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5.1 Introduction
In a model of market entry the endogenous variables are firms’ decisions to be active in
the market and, in some cases, the characteristics of the products that firms provide. In
the previous chapters, we have taken the number of firms and products in a market as
exogenously given or, more precisely, as predetermined in the first stage of a two-stage
game of competition. In this chapter, we study the first stage of the competition game.

Empirical games of market entry in retail markets share as common features that the
payoff of being active in the market depends on market size, entry cost, and the number
and characteristics of other active firms. The set of structural parameters of the model
varies considerably across models and applications, but it typically includes parameters
that represent the entry cost and the strategic interactions between firms (competition
effects). These parameters play a key role in the determination of the number of firms in
the market, their characteristics, and their spatial configuration. These costs cannot be
identified from the estimation of demand equations, production functions, or marginal
conditions of optimality for prices or quantities. Instead, in a structural entry model,
entry costs are identified using the principle of revealed preference: if we observe a firm
operating in a market it is because its value in that market is greater than the value of
shutting down and putting its assets to alternative uses. Under this principle, firms’ entry
decisions reveal information about the underlying or latent profit function. Empirical
games of market entry can be also useful to identify strategic interactions between firms
that occur through variable profits. In empirical applications where sample variation
in prices is very small but there is substantial variation in entry decisions, an entry
model can provide more information about demand substitution between stores and
products than the standard approach of using prices and quantities to estimate demand.
Furthermore, data on prices and quantities at the store level are sometimes difficult to
obtain, while data on firms entry/exit decisions are more commonly available.

In empirical applications of games of market entry, structural parameters are esti-
mated using data on firms’ entry decisions in a sample of markets. The estimated model
is used to answer empirical questions on the nature of competition and the structure of



5.2 General ideas 151

costs in an industry, and to make predictions about the effects of changes in structural
parameters or of counterfactual public policies affecting firms’ profits, for example,
subsidies, taxes, or zoning laws.

An important application of models of entry is the study of firms’ decision about the
spatial location of their products, their production plants, or their stores. Competition
in differentiated product markets is often characterized by the importance of product
location in the space of product characteristics, and therefore, the geographic location of
stores is important in retail markets. As shown in previous chapters, the characteristics
of firms’ products relative to those of competing products can have substantial effects on
demand and costs, and consequently on prices, quantities, profits, and consumer welfare.
Firms need to choose product location carefully so that they are accessible to many
potential customers. For instance, opening a store in attractive locations is typically
more expensive (for example, higher land prices) and it can be associated with stronger
competition. Firms should consider this trade-off when choosing the best store location.
The study of the determinants of spatial location of products is necessary to inform
public policy and business debates such as the value of a merger between multiproduct
firms, spatial pre-emption, cannibalization between products of the same firm, or the
magnitude of economies of scope. Therefore, it is not surprising that models of market
entry, store location, and spatial competition have played a fundamental role in the
theory of industrial organization at least since the work of Hotelling (1929). However,
empirical work on structural estimation of these models has been much more recent and
it has followed the seminal work by Bresnahan and Reiss (1990, 1991).

5.2 General ideas

5.2.1 What is a model of market entry?

Models of market entry in IO can be characterized in terms of three main features. First,
the key endogenous variable is a firm decision to operate or not in a market. Entry in a
market should be understood in a broad sense. The standard example is the decision of
a firm to enter in an industry for the first time. However, applications of entry models
include also decisions of opening a new store, introducing a new product, adopting a
new technology, the release of a new movie, or the decision to bid in an auction, among
others. A second important feature is that there is an entry cost associated with being
active in the market. Finally, the payoff of being active in the market depends on the
number (and the characteristics) of other firms active in the market, that is, the model is
a game.

Consider a market with N firms that decide whether to be active. We index firms
with i ∈ {1,2, ...,N}. Let ai ∈ {0,1} be a binary variable that represents the decision
of firm i of being active in a market (ai = 1) or not (ai = 0). The profit of not being
active is zero. The profit of an active firm is Vi(n)−Fi where Vi is the variable profit
of firm i when there are n firms active in the market, and Fi is the entry cost for firm
i. The number of active firms, n, is endogenous and is equal to n = ∑

N
i=1 ai. Under the

Nash assumption, every firm takes as given the actions of the other firms and makes a
decision that maximizes its own profit. Therefore, the best response of firm i under the
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Nash equilibrium is:

ai =

{
1 if Vi

(
1+∑ j 6=i a j

)
−Fi ≥ 0

0 if Vi
(
1+∑ j 6=i a j

)
−Fi < 0 (5.1)

For instance, consider a market with two potential entrants with V1(n) =V2(n) = 100−
20 n and F1 = F2 = F , such that Vi

(
1+a j

)
−Fi = 80−F−20 a j. The best responses

are:
a2 = 0 a2 = 1

a1 = 0 (0 , 0) (0 , 80−F)
a1 = 1 (80−F , 0) (60−F , 60−F)

(5.2)

We can see that the model has different predictions about market structure depending
on the value of the fixed cost. If F ≤ 60, duopoly, (a1,a2) = (1,1), is the unique Nash
equilibrium. If 60 < F ≤ 80, then either the monopoly of firm 1 (a1,a2) = (1,0) or the
monopoly of firm 2 (a1,a2) = (0,1) are Nash equilibria. If F > 80, then no firm in the
market (a1,a2) = (0,0) is the unique Nash equilibrium. The observed actions of the
potential entrants reveal information about profits, and about fixed costs.

Principle of Revealed Preference. The estimation of structural models of market entry
is based on the principle of Revealed Preference. In the context of these models, this
principle establishes that if we observe a firm operating in a market it is because its
value in that market is greater than the value of shutting down and putting its assets in
alternative uses. Under this principle, firms’ entry decisions reveal information about
the underlying latent firm’s profit (or value).

Static models. In this chapter, we study static games of market entry. We study dynamic
models of market entry in chapters 7 and 8. There are several differences between static
and dynamic models of market entry. But there is a simple difference that should be
already pointed out. For static models of entry, we should understand entry as "being
active in the market" and not as a transition from being "out" of the market to being
"in" the market. That is, in these static models we ignore the fact that, when choosing
whether to be active or not in the market, some firms are already active (incumbents)
and other firms not (potential entrants). In other words, we ignore that the choice of not
being active in the market means "exit" for some firms and "stay out" for others.

5.2.2 Why estimating entry models?
The specification and estimation of models of market entry is motivated by the need
to endogenize the number of firms in the market, as well as some characteristics that
operate at the extensive margin. Endogenizing the number of firms in the market is a key
aspect in any model of IO where market structure is treated as endogenous. Once we
endogenize the number of firms in the market, we need to identify entry cost parameters,
and these parameters cannot be identified from demand equations, production functions,
and marginal conditions of optimality for prices and quantities. We identify entry costs
from the own entry model. More generally, we can distinguish the following motives for
the estimation of models of market entry.

(a) Identification of entry cost parameters. Parameters such as fixed production costs,
entry costs, or investment costs do not appear in demand or production equations, or in
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the marginal conditions of optimality in firms’ decisions of prices or quantities. However,
fixed costs contribute to the market entry decision. These parameters can be important
in the determination of market structure and market power in an industry.

(b) Data on prices and quantities may not be available at the level of individual firm,
product, and market. Many countries have excellent surveys of manufacturers or retailers
with information at the level of the specific industry (5 or 6 digits NAICS, SIC) and local
markets (census tracts) on the number of establishments and some measure of firm size
such as aggregate revenue. Though we observe aggregate revenue at the industry-market
level, we do not observe P and Q at that level. Under some assumptions, it is possible to
identify structural parameters using these data and the structure of an entry model.

(c) Econometric efficiency. The equilibrium entry conditions contain useful information
for the identification of structural parameters. Using this information can increase
significantly the precision of our estimates. In fact, when the sample variability in prices
and quantities is small, the equilibrium entry conditions may have a more significant
contribution to the identification of demand and cost parameters than demand equations
or production functions.

(d) Dealing with endogenous selection problem in the estimation of demand or
production functions. In some applications, the estimation of a demand system or a
production function requires dealing with the endogeneity of firms’ and products’ entry.
For instance, Olley and Pakes (1996) show that ignoring the endogeneity of a firm’s
decision to exit from the market can generate significant biases in the estimation of
production functions. Similarly, in the estimation of demand of differentiated products,
not all the products are available in every market and time period. We observe a product
only in markets where demand for this product is high enough to make it profitable
to introduce that product. Ignoring the endogeneity of the presence of products can
introduce important biases in the estimation of demand (Ciliberto, Murry, and Tamer,
2020; Gandhi and Houde, 2019; and Li et al., 2018). Dealing with the endogeneity of
product presence may require the specification and estimation of a model of market
product entry.

The type of data used, the information structure of the entry game, and the assump-
tions about unobserved heterogeneity, are important characteristics of an entry game
that have implications on the identification, estimation, and predictions of the model.

5.3 Data
The datasets that have been used in empirical applications of structural models of entry
in retail markets consist of a sample of geographic markets with information on firms’
entry decisions and consumer socio-economic characteristics over one or several periods
of time. In these applications, the number of firms and time periods is typically small
such that statistical inference (that is, the construction of sample moments and the
application of law of large numbers and central limit theorems) is based on a ‘large’
number of markets. In most applications, the number of geographic markets is between
a few hundred and a few thousand. Within these common features, there is substantial
heterogeneity in the type of data that have been used in empirical applications.
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In this section, we concentrate on four features of the data that are particularly
important, as they have substantial implications on the type of model that can be
estimated, the empirical questions that we can answer, and the econometric methods to
be used. These features are: (1) selection of geographic markets; (2) presence or not of
within-market spatial differentiation; (3) information on prices, quantities, or sales at the
store level; and (4) information on potential entrants.

