ECO 310: Empirical Industrial Organization Tutorial 1 - Review of Econometrics

Victor Aguirregabiria

September 8, 2022

- Wooldridge (2008). Introductory Econometrics: A Modern Approach, 4th Edition. South-Western College Publishers.
 - Chapter 2
 - Chapter 3, Sections 3.1-3.4
 - Chapter 4
 - Chapter 6, Sections 6.1-6.2
 - Chapter 7, Sections 7.1-7.4

Random Variables and their Distribution [1/3]

- Let Y be a random variable (r.v.)
 - That is, the value of Y is subject to variations due to chance
 - Example: Y = Price of gasoline (in gas stations in the Great Toronto Area)
- The set of possible values of Y, and the probability at which it takes on these values is described by the **density function** of f(Y):

Random Variables and their Distribution [2/3]

• The mean μ of Y is the expected value of the distribution of Y

$$\mu = \mathbb{E}[Y] = \sum_{y} y f(y)$$

• The variance σ^2 of Y measures the spread in the distribution of Y.

$$\sigma^{2} = \mathbb{E}[(Y - \mu)^{2}] = \sum_{y} (y - \mu)^{2} f(y)$$

- We often deal with r.v.'s that are generated from an unknown distribution. We do not know μ and $\sigma^2.$
- Then, we use a random sample of Y to obtain estimates of μ and σ^2 .

Random Variables and their Distribution [3/3]

- Let $\{y_i : i = 1, ..., N\}$ be a random sample of observations on Y.
- Example: Random sample of N = 100 gas stations in the GTA.
- Estimators of the population mean and variance are

Sample Mean :
$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Sample Variance :
$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})^2$$

• Law of Large Numbers (LLN): \overline{y} is a consistent estimator of μ . As $N \to \infty$, $\Pr(|\overline{y} - \mu| > 0) \to 0$.

Estimating Causal Relationships [1/2]

- In economics, we are often interested in the causal relationship between an explanatory variable X and an outcome variable Y.
- **Example:** X = Price of gasoline in a gas station; Y = Quantity sold of gasoline in the gas station.

Suppose that we can change the price from $X = \frac{1.0}{liter}$ to $X = \frac{1.5}{liter}$. What is the effect on Y?

- Let {x_i, y_i : i = 1, ..., N} be a random sample of observations on (X, Y).
 Example: A random sample of price and quantity at N = 100 gas stations in the GTA.
- We use this sample to estimate the effect of price (X) on quantity (Y).

Estimating Causal Relationships [2/2]

• A scatter-plot of the sample {x_i, y_i : i = 1, ..., N} is a useful way of depicting the relationship between two r.v.'s

• The sample covariance is a useful statistic to describe this relationship

$$s_{xy} = rac{1}{N}\sum_{i=1}^N (x_i - \overline{x})(y_i - \overline{y})$$

• But covariance/correlation does not imply causation !!!

The Linear Regression Model

• The Linear Regression Model

- **Parameter** β_k = causal effect of x_k on y, holding *all* other vars. fixed
- ε captures all other factors that affect y aside from $x_1, x_2, ..., x_k$
- This error term is included because:
 - Some relevant variables are unobservable.
 - Even if observable, might be subject to Measurement Error.

The Simple Linear Regression Model

• The Simple Linear Regression Model

9/1

 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

Functional Forms

- The LRM is flexible: allows for many functional forms it is only linear in parameters, not in variables:
 - In a Linear specification

$$y = \beta_0 + \beta_1 x + \varepsilon$$

 β_1 is the # of units change in y from a 1-unit change in x

• In a Log-Log specification

$$\ln y = \beta_0 + \beta_1 \ln x + \varepsilon$$

 β_1 is the % change in y from a 1% change in x

• In a **Log-Linear** specification

$$\ln y = \beta_0 + \beta_1 x + \varepsilon$$

 $100 * \beta_1$ is the % change in y from a 1-unit change in x

• In this Linear Regression Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon \qquad \varepsilon \sim (0, \sigma^2)$$

 $\beta_0, \beta_1, \beta_2, ..., \beta_k$ and σ^2 are unknown parameters.

