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3. Production Functions

3.1 Introduction
Production functions (PF) are important primitive components of many economic mod-
els. The estimation of PFs plays a key role in the empirical analysis of issues such as
productivity dispersion and misallocation, the contribution of different factors to eco-
nomic growth, skill-biased technological change, estimation of economies of scale and
economies of scope, evaluation of the effects of new technologies, learning-by-doing, or
the quantification of production externalities, among many others.

In empirical IO, the estimation of production functions can be used to obtain firms’
costs. Cost functions play an important role in any empirical study of industry compe-
tition. As explained in chapter 1, data on production costs at the firm-market-product
level is rare. For this reason cost functions are often estimated in an indirect way, using
first order conditions of optimality for profit maximization (see chapter 4). However,
cross-sectional or panel datasets with firm-level information on output and inputs of the
production process are more commonly available. Given this information, it is possible
to estimate the industry production function and use it to obtain firms’ cost functions.

There are multiple issues that should be taken into account in the estimation of
production functions.

(a) Measurement issues. There are important issues in the measurement of inputs,
such as differences in the quality of labor, or the measurement error that results from
the construction of the capital stock using a perpetual inventory method. There are also
issues in the measurement of output. For instance, the problem of observing revenue
instead of output in physical units.

(b) Specification assumptions. The choice of functional form for the production
function is an important modelling decision, especially when the model includes different
types of labor and capital inputs that may be complements or substitutes.

(c) Simultaneity / endogeneity. This is a key econometric issue in the estimation of
production functions. Observed inputs (for instance, labor and capital) can be correlated
with unobserved inputs or productivity shocks (for instance, managerial ability, quality
of land, materials, capacity utilization). This correlation introduces biases in some
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estimators of PF parameters.
(d) Multicollinearity between observed inputs is also a relevant issue in some empiri-

cal applications. The high correlation between observed labor and capital can seriously
reduce the precision in the estimation of PF parameters.

(e) Endogenous exit. In panel datasets, firm exit from the sample is not exogenous
and it is correlated with firm size. Smaller firms are more likely to exit compared to
larger firms. Endogenous exit can introduce selection-bias in some estimators of PF
parameters.

In this chapter, we concentrate on the problems of simultaneity, multicollinearity,
and endogenous exit, and on different solutions that have been proposed to deal with
these issues. For the sake of simplicity, we discuss these issues in the context of a
Cobb-Douglas PF. However, the arguments and results can be extended to more general
specifications of PFs. In principle, some of the estimation approaches can be generalized
to estimate nonparametric specifications of PF. Griliches and Mairesse (1998), Bond
and Van Reenen (2007), and Ackerberg et al. (2007) include surveys of this literature.

3.2 Model and data
3.2.1 Model

Basic framework
A Production Function (PF) is a description of a production technology that relates the
physical output of a production process to the physical inputs or factors of production.
A general representation is:

Y = F(X1, X2, ..., XJ,A) (3.1)

where Y is a measure of firm output, X1, X2, .., and XJ are measures of J firm inputs, and
A represents the firm’s technological efficiency. The marginal productivity of input j is
MPj = ∂F/∂X j.

Given the production function Y = F(X1, X2, ..., XJ,A) and input prices (W1, W2,
...,WJ), the cost function C(Y ) is defined as the minimum cost of producing the amount
of output Y :

C(Y ) = min
{X1,X2,...,XJ}

W1X1 +W2X2 + ...+WJXJ

subject to: Y ≥ F(X1,X2, ...,XJ,A)

(3.2)

The marginal conditions of optimality imply that for every input j:

Wj −λ Fj(X1,X2, ...,XJ,A) = 0, (3.3)

where Fj(X1,X2, ...,XJ,A) is the marginal productivity of input j, and λ is the Lagrange
multiplier of the restriction.

Cobb-Douglas production and cost functions
A very common specification is the Cobb-Douglas PF (Cobb and Douglas, 1928 ):

Y = LαL KαK A (3.4)
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where L and K represent labor and capital inputs, respectively, and αL and αK are
technological parameters that are assumed the same for all the firms in the market
and industry under study. This Cobb-Douglas PF can be generalized to include more
inputs, for instance, Y = LαL KαK RαR EαE A, where R represents R&D and E is energy
inputs. We can also distinguish different types of labor (for instance, blue collar and
white collar labor) and capital (for instance, equipment, buildings, and information
technology). For the Cobb-Douglas PF, the productivity term A is denoted the Total
Factor Productivity (TFP). The marginal productivity of input j is MPj = α j

Y
X j

. All the
inputs are complements in production, that is, the marginal productivity of any input j
increases with the amount of any other input k:

∂MPj

∂Xk
=

α j

X j

αk

Xk
Y > 0 (3.5)

Note that this is not necessarily the case for other production functions such as the
Constant Elasticity of Substitution (CES) or the Translog

More generally, we can consider a Cobb-Douglas PF with J inputs: Y = Xα1
1 ... XαJ

1
A. Given this PF and input prices Wj, we can obtain the expression for the corresponding
cost function. The marginal condition of optimality for input j implies Wj − λα j
(Y/X j) = 0, or equivalently:

Wj X j = λα j Y (3.6)

Therefore, the cost is equal to ∑
J
j=1Wj X j = λα Y , where the parameter α is defined

as α ≡ ∑
J
j=1 α j. Note that α represents the returns to scale in the production function:

constant if α = 1, decreasing if α < 1, and increasing if α > 1. To obtain the expression
of the cost function, we still need to obtain the (endogenous) value of the Lagrange
multiplier λ . For this, we substitute the marginal conditions X j = λα j Y/Wj into the
production function:

Y = A
(

λα1Y
W1

)α1
(

λα2Y
W2

)α2

...

(
λαJY

WJ

)αJ

(3.7)

Using this expression to solve for the Lagrange multiplier, we get

λ =

(
W1

α1

)α1
α
(

W2

α2

)α2
α

...

(
WJ

αJ

)αJ
α

Y
1−α

α A
−1
α . (3.8)

And plugging this multiplier into the expression λα Y for the cost, we obtain the cost
function:

C(Y ) = α

(
Y
A

) 1
α
(

W1

α1

)α1
α
(

W2

α2

)α2
α

...

(
WJ

αJ

)αJ
α

(3.9)

Looking at the Cobb-Douglas cost function in equation (3.9) we can identify some
interesting properties. First, the returns to scale parameter α determines the shape of
the cost as a function of output. More specifically, the sign of the second derivative
C′′(Y ) is equal to the sign of 1

α
−1. If α = 1 (constant returns to scale, CRS), we have

C′′(Y ) = 0 such that the cost function is linear in output. If α < 1 (decreasing returns
to scale, DRS), we have C′′(Y ) > 0 and the cost function is strictly convex in output.
Finally, if α > 1 (increasing returns to scale, IRS), we have C′′(Y ) < 0 such that the
cost function is concave in output.
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Production functions and the linear regression model
An attractive feature of the Cobb-Douglas PF from the point of view of estimation is
that it is linear in logarithms:

y = αL `+αK k+ω (3.10)

where y is the logarithm of output, ` is the logarithm of labor, k is the logarithm of
physical capital, and ω is the logarithm of TFP. The simplicity of the Cobb-Douglas PF
also comes with some limitations. One of its drawbacks is that it implies an elasticity
of substitution between labor and capital (or between any two inputs) that is always
equal to one. This implies that all technological changes are neutral for the demand of
inputs. For this reason, the Cobb-Douglas PF cannot be used to study topics such as
skill-biased technological change. For empirical studies where it is important to have a
flexible form for the elasticity of substitution between inputs, the translog PF has been a
popular specification:

Y = L[αL0+αLL`+αLKk] K[αK0+αKL`+αKKk] A (3.11)

which in logarithms becomes,

y = αL0 `+αK0 k+αLL `2 +αKK k2 +(αLK +αKL) ` k+ω (3.12)

3.2.2 Data
The most common type of data that has been used for the estimation of PFs consists of
panel data of firms or plants with annual frequency and information on: (i) a measure
of output, for instance, units produced, revenue, or value added; (ii) a measure of labor
input, such as number of workers; (iii) a measure of capital input. Some datasets also
include measures of other inputs such as materials, energy, or R&D, and information
on input prices, typically at the industry level but sometimes at the firm level. For the
US, the most commonly used datasets in the estimation of PFs are Compustat, and the
Longitudinal Research Database from US Census Bureau. In Europe, some countries’
Central Banks (for instance, Bank of Italy, Bank of Spain) collect firm level panel data
with rich information on output, inputs, and prices.

For the rest of this chapter we consider that the researcher observes a panel dataset
of N firms, indexed by i, over several periods of time, indexed by t, with the following
information:

Data = {yit , `it , kit , wit , rit : i = 1,2, ...N; t = 1,2, ...,Ti} (3.13)

where y, `, and k have been defined above, and w and r represent the logarithms of the
price of labor and the price of capital for the firm, respectively. Ti is the number of
periods that the researcher observes firm i.

Throughout this chapter, we consider that all the observed variables are in mean
deviations. Therefore, we omit constant terms in all the equations.

3.3 Econometric issues
We are interested in the estimation of the parameters αL and αK in the Cobb-Douglas
PF (in logs):

yit = αL `it +αK kit +ωit + eit (3.14)
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ωit represents inputs that are known to the firm when it makes its capital and labor
decisions, but are unobserved to the econometrician. These include managerial ability,
quality of land, materials, etc. We refer to ωit as the logarithm of total factor productivity
(log-TFP), or unobserved productivity, or productivity shock. eit represents measurement
error in output, or any shock affecting output that is unknown to the firm when it chooses
its capital and labor. We assume that the error term eit is independent of inputs and of
the productivity shock. We use ye

it to represent the "true" expected value of output for
the firm, ye

it ≡ yit− eit .

3.3.1 Simultaneity problem
The simultaneity problem in the estimation of a PF establishes that if the unobserved
productivity ωit is known to the firm when it decides the amount of inputs to use in pro-
duction, (kit , `it), then these observed inputs should be correlated with the unobservable
ωit and the OLS estimator of αL and αK will be biased and inconsistent. This problem
was pointed out in the seminal paper by Marschak and Andrews (1944).

Example 3.1. Suppose that firms in our sample operate in the same markets for output
and inputs. These markets are competitive. Output and inputs are homogeneous products
across firms. For simplicity, consider a PF with only one input, say labor: Y = LαL

exp{ω + e}. The first order condition of optimality for the demand of labor implies that
the expected marginal productivity should be equal to the price of labor WL: that is, αL
Y e/L = WL, where Y e = Y/ exp{e}, because the firm’s profit maximization problem
does not depend on the measurement error or/and non-anticipated shocks in eit . Note
that the price of labor WL is the same for all the firms because, by assumption, they
operate in the same competitive output and input markets. Then, the model can be
described in terms of two equations: the production function and the marginal condition
of optimality in the demand for labor. In logarithms, and in deviations with respect to
mean values (no constant terms), these two equations are:1

yit = αL `it +ωit + eit

yit− `it = eit

(3.15)

The reduced form equations of this structural model are:

yit =
ωit

1−αL
+ eit

`it =
ωit

1−αL

(3.16)

Given these expressions for the reduced form equations, it is straightforward to obtain the
bias in the OLS estimation of the PF. The OLS estimator of αL in this simple regression
model is a consistent estimator of Cov(yit , `it)/Var(`it). But the reduced form equations,
together with the condition Cov(ωit ,eit) = 0, imply that the covariance between log-
output and log-labor should be equal to the variance of log-labor: Cov(yit , `it) =Var(`it).