5.3.1 Geographic markets
In a seminal paper, Bresnahan and Reiss (1990) use cross-sectional data from 149
small US towns to estimate a model of entry of automobile dealerships. For each town,
the dataset contains information on the number of stores in the market, demographic
characteristics such as population and income, and input prices such as land prices. The
selection of the 149 small towns is based on the following criteria: the town belongs to a
county with fewer than 10 000 people; there is no other town with a population of over
1000 people within 25 miles of the central town; and there is no large city within 125
miles. These conditions for the selection of a sample of markets are typically described
as the ‘isolated small towns’ market selection. This approach has been very influential
and has been followed in many empirical applications of entry in retail markets.

The main motivation for using this sample selection is in the assumptions of spatial
competition in the Bresnahan–Reiss model. The model assumes that the location of
a store within a market does not have any implication on its profits or in the degree
of competition with other stores. This assumption is plausible only in small towns
where the possibilities for spatial differentiation are very limited. If this model were
estimated using a sample of large cities, we would spuriously find very small competition
effects simply because there is negligible or no competition at all between stores located
far away from each other within the city. The model also assumes that there is no
competition between stores located in different markets. This assumption is plausible
only if the market under study is not geographically close to other markets; otherwise
the model would ignore relevant competition from stores outside the market.

Although the ‘isolated small towns’ approach has generated a good number of
important applications, it has some limitations. The extrapolation to urban markets
of the empirical findings obtained in these samples of rural markets is in general not
plausible. Focusing on rural areas makes the approach impractical for many interesting
retail industries that are predominantly urban. Furthermore, when looking at national
retail chains, these rural markets account for a very small fraction of these firms’ total
profits.

5.3.2 Spatial competition
The limitations of the ‘isolated small towns’ approach have motivated the development
of empirical models of entry in retail markets that take into account the spatial locations
and differentiation of stores within a city market. The work by Seim (2006) was seminal
in this evolution of the literature. In Seim’s model, a city is partitioned into many small
locations or blocks, for example, census tracts, or a uniform grid of square blocks. A
city can be partitioned into dozens, hundreds, or even thousands of these contiguous
blocks or locations. In contrast to the ‘isolated small towns’ approach, these locations
are not isolated, and the model allows for competition effects between stores at different
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locations.
The datasets in these applications contain information on the number of stores,

consumer demographics, and input prices at the block level. This typically means that
the information on store locations should be geocoded, that is, should include the exact
latitude and longitude of each store location. Information on consumer demographics is
usually available at a more aggregate geographic level.

The researcher’s choice for the size of a block depends on multiple considerations,
including the retail industry under study, data availability, specification of the unobserv-
ables, and computational cost. In principle, a finer grid entails a more flexible model
in measuring spatial substitution between stores. The computational cost of estimating
the model can increase rapidly with the number of locations. The assumption on the
distribution of the unobservables across locations is also important.

A common approach is to define a block/location where demographic information
is available. For example, the set of locations can be equal to the set of census tracts
within the city. While convenient, a drawback of this approach is that some blocks,
especially those in the periphery of a city, tend to be very large. These large blocks are
often problematic because (1) within-block spatial differentiation seems plausible, and
(2) the distance to other blocks becomes highly sensitive to choices of block centroids.
In particular, a mere use of geometric centroids in these large blocks can be quite
misleading as the spatial distribution of population is often quite skewed.

To avoid this problem, Seim (2006) uses population weighted centroids rather than
(unweighted) geometric centroids. An alternative approach to avoid this problem is to
draw a square grid on the entire city and use each square as a possible location, as in
Datta and Sudhir (2013) and Nishida (2015). The value of consumer demographics in a
square block is equal to the weighted average of the demographics at the census tracts
that overlap with the square. The advantage of this approach is that each submarket has
a uniform shape. In practice, implementation of this approach requires the removal of
certain squares where entry cost is prohibitive. These areas include those with some
particular natural features (for example, lakes, mountains, and wetlands) or where
commercial space is prohibited by zoning. For example, Nishida (2015) excludes areas
with zero population, and Datta and Sudhir (2013) remove areas that do not have any
‘big box’ stores, as these areas are very likely to be zoned for either residential use or
small stores.

So far, all the papers that have estimated this type of model have considered a sample
of cities (but not locations within a city) that is still in the spirit of the Bresnahan–Reiss
isolated small markets approach. For instance, Seim selects US cities with population
between 40 000 and 150 000, and without other cities with more than 25 000 people
within 20 miles. The main reason for this is to avoid the possibility of outside competition
at the boundaries of a city.

It is interesting that in the current generation of these applications, statistical infer-
ence is based on the number of cities and not on the number of locations. A relevant
question is whether this model can be estimated consistently using data from a sin-
gle city with many locations, that is, the estimator is consistent when the number of
locations goes to infinity. This type of application can be motivated by the fact that
city characteristics that are relevant for these models, such as the appropriate measure
of geographic distance, transportation costs, or land use regulations and zoning, can
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be city specific. Xu (2018) studies an empirical game of market entry for a single
city (network) and presents conditions for consistency and asymptotic normality of
estimators as the number of locations increases. As far as we know, there are not yet
empirical applications following that approach.

5.3.3 Store level data
Most applications of models of entry in retail markets do not use data on prices and
quantities due to the lack of such data. The most popular alternative is to estimate the
structural (or semi-structural) parameters of the model using market entry data only,
for example,Bresnahan and Reiss (1990), Mazzeo (2002), Seim (2006), or Jia (2008),
among many others. Typically, these studies either do not try to separately identify
variable profits from fixed costs, or they do it by assuming that the variable profit is
proportional to an observable measure of market size. Data on prices and quantities at
the store level can substantially help the identification of these models. In particular,
it is possible to consider a richer specification of the model that distinguishes between
demand, variable cost, and fixed cost parameters, and includes unobservable variables
into each of these components of the model.

A sequential estimation approach is quite convenient for the estimation of this type
of model. In a first step, data on prices and quantities at the store level can be used to
estimate a spatial demand system as in Davis (2006) for movie theatres or Houde (2012)
for gas stations. Note that, in contrast to standard applications of demand estimation of
differentiated products, the estimation of demand models of this class should deal with
the endogeneity of store locations. In other words, in these demand models, not only are
prices endogenous, but also the set of products or stores available at each location, as
they are potentially correlated with unobserved errors in the demand system. In a second
step, variable costs can be estimated using firms’ best response functions in a Bertrand
or Cournot model. Finally, in a third step, we estimate fixed cost parameters using the
entry game and information of firms’ entry and store location decisions. It is important
to emphasize that the estimation of a demand system of spatial differentiation in the
first step provides the structure of spatial competition effects between stores at different
locations, such that the researcher does not need to consider other types of semi-reduced
form specifications of strategic interactions, as in Seim (2006) among others.

In some applications, price and quantity are not available, but there is information
on revenue at the store level. This information can be used to estimate a (semi reduced
form) variable profit function in a first step, and then in a second step the structure of
fixed costs is estimated. This is the case in the applications in Ellickson and Misra 2012,
Suzuki 2013), and Aguirregabiria, Clark, and Wang 2016.

5.3.4 Potential entrants
An important modelling decision in empirical entry games is to define the set of potential
entrants. In most cases, researchers have limited information on the number of potential
entrants, let alone their identity. This problem is particularly severe when entrants
are mostly independent small stores (for example, mom-and-pop stores). A practical
approach is to estimate the model under different numbers of potential entrants and
examine how estimates are sensitive to these choices, for example, Seim (2006) and Jia
(2008). The problem is less severe when most entrants belong to national chains (for
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example, big box stores) because the names of these chains are often obvious and the
number is typically small.

It is important to distinguish three types of data sets. The specification and the
identification of the model is different for each of these three types of data.

(1) Only global potential entrants. The same N firms are the potential entrants in
every market. We know the identity of these "global" potential entrants. Therefore, we
observe the decision of each of these firms in every independent market. We observe
market characteristics, and sometimes firm characteristics which may vary or not across
markets. The data set is {sm, xim, aim : m = 1,2, ...,M; i = 1,2, ...,N} where m is the
market index; i is the firm index; sm is a vector of characteristics of market m such as
market size, average consumer income, or other demographic variables; xim is a vector
of characteristics of firm i; and aim is the indicator of the event "firm i is active in market
m".

Examples. Berry (1992) considers entry in airline markets. A market is a city pair (for
instance, Boston-Chicago). The set of markets consists of all the pairs of US cities with
airports. Every airline company operating in the US is a potential entrant in each of these
markets. aim is the indicator of the event "airline i operates in city pair m". Toivanen
and Waterson (2005) consider entry in local markets by fast-food restaurants in UK.
Potential entrants are Burger King, McDonalds, KFC, Wendys, etc.

(2) Only local potential entrants. We do not know the identity of the potential entrants.
In fact, most potential entrants may be local, that is, they consider entry in only one local
market. For this type of data we only observe market characteristics and the number
of active firms in the market. The data set is: {sm,nm : m = 1,2, ...,M} where nm is the
number of firms operating in market m. Notice also that we do not know the number of
potential entrants N, and this may vary over markets.

Examples. Bresnahan and Reiss (1990). Car dealers in small towns. Bresnahan and
Reiss (1991). Restaurants, dentists and other retailers and professional services in small
towns. Seim (2006). Video rental stores.

(3) Both global and local potential entrants. This case combines and encompasses the
previous two cases. There are NG firms which are potential entrants in all the markets,
and we now the identity of these firms. But there are also other potential entrants that
are just local. We observe {sm,nm,zim,aim : m = 1,2, ...,M; i = 1,2, ...,NG}.With this
data we can nonparametrically identify Pr(nm,am|xm). We can allow for heterogeneity
between global players in a very general way. Heterogeneity between local players
should be much more restrictive.