- The purpose of our econometric analysis is to estimate these parameters
- Towards this end, suppose we have collected a random sample of data

$$\{y_i, x_{1i}, x_{2i}, ..., x_{ki} : i = 1, 2, ..., N\}$$

Data

- Data for econometric analysis comes in a variety of types.
- Cross Section observe many individuals for one period

 $Q_i = \beta_0 + \beta_1 P_i + \varepsilon_i$ for i = station 1, ..., station N

• Time Series - observe one individual over successive time periods, e.g.

$$Q_t = \beta_0 + \beta_1 P_t + \varepsilon_t$$
 for $t = week 1, ..., week T$

• Panel Data - observe many individuals over multiple periods, e.g.

$$Q_{it} = \beta_0 + \beta_1 P_{it} + \varepsilon_{it}$$
 for $i = station 1, ..., station N$
and $t = week 1, ..., week T$

The Data Cont.

City	Price	Quantity
Toronto	99.99	1.75 mil
Montreal	103.50	1.65 mil
•		
Cranbrook	123	10,000

Montreal - Year	Price	Quantity
1990	87.50	1.03 mil
1991	87.99	1.02 mil
:		
2010	103.50	1.65 mil

City	Year	Price	Quantity
Toronto	1990	87.50	0.9 mil
Toronto	2010	99.99	1.75 mil
Montreal	1990	87.50	1.03 mil
Montreal	2010	103.50	1.65 mil
:			
Cranbrook	1990	86.00	1,000
Cranbrook	2010	123	10,000

Assumptions

- We want to *estimate* the causal effect of *k* explanatory variables *x*₁,*x*₂,...,*x*_k on the dependent variable *y*.
- The multiple regression model states that, in the population:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i$$

- The number of parameters is k + 1
- The observation index is *i*. Notationally, we use
 - *i* for cross-sectional data
 - t for time series data
 - it for panel data
- Parameter β_k measures causal effect of x_k on y holding all other vars fixed
- Error term ε is an unobservable capturing all *other* factors that effect y

Assumptions Cont.

Linearity: each predictor variable x is linearly related to y.

- Means no non-linearities in parameters cannot have $y_i = \beta_0 + x_i^{\beta_1} + \varepsilon$.
- However, the x and y variables can be non-linear transformations can have $\ln y_i = \beta_0 + \beta_1 \ln x_i + \varepsilon_i$ or $y_i = \beta_0 + \beta_1 x_i^2 + \varepsilon_i$
- **2 Zero Mean**: Error terms have a mean of zero. $E[\varepsilon_i] = 0$
 - Can be made without loss of generality if constant β_0 has been included
- Exogeneity (key assumption): Each x_k is unrelated with the error term. $cov(x_k, \varepsilon_i) = 0.$
 - Means no "lurking variables". i.e. any omitted variable do not have confounding effects on both x's and y.
 - Crucial is random sampling, so variation in x's is independent of variation in ε

No perfect collinearity between explanatory variables

Estimation

- $\beta_0, \beta_1, ... \beta_k$ are unknown population parameters.
- But, if we have a sample of data $\{y_i, x_{1i}, ... x_{ki} : i = 1, ..., N\}$ can estimate them
- Let $b_0, b_1, ..., b_k$ be the estimated parameters from our sample of data.
- Based on these estimates, the **fitted value** or **predicted value** of y_i given $x_{1i}, x_{2i}, ..., x_{ki}$ is

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_1 x_{2i} + \dots + b_k x_k$$

• The difference between observed value of y_i and predicted value \hat{y}_i is the **residual**

$$e_i = y_i - \widehat{y}_i$$

and can be thought of as a measure of how close our prediction is to the true value