1The firm’s profit maximization problem depends on output exp{ye
i } without the measurement error

ei.
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Therefore, under the conditions of this model, the OLS estimator of αL converges in
probability to 1 regardless of the true value of αL. Even in the hypothetical case that
labor has very low productivity and αL is close to zero, the OLS estimator still converges
in probability to 1. It is clear that – at least in this case – ignoring the endogeneity of
inputs can generate a serious bias in the estimation of the PF parameters. �

Figure 3.1: Production function and labor demand

Example 3.2: Consider similar conditions as in Example 1, but now firms produce
differentiated products and use differentiated labor inputs. In particular, the price of
labor Rit is an exogenous variable that has variation across firms and over time. Suppose
that a firm is a price taker in the market for its labor input, and the price of this input,
Rit , is independent of the firm’s productivity shock, ωit . In this version of the model
the system of structural equations is very similar to the one in (3.15), with the only
difference being that the labor demand equation now includes the logarithm of the price
of labor – denoted by rit — such that we have yit − `it = rit + eit . The reduced form
equations for this model are:

yit =
ωit− rit

1−αL
+ rit + eit

`it =
ωit− rit

1−αL

(3.17)

Again, we can use these reduced form equations to obtain the asymptotic bias in the
estimation of αL if we ignore the endogeneity of labor in the estimation of the PF. The
OLS estimator of αL converges in probability to Cov(yit , `it)/Var(`it), and in this case
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this implies the following expression for the bias:

Bias
(

α̂
OLS
L

)
=

1−αL

1+σ2
r /σ2

ω

(3.18)

where σ2
ω and σ2

r represent the variances of log-TFP and of the logarithm of labor price,
respectively. This bias – of the OLS estimator of αL – is always upward because the
firm’s labor demand is always positively correlated with the firm’s log-TFP. The ratio
between the variance of log-labor-price and the variance of log-TFP, σ2

r /σ2
ω , plays a

key role in the determination of the magnitude of this bias. Sample variability in input
prices, if it is not correlated with the productivity shock, induces exogenous variability
in the labor input. This exogenous sample variability in labor reduces the bias of the
OLS estimator. The bias of the OLS estimator declines monotonically with the variance
ratio σ2

r /σ2
ω . Nevertheless, the bias can be very significant if the exogenous variability

in input prices is not much larger than the variability in unobserved productivity. �

3.3.2 Endogenous exit
Exit and selection problem
Panel datasets of firms or establishements can contain a significant number of firms/plants
that exit from the market. Exiting firms are not randomly chosen from the population of
operating firms. For instance, existing firms are typically smaller than surviving firms.

Let V 1
it be the value of firm i at period t if the owners decide to stay active in the

market. This value is the expected present value of future profits. Let V 0
it be the value

of the assets of firm i if the owners choose to exit from the market at period t. This
value includes the scrap value of the assets minus exit costs such as indemnifications
to workers and clients. These two values depend on the "installed" inputs of the firm
an don the current value of TFP. That is, V 1

it = V 1(`it−1,kit ,ωit) and be the value of the
firm at period staying in the market, V 0

it = V 0(`it−1,kit ,ωit). Let dit be the indicator of
the event "firm i stays in the market at the end of period t". The firm’s owners maximize
present value. Then, the optimal exit/stay decision is:

dit = 1
{

V 1(`it−1,kit ,ωit)−V 0(`it−1,kit ,ωit)≥ 0
}

(3.19)

where 1{S} is the indicator function, such that 1{S} = 1 if statement S is true, and
1{S} = 0 otherwise. Under standard conditions, the difference between the value of
being in the market and the value of being out, V 1(`it−1,kit ,ωit)− V 0(`it−1,kit ,ωit), is a
strictly increasing in all its arguments, that is, all the inputs are more productive in the
current firm/industry than in the best alternative use. Therefore, the function is invertible
with respect to the productivity shock ωit and we can write the optimal exit/stay decision
as a single-threshold condition:

dit = 1{ ωit ≥ v(`it−1,kit) } (3.20)

where the threshold function v(., .) is strictly decreasing in all its arguments.
Consider the PF yit = αL `it +αK kit +ωit + eit . In the estimation of this PF, we use

the sample of firms that survived at period t: that is, dit = 1. Therefore, the error term in
the estimation of the PF is ωd=1

it + eit , where:

ωd=1
it ≡ {ωit | dit = 1} =

{
ωit | ωit ≥ v(`i,t−1,kit)

}
(3.21)
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where the notation {x|S} represents the random variable x conditional on event S. Even
if the productivity shock ωit is independent of the state variables (`i,t−1,kit), the self-
selected productivity shock ωd=1

it will not be mean-independent of (`i,t−1,kit). That
is,

E
(
ωd=1

it | `i,t−1,kit
)

= E(ωit | `i,t−1,kit ,dit = 1)

= E(ωit | `i,t−1,kit ,ωit ≥ v(`i,t−1,kit))

= λ (`i,t−1,kit)

(3.22)

λ (`i,t−1,kit) is the selection term. Therefore, the PF can be written as:

yit = αL `it +αK kit +λ (`i,t−1,kit)+ ω̃it + eit (3.23)

where ω̃it ≡{ωd=1
it −λ (`i,t−1,kit)} is, by construction, mean-independent of (`i,t−1,kit).

Ignoring the selection term λ (`i,t−1,kit) introduces bias in our estimates of the PF
parameters. The selection term is an increasing function of the threshold v(`i,t−1,kit),
and therefore it is decreasing in `i,t−1 and kit . Both `it and kit are negatively correlated
with the selection term, but the correlation with the capital stock tends to be larger
because the value of a firm depends more strongly on its capital stock than on its "stock"
of labor. Therefore, this selection problem tends to bias downward the estimate of the
capital coefficient.

To provide an intuitive interpretation of this bias, first consider the case of very
large firms. Firms with a large capital stock are very likely to survive, even if the firm
receives a bad productivity shock. Therefore, for large firms, endogenous exit induces
little censoring in the distribution of productivity shocks. Consider now the case of very
small firms. Firms with a small capital stock have a large probability of exiting, even
if their productivity shocks are not too negative. For small firms, exit induces a very
significant left-censoring in the distribution of productivity, that is, we only observe
small firms with good productivity shocks and therefore with high levels of output. If
we ignore this selection, we will conclude that firms with large capital stocks are not
much more productive than firms with small capital stocks. But that conclusion is partly
spurious because we do not observe many firms with low capital stocks that would have
produced low levels of output if they had stayed.

The relationship between firm size and firm growth
This type of selection problem has been also analyzed by researchers interested in the
relationship between firm growth and firm size. This relationship has relevant policy
implications. Mansfield (1962), Evans (1987), and Hall (1987) are seminal papers in
this literature.

Consider the regression equation:

∆sit = α +β si,t−1 + εit (3.24)

where sit represents the logarithm of a measure of firm size, for instance, the logarithm
of capital stock, or the logarithm of the number of workers.

The so called Gibrat’s law – sometimes described as the rule of proportionate growth
– is a hypothesis establishing that the rate of growth of a firm is independent of its size.
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This "law" was postulated by gibrat (1931) – see the survey by Sutton (1997). Using
equation (3.24), we can enunciate Gibrat’s hypothesis as the model with β = 0.

Suppose that the exit decision at period t depends on firm size, si,t−1, and on a shock
εit . More specifically,

dit = 1
{

εit ≥ v(si,t−1)
}

(3.25)

where v(.) is a decreasing function, that is, smaller firms are more likely to exit. In a
regression of ∆sit on si,t−1, we can use only observations from surviving firms. Therefore,
the regression of ∆sit on si,t−1 can be represented using the equation ∆sit = α + β

si,t−1 + εd=1
it , where εd=1

it ≡ {εit |dit = 1}= {εit |εit ≥ v(si,t−1)}. Thus,

∆sit = α +β si,t−1 +λ (si,t−1)+ ε̃it (3.26)

where λ (si,t−1) ≡ E(εit |εit ≥ v(si,t−1)), and ε̃it ≡ {εd=1
it − λ (`i,t−1,kit)} which, by

construction, is mean-independent of firm size at t−1. The selection term λ (si,t−1) is
an increasing function of the threshold v(si,t−1), and therefore it is decreasing in firm
size. If the selection term is ignored in the regression of ∆sit on si,t−1, then the OLS
estimator of β will be downward biased. That is, it seems that smaller firms grow faster
just because small firms that would like to grow slowly have exited the industry and they
are not observed in the sample.

Mansfield (1962) already pointed out to the possibility of a selection bias due to
endogenous exit. He uses panel data from three US industries, steel, petroleum, and tires,
over several periods. He tests the null hypothesis of β = 0, that is, Gibrat’s law. Using
only the subsample of surviving firms, he can reject Gibrat’s Law in 7 of the 10 samples.
Including also exiting firms and using the imputed values ∆sit = −1 for these firms,
he rejects Gibrat’s Law for only for 4 of the 10 samples. An important limitation of
Mansfield’s approach is that including exiting firms using the imputed values ∆sit =−1
does not correct completely for the selection bias. But Mansfield’s paper was written
more than a decade before James Heckman’s seminal contributions on sample selection
in econometrics – Heckman (1974, 1976, 1979). Hall (1987) and Evans (1987) dealt
with the selection problem using Heckman’s two-step estimator. Both authors find that
ignoring endogenous exit induces significant downward bias in β . These two studies
find that after controlling for endogenous selection à la Heckman, the estimate of β is
significantly smaller than zero such that they reject Gibrat’s law. A limitation of their
approach is that their models do not have any exclusion restriction and identification is
based on functional form assumptions: the assumptions of normal distribution of the
error term, and linear (causal) relationship between firm size and firm growth.

3.4 Estimation methods
3.4.1 Input prices as instruments

If input prices, ri, are observable and uncorrelated with log-TFP ωi, then we can use these
variables as instruments in the estimation of the PF. However, this approach has several
important limitations. First, input prices are not always observable in some datasets, or
they are only observable at the aggregate level but not at the firm level. Second, if firms
in our sample use homogeneous inputs, and operate in the same output and input markets,
we should not expect to find any significant cross-sectional variation in input prices. This
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is a problem because there may not be enough time-series variation for identification,
or it can be confounded with any aggregate effect in the error term. Instead, suppose
that firms in our sample operate in different input markets, and the researcher observes
significant cross-sectional variation in input prices. In this context, a third problem is
that this cross-sectional variation in input prices is likely to be endogenous: the different
markets where firms operate can be different in the average unobserved productivity of
firms, and therefore cov(ωi,ri) 6= 0. That is, input prices will not be valid instruments.