5.4 Models
Road map.

(a) Bresnahan and Reiss. We start with a simple and pioneer model in this literature:
the models in Bresnahan and Reiss (1991). This paper together with Bresnahan and
Reiss (1990) were significant contributions to the structural estimation of models of
market entry that opened a new literature that has grown significantly during the last 20
years. In their paper, Bresnahan and Reiss show that given a cross-section of "isolated"
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local markets where we observe the number of firms active, and some exogenous market
characteristics, including market size, it is possible to identify fixed costs and the
"degree of competition" or the "nature of competition" in the industry. By "nature of
competition", these authors (and after them, this literature) mean a measure of how a
firm’s variable profit declines with the number of competitors. What is most remarkable
about Bresnahan and Reiss’s result is how with quite limited information (for instance,
no information about prices of quantities) the researcher can identify the degree of
competition using an entry model.

(b) Relaxing the assumption of homogeneous firms. Bresnahan and Reiss’s model is
based on some important assumptions. In particular, firms are homogeneous and they
have complete information. The assumption of firm homogeneity (both in demand and
costs) is strong and can be clearly rejected in many industries. Perhaps more importantly,
ignoring firm heterogeneity when it is in fact present can lead to biased and misleading
results about the degree of competition in a industry. Therefore, the first assumption that
we relax is the one of homogeneous firms.

As shown originally in the own work of Bresnahan and Reiss (1991), relaxing the
assumption of firm homogeneity implies two significant econometric challenges. First,
the entry model becomes a system of simultaneous equations with endogenous binary
choice variables. Dealing with endogeneity in a binary choice system of equations is not
a simple econometric problem. In general, IV estimators are not available. Furthermore,
the model now has multiple equilibria. Dealing with both endogeneity and multiple
equilibria in this class of nonlinear models is an interesting but challenging problem in
econometrics.

(c) Dealing with endogeneity and multiple equilibria in games of complete infor-
mation. We will go through different approaches that have been used in this literature
to deal with the problems of endogeneity and multiple equilibria. It is worthwhile to
distinguish two groups of approaches or methods.

The first group of methods is characterized by imposing restrictions that imply
equilibrium uniqueness for any value of the exogenous variables. Of course, firm
homogeneity is a type of assumption that implies equilibrium uniqueness. But there
are other assumptions that imply uniqueness even when firms are heterogeneous. For
instance, a triangular structure in the strategic interactions between firms (Heckman,
1978), or sequential entry decisions (Berry, 1992) imply equilibrium uniqueness. Given
these assumptions, these papers deal with the endogeneity problem by using a maximum
likelihood approach.

The second group of methods do not impose equilibrium uniqueness. The pioneering
work by Jovanovic (1989) and Tamer (2003) were important contributions to this
approach. These authors showed (Jovanovic for a general but stylized econometric
model, and Tamer for a two-player binary choice game) that identification and multiple
equilibria are very different issues in econometric models.

Models with multiple equilibria can be (point or set) identified, and we do not need to
impose equilibrium uniqueness as a form to get identification. Multiple equilibria can be
a computational nuisance in the estimation of these models, but it is not an identification
problem. This simple idea has generated a significant and growing literature that deals
with computationally simple methods to estimate models with multiple equilibria, and
more specifically with the estimation of discrete games.
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(d) Games of incomplete information. Our next step will be to relax the assumption
of complete information by introducing some variables that are private information to
each firm. We will see that the identification and estimation of these models can be
significantly simpler than in the case of models of complete information.

5.4.1 Single- and Multi-store firms
Single- and Multi-store firms
We start with the description of a static entry game between single-store firms. Later, we
extend this framework to incorporate dynamics and multi-store firms. There are N retail
firms that are potential entrants in a market. We index firms by i ∈ {1,2, . . . ,N}. From a
geographic point of view, the market is a compact set C in the Euclidean space R2, and
it contains L locations where firms can operate stores. These locations are exogenously
given and they are indexed by ` ∈ {1,2, . . . ,L}.

Firms play a two-stage game. In the first stage, firms make their entry and store
location decisions. Each firm decides whether to be active or not in the market, and if
active, chooses the location of its store. We can represent a firm’s decision using an
L-dimensional vector of binary variables, ai ≡ {ai` : `= 1,2, . . . ,L}, where ai` ∈ {0,1}
is the indicator of the event ‘firm i has a store in location `’. For single-store firms, there
is at most one component in the vector ai that is equal to one while the rest of the binary
variables must be zero. In the second stage they compete in prices (or quantities) taking
entry decisions as given. The equilibrium in the second stage determines equilibrium
prices and quantities at each active store.

The market is populated by consumers. Each consumer is characterized by her
preference for the products that firms sell and by her geographical location or home
address h that belongs to the set of consumer home addresses {1,2, . . . ,H}. The set of
consumer home addresses and the set of feasible business locations may be different.
Following Smith (2004), Davis (2006), or Houde (2012), aggregate consumer demand
comes from a discrete choice model of differentiated products where both product
characteristics and transportation costs affect demand. For instance, in a spatial logit
model, the demand for firm i with a store in location ` is:

qi` =
H

∑
h=1

M(h)
ai` exp{xi β −α pi`− τ(dh`)}

1+∑
N
j=1 ∑

L
`′=1 a j`′ exp{x j β −α p j`′− τ dh`′}

(5.3)

where qi` and pi` are the quantity sold and the price, respectively, at store (i, `); M(h)
represents the mass of consumers living in address h; the term within the square brackets
is the market share of store (i, `) among consumers living in address h; xi is a vector
of observable characteristics (other than price) of the product of firm i; and β is the
vector of marginal utilities of these characteristics; α is the marginal utility of income;
dh` represents the geographic distance between home address h and business location `;
and τ(dh`) is an increasing real-valued function that represents consumer transportation
costs.

Given this demand system, active stores compete in prices à la Nash–Bertrand to
maximize their respective variable profits, (pi`− ci`) qi`, where ci` is the marginal cost
of store (i, `), that is exogenously given. The solution of the system of best response
functions can be described as a vector of equilibrium prices for each active firm/store.
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Let p∗i (`,a−i,x) and q∗i (`,a−i,x) represent the equilibrium price and quantity for firm
i given that this firm has a store at location `. The rest of the firms’ entry/location
decisions are represented by the vector a−i ≡ {a j : j 6= i}, and the firms’ characteristics
are denoted by x≡ (x1,x2, . . . ,xN). Similarly, we can define the equilibrium (indirect)
variable profit,

V P∗i (`,a−i,x) = [p(`,a−i,x)− ci`] q∗i (`,a−i,x) (5.4)

Consider now the entry stage of the game. The profit of firm i if it has a store in
location ` is:

πi(`,a−i,x) =V P∗i (`,a−i,x)−ECi` (5.5)

where ECi` represents the entry cost of firm i at location `, that for the moment is
exogenously given. The profit of a firm that is not active in the market is normalized
to zero, that is, πi(0,a−i,x) = 0, where with some abuse of notation, we use ` = 0 to
represent the choice alternative of no entry in any of the L locations.

The description of an equilibrium in this model depends on whether firms have
complete or incomplete information about other firms’ costs. The empirical literature on
entry games has considered both cases.

Complete information game. In the complete information model, a Nash equilibrium
is an N-tuple {a∗i : i = 1,2, . . . ,N} such that for every firm i the following best response
condition is satisfied:

a∗i` = 1{πi(`,a∗−i,x)≥ πi(`
′,a∗−i,x) for any `′ 6= `} (5.6)

where 1{.} is the indicator function. In equilibrium, each firm is maximizing its own
profit given the entry and location decisions of the other firms.

Incomplete information game. In a game of incomplete information, there is a compo-
nent of a firm’s profit that is private information to the firm. For instance, suppose that
the entry cost of firm i is ECi` = eci`+ εi`, where eci` is public information for all the
firms, and εi` is private information to firm i. These private cost shocks can be correlated
across locations for a given firm, but they are independently distributed across firms, that
is, εi ≡ {εi` : `= 1,2, . . . ,L} is independently distributed across firms with a distribution
function Fi that is continuously differentiable over RL and common knowledge to all the
firms.

A firm’s strategy is an L-dimensional mapping αi(εi;x)≡{αi`(εi;x) : `= 1,2, . . . ,L},
where αi`(εi;x) is a binary-valued function from the set of possible private information
values RL and the support of x into {0,1}, such that αi`(εi;x) = 1 means that firm i
enters location ` when the value of private information is εi. A firm has uncertainty about
the actual entry decisions of other firms because it does not know the realization of other
firms’ private information. Therefore, firms maximize expected profits. Let πe

i (`,α−i,x)
be the expected profit of firm i if it has a store at location ` and the other firms follow
their respective strategies in α∗−i. By definition, πe

i (`,α−i,x)≡Eε−i[πi(`,α−i(ε−i;x),x)],
where Eε−i represents the expectation over the distribution of the private information of
firms other than i. A Bayesian Nash equilibrium in this game of incomplete information
is an N-tuple of strategy functions {α∗−i : i = 1,2, . . . ,N} such that every firm maximizes
its expected profit: for any εi,

α
∗
i`(εi;x) = 1{πe

i (`,α
∗
−i,x)≥ π

e
i (`
′,α∗−i,x) for any `′ 6= `} (5.7)
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In an entry game of incomplete information, firms’ strategies (and therefore, a
Bayesian Nash equilibrium) can also be described using firms’ probabilities of market
entry, instead of the strategy functions αi(εi;x). In sections 2.2.1 and 2.2.4, we present
examples of this representation in the context of more specific models.