Estimation - Some Ideas

- We want to choose our estimates such that the error is small
- Choose parameters to minimize the sum of residuals $\sum_{i=1}^{n} (y_i \hat{y}_i)$
 - Doesnt account for errors of opposite sign
 - Any line that passes through the point (\bar{x}, \bar{y}) will have this sum equal to 0 (non unique solution)
- Choose parameters to minimize $\sum_{i=1}^{n} |(y_i \hat{y}_i)|$
 - "Least absolute value regression" this is seldom used
- Choose parameters to minimize $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - This type of estimator is called a Least Squares Estimator
 - One of the most common estimators in econometrics
 - Easy to compute and provides a unique solution
 - Best Linear Unbiased Estimator (BLUE)

Estimation - Ordinary Least Squares

- Our goal is to estimate the unknown parameters of our model.
- The most common estimator in econometrics is Ordinary Least Squares
 - We do not observe the error term ε_i .
 - But given estimates of the β parameters, we can construct an estimate of it.
 - The residuals

$$e_i = y_i - \hat{y}_i = y_i - b_1 x_{1i} - b_2 x_{2i} - \dots - b_k x_{ki}$$

 The OLS Estimator is the value of the b's which minimizes the sum of squared residuals

$$b = \arg\min\sum_{i=1}^{N} e_i^2$$

Estimation - Ordinary Least Squares Cont.

- Our goal is to estimate the unknown parameters of our model.
- The most common estimator in econometrics is Ordinary Least Squares
 - For the simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

the OLS estimator for the slope parameter has a simple expression

$$b_1=rac{\sum_{i=1}^N(y_i-\overline{y})(x_i-\overline{x})}{\sum_{i=1}^N(x_i-\overline{x})^2} \qquad b_0=ar{y}-b_1ar{x}$$

• And our estimator for the error variance σ^2 is given by

$$s^2 = \frac{1}{N-2} \sum_{i=1}^N e_i^2$$

Interpretation

• How do we interpret the estimated parameter?

- The principle behind OLS is to estimate the model parameters by drawing that a line "best fits" the data in the least squares sense.
- This results in a slope parameter of

Interpretation Cont.

- How do we interpret the estimated parameter?
- The estimated value b_k measures the *typical* (i.e. average) change in y associated with a one unit change in x_k , holding the other included x variables fixed.
 - You can think of b_k as the "partial correlation" between x_k and y i.e. the correlation between x_k and y after controlling for the other *included* x's
 - NB: partial-correlation is not the same thing as correlation. E.g., it is possible to observe positive correlation between x_k and y, and then get a negative estimate b_k .
- However, (Partial) Correlation does not imply Causation
 - Because of the possibility of latent or ommitted variables (violation of Exogeneity) - b_k is not necessarily an estimate of the causal effect of x_k on y.
 - That is, due to the possibility of **Endogeneity**, we cannot say that b_k measures the change in y associated with a one unit change in x_k , holding all variables fixed.

Hypothesis Testing

- Under Assumption 1-6, b_k is an estimate of the (partial) effect of x_k on y based on our sample of data.
- We can use it to do **inference** about the value of β_k , the (partial) effect of x_k on y in the *population*.

Hypothesis Testing

- Suppose we wanted to answer the question "Is the (partial) effect of x_k on y in the *population* equal to (the number) β?"
- We maintain **Null Hypothesis** that β_k is indeed equal to β in the population

$$H_0$$
: $\beta_k = \beta$

and we ask the data to show us otherwise - i.e. our Alternative Hypothesis

$$H_1: \beta_k \neq \beta$$

• The test-statistic for this test is the t-statistic

$$t = \frac{b_k - \beta}{s_{b_k}}$$

• Hypothesis Testing Cont.:

• Where s_{b_k} is the standard error of our estimator b_k . In a simple linear regression $y_i = \beta_0 + \beta_1 x_i + \epsilon$ this is given by

$$s_{b_1} = \frac{s^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• Under the null hypothesis, H_0 , our test statistic follows a T **Distribution** with N - K - 1 deg. of freedom

Hypothesis Testing Cont.