3.4.2 Panel data: Fixed-effects
Suppose that we have firm level panel data with information on output, capital and labor
for N firms during T time periods. The Cobb-Douglas PF is:

yit = αL `it +αK kit +ωit + eit (3.27)

Mundlak (1961) and Mundlak and Hoch (1965) are pioneer studies in using panel data
for the estimation of production functions. They consider the estimation of a production
function of an agricultural product. They postulate the following assumptions:

Assumption PD-1: ωit has the following variance-components structure: ωit = ηi +δt +
uit . The term ηi is a time-invariant, firm-specific effect that may be interpreted as the
quality of a fixed input such as managerial ability, or land quality. δt is an aggregate
shock affecting all firms. And uit is an firm idiosyncratic shock.

Assumption PD-2: The amount of inputs depend on some other exogenous time-varying
variables, such that var

(
`it− `i

)
> 0 and var

(
kit− k̄i

)
> 0, where `i ≡ T−1

∑
T
t=1 `it , and

k̄i ≡ T−1
∑

T
t=1 kit .

Assumption PD-3: uit is not serially correlated.

Assumption PD-4: The idiosyncratic shock uit is realized after the firm decides the
amount of inputs to employ at period t. In the context of an agricultural PF, this shock
may be interpreted as weather, or another random and unpredictable shock.

The Within-Groups estimator (WGE) or fixed-effects estimator of the PF is simply
the OLS estimator applied to the Within-Groups transformation of the model. The
equation that describes the within-groups transformation can be obtained by taking the
difference between equation yit = αL `it +αK kit +ωit + eit and this equation averaged
at the firm level, that is ȳi = αL`i+ αK k̄i+ ω̄i + ēi. The within-groups equation is:

(yit− ȳi) = αL
(
`it− `i

)
+αK

(
kit− k̄i

)
+(ωit− ω̄i)+(eit− ēi) (3.28)

Under assumptions (PD-1) to (PD-4), the WGE is consistent. Under these assumptions,
the only endogenous component of the error term is the fixed effect ηi. The transitory
shocks uit and eit do not induce any endogeneity problem. The WG transformation
removes the fixed effect ηi.

It is important to point out that, for short panels (that is, T fixed), the consistency of
the WGE requires the regressors xit ≡ (`it ,kit) to be strictly exogenous. That is, for any
(t,s):

cov(xit ,uis) = cov(xit ,eis) = 0 (3.29)
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Otherwise, the WG-transformed regressors
(
`it− `i

)
and

(
kit− k̄i

)
would be correlated

with the error (ωit− ω̄i). This is why Assumptions (PD-3) and (PD-4) are necessary for
the consistency of the OLS estimator.

However, it is very common to find that the WGE estimator provides very small
estimates of αL and αK (see Griliches and Mairesse, 1998). There are at least two
possible reasons that can explain this empirical regularity. First, though assumptions
(PD-2) and (PD-3) may be plausible for estimating PFs of agricultural firms, they are
unrealistic for other industries, such as manufacturing. And second, the bias induced by
measurement-error in the regressors can be exacerbated by the WG transformation. To
see this, consider the model with only one input, such as capital, and suppose that it has
measurement error. We observe k∗it where k∗it = kit + ek

it , and ek
it represents measurement

error in capital and it satisfies the classical assumptions on measurement error.2 The
noise-to-signal ratio is the ratio of variances Var(ek)/Var(k). In the estimation of the PF
in levels we have that:

Bias(α̂OLS
L ) =

Cov(k,η)

Var(k)+Var(ek)
− αL Var(ek)

Var(k)+Var(ek)
(3.30)

If the noise-to-signal ratio Var(ek)/Var(k) is small, then the (downward) bias introduced
by the measurement error is negligible in the estimation in levels. In the estimation in
first differences (similar to WGE, in fact equivalent when T = 2), we have that:

Bias(α̂WGE
L ) =− αL Var(∆ek)

Var(∆k)+Var(∆ek)
(3.31)

Suppose that kit is very persistent (that is, Var(k) is much larger than Var(∆k)) and that
ek

it is not serially correlated (that is, Var(∆ek) = 2∗Var(ek)). Under these conditions, the
noise-to-signal ratio for capital in first differences, Var(∆ek)/Var(∆k), can be large even
when the ratio Var(ek)/Var(k) is quite small. Therefore, the WGE may be significantly
downward biased.

3.4.3 Dynamic panel data: GMM
In the WGE described in the previous section, the assumption of strictly exogenous
regressors is very unrealistic. However, we can relax that assumption and estimate the
PF using the GMM method proposed by Arellano and Bond (1991). Consider the PF in
first differences:

∆yit = αL ∆`it +αK ∆kit +∆δt +∆uit +∆eit (3.32)

We maintain assumptions (PD-1), (PD-2), and (PD-3), but we remove assumption (PD-3).
Instead, we consider the following assumption.

Assumption PD-5: A firm’s demands for labor and capital are dynamic. More formally,
the demand equations for labor and capital are `it = fL(`i,t−1,ki,t−1,ωit) and kit =
fK(`i,t−1,ki,t−1,ωit), respectively, where either `i,t−1 or ki,t−1, or both, have non-zero
partial derivatives in fL and fK .

2Classical measurement error is independent of the true value, independently and identically distributed
over observations, and with zero mean.
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There are multiple reasons why the demand for capital or and labor are dynamic –
that is, depend on the amount of labor and capital at previous period. Hiring and firing
cost for labor, irreversibility of capital investments, installation costs, time-to-build, and
other forms of adjustment costs are the most common arguments for the existence of
dynamics in the demand of these inputs.

Under the conditions in Assumption PD-5, the lagged variables {`i,t− j,ki,t− j,yi,t− j :
j ≥ 2} are valid instruments in the PF equation in first differences. Identification comes
from the combination of two assumptions: (1) serial correlation of inputs; and (2) no
serial correlation in productivity shocks {uit}. The presence of adjustment costs implies
that the marginal cost of labor or capital depends on the firm’s amount of the input at
previous period. This implies that this shadow price varies across firms even if firms
face the same input prices. This variability in shadow prices can be used to identify PF
parameters. The assumption of no serial correlation in {uit} is key, but it can be tested
(see Arellano and Bond ,1991).

This GMM in first-differences approach has also its own limitations. In some
applications, it is common to find unrealistically small estimates of αL and αK and large
standard errors (see Blundell and Bond ,2000). Overidentifying restrictions are typically
rejected. Furthermore, the i.i.d. assumption on uit is typically rejected, and this implies
that {xi,t−2,yi,t−2} are not valid instruments. It is well-known that the Arellano-Bond
GMM estimator may suffer from a weak-instruments problem when the serial correlation
of the regressors in first differences is weak (see Arellano and Bover ,1995, and Blundell
and Bond ,1998). First difference transformation also eliminates the cross-sectional
variation in inputs and it is subject to the problem of measurement error in inputs.

The weak-instruments problem deserves further explanation. For simplicity, consider
the model with only one input, xit . We are interested in the estimation of the PF:

yit = α xit +ηi +uit + eit (3.33)

where uit and eit are not serially correlated. Consider the following dynamic reduced
form equation for the input xit :

xit = δ xi,t−1 +λ1 ηi +λ2 uit (3.34)

where δ , λ1, and λ2 are reduced form parameters, and δ ∈ [0,1] captures the existence
of adjustment costs. The PF in first differences is:

∆yit = α ∆xit +∆uit +∆eit (3.35)

For simplicity, consider that the number of periods in the panel is T = 3. In this context,
Arellano-Bond GMM estimator is equivalent to a simple instrumental variables estimator
where the instrument is xi,t−2. This IV estimator is:

α̂N =
∑

N
i=1 xi,t−2 ∆yit

∑
N
i=1 xi,t−2 ∆xit

(3.36)

Therefore, under the previous assumptions, α̂N identifies α if the R-square in the
auxiliary regression of ∆xit on xi,t−2 is not zero.
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By definition, the R-square coefficient in the auxiliary regression of ∆xit on xi,t−2 is
such that:

p limR2 =
Cov(∆xit ,xi,t−2)

2

Var (∆xit) Var (xi,t−2)
=

(γ2− γ1)
2

2(γ0− γ1)γ0
(3.37)

where γ j ≡ Cov
(
xit ,xi,t− j

)
is the autocovariance of order j of {xit}. Taking into ac-

count that xit =
λ1 ηi
1−δ

+λ2(uit +δ ui,t−1 +δ 2 ui,t−2 + ...), we can derive the following
expressions for the autocovariances:

γ0 =
λ 2

1 σ2
η

(1−δ )2 +
λ 2

2 σ2
u

1−δ 2

γ1 =
λ 2

1 σ2
η

(1−δ )2 +δ
λ 2

2 σ2
u

1−δ 2

γ2 =
λ 2

1 σ2
η

(1−δ )2 +δ 2 λ 2
2 σ2

u

1−δ 2

(3.38)

Therefore, γ0− γ1 = (λ 2
2 σ2

u )/(1+δ ) and γ1− γ2 = δ (λ 2
2 σ2

u )/(1+δ ). The R-square is:

R2 =

(
δ

λ 2
2 σ2

u

1+δ

)2

2
(

λ 2
2 σ2

u

1+δ

)(
λ 2

1 σ2
η

(1−δ )2 +
λ 2

2 σ2
u

1−δ 2

)

=
δ 2 (1−δ )2

2(1−δ +(1+δ )ρ)

(3.39)

with ρ ≡ λ 2
1 σ2

η/λ 2
2 σ2

u ≥ 0. We have a problem of weak instruments and poor identifica-
tion if this R-square coefficient is very small.

It is simple to verify that this R-square is small both when adjustment costs are
small (that is, δ is close to zero) and when adjustment costs are large (that is, δ is
close to one). When using this IV estimator, large adjustments costs are bad news for
identification because, with delta close to one, the first difference ∆xit is almost iid
and it is not correlated with lagged input (or output) values. What is the maximum
possible value of this R-square? It is clear that this R-square is a decreasing function of
ρ . Therefore, the maximum R-square occurs for λ 2

1 σ2
η = ρ = 0 – that is, no fixed effects

in the input demand. Under this condition, we have that R2 = δ 2 (1−δ )/2, and the
maximum value of this R-square is R2 = 0.074 which occurs when δ = 2/3. This upper
bound for the R-square is over-optimistic because it is based on the assumption of no
fixed effects. For instance, suppose that λ 2

1 σ2
η = λ 2

2 σ2
u such that ρ = 1. In this case, we

have that R2 = δ 2 (1−δ )2 /4 and the maximum value of this R-square is R2 = 0.016,
which occurs when δ = 1/2.

Arellano and Bover (1995) and Blundell and Bond (1998) have proposed GMM
estimators that deal with this weak-instrument problem. Suppose that at some period
t∗i ≤ 0 (that is, before the first period in the sample, t = 1) the shocks u∗it and eit were
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zero, and input and output were equal to their firm-specific, steady-state mean values:

xit∗i =
λ1ηi

1−δ

yit∗i = α
λ1ηi

1−δ
+ηi

(3.40)

Then, it is straightforward to show that for any period t in the sample:

xit = xit∗i +λ2
(
uit +δuit−1 +δ 2uit−2 + ...

)
yit = yit∗i +uit +αλ2

(
uit +δuit−1 +δ 2uit−2 + ...