Multi-store firms

Multi-store firms, or retail chains, have become prominent in many retail industries such
as supermarkets, department stores, apparel, electronics, fast food restaurants, or coffee
shops, among others. Cannibalization and economies of scope between stores of the
same chain are two important factors in the entry and location decisions of a multi-store
firm. The term cannibalization refers to the business stealing effects between stores of
the same chain. Economies of scope may appear if some operating costs are shared
between stores of the same retail chain such that these costs are not duplicated when
the number of stores in the chain increases. For instance, some advertising, inventory,
personnel, or distribution costs can be shared among the stores of the same firm. These
economies of scope may become quantitatively more important when store locations are
geographically closer to each other. This type of economies of scope is called economies
of density.

The recent empirical literature on retail chains has emphasized the importance of
these economies of density, that is, Holmes (2011), Jia (2008), Ellickson, Houghton, and
Timmins (2013), and Nishida (2015). For instance, the transportation cost associated
with the distribution of products from wholesalers to retail stores can be smaller if stores
are close to each other. Also, geographic proximity can facilitate sharing inventories
and even personnel across stores of the same chain. We now present an extension of the
basic framework that accounts for multi-store firms.

A multi-store firm decides its number of stores and their locations. We can represent
a firm’s entry decision using the L-dimensional vector ai ≡ {ai` : `= 1,2, . . . ,L}, where
ai` ∈ {0,1} is still the indicator of the event ‘firm i has a store in location `’. In contrast
to the case with single-store firms, now the vector ai can take any value within the
choice set {0,1}L. The demand system still can be described using equation (5.4.1).
The variable profit of a firm is the sum of variable profits over every location where the
firm has stores, ∑

L
`=1 ai` (pi`− ci`)qi`.

Firms compete in prices taking their store locations as given. A retail chain may
choose to have a uniform price across all its stores, or to charge a different price at each
store. In the Bertrand pricing game with spatial price discrimination (that is, different
prices at each store), the best response of firm i can be characterized by the first-order
conditions:

qi`+(pi`− ci`)
∂qi`

∂ pi`
+ ∑

`′ 6=`

(pi`′− ci`′)
∂qi`′

∂ pi`
= 0 (5.8)

The first two terms represent the standard marginal profit of a single-store firm. The last
term represents the effect on the variable profits of all other stores within the firm, and
it captures how the pricing decision of the firm internalizes the cannibalization effect
among its own stores.

A Nash-Bertrand equilibrium is a solution in prices to the system of best response
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equations in (5.4.1). The equilibrium (indirect) variable profit of firm i is:

V P∗i (ai,a−i;x) =
L

∑
`=1

(p∗i (`,a−i;x)− ci`) q∗i (`,a−i;x) (5.9)

where p∗i`(`,a−i;x) and q∗i (`,a−i;x) represent Bertrand equilibrium prices and quantities,
respectively.

The total profit of the retail chain is equal to total variable profit minus total entry
cost: πi(ai,a−i;x) = V P∗i (ai,a−i;x)−ECi(ai). The entry costs of a retail chain may
depend on the number of stores (that is, (dis)economies of scale) and on the distance
between the stores (for example, economies of density). In section 2.2.5, we provide
examples of specifications of entry costs for multi-store retailers.

The description of an equilibrium in this game of entry between retail chains is
similar to the game between single-store firms. With complete information, a Nash
equilibrium is an N-tuple {a∗i : i = 1,2, . . . ,N} that satisfies the following best response
conditions:

πi(a∗i ,a
∗
−i;x)≥ πi(ai,a∗−i;x) for any ai 6= a∗i (5.10)

With incomplete information, a Bayesian Nash equilibrium is an N-tuple of strategy
functions {α∗i (εi;x) : i = 1,2, . . . ,N} such that every firm maximizes its expected profit:
for any εi:

π
e
i (α

∗
i (εi;x),α∗−i,x)≥ π

e
i (ai,α

∗
−i,x) for any ai 6= α

∗
i (εi;x) (5.11)

Specification assumptions
The games of entry in retail markets that have been estimated in empirical applications
have imposed different types of restrictions on the framework that we have presented
above. For example, restrictions on firm and market heterogeneity, firms’ information,
spatial competition, multi-store firms, dynamics, or the form of the structural functions.

The motivations for these restrictions are diverse. Some restrictions are imposed to
achieve identification or precise enough estimates of the parameters of interest, given
the researcher’s limited information on the characteristics of markets and firms. For
instance, as we describe in section 5.3.3, prices and quantities at the store level are
typically not observable to the researcher, and most sample information comes from
firms’ entry decisions. These limitations in the available data have motivated researchers
to use simple specifications for the indirect variable profit function.

Other restrictions are imposed for computational convenience in the solution and
estimation of the model, for example, to obtain closed form solutions, to guarantee
equilibrium uniqueness as it facilitates the estimation of the model, or to reduce the
dimensionality of the space of firms’ actions or states. In this subsection, we review some
important models in this literature and discuss their main identification assumptions. We
have organized these models in an approximate chronological order.

5.4.2 Homogeneous firms
Work in this field was pioneered by Bresnahan and Reiss. In Bresnahan and Reiss
(1991), they study several retail and professional industries in the US, specifically
pharmacies, tire dealers, doctors, and dentists. The main purpose of the paper is
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to estimate the ‘nature’ or ‘degree’ of competition for each of the industries: how
fast variable profits decline when the number of firms in the market increases. More
specifically, the authors are interested in estimating how many entrants are needed to
achieve an oligopoly equilibrium equivalent to the competitive equilibrium, that is, the
hypothesis of contestable markets (Baumol 1982; Baumol, Panzar, and Willig 1982;
Martin 2000).

For each industry, their dataset consists of a cross-section of M small ‘isolated
markets’. In section 5.3, we discussed the empirical motivation and implementation
of the ‘isolated markets’ restriction. For the purpose of the model, a key aspect of
this restriction is that the M local markets are independent in terms of demand and
competition such that the equilibrium in one market is independent of the one in the
other markets. The model also assumes that each market consists of a single location,
that is, L = 1, such that spatial competition is not explicitly incorporated in the model.
For each local market, the researcher observes the number of active firms (n), a measure
of market size (s), and some exogenous market characteristics that may affect demand
and/or costs (x).

Given this limited information, the researcher needs to restrict firm heterogeneity.
Bresnahan and Reiss propose a static game between single-store firms where all the
potential entrants in a market are identical and have complete information on demand
and costs. The profit of a store is:

π(n) = s V (x,n) − EC(x) − ε, (5.12)

where V (x,n) represents variable profit per capita (per consumer) that depends on the
number of active firms n, and EC(x)+ ε is the entry cost, where ε is unobservable to
the researcher. The form of competition between active firms is not explicitly modelled.
Instead, the authors consider a flexible specification of the variable profit per-capita that
is strictly decreasing but nonparametric in the number of active stores. Therefore, the
specification is consistent with a general model of competition between homogeneous
firms, or even between symmetrically differentiated firms.

Given these assumptions, the equilibrium in a local market can be described as a
number of firms n∗ that satisfies two conditions: (1) every active firm is maximizing
profits by being active in the market, that is, π(n∗)≥ 0; and (2) every inactive firm is
maximizing profits by being out of the market, that is, π(n∗+1)< 0. In other words,
every firm is making its best response given the actions of the others. Since the profit
function is strictly decreasing in the number of active firms, the equilibrium is unique
and it can be represented using the following expression: for any value n ∈ {0,1,2, . . .},

{n∗ = n} ⇔ {π(n)≥ 0 and π(n+1)< 0}

⇔ {s V (x,n+1)−EC(x)< ε ≤ s V (x,n)−EC(x)}
(5.13)

Also, this condition implies that the distribution of the equilibrium number of firms
given exogenous market characteristics is:

Pr(n∗ = n | s,x) = F(s V (x,n)−EC(x))−F(s V (x,n+1)−EC(x)) (5.14)

where Fis the CDF of ε . This representation of the equilibrium as an ordered discrete
choice model is convenient for estimation.
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In the absence of price and quantity data, the separate identification of the variable
profit function and the entry cost function is based on the exclusion restrictions that
variable profit depends on market size and on the number of active firms while the entry
cost does not depend on these variables.

Private information. The previous model can be slightly modified to allow for firms’
private information. This variant of the original model maintains the property of equi-
librium uniqueness and most of the simplicity of the previous model. Suppose that
now the entry cost of a firm is EC(x)+ εi, where εi is private information of firm i and
it is independently and identically distributed across firms with a CDF F . There are
N potential entrants in the local market. The presence of private information implies
that, when potential entrants make entry decisions, they do not know ex ante the actual
number of firms that will be active in the market. Instead, each firm has beliefs about the
probability distribution of the number of other firms that are active. We represent these
beliefs, for say firm i, using the function Gi(n)≡ Pr(n∗−i = n|s,x), where n∗−i represents
the number of firms other than i that are active in the market. Then, the expected profit
of a firm if active in the market is:

π
e
i =

[
N−1

∑
n=0

Gi(n) s V (x,n+1)

]
−EC(x)− εi (5.15)

The best response of a firm is to be active in the market if and only if its expected
profit is positive or zero, that is, ai = 1{πe

i ≥ 0}. Integrating this best response function
over the distribution of the private information εi we obtain the best response probability
of being active for firm i, that is:

Pi ≡ F(

[
N−1

∑
n=0

Gi(n) s V (x,n+1)

]
−EC(x)) (5.16)

Since all firms are identical, up to their independent private information, it seems
reasonable to impose the restriction that in equilibrium they all have the same beliefs
and, therefore, the same best response probability of entry. Therefore, in equilibrium,
firms’ entry decisions {ai} are independent Bernoulli random variables with probability
P, and the number of active firms other than i in the market has a Binomial distribution
with argument (N−1,P) such that Pr(n∗−i = n) = B(n|N−1,P).