• Hypothesis Testing Cont.:

- At significance level α , let $t_{\alpha/2}$ be the **critical value** from the T-distribution that leaves probability mass $\alpha/2$ in the tails.
- We reject H_0 in favour of H_1 if t-statistic is greater than $t_{a/2}$ in absolute value

Reject if $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$

- The **P-value** of the test is the prob. in the tails of the *T*-distribution as determined by the computed value of the t-stat.
- It measures the strength of the evidence against the Null Hypothesis.
- Thus, we can equivalently reject the Null in favour of the Alternative if the P-Value of the test is less than our level of significance

Reject if
$$P$$
-value $< \alpha$

Test of Statistical Significance

- A particularly important question is whether x_k indeed has an effect of y.
- We call this a Test of Statistical Significance or just a "Significance Test"
- Our Null Hypothesis and Alternative Hypothesis are

$$H_0: \beta_k = 0$$
 vs $H_1: \beta_k \neq 0$

• The test-statistic for this test is a special case of our usual t-statistic

$$t=\frac{b_k}{s_{b_k}}$$

and under the Null-Hypothesis, $t \sim T(n-k-1)$.

• Rule of thumb: we can reject H_0 if t is greater than 2 in absolute value.

Analysis of Variance

• The linear regression model is designed to explain the variation of y

$$s_y^2 = \frac{\sum_i (y_i - \overline{y})^2}{n - 1}$$

- Analysis of Variance (ANOVA): How the total variability of y variable is related to the variation in the x's versus the variation in ε
 - Define the Total Sum of Squares as

$$SST = \sum_{i} (y_i - \overline{y})^2$$

- The Sum of Squares of the Regression (SSR) is that part of the variation in y that is explained by our regression model
- The Sum of Squares of the Errors (SSE) is that part left unexplained

$$SSR = \sum_{i} (\widehat{y}_{i} - \overline{y})^{2}$$
 $SSE = \sum_{i} (y_{i} - \widehat{y}_{i})^{2}$

• By construction

$$SST = SSR + SSE$$

Victor Aguirregabiria ()

- How much of y is explained by x_1, x_2, \dots, x_k ?
- The **R-Squared** of the regression is that fraction of the total variation in y that has been explained by the variation in the x's

$$R^2 = \frac{SSR}{SST}$$
 or equivalently $R^2 = 1 - \frac{SSE}{SST}$

- R^2 is a number between 0 and 1.
- The higher is R^2 the greater is the percent of the variation of y explained by our model.

An Example

- Is the demand for gasoline inelastic?
- Suppose we collected a sample of 50 towns in Ontario during 2013
 - Q_i the quantity of gasoline sold in that town last year
 - P_i the (average) price of gasoline in that town
 - Y_i median household income in that town

• Economic theory gives us a valid regression model of the Demand for Gasoline

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$$

• In STATA, the syntax for regression is: regress y x1 x2 ...xk

Source	SS	df		MS		Number of obs	= 5
Model Residual	24.0503982 60.2333272	2 47	12.0 1.28	251991 156015		Prob > F R-squared	= 0.000 = 0.285
Total	84.2837254	49	1.72	007603		Root MSE	= 1.132
1nQ	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval
lnP lnY _cons	9464336 1.806263 10.70829	.5006 .4239 .6591	762 203 .015	-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342

Source	SS	df	MS		Number of obs	= 5
Model Residual	24.0503982 60.2333272	2 1 47 1	2.0251991 .28156015		Prob > F R-squared	= 0.000
Total	84.2837254	49 1	.72007603		Root MSE	= 1.132
		\sim				
lnQ	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval
lnP lnY _cons	9464336 1.806263 10.70829	.500676 .423920 .659101	2 -1.89 3 4.26 5 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342
	$\overline{\mathbf{X}}$	$\overline{}$				
ъ			s	e(b)		

Source	SS	df		MS	1	Number of obs	= 5
Model Residual	24.0503982 60.2333272	2 47	12.02 1.281	251991 156015	F	Prob > F R-squared	= 0.0004 = 0.2854
Total	84.2837254	49	1.720	007603	ŕ	Root MSE	= 1.1321
				-			
lnQ	Coef.	Std.	Err.	t	P>Itl	[95% Conf.	Interval
lnP lnY _cons	9464336 1.806263 10.70829	.5006 .4239 .6591	762 203 015	(-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.060793 2.659083 12.03423
t-Statist HO: beta	ic & P-V. = 0 vs H1:	alue beta	for $1 \neq 0$				

