRODUCTIVITY (TFP)

- Production function:

$$
Y_{i t}=A_{i t} F\left(K_{i t}, L_{i t}, M_{i t}\right)
$$

- $A_{i t}$ is denoted Total Factor Productivity (TFP).
- It is a factor-neutral shifter that captures variations in output not explained by observable inputs.
- TFP is a residual.

LARGE \& PERSISTENT DIFFERENCES IN TFP ACROSS FIRMS

- Ubiquitous: even within narrowly defined industries and products.
- Large: 90 th to 10 th percentile TFP ratios: $\frac{A_{90 \text { th }}}{A_{10 t h}}$
- U.S. manufacturing, average within 4-digit SIC industries $=\mathbf{1 . 9 2}$
- Denmark: average $=3.75$
- China or India, average >5.
- Persistent: $\operatorname{AR}(1)$ of log-TFP with annual frequency: autoregressive coefficients between 0.6 to 0.8 .
- It matters: Higher TFP producers are more likely to survive, innovate, invest,

WHY DO FIRMS DIFFER IN THEIR PRODUCTIVITY LEVELS?

- What supports such large productivity differences in equilibrium?
- Can producers control the factors that influence productivity or are they purely external effects of the environment?
- If firms can partly control their TFP, what type of choices increase it?

WHY TFP DISPERSION IS POSSIBLE IN EQUILIBRIUM?

- Because the profit function is concave in output and the optimal amount of profit for a monopolist (or duopolist, ...) is smaller than total demand.
- Let the profit of a firm be:

$$
\pi_{i}=P_{i}\left(Y_{i}\right) Y_{i}-C\left(Y_{i}, A_{i}\right)
$$

$P_{i}\left(Y_{i}\right)=$ Inverse demand function; $C\left(Y_{i}, A_{i}\right)=$ Cost function.

- Key condition: either $P_{i}\left(Y_{i}\right) Y_{i}$ is strictly concave in Y_{i}, or $C($.$) is$ strictly convex in Y_{i}. [The profit function is strictly concave].
- Example: DRS even with perfect competition. $P Y_{i}$ is linear in Y_{i} but $C($.$) is strictly convex because DRS.$
- Example: Oligopoly competition even with CRS. $C($.$) is linear$ but $P_{i}\left(Y_{i}\right) Y_{i}$ is strictly concave in Y_{i} if demand is downward sloping.

WHY TFP DISPERSION IS POSSIBLE IN EQUILIBRIUM? [2]

- Equilibrium implies the marginal condition for optimal output:

$$
M R_{i} \equiv \frac{\partial\left[P\left(Y_{i}\right) Y_{i}\right]}{\partial Y_{i}}=\frac{\partial C\left(Y_{i}, A_{i}\right)}{\partial Y_{i}} \equiv M C_{i}
$$

- If variable profit is strictly concave, this equilibrium can support firms with different TFPs, A_{i}.
- It is not optimal for the firm with highest TFP to provide all the output in the industry.
- Firms with different TFPs (above a certain threshold value) operate in the same market.

How can a firm affect its TFP?

- Human resources and Managerial Practices.
- Learning-by-Doing
- Organizational structure: vertical integration vs outsourcing.
- Higher-Quality of Labor and Capital inputs.
- Adoption of new technologies.
- Investment in R\&D.
- Innovation: process and product innovation.

4. Estimation: Simultaneity Problem

THE SIMULTANEITY PROBLEM

- Consider the PF:

$$
y_{i t}=\alpha_{L} \ell_{i t}+\alpha_{K} k_{i t}+\omega_{i t}
$$

- We are interested in the estimation of α_{L} and α_{K}.
- These parameters represent "ceteris paribus" causal effects of labor and capital on output, respectively.
- When the manager decides the optimal $\left(k_{i t}, \ell_{i t}\right)$ she has some information about \log-TFP $\omega_{i t}$ (that we do not observe).
- This means that there is a correlation between the observable inputs ($k_{i t}, \ell_{i t}$) and the unobservable $\omega_{i t}$.
- This correlation implies that the OLS estimators of α_{L} and α_{K} are biased and inconsistent.