In equilibrium, the belief function G(n) should be consistent with firms’ best re-
sponse probability P. Therefore, a Bayesian Nash Equilibrium in this model can be
described as a probability of market entry P∗, which is the best response probability when
firms’ beliefs about the distribution of other firms active in the market are G(n) = B(n
|N−1,P∗). We can represent this equilibrium condition using the following equation:

P∗ = F
([

∑
N−1
n=0 B(n|N−1,P∗) s V (x,n+1)

]
−EC(x)

)
(5.17)

When the variable profit V (x,n) is a decreasing function in the number of active
stores, the right-hand side in equation (5.17) is also a decreasing function in the proba-
bility of entry P, and this implies equilibrium uniqueness. In contrast to the complete
information model in Bresnahan and Reiss (1991), this incomplete information model
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does not have a closed form solution for the equilibrium distribution of the number of
active firms in the market. However, the numerical solution to the fixed point prob-
lem in equation (5.17) is computationally very simple, and so are the estimation and
comparative statistics using this model.

Given that the only difference between the two models described in this section is
in their assumptions about firms’ information, it seems reasonable to consider whether
these models are observationally different or not. In other words, does the assumption
on complete versus incomplete information have implications on the model predictions
about competition? Grieco (2014) investigates this question in the context of an empirical
application to local grocery markets. In Grieco’s model, firms are heterogeneous in
terms of (common knowledge) observable variables, and this observable heterogeneity
plays a key role in his approach to empirically distinguish between firms’ public and
private information. Note that the comparison of equilibrium conditions in equations
(5.14) and (5.17) shows other testable difference between the two models. In the game
of incomplete information, the number of potential entrants N has an effect on the whole
probability distribution of the number of active firms: a larger number of potential
entrants implies a shift to the right in the whole distribution of the number of active
firms. In contrast, in the game of complete information, the value of N affects only
the probability Pr(n∗ = N|s,x) but not the distribution of the number of active firms at
values smaller than N. This empirical prediction has relevant economic implications:
with incomplete information, the number of potential entrants has a positive effect on
competition even in markets where this number is not binding.

Bresnahan and Reiss (1991)
The authors study several retail and professional industries in the US: Doctors; Dentists;
Pharmacies; Plumbers; car dealers; etc. For each industry, the dataset consists of a
cross-section of M small, "isolated" markets. We index markets by m. For each market
m, we observe the number of active firms (nm), a measure of market size (sm), and some
exogenous market characteristics that may affect demand and/or costs (xm).

Data = { nm, sm, xm : m = 1,2, ...,M} (5.18)

There are several empirical questions that they wish to answer. First, they want to
estimate the "nature" or "degree" of competition for each of the industries: that is, how
fast variable profits decline when the number of firms in the market increase. Second,
but related to the estimation of the degree of competition, BR are also interested in
estimating how many entrants are needed to achieve an equilibrium equivalent to the
competitive equilibrium, that is, hypothesis of contestable markets.

Model. Consider a market m. There is a number N of potential entrants in the market.
Each firm decides whether to be active or not in the market. Let Πm(n) be the profit of
an active firm in market m when there are n active firms. The function Πm(n) is strictly
decreasing in n. If nm is the equilibrium number of firms in market m, then it should
satisfy the following conditions:

Πm(nm)≥ 0 and Πm(nm +1)< 0 (5.19)

That is, every firm is making her best response given the actions of the others. For active
firms, their best response is to be active, and for inactive firms their best response is to
not enter in the market.
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To complete the model we have to specify the structure of the profit function Πm(n).
Total profit is equal to variable profit, Vm(n), minus fixed costs, Fm(n):

Πm(n) =Vm(n)−Fm(n) (5.20)

In this model, where we do not observe prices or quantities, the key difference in the
specification of variable profit and fixed cost is that variables profits increase with market
size (in fact, they are proportional to market size) and fixed costs do not.

The variable profit of a firm in market m when there are n active firms is:

Vm(n) = sm vm(n) = sm
(
xD

mβ −α(n)
)

(5.21)

where sm represents market size; vm(n) is the variable profit per-capita; xD
m is a vector

of market characteristics that may affect the demand of the product, for instance, per
capita income, age distribution; β is a vector of parameters; and α(1), α(2), ...α(N)
are parameters that capture the degree of competition, such that we expect that α(1)≤
α(2)≤ α(3) ... ≤ α(N). Given that there is no firm-heterogeneity in the variable profit
function, there is an implicit assumption of homogeneous product or symmetrically
differentiated product as in, for instance, Salop circle city (Salop, 1979).

The specification for the fixed cost is:

Fm(n) = xC
m γ +δ (n)+ εm (5.22)

where xC
m is a vector of observable market characteristics that may affect the fixed

cost, for instance, rental price; εm is a market characteristic that is unobservable to
the researchers but observable to the firms; δ (1), δ (2), ...δ (N) are parameters. The
dependence of the fixed cost with respect to the number of firms is very unconventional
or non-standard in IO. Bresnahan and Reiss allow for this possibility and provide several
interpretations. However, the interpretation of the parameters δ (n) is not completely
clear. In some sense, BR allow the fixed cost to depend on the number firms in the
market for robustness reasons. There are several possible interpretations for why fixed
costs may depend on the number of firms in the market: (a) entry deterrence: incumbents
create barriers to entry; (b) a shortcut to allow for firm heterogeneity in fixed costs, in the
sense that late entrants are less efficient in fixed costs; and (c) actual endogenous fixed
costs, for instance rental prices or other components of the fixed costs, not included in
xC

m, may increase with the number of incumbents (for instance, demand effect on rental
prices). For any of these interpretations we expect δ (n) to be an increasing function of
n.

Since both α(n) and δ (n) increase with n, it is clear that the profit function Πm(n)
declines with n. Therefore, as we anticipated above, the equilibrium condition for the
number of firms in the market can be represented as follows. For n ∈ {0,1, ...,N}

{nm = n}⇔ { Πm(n)≥ 0 AND Πm(n+1)< 0 } (5.23)

It is simple to show that the model has a unique equilibrium for any value of the
exogenous variables and structural parameters. This is just a direct implication of the
strict monotonicity of the profit function Πm(n).
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We have a random sample {nm, sm, xD
m, xC

m : m = 1,2, ...,M} and we want to use this
sample to estimate the vector of parameters:

θ = {β , γ, σ , α(1), ...,α(N), δ (1), ...,δ (N)} (5.24)

The unobserved component of the entry cost, εm, is assumed independent of (sm,xD
m,x

C
m)

and it is i.i.d. over markets with distribution N(0,σ). As usual in discrete choice models,
σ is not identified. We normalize σ = 1, which means that we are really identifying the
rest of the parameters up to scale. We should keep this in mind for the interpretation of
the estimation results.

Given this model and sample, BR estimate θ by maximum likelihood:

θ̂ = argmax
θ

M

∑
m=1

logPr(nm | θ ,sm,xD
m,x

C
m) (5.25)

What is the form of the probabilities Pr(nm|θ ,sm,xm) in the BR model? This entry model
has the structure of an ordered Probit model. We can represent the equilibrium condition
{Πm(n)≥ 0 AND Πm(n+1)< 0} in terms of thresholds for the unobservable variable
εm:

{nm = n}⇔ {Tm(n+1)< εm ≤ Tm(n)}, (5.26)

where, for any n ∈ {1,2, ...,N},

Tm(N)≡ smxD
mβ − xC

mγ−α(n)sm−δ (n) (5.27)

and Tm(0) = +∞, Tm(N∗+1) =−∞. This is the structure of an ordered probit model.
Therefore, the distribution of the number of firms conditional on the observed exogenous
market characteristics is:

Pr(nm = n|sm,xm) = Φ(Tm(n))−Φ(Tm(n+1))

= Φ
(

smxD
mβ − xC

mγ−α(n)sm−δ (n)
)

− Φ
(

smxD
mβ − xC

mγ−α(n+1)sm−δ (n+1)
) (5.28)

This model is simple to estimate and most econometric software packages include a
command for the estimation of the ordered probit.

Data. The dataset consists of a cross-section of 202 "isolated" local markets. Why
isolated local markets? It is very important to include in our definition of market all
the firms that are actually competing in the market and not more or less. Otherwise,
we can introduce significant biases in the estimated parameters. If our definition of
market is too narrow, such that we do not include all the firms that are actually in a
market, we will conclude that there is little entry either because fixed costs are too large
or the degree of competition is strong: that is, we will overestimate the α ′s or the δ ′s
or both. If our definition of market is too broad, such that we include firms that are not
actually competing in the same market, we will conclude that there is significant entry
and to rationalize this we will need fixed costs to be small or to have a low degree of
competition between firms. Therefore, we will underestimate the α ′s or the δ ′s or both.
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Under a broad definition of a market, the most common mistake is having a large city
as a single market. Conversely, under a narrow definition of a market, the most common
mistake is having small towns that are close to each other, or close to a large town, as
single markets. To avoid these type of errors, BR construct "isolated local markets". The
criteria to select isolated markets in the US are: (a) at least 20 miles from the nearest
town of 1000 people or more; (b) at least 100 miles from cities with 100,000 people or
more.

Empirical results. Let S(n) be the minimum market size to sustain n firms in the market.
S(n) are called market dize entry thresholds and they can be obtained using the estimated
parameters of the model. They do not depend on the normalization σ = 1. Brenahan and
Reiss find that, for most industries, both α(n) and δ (n) increase with n. There are very
significant cross-industry differences in entry thresholds S(n). For most of the industries,
entry thresholds S(n)/N become constant for values of n greater than 4 or 5. This result
supports the hypothesis of contestable markets (Baumol, 1982).