) (3.41)

These expressions imply that input and output in first differences depend on the history
of the i.i.d. shock {uit} between periods t∗i and t, but they do not depend on the fixed
effect ηi. Therefore, cov(∆xit ,ηi) = cov(∆yit ,ηi) = 0 and lagged first differences are
valid instruments in the equation in levels. That is, for j > 0:

E
(
∆xit− j [ηi +uit + eit ]

)
= 0 ⇒ E

(
∆xit− j [yit−αxit ]

)
= 0

E
(
∆yit− j [ηi +uit + eit ]

)
= 0 ⇒ E

(
∆yit− j [yit−αxit ]

)
= 0

(3.42)

These moment conditions can be combined with the "standard" Arellano-Bond moment
conditions to obtain a more efficient GMM estimator. The Arellano-Bond moment
conditions are, for j > 1:

E
(
xit− j [∆uit +∆eit ]

)
= 0 ⇒ E

(
xit− j [∆yit−α∆xit ]

)
= 0

E
(
yit− j [∆uit +∆eit ]

)
= 0 ⇒ E

(
yit− j [∆yit−α∆xit ]

)
= 0

(3.43)

Based on Monte Carlo experiments and on actual data of UK firms, Blundell and
Bond (2000) have obtained very promising results using this GMM estimator. Alonso-
Borrego and Sanchez (2001) have obtained similar results using Spanish data. The
reason why this estimator works better than Arellano-Bond GMM is that the second
set of moment conditions exploit cross-sectional variability in output and input. This
has two implications. First, instruments are informative even when adjustment costs are
larger and δ is close to one. And second, the problem of large measurement error in the
regressors in first-differences is reduced.

Bond and Söderbom (2005) present a very interesting Monte Carlo experiment to
study the actual identification power of adjustment costs in inputs. The authors consider
a model with a Cobb-Douglas PF and quadratic adjustment cost with both deterministic
and stochastic components. They solve numerically the firm’s dynamic programming
problem, simulate data on inputs and output using the optimal decision rules, and
use the Blundell-Bond GMM method to estimate PF parameters. The main results of
their experiments are the following. When adjustment costs have only deterministic
components, the identification is weak if adjustment costs are too low, or too high, or too
similar between the two inputs. With stochastic adjustment costs, identification results
improve considerably. Given these results, one might be tempted to "claim victory": if
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the true model is such that there are stochastic shocks (independent of productivity) in the
costs of adjusting inputs, then the panel data GMM approach can identify with precision
the PF parameters. However, as Bond and Soderbom explain, there is also a negative
interpretation of this result. Deterministic adjustment costs have little identification
power in the estimation of PFs. The existence of shocks in adjustment costs that are
independent of productivity seems to be a strong identification condition. If these shocks
are not present in the "true model", the apparent identification using the GMM approach
could be spurious because the identification would be due to the misspecification of the
model. As we will see in the next section, we obtain a similar conclusion when using a
control function approach.

Table 3.1: Blundell and Bond (2000); Estimation Results
509 manufacturing firms; 1982-89

Parameter OLS-Levels WG AB-GMM SYS-GMM

βL 0.538 0.488 0.515 0.479
(0.025) (0.030) (0.099) (0.098)

βK 0.266 0.199 0.225 0.492
(0.032) (0.033) (0.126) (0.074)

ρ 0.964 0.512 0.448 0.565
(0.006) (0.022) (0.073) (0.078)

Sargan (p-value) - - 0.073 0.032
m2 - - -0.69 -0.35

Constant RS (p-v) 0.000 0.000 0.006 0.641

3.4.4 Control function methods

Consider a system of simultaneous equations where some unobservables can enter in
more than one structural equation. Under some conditions, we can use one of the
equations to solve for an unobservable and represent it as a function of observable
variables and parameters. Then, we can plug this function into another equation where
this unobservable enters, such that we "control for" this unobservable by including
observables. This is a particular example of a control function approach and it can be
used to deal with endogeneity problems.

More generally, a control function method is an econometric procedure to correct
for endogeneity problems by exploiting the structure that the model imposes on its
error terms. In general, this approach implies different restrictions than the instrumental
variables approach. Heckman and Robb (1985) introduced this term, though the concept
had been used before in some empirical applications. An attractive feature of the control
function approach is that it can provide consistent estimates of structural parameters in
models where unobservables are not additively separable. In those models, instrumental
variable estimators are typically inconsistent or at least do not consistently estimate the
average causal effect over the whole population.
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Olley and Pakes method
In a seminal paper, Olley and Pakes (1996) propose a control function approach to
estimate PFs. Levinsohn and Petrin (2003) have extended this method.

Consider the Cobb-Douglas PF in the context of the following model of simultaneous
equations:

(PF) yit = αL `it +αK kit +ωit + eit

(LD) `it = fL (`i,t−1,kit ,ωit ,rit)

(ID) iit = fK (`i,t−1,kit ,ωit ,rit)

(3.44)

where equations (LD) and (ID) represent the firms’ optimal decision rules for labor
and capital investment, respectively, in a dynamic decision model with state variables
(`i,t−1,kit ,ωit ,rit). The vector rit represents input prices. Under certain conditions on
this system of equations, we can estimate consistently αL and αK using a control function
method.

Olley and Pakes consider the following assumptions:

Assumption OP-1: fK (`i,t−1,kit ,ωit ,rit) is invertible in ωit .

Assumption OP-2: There is no cross-sectional variation in input prices. For every firm i,
rit = rt .

Assumption OP-3: ωit follows a first order Markov process. That is, at any period t ≥ 0,
the transition probability Pr(ωit | ωit−1, ...,ωi0) is equal to Pr(ωit |ωit−1).

Assumption OP-4: Time-to-build physical capital. Investment iit is chosen at period t
but it is not productive until period t +1. And kit+1 = (1−δ )kit + iit .

In the Olley and Pakes model, the labor input is assumed to be a static input such that
lagged labor, `i,t−1, is not an explanatory variable in the labor demand function fL. This
is a strong assumption as there may be substantial adjustments costs in hiring and firing
workers. Most importantly, this assumption is not necessary for the Olley-Pakes method
to provide a consistent estimator of the production function parameters. Therefore,
we present here a version of the Olley-Pakes method where both labor and capital are
dynamic inputs.

Assumption OP-2 implies that the only unobservable variable in the investment
equation that has cross-sectional variation across firms is the productivity shock ωit .
This restriction is crucial for the OP method and for the related Levinshon-Petrin method.
This imposes restrictions on the underlying model of market competition and inputs
demands. This assumption implicitly establishes that firms operate in the same input
markets, they do not have any monopsony power in these markets, and there are not
internal labor markets within firms. Since a firm’s input demand depends also on output
price (or on the exogenous demand variables affecting product demand), assumption
OP-2 also implies that firms operate in the same output market with either homogeneous
goods or completely symmetric product differentiation. Note that these economic
restrictions can be relaxed if the researcher has data on inputs prices at the firm level,
that is, if rit is observable.

The method proceeds in two-steps. The first step estimates αL using a control
function approach, and it relies on assumptions (OP-1) and (OP-2). This first step is



3.4 Estimation methods 91

the same with and without endogenous exit. The second step estimates αK and it is
based on assumptions (OP-3) and (OP-4). The Olley-Pakes method deals both with the
simultaneity problem and with the selection problem due to endogenous exit.

Step 1: Estimation of αL. Under assumptions (OP-1) and (OP-2), we can invert the
investment function to obtain a firm’s TFP: that is, ωit = f−1

K (`i,t−1,kit , iit ,rt). Solving
this equation into the PF we have:

yit = αL `it +αK kit + f−1
L (`i,t−1,kit , iit ,rt)+ eit

= αL `it +φt(`i,t−1,kit , iit)+ eit

(3.45)

where φt(`i,t−1,kit , iit)≡αK kit + f−1
L (`i,t−1,kit , iit ,rt). Without a parametric assumption

on the investment equation fK , equation (3.45) is a partially linear model.3

The parameter αL and the functions φ1, φ2, ..., φT can be estimated using semi-
parametric methods. Olley and Pakes use polynomial series approximations for the
nonparametric functions φt . Alternatively, one can use the method in Robinson (1988).

This method is a control function method. Instead of instrumenting the endogenous
regressors, we include additional regressors that capture the endogenous part of the
error term (that is, proxy for the productivity shock). By including a flexible function in
(`i,t−1,kit , iit), we control for the unobservable ωit . Therefore, αL is identified if given
(`i,t−1,kit , iit) there is enough cross-sectional variation left in `it .

The key conditions for the identification of αL are: (a) the invertibility of the labor
demand function fL (`i,t−1,kit ,ωit ,rt) with respect to ωit ; (b) rit = rt , that is, no cross-
sectional variability in unobservables, other than ωit , affecting investment; and (c) given
(`i,t−1,kit , iit ,rt), current labor `it still has enough sample variability. Assumption (c)
is key, and it forms the basis for Ackerberg, Caves, and Frazer (2015) criticism (and
extension) of the Olley-Pakes approach.

Example 3.3. Consider the Olley-Pakes model but with a parametric specification of
the optimal investment equation (ID). More specifically, the inverse function f−1

K has
the following linear form:

ωit = γ1 iit + γ2 `i,t−1 + γ3 kit + rit (3.46)

Solving this equation into the PF, we have that:

yit = αL `it +(αK + γ3) kit + γ1 iit + γ2 `i,t−1 +(rit + eit) (3.47)

Note that current labor `it is correlated with current input prices rit . That is the reason
why we need Assumption OP-2, that is, rit = rt . Given that assumption we can control
for the unobserved rt by including time-dummies. Furthermore, to identify αL with
enough precision, there should not be high collinearity between current labor `it and the
other regressors (kit , iit , `i,t−1). �

3The partially linear model is a regression model with two sets of regressors. One set of regressors
enters linearly according to the linear index xβ , and the other set of regressorts enters in a nonparametric
function φ(z). That is, the regression model is y = xβ +g(z)+u. The partially linear model is a class of
semiparametric model that has received substantial attention in econometrics. See Li and Racine (2007).
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In this first step, the control function approach deals also with the selection problem
due to endogenous exit. This is because the control function controls for the value of the
unobserved productivity ωit such that there is not a selection problem associated with
this nobservable.

Step 2: Estimation of αK . For the sake of clarity, we first describe a version of the
method that does not deal with the selection problem. We will discuss later the approach
to deal with endogenous exit.

Given the estimate of αL in step 1, the estimation of αK is based on Assumptions
(OP-3) and (OP-4), that is, the Markov structure of the productivity shock, and the
assumption of time-to-build productive capital. Since ωit is first order Markov, we can
write:

ωit = E[ωit | ωi,t−1]+ξit = h(ωi,t−1)+ξit (3.48)

where ξit is an innovation which is mean independent of any information at t− 1 or
before. Function h(.) is unknown to the researcher and it has nonparametric form. Define
φit ≡ φt(`i,t−1,kit , iit), and remember that φt(`i,t−1,kit , iit) = αK kit +ωit . Therefore, we
have that:

φit = αK kit +h(ωi,t−1)+ξit

= αK kit +h(φi,t−1−αK ki,t−1)+ξit

(3.49)

Though we do not know the true value of φit , we have consistent estimates of these
values from step 1: that is, φ̂it = yit− α̂L `it .4

If function h(.) is nonparametrically specified, equation (3.49) is a partially linear
model. However, it is not a standard partially linear model because the argument in
function h(.) is not observable. That is, though φi,t−1 and ki,t−1 are observable to the
researcher (after the first step), the argument φi,t−1−αKki,t−1 is unobservable because
parameter αK is unknown.