Source	SS	df		MS		Number of obs	= 5
Model Residual	24.0503982 60.2333272	2 47	12.0 1.28	251991 156015		Prob > F R-squared	= 0.000
Total	84.2837254	49	1.72	007603		Root MSE	= 1.132
lnQ	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval
lnP lnY _cons	9464336 1.806263 10.70829	.5006 .4239 .6591	762 203 015	-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342
95	5% CI for h LB = b - t UB = b + t	eta 2.025 2.025	*se(*se(ь) b)			

. reg InQ InP InY

Source	SS	df	MS		Number of obs	= 5
Model Residual	24.0503982 60.2333272	2 12 47 1.2	0251991 8156015		Prob > F R-squared	= 0.000 = 0.285 = 0.254
Total	84.2837254	49 1.7	2007603		Root MSE	1.132
lnQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
lnP lnY _cons	9464336 1.806263 10.70829	.5006762 .4239203 .6591015	-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342
			S _e 2	$=\frac{SSE}{n-k-1}$	/ 	$\frac{SSE}{n-k-1}$

_	Source	SS	df		MS		Number of obs	- 5
	Model Residual	24.0503982 60.2333272	47 47	12.02 1.281	51991 56015	/>	Prob > F R-squared	- 0.000 - 0.285
	Total	84.2837254	49	1.720	07603	_	Root MSE	= 0.234 = 1.132
	lnQ	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval
	lnP lnY _cons	9464336 1.806263 10.70829	.5006 .4239 .6591	762 203 1015	-1.89 4.26 16.25	0.065 0.000 0.000	-1.953664 .9534459 9.382345	.06079 2.65908 12.0342
	F- HI HI	-Stat and]]: beta ₁ =]]: At leas:	R-S	Sq and Adj	R–Sq			

Source	SS	df	MS	Number of obs	=	9 3
Model Residual	24.0503982 60.2333272	47 47	12.0251991 1.28156015	Prob > F R-squared	=	0.000
Total	84.2837254	49	1.72007603	Root MSE	=	1.132

lnQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
lnP	9464336	.5006762	-1.89	0.065	-1.953664	.06079
lnY	1.806263	.4239203	4.26	0.000	.9534459	2.65908
_cons	10.70829	.6591015	16.25	0.000	9.382345	12.0342

- In a "typical" (i.e. average) market, a 1% increse in Price is associated with a 0.95% decrease in quantity demanded, after controlling for Income.
- The P-value for a significance test is 0.065. Thus, at α=10%. we reject null hypothesis that, even after controling for income, price has no effect on demand.
- The R-Square for this model is 0.2854.

Functional Forms

- As we have just seen, the multiple regression model is much more flexible than it appears It can be used to estimate non linear relationships between y and the x's
- The linearity assumption only means that the parameters enter linearly
- Some common functional forms involve
 - Logarithms
 - Quadratics
 - Interaction Terms
 - Dummy Variables
 - Time Series Models: Trends
 - Panel Data Model: Fixed Effects

Functional Forms - Logarithms

- Consider the case of the demand function for a good.
- Suppose we wanted to estimate the relationship between quantities demanded Q, price P, and income Y.
 - In the Log-Log Model

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$$

 β_1 is interpreted as $\% \triangle$ in Q from a 1% \triangle in P, conditional on (log) Y

- That is, b_1 is an estimate of the Price-Elasticity of Demand
- In the Log-Linear Model

$$\ln Q_i = \beta_0 + \beta_1 P_i + \beta_2 Y_i + \varepsilon_i$$

 $\beta_1 * 100$ is interpreted as $\% \triangle$ in Q from a 1 unit \triangle in P, conditional. on Y.