5.4.3 Endogenous product choice
Mazzeo (2002) studies market entry in the motel industry using local markets along US
interstate highways. A local market is defined as a narrow region around a highway
exit. Mazzeo’s model maintains most of the assumptions in Bresnahan and Reiss
(1991), such as no spatial competition (that is, L=1), ex ante homogeneous firms,
complete information, no multi-store firms, and no dynamics. However, he extends the
Bresnahan–Reiss model in an interesting dimension: he introduces endogenous product
differentiation.

More specifically, firms not only decide whether to enter in a market but they also
choose the type of product to offer: low-quality product E (that is, economy hotel), or
high-quality product H (that is, upscale hotel). Product differentiation makes competition
less intense, and it can increase firms’ profits. However, firms also have an incentive to
offer the type of product for which demand is stronger.

The profit of an active hotel of type T ∈ {E,H} is:

πT (nE ,nH) = s VT (x,nE ,nH)−ECT (x)− εT (5.29)

where nE and nH represent the number of active hotels with low and high quality,
respectively, in the local market. Similarly to the Bresnahan–Reiss model, VT is the
variable profit per capita and ECT (x)+ εT is the entry cost for type T hotels, where εT
is unobservable to the researcher.

Mazzeo solves and estimates his model under two different equilibrium concepts:
Stackelberg and what he terms a ‘two-stage game’. A computational advantage of the
two-stage game is that under the assumptions of the model the equilibrium is unique. In
the first stage, the total number of active hotels, n≡ nE +nH , is determined in a similar
way as in the Bresnahan–Reiss model. Hotels enter the market as long as there is some
configuration (nE ,nH) where both low-quality and high-quality hotels make positive
profits. Define the first-stage profit function as:

Π(n)≡ max
nE ,nH :nE+nH=n

min[πE(nE ,nH) , πH(nE ,nH)] (5.30)

Then, the equilibrium number of hotels in the first stage is the value n∗ that satisfies
two conditions: (1) every active firm wants to be in the market, that is, Π(n∗)≥ 0; and
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(2) every inactive firm prefers to be out of the market, that is, Π(n∗+ 1) < 0. If the
profit functions πE and πH are strictly decreasing functions in the number of active firms
(nE ,nH), then Π(n) is also a strictly decreasing function, and the equilibrium number of
stores in the first stage, n∗, is unique.

In the second stage, active hotels choose simultaneously their type or quality level.
In this second stage, an equilibrium is a pair (n∗E ,n

∗
H) such that every firm chooses the

type that maximizes its profit given the choices of the other firms. That is, low quality
firms are not better off by switching to high quality, and vice versa:

πE(n∗E ,n
∗
H) ≥ πH(n∗E −1,n∗H +1)

πH(n∗E ,n
∗
E) ≥ πE(n∗E +1,n∗E −1)

(5.31)

Mazzeo shows that the equilibrium pair (n∗E ,n
∗
H) in this second stage is also unique.

Using these equilibrium conditions, it is possible to obtain a closed form expression
for the (quadrangle) region in the space of the unobservables (εE ,εH) that generate a
particular value of the equilibrium pair (n∗E ,n

∗
H). Let Rε(nE ,nH ;s,x) be the quadrangle

region in R2 associated with the pair (nE ,nH) given exogenous market characteristics
(s,x) , and let F(εE ,εH) be the CDF of the unobservable variables. Then, we have that:

Pr(n∗E = nE ,n∗H = nH |s,x) =
∫

1{(εE ,εH) ∈ Rε(nE ,nH ;s,x) dF(εE ,εH) (5.32)

In the empirical application, Mazzeo finds that hotels have strong incentives to
differentiate from their rivals to avoid nose-to-nose competition.

Ellickson and Misra (2008) estimate a game of incomplete information for the
US supermarket industry where supermarkets choose the type of ‘pricing strategy’:
‘everyday low price’ (EDLP) versus ‘high-low’ pricing. The choice of pricing strategy
can be seen as a form of horizontal product differentiation. The authors find evidence of
strategic complementarity between supermarkets’ pricing strategies: firms competing in
the same market tend to adopt the same pricing strategy not only because they face the
same type of consumers but also because there are positive synergies in the adoption of
the same strategy.

From an empirical point of view, Ellickson and Misra’s result is more controversial
than Mazzeo’s finding of firms’ incentives to differentiate from each other. In particular,
the existence of unobservables that are positively correlated across firms but are not fully
accounted for in the econometric model, may generate a spurious estimate of positive
spillovers in the adoption of the same strategy.

Vitorino (2012) estimates a game of store entry in shopping centers that allows for
incomplete information, positive spillover effects among stores, and also unobserved
market heterogeneity for the researcher that is common knowledge to firms. Her
empirical results show that, after controlling for unobserved market heterogeneity, firms
face business stealing effects but also significant incentives to collocate, and that the
relative magnitude of these two effects varies substantially across store types.

5.4.4 Firm heterogeneity
The assumption that all potential entrants and incumbents are homogeneous in their
variable profits and entry costs is very convenient and facilitates the estimation, but it
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is also very unrealistic in many applications. A potentially very important factor in the
determination of market structure is that firms, potential entrants, are ex-ante heteroge-
neous. In many applications we want to take into account this heterogeneity. Allowing
for firm heterogeneity introduces two important issues in these models: endogenous
explanatory variables, and multiple equilibria. We will comment on different approaches
that have been used to deal with these issues.

Consider an industry with N potential entrants. For instance, the airline industry.
These potential entrants decide whether to be active or not in a market. We observe M
different realizations of this entry game. These realizations can be different geographic
markets (different routes or city pairs, for instance, Toronto-New York, Montreal-
Washington, etc) or different periods of time. We index firms with i ∈ {1,2, ...,N} and
markets with m ∈ {1,2, ...,M}.

Let aim ∈ {0,1} be the binary indicator of the event "firm i is active in market m".
For a given market m, the N firms choose simultaneously whether to be active or not in
the market. When making its decision, a firm wants to maximize its profit.

Once firms have decided whether to be active or not in the market, active firms
compete in prices or in quantities and firms’ profits are realized. For the moment, we do
not make explicit the specific form of competition in this second part of the game, or the
structure of demand and variable costs. We take as given an "indirect profit function"
that depends on exogenous market and firm characteristics and on the number and the
identity of the active firms in the market. This indirect profit function comes from a
model of price or quantity competition, but at this point we do not make that model
explicit here. Also, we consider that the researcher does not have access to data on firms’
prices and quantities such that demand and variable cost parameters in the profit function
cannot be estimated from demand, and/or Bertrand/Cournot best response functions.

The (indirect) profit function of an incumbent firm depends on market and firm
characteristics affecting demand and costs, and on the entry decisions of the other
potential entrants:

Πim =


Πi (xim, εim, a−im) if aim = 1

0 if aim = 0
(5.33)

where xim and εim are vectors of exogenous market and firm characteristics, and a−im
≡ {a jm : j 6= i}. The vector xim is observable to the researcher while εim is unobserved to
the researcher. For the moment we assume that xm ≡ {x1m, x2m, ..., xNm} and εm ≡ {ε1m,
ε2m, ..., εNm} are common knowledge for all players.

For instance, in the example of the airline industry, the vector xim may include market
characteristics such as population and socioeconomic characteristics in the two cities
that affect demand, characteristics of the airports such as measures of congestion (that
affect costs), and firm characteristics such as the number of other connections that the
airline has in the two airports (that affect operating costs due to economies of scale and
scope).

The N firms choose simultaneously {a1m, a2m, ..., aNm} and the assumptions of
Nash equilibrium hold. A Nash equilibrium in this entry game is an N-tuple a∗m = (a∗1m,
a∗2m, ..., a∗Nm) such that for any player i:

a∗im = 1
{

Πi
(
xim, εim, a∗−im

)
≥ 0

}
(5.34)
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where 1{.} is the indicator function.
Given a dataset with information on {aim,xim} for every firm in the M markets, we

want to use this model to learn about the structure of the profit function Πi. In these
applications, we are particularly interested in the effect of other firms’ entry decisions
on a firm’s profit. For instance, how Southwest’s entry in the Chicago-Boston market
affectsthe profit of American Airlines.

For the sake of concreteness, consider the following specification of the profit
function:

Πim = xim βi−∑ j 6=i a jm δi j + εim (5.35)

where xim is a 1×K vector of observable market and firm characteristics; βi is a K×1
vector of parameters; δi = {δi j : j 6= i} is a (N−1)×1 vector of parameters, with δi j
being the effect of firm j′s entry on firm i′s profit; εim is a zero mean random variable
that is observable to the players but unobservable to the econometrician.

We assume that εim is independent of xm, and it is i.i.d. over m, and independent
across i. If xim includes a constant term, then without loss of generality E(εim) = 0.
Define σ2

i ≡Var(εim). Then, we also assume that the probability distribution of εim/σi
is known to the researcher. For instance, εim/σi has a standard normal distribution.

The econometric model can be described as a system of N simultaneous equations
where the endogenous variables are the entry dummy variables:

aim = 1
{

xim βi−∑ j 6=i a jm δi j + εim ≥ 0
}

(5.36)

We want to estimate the vector of parameters θ = {βi/σi,δi/σi : i = 1,2, ...,N}.
There are two main econometric issues in the estimation of this model: (1) endoge-

nous explanatory variables, a jm; and (2) multiple equilibria.

Endogeneity of other players’ actions
In the system of structural equations in (5.36), the actions of the other players, {a jm :
j 6= i} are endogenous in an econometric sense. That is, a jm is correlated with the
unobserved term εim, and ignoring this correlation can lead to serious biases in our
estimates of the parameters βi and δi.

There two sources of endogeneity or correlation between a jm and εim: (i) simultane-
ity; and (ii) correlation between εim and ε jm. It is interesting to distinguish between these
two sources of endogeneity because they bias the parameter δi j in opposite directions.