To estimate function h(.) and parameter αK , Olley and Pakes propose a recursive
method. For the sake of illustration, suppose that we consider a quadratic function
for h(.): that is, h(ω) = π1ω +π2ω2. We start with an initial value for the parameter
αK , say α̂0

K . Given this value, we construct the regressor ω̂0
it = φ̂it − α̂0

Kkit , and esti-
mate parameters (αK,π1,π2) by applying OLS to the regression equation φ̂it = αKkit+
π1ω̂0

it−1+ π2(ω̂
0
it−1)

2+ ξit . Let α̂1
K be the OLS estimate of αK . Then, we construct

new values ω̂1
it = φ̂it− α̂1

Kkit and estimate again αK , π1, and π2 by OLS. We apply this
method repeatedly until convergence: that is, until the distance between the estimates of
αK in the last two iterations is smaller than a small constant: until |α̂n

K− α̂
n−1
K |< 10−6.

An alternative to this recursive procedure is the following Minimum Distance method.
Again for concreteness, suppose that the specification of function h(ω) is quadratic. We
have the regression model:

φ̂it = β1 kit +β2 φ̂i,t−1 +β3 φ̂ 2
i,t−1 +β4 ki,t−1 +β5 k2

i,t−1 +β6 φ̂i,t−1ki,t−1 +ξit
(3.50)

where, according to the model, the parameters β in this regression satisfy the following
restrictions: β1 = αK; β2 = π1; β3 = π2; β4 =−π1αK; β5 = π2α2

K; and β6 =−2π2αK .

4In fact, φ̂it is an estimator of φit + eit , but this does not have any incidence on the consistency of the
estimator.
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We can estimate the six β parameters by OLS. Then, in a second step, we use the OLS
estimate of β and its variance-covariance matrix to estimate (αK ,π1,π2) by minimum
distance imposing the six restrictions that relate the vector β with (αK ,π1,π2). More
precisely, this minimum distance estimator is:

(α̂K, π̂1, π̂2) = arg min
(αK ,π1,π2)

[
β̂ − f (αK,π1,π2)

]′ [
V̂ (β̂ )

]−1 [
β̂ − f (αK,π1,π2)

]
(3.51)

where: β̂ is the column vector of OLS estimates; V̂ (β̂ ) is its estimated variance matrix;
and f (αK,π1,π2) is the column vector with the functions (αK, π1, π2, −π1αK, π2α2

K,
−2π2αK).

Example 3.4: Suppose that ωit follows the AR(1) process ωit = ρ ωi,t−1 +ξit , where
ρ ∈ [0,1) is a parameter. Then, h(ωi,t−1) = ρωi,t−1 = ρ(φi,t−1−αK ki,t−1), and we can
write:

φit = β1 kit +β2 φi,t−1 +β3 ki,t−1 +ξit (3.52)

where β1 = αK , β2 = ρ , and β3 =−ραK . In this regression, parameters αK and ρ are
over-identified. There is a testable over-identifying restriction: β3 =−β1β2. �

Time-to build is a key assumption for the consistency of this method. If new
investment at period t is productive in the same period t, then we have that: φit = αK
ki,t+1 + h(φi,t−1−αK kit) + ξit . Now, the regressor ki,t+1 depends on investment at
period t and therefore it is correlated with the innovation in productivity ξit .

Empirical application. Olley and Pakes (1996) study the US telecommunication
equipment industry during the period 1974-1987. During this period, the industry
experienced substantial technological change and deregulation. There were elimination
of barriers to entry. The 1984 Consent Decree was a antitrust decision to divest the
industry leader, AT&T. There was substantial entry/exit of plants in the industry.

The authors use annual firm level data on output, capital, labor, and investment
from the US Census of manufacturers. They estimate the production function for this
industry. Table 3.2 presents their estimates using different estimation methods: OLS,
Within-Groups, and the Olley-Pakes method described above. We can see that going
from the OLS balanced panel to OLS full sample almost doubles βK and reduces βL by
20%. This result provides supportive evidence on the importance of selection bias due
to endogenous exit. Controlling for simultaneity further increases βK and reduces βL.

Levinsohn and Petrin method
Levinsohn and Petrin (2003) propose an alternative control function method. A main
difference between the models and methods by OP and the ones by Levinsohn and
Petrin (LP) is that the latter use a control function for the unobserved productivity that
comes from inverting the demand materials, instead of inverting the investment equation
as in OP method. There are two main motivations for using this alternative control
function. First, investment can be responsive only to persistent shocks in TFP; materials
is responsive to every shock in TFP. Second, in some datasets there is a substantial
fraction of observations with zero investment. At iit = 0 (corner solution / extensive
margin) there is not invertibility between iit and ωit . This has two implications: loss
of efficiency because of the smaller number of observations, and, after estimation of
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Figure 3.2: Olley and Pakes (1996): Production Function Estimation

the model, no possibility of recovering the value of TFP for observations with zero
investment.

LP consider a Cobb-Douglas production function in terms of labor, capital, and
intermediate inputs (materials):

yit = αL `it +αK kit +αM mit +ωit + eit (3.53)

The investment equation is replaced with the intermediate input demand:

mit = fM (`i,t−1,kit ,ωit ,rit) (3.54)

Note that this demand for intermediate inputs is static in the sense that the lagged value
mit−1 is not an argument in this demand function.
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Figure 3.3: Olley and Pakes (1996): Productivity estimates

Levinsohn and Petrin maintain assumptions OP-2 to OP-4, but replace the assumption
of invertibility of the investment function in OP-1 with the following assumption of
invertibility of the demand for intermediate inputs:

Assumption LP-1: fM (`i,t−1,kit ,ωit ,rit) is invertible in ωit .

Similarly to the Olley-Pakes method, the key identification restriction in Levinsohn-
Petrin method is that the only unobservable variable in the intermediate input demand
equation that has cross-sectional variation across firms is the productivity shock ωit .
This is assumption OP-2: there is no cross-sectional variation in input prices such that
rit = rt for every firm i.

The LP method also proceeds in two steps. The first step consists of the least squares
estimation of the parameter αL and the nonparametric functions {φt : t = 1,2, ...,T} in



96 Chapter 3. Production Functions

the semiparametric regression equation:

yit = αL `it +φt(`i,t−1,kit ,mit)+ eit (3.55)

where φt(`i,t−1,kit ,mit) = αK kit + f−1
M (`i,t−1,kit ,mit ,rt) and f−1

M represents the inverse
function of the demand for intermediate inputs with respect to productivity.

The second step is also in the spirit of OP’s second step, but it is substantially different
because it requires instrumental variables or GMM estimation. More specifically, the
estimates of αL and φt are plugged-in, such that we have the regression equation:

φit = αK kit +αM mit +h(φi,t−1−αK ki,t−1−αM mi,t−1)+ξit (3.56)

The main difference with respect to the OP method is that now the regressor mit is
correlated with the error term ξit . LP propose two alternative approaches to deal with
this endogeneity problem. The first approach – described as "unrestricted method"
– consists in applying instrumental variables, using lagged values to instrument mit
[see GNR (2013) criticism]. The second approach – described as "restricted method"
– consists in using the first order condition for profit maximization with respect to
materials. Under the assumptions that materials is an static input the firm is a price
taker, the first oder condition implies that parameters βM is equal to the ratio between
the firm’s cost of materials and its revenue.

Example 3.5: As in equation 3.4 above, suppose that ωit follows the AR(1) process
ωit = ρ ωi,t−1+ξit . Then, h(ωi,t−1) = ρωi,t−1 = ρ(φi,t−1−αK ki,t−1−αM mi,t−1), and
we have that:

φit = β1 kit +β2 mit +β3 φi,t−1 +β4 ki,t−1 +β5 mi,t−1 +ξit (3.57)

where: β1 = αK , β2 = αM, β3 = ρ , β4 =−ραK , and β5 =−ραM. We have only three
free parameters – αK , αM, and ρ – and the model implies four moment conditions: E(kit
ξit) = 0; E(φi,t−1 ξit) = 0; E(ki,t−1 ξit) = 0; and E(mi,t−1 ξit) = 0. These four moment
conditions over-identify the three parameters. �

Empirical application. LP use plant-level data from 8 different Chilean manufacturing
industries during the period 1979-1985.

Ackerberg-Caves-Frazer critique
This critique applies both to Olley-Pakes and Levinsohn-Petrin methods. For the sake of
concreteness, we focus here on Olley-Pakes method.

Under Assumptions (OP-1) and (OP-2), we can invert the investment equation
to obtain the productivity shock ωit = f−1

K (`i,t−1,kit , iit ,rt). Then, we can solve the
expression into the labor demand equation, `it = fL (`i,t−1,kit ,ωit ,rt), to obtain the
following relationship:

`it = fL
(
`i,t−1, kit , f−1

K (`i,t−1,kit , iit ,rt), rt
)
= Gt (`i,t−1,kit , iit) (3.58)

This expression shows an important implication of Assumptions (OP-1) and (OP-2). For
any cross-section t, there should be a deterministic relationship between employment
at period t and the observable state variables (`i,t−1,kit , iit). In other words, once we
condition on the observable variables (`i,t−1,kit , iit), employment at period t should
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Figure 3.4: Levinsohn and Petrin (2003): Input shares

not have any cross-sectional variability. It should be constant. This implies that in
the regression in step 1, yit = αL `it + φt(`i,t−1,kit , iit)+ eit , it should not be possible
to identify αL because the regressor `it does not have any sample variability that is
independent of the other regressors (`i,t−1,kit , iit).

Example 3.6: The problem can be simply illustrated using linear functions for the
optimal investment and labor demand. Suppose that the inverse function f−1

K is ωit = γ1
iit + γ2 `i,t−1 + γ3 kit + γ4rt ; and the labor demand equation is `it = δ1`i,t−1 + δ2kit +

δ3ωit +δ4rt . Then, solving the inverse function f−1
K into the production function, we

get:

yit = αL `it +(αK + γ3) kit + γ1 iit + γ2 `i,t−1 +(γ4rt + eit) (3.59)
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Figure 3.5: Levinsohn and Petrin (2003): Frequency of nonzeroes

And solving the inverse function f−1
K into the labor demand, we have that:

`it = (δ1 +δ3γ2)`i,t−1 +(δ2 +δ3γ3)kit +δ3γ1iit +(δ4 +δ3γ4)rt (3.60)

Equation (3.60) shows that, using one year of data (say year t) such that rt is constant over
this cross-sectional sample, there is perfect collinearity between `it and (`i,t−1,kit , iit).
This perfect multi-collinearity implies that it should not be possible to estimate αL in
equation (3.59). In most datasets, we find that this is not the case. That is, we find
that `it has cross-sectional variation that is independent of (`i,t−1,kit , iit). The presence
of this independent variation contradicts the model. According to equation (3.60), a
simple and plausible way to explain this independent variation is that input prices rit
have cross-sectional variation. However, this variation in input prices introduces an
endogeneith problem in the estimation of equation (3.59) because the unobservable rit is
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Figure 3.6: Levinsohn and Petrin (2003): PF estimate

part of the error term. That is, though there is apparent identification, it seems that this
identification is spurious. �

After pointing out this important problem in the Olley-Pakes model and method,
Ackerberg, Caves, and Frazer discuss additional conditions in the model under which the
Olley-Pakes estimator is consistent – that is, conditions under which there is no perfect
collinearity problem, and the control function approach still solves the endogeneity
problem.