Functional Forms - Quadratic

- One might assume that people are more price-elastic at higher prices
- In this case, the price elasticity of demand is dependent on price
- A model of demand with a Quadratic term in price

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \beta_3 \ln P_i^2 + \varepsilon_i$$

• The price-elasticity of demand is

$$\frac{\partial \ln Q}{\partial \ln P} = \beta_2 + 2\beta_3 \ln P_i$$

and thus price-elasticty changes as the price level changes

Functional Forms - Interaction Terms

- One might assume that markets with higher income are less price-elastic than those with lower income
- In this case, the price elasticity is dependent on the level of income
- A model of demand with an Interaction term between price and income

$$\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \beta_3 \ln P_i * \ln Y_i + \varepsilon_i$$

• The price-elasticity of demand is

$$\frac{\partial \ln Q}{\partial \ln P} = \beta_1 + \beta_3 \ln Y_i$$

and thus price-elasticity changes as income changes

Functional Forms - Dummy Variables

- Suppose we believed demand in cities is higher than demand in towns.
- Define the **Dummy Variable** CITY by

$$CITY_i = \begin{cases} 1 & \text{if market-}i \text{ is a city} \\ 0 & \text{otherwise} \end{cases}$$

• A model of demand with a City-Dummy

$$\ln Q_i = \beta_0 + \delta_0 C I T Y_i + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$$

• The regression for towns vs cities

 $\ln Q_i = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i \quad \text{vs} \quad \ln Q_i = (\beta_0 + \delta_0) + \beta_1 \ln P_i + \beta_2 \ln Y_i + \varepsilon_i$

- β₀ is intercept for towns (omitted category).
- $\beta_0 + \delta_0$ is intercept for cities

Functional Forms - Time Trends

- The use of data with a time component (both Time-Series and Panel Data) allow us to control for unobserved **trending variables** or **secular effects**
- Consider the demand model with time series data

 $\ln Q_t = \beta_0 + \beta_1 \ln P_t + \beta_2 \ln Y_t + \beta_3 t + \varepsilon_t$

- Recall that the data for this model come from a single market that is observed over successive periods.
- The **time-trend** *t*, which is nothing more then the obervation number, is included to control unobserved factors that are growing at a constant rate i.e. trending over time.
- Such factors such as population change are sometimes referred to as "secular effects"
- Had we not included the time trend, and had our included regressor variables P_t and Y_t been "trending" themselves, we could have **spuriously** attributed that change in Q_t generated by these secular effects mistakenly to P_t and Y_t . Victor Aguirregabina () ECO 310: Empirical Industrial Organization Tutorial 1: September 8, 2022 42 / 2

Functional Forms - Fixed Effects

- The use of panel data allows us to control for **'unobserved heterogeneity** when this heterogeneity is time-invariant
- Consider the demand model with panel data

$$\ln Q_{it} = \beta_0 + \beta_1 \ln P_{it} + \beta_2 \ln Y_{it} + u_i + \varepsilon_{it}$$

where u_i is an unobserved component that affects market *i* and is constant over time. We call u_i the **Fixed Effect** of market *i*

- Since u_i is unobserved, it cannot be directly controlled.
- However, since we observe each market *i* at multiple points in time, we can include a series of dummy variables – one for each market – to indirectly serve as controls for these Fixed Effects
- Define the market-*j* dummy by:

$$D_{it}^{j} = \begin{cases} 1 & \text{if observation } i, t \text{ is from market-} j \\ 0 & \text{otherwise} \end{cases}$$

Functional Forms - Panel Data Model: Fixed Effects

• The Fixed Effects model

 $\ln Q_{it} = \beta_0 + \beta_1 \ln P_{it} + \beta_2 \ln Y_{it} + u_1 D_{it}^1 + u_2 D_{it}^2 + ... + u_M D_{it}^M + \varepsilon_{it}$

- That is, the Fixed Effects model allows each market to have its own intercept
- Formally, the effects from the unobserved heterogeneity are treated as the coefficients of the market-specific dummy variable.
- Intuitition: each market serves as a control for itself
 - Since the u_i varies over markets but not over time the identity of market i is sufficient to control for u_i
 - Thus, unobserved heterogeneity will be absorbed by the market dummies
- Had we not accounted for these fixed effects, we could have attributed the change in Q_t generated by this unobserved heterogeneity mistakenly to P_t and Y_t , leading to endogeneity bias