(i) Simultaneity. An equilibrium of the model is a reduced form equation where we
represent the action of each player as a function of only exogenous variables in xm and
εm. In this reduced form, a jm depends on εim. It is possible to show that this dependence
is negative: keeping all the other exogenous variables constant, if εim is small enough
then a jm = 0, and if εim is large enough then a jm = 1. Suppose that our estimator of δi j
ignores this dependence. Then, the negative dependence between a jm and εim contributes
to generate a upward bias in the estimator of δi j.

That is, we will spuriously over-estimate the negative effect of Southwest on the
profit of American Airlines because Southwest tends to enter in markets where AA has
low values of εim.

(ii) Positively correlated unobservables. It is reasonable to expect that εim and ε jm
are positively correlated. This is because both εim and ε jm contain unobserved market



172 Chapter 5. Market Entry

characteristics that affect in a similar way, or at least in the same direction, all the
firms in the same market. Some markets are more profitable than others for every firm,
and part of this market heterogeneity is observable to firms but unobservable to us as
researchers. The positive correlation between εim and ε jm generates also a positive
dependence between a jm and εim.

For instance, suppose that εim = ωm +uim, where ωm represents the common market
effect, and uim is independent across firms. Then, keeping xm and the unobserved u
variables constant, if ωm is small enough then εim is small and a jm = 0, and if ωm is
large enough then εim is large and a jm = 1. Suppose that our estimator of δi j ignores this
dependence. Then, the positive dependence between a jm and εim contributes to generate
a downward bias in the estimator of δi j. In fact, the estimate of δi j could have the wrong
sign, that is, could be negative instead of positive.

Therefore, we could spuriously find that American Airlines benefits from the opera-
tion of Continental in the same market because we tend to observe that these firms are
always active in the same markets. This positive correlation between aim and a jm can be
completely driven by the positive correlation between εim and ε jm.

These two sources of endogeneity generate biases of opposite sign in δi j. There is
evidence from different empirical applications that the bias due to unobserved market
effects is much more important than the simultaneity bias. For instance, among others,
Orhun (2013) in the US supermarket industry, Collard-Wexler (2013) in the US cement
industry, Aguirregabiria and Mira (2007) in several retail industries in Chile, Igami and
Yang (2016) in the Canadian fast-food restaurant industry, and Aguirregabiria and Ho
(2012) in the US airline industry.

How do we deal with this endogeneity problem? The intuition for the identification
in this model is similar to the identification using standard instrumental variables (IV)
and control function (CF) estimation methods.

IV approach. There are exogenous firm characteristics in x jm that affect the action
of firm j but do not have a direct effect on the action of firm i: that is, observable
characteristics with β j 6= 0 but βi = 0.

CF approach. There is an observable variable Cit that "proxies" or "controls for"
the endogenous part of εim such that if we include Cit in the equation for firm i then the
new error term in that equation and a jm become independent (conditional on Cit).

The method of instrumental variables is the most common approach to deal with
endogeneity in linear models. However, IV or GMM cannot be applied to estimate
discrete choice models with endogenous variables. Control function approaches: Rivers
and Vuong (1988), Vytlacil and Yildiz (2007). These approaches have not been extended
yet to deal with models with multiple equilibria.

An alternative approach is Maximum likelihood. If we derive the probability distri-
bution of the dummy endogenous variables conditional on the exogenous variables (that
is, the reduced form of the model), we can use these probabilities to estimate the model
by maximum likelihood.

`(θ) = ∑
M
m=1 lnPr(a1m,a2m, ...,aNm | xm, θ) (5.37)

This is the approach that has been most commonly used in this literature. However, we
will have to deal with the problem of multiple equilibria.
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Multiple equilibria
Consider the model with two players and assume that δ1 ≥ 0 and δ2 ≥ 0.

a1 = 1{ x1β1−δ1 a2 + ε1 ≥ 0 }

a2 = 1{ x2β2−δ2 a1 + ε2 ≥ 0 }
(5.38)

The reduced form of the model is a representation of the endogenous variables (a1,a2)
only in terms of exogenous variables and parameters. This is the reduced form of this
model:

{x1β1 + ε1 < 0} & {x2β2 + ε2 < 0} ⇒ (a1,a2) = (0,0)

{x1β1−δ1 + ε1 ≥ 0}&{x2β2−δ2 + ε2 ≥ 0} ⇒ (a1,a2) = (1,1)

{x1β1−δ1 + ε1 < 0} & {x2β2 + ε2 ≥ 0} ⇒ (a1,a2) = (0,1)

{x1β1 + ε1 ≥ 0} & {x2β2−δ2 + ε2 < 0} ⇒ (a1,a2) = (1,0)

(5.39)

The graphical representation in the space (ε1,ε2) is in Figure 5.1.
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Figure 5.1: Outcomes in the Region of the Unobservables

Note that when:

{0≤ x1β1 + ε1 < δ1} and {0≤ x2β2 + ε2 < δ2} (5.40)

we have two Nash equilibria: (a1,a2) = (0,1) and (a1,a2) = (1,0). For this range of
values of (ε1,ε2), the reduced form (that is, the equilibrium) is not uniquely determined.
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Therefore, we can not uniquely determine the probability Pr(a1m,a2m|xm;θ) that we
need to estimate the model by maximum likelihood. We know Pr(1,1|θ), and Pr(0,0|θ),
but we only have lower and upper bounds for Pr(0,1|θ) and Pr(1,0|θ).

The problem of indeterminacy of the probabilities of different outcomes becomes
even more serious in empirical games with more than 2 players or/and more than two
choice alternatives.

There have been different approaches to deal with the problem of multiple equilibria.
Some authors have imposed additional structure in the model to guarantee equilibrium
uniqueness or at least uniqueness of some observable outcome, for instance, number of
entrants). A second group of studies do not impose additional structure and use methods
such as moment inequalities or pseudo maximum likelihood to estimate structural
parameters. The main motivation of this second group of studies is that identification
and multiple equilibria are different problems and we do not need equilibrium uniqueness
to identify parameters. We discuss these methods below.

5.4.5 Incomplete information
Model and basic assumptions
Consider a market with N potential entrants. If firm i does not operate in market m
(aim = 0), its profit is zero. If the firm is active in the market (aim = 1), the profit is:

Πim = Πi(xm,a−im)− εim (5.41)

For instance,
Πim = xim βi− εim−∑ j 6=i δi j a jm (5.42)

where βi and δi are parameters. These parameters and the vector sm = (s1m,s2m, ...,sNm)
contain the variables which are common knowledge for all players. Now εim is private
information of firm i. For the moment, we assume that private information variables are
independent of sm, and independently distributed over firms with distribution functions
Gi(εim). The distribution function Gi is strictly increasing in R. The information of
player i is (sm,εim).

A player’s strategy depends on the variables in her information set. Let α ≡
{αi(sm,εim) : i = 1,2, ...,N} be a set of strategy functions, one for each player, such that
αi : S×R→ {0,1}. The actual profit Πim is unknown to player i because the private
information of the other players is unknown to player i. Players maximize expected
profits:

πi(sm,εim,α−i) = sim βi− εim−∑ j 6=i δi j

[∫
1
{

α j(sm,ε jm) = 1
}

dG j(ε jm)

]
(5.43)

or:
πi(sm,εim,α−i) = sim βi− εim−∑ j 6=i δi j Pα

j (sm)

= sim βi− εim−Pα
−i(sm)

′δi

(5.44)

where Pα
j (sm)≡

∫
1
{

α j(sm,ε jm) = 1
}

dG j(ε jm) is player j’s probability of entry if she
behaves according to her strategy in α .
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Suppose that players other than i play their respective strategies in α . What is player
i’s best response? Let bi(sm,εim,α−i) be player i’s best response function. This function
is:

bi(sm,εim,α−i) = 1{ πi(sm,εim,α−i)≥ 0 }

= 1
{

εim ≤ sim βi−Pα
−i(sm)

′δi
} (5.45)

Associated with the best response function bi (in the space of strategies), we can define
a best response probability function in the space of probabilities as:

Ψi(sm,Pα
−i) =

∫
1{ bi(sm,εim,α−i) = 1 }dGi(εim)

=
∫

1
{

εim ≤ sim βi−Pα
−i(sm)

′δi
}

dGi(εim)

Gi
(
sim βi−Pα

−i(sm)
′δi
) (5.46)

A Bayesian Nash equilibrium (BNE) in this model is a set of strategy functions α∗

such that, for any player i and any value of (sm,εim), we have that:

α
∗
i (sm,εim) = bi(sm,εim,α

∗
−i) (5.47)

Associated with the set of strategies α∗ we can define a set of choice probability functions
P∗ = {P∗i (sm) : i = 1,2, ...,N} such that P∗i (sm)≡

∫
1{α∗i (sm,εim) = 1}dGi(εim). Note

that these equilibrium choice probabilities are such that, for any player i and any value
of sm:

P∗i (sm) = Ψi(sm,P∗−i)

= Gi
(
sim βi−P∗−i(sm)

′δi
) (5.48)

Therefore, we can define a BNE in terms of strategy functions α∗ or in terms of choice
probabilties P∗. There is a one-to-one relationship between α∗ and P∗. Given α∗,
it is clear that there is only one set of choice probabilities P∗ defined as P∗i (sm) ≡∫

I {α∗i (sm,εim) = 1}dGi(εim). And given P∗, there is only one set of strategies α∗ that
is a BNE and is consistent with P∗. These strategy functions are:

α
∗
i (sm,εim) = 1

{
εim ≤ sim βi−P∗−i(sm)

′
δi
}

(5.49)

Suppose that the distribution of εim is known up to some scale parameter σi. For
instance, suppose that εim ∼ iid N(0,1). Then, we have that equilibrium choice proba-
bilities in market m solve the fixed point mapping in probability space:

P∗i (sm) = Φ

(
sim

βi

σi
−Pα
−i(sm)

′ δi

σi

)
(5.50)

For notational simplicity we will use βi and δi to represent βi/σi and δi/σi, respectively.
We use θ to represent the vector of structural parameters {βi,δi : i = 1,2, ...,N}. To

emphasize that equilibrium probabilities depend on θ we use P(sm,θ) = {Pi(sm,θ) :
i = 1,2, ...,N} to represent a vector of equilibrium probabilities associated with the
exogenous conditions (sm,θ). In general, there are values of (sm;θ) for which the model
has multiple equilibria. This is very common in models where players are heterogeneous,
but we can find also multiple symmetric equilibria in models with homogeneous players,
especially if there is strategic complementarity (that is, δi < 0) as in coordination games.
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Data and identification
Suppose that we observe this game played in M independent markets. We observe
players’ actions and a subset of the common knowledge state variables, xim ⊆ sim. That
is,

Data = {xim,aim : m = 1,2, ...,M; i = 1,2, ...,N} (5.51)

The researcher does not observe private information variables. It is important to dis-
tinguish two cases: (Case I) No common knowledge unobservables, that is, xim = sim;
(Case II) Common knowledge unobservables, that is, sim = (xim,ωim), where ωim is
unobservable.