For identification, we need some source of exogenous variability in labor demand
that is independent of productivity and does not affect capital investment. Ackerberg-
Caves-Frazer discuss several possible arguments/assumptions that incorporate this kind
of exogenous variability in the model.

Consider a model with the same Cobb-Douglas PF as in the OP model but with the
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following specification of labor demand and optimal capital investment:

(LD′) `it = fL
(
`i,t−1,kit ,ωit ,rL

it
)

(ID′) iit = fK
(
`i,t−1,kit ,ωit ,rK

it
) (3.61)

Ackerberg-Caves-Frazer propose to maintain Assumptions (OP-1), (OP-3), and (OP-4),
and to replace Assumption (OP-2) by the following assumption:

Assumption ACF: Unobserved input prices rL
it and rK

it are such that conditional on (t, iit ,
`i,t−1, kit): (a) rL

it has cross-sectional variation, that is, var(rL
it |t, iit , `i,t−1,kit)> 0; and

(b) rL
it and rK

it are independently distributed.

There are different possible interpretations of Assumption ACF. The following list
of conditions (a) to (d) is a group of economic assumptions that generate Assumption
ACF: (a) the capital market is perfectly competitive and the price of capital is the same
for every firm (rK

it = rK
t ); (b) there are internal labor markets such that the price of labor

has cross-sectional variation; (c) the realization of the cost of labor rL
it occurs after the

investment decision takes place, and therefore rL
it does not affect investment; and (d) the

idiosyncratic labor cost shock rL
it is not serially correlated such that lagged values of this

shock are not state variables for the optimal investment decision. Aguirregabiria and
Alonso-Borrego (2014) consider similar assumptions for the estimation of a production
function with physical capital, permanent employment, and temporary employment.

Other identifying conditions: Quasi-fixed inputs
Consider a Cobb-Douglas PF with labor and capital as the only inputs. Suppose that
the OP assumptions hold such that `it is perfectly collinear with φt(`i,t−1,kit , iit). If both
capital and labor are quasi-fixed inputs, then it is possible to use a control function
method in the spirit of OP or LP to identify/estimate βL and βK . Or in other words, this
model has moment conditions that identify βL and βK (Wooldridge, 2009).

In the first step we have:

yit = βL `it +φt(`i,t−1,kit , iit)+ eit

= βL gt(`i,t−1,kit , iit)+φt(`i,t−1,kit , iit)+ eit

= ψt(`i,t−1,kit , iit)+ eit

In this first step, we estimate ψt(`i,t−1,kit , iit) nonparametrically. In the second step,
given ψit , and taking into account that ψit = βL `it +βK kit +ωit , and ωit = h(ωi,t−1)+
ξit , we have that:

ψit = βL `it +βK kit +h(ψit−βL `it−1 +βK kit−1)+ξit

In this second step, `it is correlated with ξit , but (kit ,ψit , `it−1, kit−1) are not, and

(`it−2,kit−2) can be used to instrument `it . This approach is in the same spirit as the
Dynamic Panel Data (DPD) methods of Arellano-Bond and Blundell-Bond. This
approach cannot be applied if some inputs (for instance, materials) are perfectly flexible.
The PF coefficient parameter of the flexible inputs cannot be identified from the moment
conditions in the second step.
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Other identifying conditions: F.O.C. for flexible inputs
Klette and Griliches (1996), Doraszelski and Jaumandreu (2013), and Gandhi, Navarro,
and Rivers (2017) propose combining conditions from the PF with conditions from the
demand of variable inputs. This approach requires the price of the variable input to be
observable to the researcher, though this price may not have cross-sectional variation
across firms.

Note that in the LP method, the function that relates mit with the state variables is
just the condition "VMP of materials equal to price of materials". The parameters in this
condition are the same as in the PF. This approach takes these restrictions into account.

For the CD-PF, with materials as flexible input, we have that:

(PF) yit = βL `it +βK kit +βM mit +ωit + eit

(FOC) pt− pM
t = ln(βM)+βL `it +βK kit +(βM−1)mit +ωit

(3.62)

The difference between these two equations is:

ln(sM
it )≡ ln

(
PM

t Mit

PtYit

)
= ln(βM)+ eit

where sM
it is the ratio between materials expenditure and revenue. The parameter(s) of

the flexible inputs are identified from the expenditure-share equations. The parameter(s)
of the quasi-fixed inputs are identified using the dynamic conditions described above.

Gandhi, Navarro, and Rivers (2017) show that this approach can be extended in
two important ways: (1) to a nonparametric specification of the production function:
yit = f (`it ,kit ,mit) +ωit + eit ; and (2) to a model with monopolistic competition –
instead of perfect competition – with an isoelastic product demand. Their approach to
get extension (2) relies on an important assumption: there is not any bias or missing
parameter in the marginal cost of the flexible input. For instance, suppose that the
marginal cost of material were MCMt = PM

t τ , then our estimate of βM would actually
estimate βM τ .

3.4.5 Endogenous exit
Semiparametric selection models
The estimator in Olley and Pakes (1996) controls for selection bias due to endogenous
exit of firms. Before describing their approach, it can be helpful to describe some general
features of semiparametric selection models.

Consider a selection model with outcome equation,

yi =


xi β + εi if di = 1

unobserved if di = 0
(3.63)

and selection equation

di =


1 if h(zi)−ui ≥ 0

0 if h(zi)−ui < 0
(3.64)
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where xi and zi are exogenous regressors; (ui,εi) are unobservable variables indepen-
dently distributed of (xi,zi); and h(.) is a real-valued function. We are interested in the
consistent estimation of the vector of parameters β . We would like to have an estimator
that does not rely on parametric assumptions on the function h or on the distribution of
the unobservables.

The outcome equation can be represented as a regression equation: yi = xi β + εd=1
i ,

where εd=1
i ≡ {εi|di = 1}= {εi|ui ≤ h(zi)}. Or similarly,

yi = xiβ +E(εd=1
i |xi,zi)+ ε̃i (3.65)

where E(εd=1
i |xi,zi) is the selection term. The new error term, ε̃i, is equal to εd=1

i −
E(εd=1

i |xi,zi) and, by construction, it has mean zero and it is mean-independent of
(xi,zi). The selection term is equal to E(εi | xi,zi,ui ≤ h(zi)). Given that ui and εi
are independent of (xi,zi), it is simple to show that the selection term depends on the
regressors only through the function h(zi): that is, E(εi | xi,zi,ui ≤ h(zi)) = g(h(zi)).
The form of the function g depends on the distribution of the unobservables, and it is
unknown if we adopt a nonparametric specification of that distribution. Therefore, we
have the following partially linear model: yi = xiβ +g(h(zi))+ ε̃i.

Define the propensity score Pi as:

Pi ≡ Pr(di = 1 | zi) = Fu (h(zi)) (3.66)

where Fu is the CDF of u. Note that Pi = E(di | zi), and therefore we can estimate
propensity scores nonparametrically using a Nadaraya-Watson kernel estimator or other
nonparametric methods for conditional means. If ui has unbounded support and a strictly
increasing CDF, then there is a one-to-one invertible relationship between the propensity
score Pi and h(zi). Therefore, the selection term g(h(zi)) can be represented as λ (Pi),
where the function λ is unknown. The selection model can be represented using the
partially linear model:

yi = xiβ +λ (Pi)+ ε̃i. (3.67)

A sufficient condition for the identification of β (without a parametric assumption on
λ ) is that E(xi x′i | Pi) has full rank. Given equation (3.67) and nonparametric estimates
of propensity scores, we can estimate β and the function λ using standard estimators
for partially linear model such as sieve methods, kernel-based methods like Robinson
(1988), or differencing methods like Yatchew (2003).

Olley and Pakes method to control for endogenous exit
Now, we describe the Olley-Pakes procedure for the estimation of the production function
taking into account endogenous exit. The first step of the method (that is, the estimation
of αL) is not affected by the selection problem because we are controlling for ωit using
a control function approach. However, there is endogenous selection in the second step
of the method.

For simplicity consider that the productivity shock follows an AR(1) process: ωit = ρ

ωi,t−1−ξit . Then, the "outcome" equation is:

φit =


αK kit +ρ φi,t−1 +(−ραK) ki,t−1 +ξit if dit = 1

unobserved if dit = 0
(3.68)
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The exit/stay decision is: {dit = 1} iff {ωit ≥ v(`it−1,kit)}. Taking into account that
ωit = ρωi,t−1 + ξit , and that ωi,t−1 = φi,t−1− αK kit−1, we have that the condition
{ωit ≥ v(`it−1,kit)} is equivalent to:

dit =


1 if ξit ≤ v(`it−1,kit)−ρ(φi,t−1−αKkit−1)

0 if ξit > v(`it−1,kit)−ρ(φi,t−1−αKkit−1)
(3.69)

The propensity score is Pit ≡ E(dit | `it−1,kit ,φi,t−1,kit−1) such that Pit is a function of
(`it−1,kit ,φi,t−1,kit−1). The equation controlling for selection is:

φit = β1 kit +β2 φi,t−1 +β3 ki,t−1 +λ (Pit)+ ξ̃it (3.70)

where β1 = αK , β2 = ρ , and β2 =−ραK . By construction, ξ̃it is mean independent of
kit , kit−1, φi,t−1, and Pit . We can estimate parameters β1, β2, and β3 and function λ (.) in
the regression equation (3.70) by using standard methods for semiparametric partially
linear models.

In reality, the method to control for selection in Olley and Pakes (1996) is a bit more
involved because the stochastic process for the productivity shock is nonparametrically
specified: ωit = h(ωi,t−1)−ξit . Therefore, the regression model is:

φit = αK kit +h(φi,t−1−αK ki,t−1)+λ (Pit)+ ξ̃it (3.71)

such that we have two nonparametric functions, h(.) and λ (.). However, the identifica-
tion and estimation of the model proceeds in a very similar way. For instance, we can
consider a polynomial approximation to these nonparametric functions and estimate the
parameters by least squares.

3.5 Determinants of productivity
3.5.1 What determines productivity?

There are large and persistent differences in TFP across firms. This evidence is ubiquitous
even within narrowly defined industries and products.

Large TFP differences. A commonly used measure of the heterogeneity in TFP across
firms is the ratio between the 90th to 10th percentile in the (cross-sectional) distribution.
Using data from U.S. manufacturing industries – 4-digit SIC industries – Syverson
(2004) reports that the ratio between the 90th to 10th percentile is on average equal 1.92.
For industries in Denmark, Fox and Smeets (2011) report an average ratio of 3.75. This
ratio is even larger in developing countries. For instance, Hsieh and Klenow (2009)
report average ratios above 5 for China and India.

Persistent TFP differences. A statistic that is commonly used to measure this per-
sistence is the slope parameter in the simple regression of the log-TFP of a firm on
its log-TFP in the previous year. Most studies report estimates of this autoregressive
coefficient between 0.6 to 0.8.

Relevant TFP differences. Studies show that these differences in productivity have an
important impact on different decisions such as market exit, exporting, or investing in
R&D.
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Why do firms differ in their productivity levels? What mechanism can support such
large differences in productivity in market equilibrium? Can producers control the
factors that influence productivity or are they purely external effects of the environment?
If firms can partly control their TFP, what type of choices increase it?

3.5.2 TFP dispersion in equilibrium
Following Syverson (2004), we present here a very stylized model to illustrate how
dispersion in TFP within the same industry is perfectly possible in equilibrium, and
that it can be driven by very common forces that exist in most markets. Consider a
homogeneous product industry and let the profit of a firm be πi = R(qi,d) −C(qi,Ai,w)
−F , where: R(qi,d) is the revenue function; C(qi,Ai,w) is the variable cost function; qi
is output; Ai is TFP; d is the state of the demand; w represents input prices; and F is the
fixed cost. Firms with different TFPs coexist in the same market if it is not optimal for
the firm with the largest TFP to produce all the quantity demanded in the market. The
key necessary and sufficient condition for this to occur is that the profit function of a
firm must be strictly concave in output qi. That is, either the revenue function R(.) is
strictly concave in qi (because market power and oligopoly competition), or the cost
function C(.) is strictly convex in qi (because diseconomies of scale or fixed inputs).

For instance, consider a perfectly competitive industry such that the revenue function
is R(qi,d) = P(d) qi, that is, it is linear in output qi. Suppose that there are decreasing
returns to scale such that the cost function C(qi,Ai,w) is strictly convex in qi. Then,
even in this perfectly competitive industry we have that the firm with the highest TFP
does not produce all the output demanded in the market.

Consider the – somehow – opposite case. The industry has a constant returns to scale
technology such that the cost function is C(qi,Ai,w) = c(Ai,w) qi, that is, it is linear
in output. This industry is characterized by Cournot competition. This implies that
the revenue function is R(qi,d) = P(qi +Q−i,d) qi, where P(.) is the inverse demand
function. This revenue function is strictly concave in qi – provided the demand curve is
downward sloping.

More formally, the equilibrium in the industry can be described by two types of
conditions. At the intensive margin, optimal q∗i = q∗[Ai,d,w] is such that:

MRi ≡
∂R(qi,Ai,d)

∂qi
=

∂C(qi,Ai,w)
∂qi

≡MCi (3.72)

At the extensive margin, a firm is active in the market if:

R(q∗[Ai,d,w],Ai,d)−C(q∗[Ai,d,w],Ai,w)−F ≥ 0 (3.73)

If variable profit is strictly concave, this equilibrium can support firms with different
TFPs. It is not optimal for the firm with the highest TFP to provide all the output in
the industry. Firms with different TFPs – above a certain threshold value – coexist and
compete in the same market.

3.5.3 How can firms improve their TFP?
There are multiple ways in which firms can affect their TFP. The following is a list
of practices – non exhaustive – that firms can follow to increase their TFP, as well as
empirical papers that have found evidence for these effects.
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(i) Human resources and managerial practices: Bloom and VanReenen (2007); Ich-
niowski and Shaw (2003).
(ii) Learning-by-doing: Benkard (2000).
(iii) Organizational structure such as outsourcing or (the opposite) vertical integration.
(iv) Adoption of new technologies: Bresnahan, Brynjolfsson, and Hitt (2002).
(v) Investment in R&D and product and process innovation: Griliches (1979); Doraszel-
ski and Jaumandreu (2013).

There is a long literature linking R&D investment and innovation to productivity.
Multiple studies show evidence that R&D and innovation are important factors to explain
firm heterogeneity in the level and growth of TFP. As usual, the main difficulty in these
studies comes from separating causation from correlation. In section 3.6, we review
models, methods, and datasets in different empirical applications dealing with the causal
effect of R&D and/or innovation on TFP.

3.6 R&D and productivity
Investment in R&D and innovation is expensive. Investors – firms and governments
– are interested in measuring its private and social returns. Process R&D is directed
towards invention of new methods of production. Product R&D tries to create new and
improved goods. Both process and product R&D can increase a firm’s TFP. It can have
also spillover effects in other firms: competition spillovers, and/or knowledge spillovers.

3.6.1 Knowledge capital model
In an influential paper, Griliches (1979) proposes a model and method to measure
knowledge capital, that is, the capital generated by investments in R&D that is intangible
and different from physical capital. This model is often referred to as the knowledge
capital model, and many studies have used it to measure the returns to R&D.

The model is based on the estimation of a production function. Consider a Cobb-
Douglas PF in logs:

yit = βL `it +βK kit +βM mit +βR kR
it +ωit + eit

where kit is the logarithm of the stock of physical capital, and kR
it is logarithm of the

of stock of knowledge capital. A major difficulty is the measurement of the stock of
knowledge capital. Let Rit be the investment in R&D of firm i at period t, and let KR

it be
the firm’s stock of knowledge capital: that is, KR

it = exp{kR
it}. Suppose that the researcher

observes Rit for t = 1,2, ...Ti. However, the researcher does not observe the stock of
knowledge capital. Griliches (1979) proposes the following perpetual inventory method
to obtain the sequence of stocks KR

it for t = 1,2, ...Ti. Suppose that the stock follows the
transition rule:

KR
it = (1−δR) KR

i,t−1 +Rit

where δR is the depreciation rate of knowledge capita. Given values for δR and for
the the initial condition KR

i0, we can use the data on R&D investments to construct the
sequence {KR

it : t = 1,2, ...Ti}.
How to choose δR and KR

i0? It is difficult to know the true value of the rate of
technological obsolescence, δR: it can be endogenous, and vary across industries and
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firms. Researchers have considered different approaches to estimate this depreciation
rate: using patent renewal data (Pakes and Schankerman ,1984; Pakes ,1986); or using
Tobin’s Q model (Hall ,2007). The estimates of this depreciation rate in the literature
range between 10% and 35%. Different authors have performed sensitivity analysis on
the estimates of βR for different value of δR. They report small differences, if any, in the
estimate of βR when δR varies between 8% and 25%.

3.6.2 An application
Doraszelski and Jaumandreu (2013) propose and estimate a model that extends the
knowledge capital model in important ways. In their model, TFP and Knowledge capital
(KC) are unobservables to the researcher. They follow stochastic processes that are
endogenous and depend on (observable) R&D investments. The model accounts for
uncertainty and heterogeneity across firms in the relationship between R&D and TFP.
The model takes into account that the outcome of R&D investments is subject to a high
degree of uncertainty.

For the estimation of the structural parameters in the PF the and stochastic process
of KC, the authors exploit first order conditions for variable inputs.

Model
Consider the production function in logs:

yit = βL `it +βK kit +βM mit +ωit + eit (3.74)

log-TFP ωit follows a stochastic process with transition probability p(ωit+1 | ωit , rit),
where rit is log-R&D expenditure. Every period t a firm chooses static inputs (`it ,mit)
and investment in physical capital and R&D (iit ,rit) to maximize its value.

V (sit) = max
iit ,rit

{
π(sit)− c(1)(iit)− c(2)(rit)+ρ E [V (sit+1)|sit , iit ,rit ]

}
(3.75)

with sit = (kit ,ωit , input prices [wit ], demand shifters [dit ]).
The Markov structure of log-TFP implies:

ωit = E [ωit | ωit−1, rit−1]+ξit = g(ωit−1, rit−1)+ξit

where E [ξit | ωit−1, rit−1] = 0. The productivity innovation ξit captures two sources
of uncertainty for the firm: the uncertainty linked to the evolution of TFP; and the
uncertainty inherent to R&D – for instance, chances of making a new discovery, its
degree of applicability, successful implementation, etc.

The authors’ identification approach exploits static marginal conditions of optimality.
Obtaining these conditions requires an assumption about competition. The authors
assume monopolistic competition. More precisely, they assume the following form for
the marginal revenue:

MRit = Pit

(
1− 1

η(pit ,dit)

)
(3.76)

where η(pit ,dit) is the price elasticity of demand for firm i, that is, monopolisitc compe-
tition.
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The marginal condition of optimality for labor provides a closed-form expression
for labor demand. Solving for log-TFP in the labor demand equation, we get:

ωit = λ −βK kit +(1−βL−βM) `it +(1−βM) (wit− pit)

+ βM (pMit− pit)− ln
(

1− 1
η(pit ,dit)

) (3.77)

We represent the RHS as h(xit ,β ), such that ωit = h(xit ,β ), with xit = (kit , `it , wit , pMit ,
pit , dit).

Identification and estimation
Combining the PF equation with the stochastic process for TFP, and the marginal
condition for optimal labor, we have the equation:

yit = βL `it +βK kit +βM mit +g [h(xit−1,β ), rit−1]+ξit + eit (3.78)

From the marginal condition for labor we have:

h(xit ,β ) = g [h(xit−1,β ), rit−1]+ξit (3.79)

The "parameters" in this system of equations are: βL, βK , βM, g, and η . The unob-
servables ξit and eit are mean independent of any observable variable at period t−1 or
before. Therefore, xit−1 and rit−1 are exogenous w.r.t. ξit + eit . Capital stock kit is also
uncorrelated to the error term because of time-to-build. However, we need to instrument
the regressors `it and mit .

To see that the parameters of the model are identified, it is convenient to consider
a simplified version with: βK = βM = 1/η = 0 and g [ωt−1, rt−1] = ρω ωt−1 +ρr rt−1.
Then, we have:

yit = βL `it +ρω [(1−βL)`it−1 +wit−1− pit−1]+ρr rit−1 +ξit + eit (3.80)

By using the vector of instruments Zit = (yit−1, `it−1, wit−1− pit−1 , rit−1), we have that
the moment conditions E [Zit (ξit + eit)] = 0 identify βL, ρω , ρr. Given the identification
of these parameters, we know ωit = h(xit ,β ) = (1− βL)`it +(wit − pit). The model
implies, that:

ξit = h(xit ,β )−ρω h(xit ,β )−ρr rit−1 (3.81)

such that ξit is identified, and so is its variance Var(ξit) that represents uncertainty in
the link between R&D and TFP.

The instrument wit−1− pit−1 plays a very important role in the identification of the
model. Without variation in lagged (real) input prices the model is not identified. But
note that the model does not use contemporaneous input prices as instruments because
they can be correlated with the innovation ξit .

Data
The papers uses panel data of Spanish manufacturing firms (N = 1,870 firms) from ten
industries (SIC 2-digits). The dataset has annual frequency and it covers the period
1990−1999 (max Ti = 10). This was a period of rapid growth in output and physical
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capital, coupled with stagnant employment. Table 3.7 presents some descriptive statistics.
R&D intensity = R&D expenditure / Sales: the average among all firms is 0.6% (smaller
than in France, Germany, or UK, > 2%). R&D intensity among performers (column 13)
is between 1% and 3.5%.

Figure 3.7: Doraszelski and Jaumandreu (2013): Descriptive statistics

Estimates
Figure 3.8 presents parameter estimates. Comparing GMM and OLS estimates, we can
see that correcting for endogeneity has the expected implications. For instance, βL and
βM decline, and βK increases. There are not big differences in the β estimates across
industries. The test of of over-identifying restrictions (OIR) cannot reject the validity of
the instruments with a 5% confidence level. The test of parameter restrictions (in the
two equations) can reject these restrictions at 5% level only in 2 out of 10 industries.

As for the stochastic process for TFP, the model where TFP doesn’t depend on
R&D is clearly rejected. Models with linear effects or without complementarity be-
tween ωt−1 and rt−1 are rejected. Var(e) is approx. equal to Var(ω) in most industries.
Var(ξ )/Var(ω) is between 30% and 75%. The authors find significant evidence sup-
porting that the effect of R&D on TFP is stochastic and uncertain to forms. There are
significant differences across industries in the magnitude of this uncertainty.

The authors test three different versions of the knowledge capital (KC) model. For
the basic KC model (where ωit + eit = βR kR

it + eit), the authors can reject this model
for all industries. The second model is Hall and Hayashi (1989) and Klette (1996) KC
model, where ωit = σ ωit−1+(1−σ) rit−1+ξit . This model is rejected at 5% level in 8
industries, and at 7% level in all the industries. The third KC model is characterized by
the equation kR

it +ωit + eit , and ωit follows an exogenous Markov process. This model
is ejected at 5% levle in 2 industries, and at 10% in 6 industries.
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Figure 3.8: Doraszelski and Jaumandreu (2013): PF estimates

Counterfactuals on R&D and TFP.
The distribution of TFP with R&D stochastically dominates distribution without R&D.
Differences in means are between 3% and 5% for all industries and firm sizes, except
for small firms in industries with low observed R&D intensity.

The magnitude of the elasticity of TFP with respect to R&D has considerable
variation between and within industries. Its average is 0.015. The elasticity of TFP
with respect to lagged TFP shows substantial persistence, but there is also considerable
heterogeneity between and within industries. Non-performers have a higher degree
of persistence than performers. The degreee of persistence is negatively related to the
degree of uncertainty.

In summary, the authors model TFP growth as the consequence of R&D expenditures
with uncertain outcomes. Results show that this model can explain better the relationship
between TFP and R&D than standard Knowledge Capital models without uncertainty
and non-linearity. R&D is a major determinant of the differences in TFP across firms
and of their evolution. They also find that firm-level uncertainty in the outcome of R&D
is considerable. Their estimates suggest that engaging in R&D roughly doubles the
degree of uncertainty in the evolution of a producer’s TFP.

3.7 Exercises
3.7.1 Exercise 1

Consider an industry for an homogeneous product. Firms use capital and labor to
produce output according to a Cobb-Douglas technology with parameters αL and αK
and Total Factor Productivity (TFP) A.
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Figure 3.9: Doraszelski and Jaumandreu (2013): Stochastic process TFP

Question 1.1. Write the expression for this Cobb-Douglas production function (PF).

Suppose that firms are price takers in the input markets for labor and capital. Let WL
and WK be the price of labor and capital, respectively. Capital is a fixed input such that
the fixed cost for a firm, say i, is FCi =WK Ki. The variable cost function, VC(Y ), is
defined as the minimum cost of labor to produce an amount of output Y .

Question 1.2. Derive the expression for the variable cost function of a firm in this
industry. Explain your derivation. [Hint: Given that capital is fixed and there is only one
variable input, the minimization problem is trivial. The PF implies that there is only one
possible amount of labor that give us a certain amount of output].

Question 1.3. Using the expressions for the fixed cost and for the variable cost function
in Q1.2:

(a) Explain how an increase in the amount of capital affects the fixed cost and the
variable cost of a firm.

(b) Explain how an increase in TFP affects the fixed cost and the variable cost.

Suppose that the output market in this industry is competitive: firms are price takers.
The demand function is linear with the following form: P = 100−Q, where P and Q
are the industry price and total output, respectively. Suppose that αL = αK = 1/2, and
the value of input prices are WL = 1/2 and WK = 2. Remember that firms’ capital stocks
are fixed (exogenous), and for simplicity suppose that all the firms have the same capital
stock K = 1.

Question 1.4. Using these primitives, write the expression for the profit function of a
firm (revenue, minus variable cost, minus fixed cost) as a function of the market price,
P, the firm’s output, Yi, and its TFP, Ai.
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Figure 3.10: Doraszelski and Jaumandreu (2013): Testing Knowledge capital

Question 1.5. Using the condition "price equal to marginal cost", obtain the optimal
amount of output of a firm as a function of the market price, P, and the firm’s TFP, Ai.
Explain your derivation.

Question 1.6. A firm is active in the market (that is, it finds optimal to produce a positive
amount of output) only if its profit is greater or equal than zero. Using this condition
show that a firm is active in this industry only if its TFP satisfies the condition Ai ≥ 2/P.
Explain your derivation.

Let (P∗, Q∗, Y ∗1 , Y ∗2 , ..., Y ∗N) the equilibrium price, total output, and individual firms’
outputs. Based on the previous results, the market equilibrium can be characterized by
the following conditions: (i) the demand equation holds; (ii) total output is equal to the
sum of firms’ individual outputs; (iii) firm i is active (Y ∗i > 0) if and only if its total
profit is greater than zero; and (iv) for firms with Y ∗i > 0, the optimal amount of output
is given by the condition price is equal to marginal cost.

Question 1.7. Write conditions (i) to (iv) for this particular industry.

Question 1.8. Combine conditions (i) to (iv) to show that the equilibrium price can be
written as the solution to this equation:

P∗ = 100−P∗
[

N

∑
i=1

A2
i 1{Ai ≥ 2/P∗}

]
where 1{x} is the indicator function that is defined as 1{x}= 1 if condition x is true, and
1{x}= 0 if condition x is false. Explain your derivation.

Suppose that the subindex i sorts firms by their TFP such that firm 1 is the most efficient,
then firm 2, etc. That is, A1 > A2 > A3 > .....
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Figure 3.11: Doraszelski and Jaumandreu (2013): R&D and productivity

Question 1.9. Suppose that A1 = 7, A2 = 5, and A3 = 1. Obtain the equilibrium price,
total output, and output of each individual firm in this industry. [Hint: Start with the
conjecture that only firms 1 and 2 produce in equilibrium. Then, confirm this conjecture.
Note that we do not need to know the values of A4, A5, etc].

Question 1.10. Explain why the most efficient firm, with the largest TFP, does not
produce all the output of the industry.

3.7.2 Exercise 2
The Stata datafile blundell_bond_2000_production_function.dta con-
tains annual information on sales, labor, and capital for 509 firms for the period 1982-
1989 (8 years). Consider a Cobb-Douglas production function in terms of labor and
capital. Use this dataset to implement the following estimators.

Question 2.1. OLS with time dummies. Test the null hypothesis αL +αK = 1. Provide
the code in Stata and the table of estimation results. Comment the results.

Question 2.2. Fixed Effects estimator with time dummies. Test the null hypothesis of
no time-invariant unobserved heterogeneity: ηi = ηi for every firm i. Provide the code
in Stata and the table of estimation results. Comment the results.

Question 2.3. Fixed Effects - Cochrane Orcutt estimator with time dummies. Test the
two over-identifying restrictions of the model. Provide the code in Stata and the table of
estimation results. Comment the results.
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Figure 3.12: Doraszelski and Jaumandreu (2013): Elasticity TFP lagged R&D

Question 2.4. Arellano-Bond estimator with time dummies and non-serially correlated
transitory shock. Provide the code in Stata and the table of estimation results. Comment
the results.

Question 2.5. Arellano-Bond estimator with time dummies and AR(1) transitory shock.
Provide the code in Stata and the table of estimation results. Comment the results.

Question 2.6. Blundell-Bond system estimator with time dummies and non-serially
correlated transitory shock. Provide the code in Stata and the table of estimation results.
Comment the results.

Question 2.7. Blundell-Bond system estimator with time dummies and AR(1) transitory
shock. Provide the code in Stata and the table of estimation results. Comment the results.

Question 2.8. Based on the previous results, select your preferred estimates of the
production function. Explain your choice.

3.7.3 Exercise 3

The Stata datafile data_mines_eco2901_2017.dta contains annual information
on output and inputs from 330 copper mines for the period 1992-2010 (19 years). The
following is a description of the variables.
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Figure 3.13: Doraszelski and Jaumandreu (2013): Elasticity TFP lagged TFP

Variable name Description

id : Mine identification number
year : Year [from 1992 to 2010]
active : Binary indicator of the event “mine is active during the year”
prod_tot : Annual production of pure copper of the mine [in thousands of tonnes]
reserves : Estimated mine reserves [in thousands of ore]
grade : Average ore grade (in %) of mined ore during the year (% copper / ore)
labor_n_tot : Total number of workers per year (annual equivalent)
cap_tot : Measure of capital [maximum production capacity of the mine]
fuel_cons_tot : Consumption of fuel (in physical units)
elec_cons_tot : Consumption of electricity (in physical units)
materials_tot : Consumption of intermediate inputs / materials (in $ value)

Note that some variables have a few missing values even at years when the mine is
actively producing.

Question 3.1. Consider a Cobb-Douglas production function in terms of labor, capital,
fuel, electricity, and ore grade. Use this dataset to implement the following estimators:

• OLS
• Fixed-Effects
• Arellano-Bond estimator with non-serially correlated transitory shock
• Arellano-Bond estimator with AR(1) transitory shock
• Blundell-Bond estimator with non-serially correlated transitory shock
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Figure 3.14: Doraszelski and Jaumandreu (2013): Uncertainty and persistence TFP

• Blundell-Bond estimator with AR(1) transitory shock
• Olley-Pakes (Using the first difference in cap_tot as investment)
• Levinshon-Petrin

Question 3.2. Suppose that these mines are price takers in the input markets. Consider
that the variable inputs are labor, fuel, and electricity.

(a) Derive the expression for the Variable Cost function for a mine (that is,
the minimum cost to produce an amount of output given input prices).
(b) Let lnMCit be the logarithm of the realized Marginal Cost of mine i at
year t. I have not included data on input prices in this dataset, so we will
assume that mines face the same prices for variable inputs, and normalize to
zero the contribution of these input prices to lnMCit . Calculate the quantiles
5%, 25%, 50%, 75%, and 95% in the cross-sectional distributions of lnMCit
at each year in the sample. Present a figure with the time-series of these five
quantiles over the sample period. Comment the results.
(c) For a particular sample year, say 2005, calculate the contribution of each
component of lnMCit (that is, total factor productivity, capital, ore grade,
and output) to the cross-sectional variance of lnMCit . Present it in a table.
Comment your results.
[Note: To measure the contribution of each component, use the following
approach. Consider y = β1x1 +β2x2 + ...+βKxK . A measure of the con-

tribution of x j to var(y) is ρ j ≡
var(y)− var(y | x j = constant)

var(y)
. Note that

ρ j ∈ (0,1) for any variable x j. However, in general, ∑
K
j=1 ρ j can be either
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smaller or greater than one, depending the sign of the covariances between
the components.]
(d) Consider the balance panel of mines that are active in the industry every
year during the sample period. Repeat exercises (b) and (c) for this balanced
panel. Compared your results with those in (c) and (d). Comment the
results.