Case I: No common knowledge unobservables. Suppose that we have a random
sample of markets and we observe:

{xim,aim : m = 1,2, ...,M; i = 1,2, ...,N} (5.52)

We can describe this type of dataset as data with global players as all the firms play
the entry game in the M markets. Let P0 = {P0

i (x) : i = 1,2, ..,N;x ∈ X} be players’
entry probabilities in the population under study. The population is an equilibrium of
the model. That is, for any i and any x ∈ X :

P0
i (x) = Φ

(
xi βi−P0

−i(x)
′
δi
)

(5.53)

From our sample, we can nonparametrically identify the population P0, that is, P0
i (x) =

E(aim|xm = x). Given P0 and the equilibrium conditions in (5.53), can we uniquely
identify θ? Notice that we can write these equations as:

Φ
−1 (P0

i (xm)
)
= xim βi−P0

−i(xm)
′
δi = Zim θi (5.54)

Define Yim ≡Φ−1 (P0
i (xm)

)
; Zim ≡ (xim,P0

−i(xm)); and θ 0
i ≡ (β 0

i ,δ
0
i ). Then,

Yim = Zim θi (5.55)

And we can also write this system as:

E(Z′imYim) = E(Z′imZim) θi (5.56)

It is clear that θi is uniquely identified if E(Z′imZim) is a nonsigular matrix. Note that
if xim contains variables that vary both over markets and over players then we have
exclusion restrictions that imply that E(Z′imZim) is a nonsigular matrix.

I some empirical applications, the dataset includes only local players. That is, firms
that are potential entrants in only one local market. In this case, we have a random
sample of markets and we observe:

{xm,nm : m = 1,2, ...,M} (5.57)

Let P0 = {P0(x) : x ∈ X} be the entry probabilities in the population under study. The
population is an equilibrium of the model, and therefore there is a θ such that for any
x ∈ X :

P0(x) = Φ
(
x β −δ H(P0[x])

)
(5.58)
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From our sample, we can nonparametrically identify the population P0. To see this,
notice that: (1) we can identify the distribution for the number of firms: Pr(nm = n|xm =
x); (2) the model implies that conditional on xm = x the number of firms follows a
Binomial distribution with arguments N and P0(x), and therefore:

Pr(nm = n|xm = x) =
(

n
N

)
P0(x)n (1−P0(x)

)N−n
; (5.59)

and (3) given the previous expression, we can obtain the P0(x) associated with Pr(nm =
n|xm = x). Given P0 and the equilibrium condition P0(x) = Φ

(
x β −δ H(P0[x])

)
, can

we uniquely identify θ? Notice that we can write these equations as:

Ym = xm β −δ H(P0[xm]) = Zm θ (5.60)

where Ym ≡ Φ−1 (P0(xm)
)
; θ ≡ (β ,δ ); and Zm ≡ (xm,H(P0[xm])). And we can also

write this system as:
E(Z′mYm) = E(Z′mZm) θ (5.61)

It is clear θ is uniquely identified if E(Z′mZm) is a nonsingular matrix.

Case II: Common knowledge unobservables. Conditional on xm, players’ actions are
still correlated across markets. This is evidence that ....

In applications where we do not observe the identity of the potential entrants, we
consider a model without firm heterogeneity:

Πim = xm β −δ h
(

1+∑ j 6=i a jm

)
+ εim (5.62)

A symmetric Bayesian Nash equilibrium in this model is a probability of entry P∗(xm;θ)
that solves the fixed point problem:

P∗(xm;θ) = Φ(xm β −δ H(P[xt ,θ ])) (5.63)

where H(P) is the expected value of h
(
1+∑ j 6=i a j

)
conditional on the information

of firm i, and under the condition that the other firms behave according to their entry
probabilities in P. That is,

H(P) = ∑a−i

(
∏ j 6=i Pa j

j
[
1−Pj

]1−a j
)

h
(

1+∑ j 6=i a j

)
(5.64)

and ∑a−i represents the sum over all the possible actions of firms other than i.

Pseudo ML estimation
The goal is to estimate the vector of structural parameters θ 0 given a random sample
{xim,aim}. Equilibrium probabilities are not uniquely determined for some values of
the primitives. However, for any vector of probabilities P, the best response probability
functions Φ

(
xim βi−∑ j 6=i δi j Pj(xm)

)
are always well-defined. We define a pseudo

likelihood function based on best responses to the population probabilities:

QM(θ ,P0) = ∑
M
m=1 ∑

N
i=1 aim lnΦ

(
xim βi−∑ j 6=i δi j P0

j (xm)
)

+ (1−aim) lnΦ

(
−xim βi +∑ j 6=i δi j P0

j (xm)
) (5.65)

It is possible to show that θ uniquely maximizes Q∞(θ ,P0). The PML estimator of θ 0

maximizes QM(θ , P̂0), where P̂0 is a consistent nonparametric estimator of P0. This
estimator is consistent and asymptotically normal. Iterating in this procedure can provide
efficiency gains both in finite samples and asymptotically (Aguirregabiria, 2004).
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5.4.6 Entry and spatial competition
How do market power and profits of a retail firm depend on the location of its store(s)
relative to the location of competitors? How important is spatial differentiation in
explaining market power? These are important questions in the study of competition
in retail markets. Seim (2006) studies these questions in the context of the video rental
industry. Seim’s work is the first study that endogenizes store locations and introduces
spatial competition in a game of market entry.

Seim’s model has important similarities with the static game with single-store firms
and incomplete information that we have presented above. The main difference is that
Seim’s model does not include an explicit model of spatial consumer demand and price
competition. Instead, she considers a ‘semi-structural’ specification of a store’s profit
that captures the idea that the profit of a store declines when competing stores get closer
in geographic space. The specification seems consistent with the idea that consumers
face transportation costs, and therefore spatial differentiation between stores can increase
profits.

From a geographical point of view, a market in this model is a compact set in the
two-dimension Euclidean space. There are L locations in the market where firms can
operate stores. These locations are a set grid points where the grid can be as fine as we
want. We index locations by ` that belongs to the set {1,2, ...,L}.

There are N potential entrants in the market. Each firm makes two decisions: (1)
whether to be active or not in the market; and (2) if it decides to be active, where
to open its store. Note that Seim does not model multi-store firms. Aguirregabiria
and Vicentini (2016) present an extension of Seim’s model with multi-store firms,
endogenous consumer behavior, and dynamics.

Let ai represent the decisions of firm i, such that ai ∈ {0,1, ...,L} and ai = 0 repre-
sents "no entry", and ai = ` > 0 represents entry in location `.

The profit of not being active in the market is normalized to zero. Let Πi` be the
profit of firm i if it has a store in location `. These profits depend on the store location
decisions of the other firms. In particular, Πi` declines with the number of other stores
"close to" location `.

Of course, the specific meaning of being close to location ` is key for the implications
of this model. This should depend on how consumers perceive as close substitutes stores
in different locations. In principle, if we have data on quantities and prices for the
different stores that are active in this city, we could estimate a demand system that would
provide a measures of consumers’ transportation costs and of the degree of substitution
in demand between stores at different locations. Houde (2012) applies this approach
to gasoline markets. However, for this industry we may not have information on prices
and quantities at the store level. Fortunately, store location decisions may contain useful
(and even better) information for identifying the degree of competition between stores at
different locations.

Seim’s specification of the profit function is "semi-structural": it does not model
explicitly consumer behavior,but it is consistent with the idea that consumers face
transportation costs, and therefore spatial differentiation (ceteris paribus) can increase
profits.

For every location ` in the city, Seim defines B rings around the location: a first ring
of radius d1 (say half a mile); a second ring of radius d2 > d1 (say one mile), and so on.
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Figure 5.2: Seim, 2006): Defition of Local Markets

The profit of a store depends on the number of other stores located within each of the B
rings. We expect that closer stores should have stronger negative effects on the store’s
profits. The profit function of an active store at location ` is:

Πi` = x` β +∑
B
b=1 γb Nb`+ξ`+ εi` (5.66)

where β , γ1, γ2, ..., and γB are parameters; x` is a vector of observable exogenous
characteristics that affect profits in location `; Nb` is the number of stores in ring b
around location ` excluding i; ξ` represents exogenous characteristics of location `
that are unobserved to the researcher but common and observable to firms; and εi` is a
component of the profit of firm i in location ` that is private information to this firm. For
the "no entry" choice, Πi0 = εi0.

Assumption. Let εi = {εi` : ` = 0,1, ...,L} be the vector with the private information
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variables of firm i at every possible location. εi is i.i.d. over firms and locations with a
extreme value type 1 distribution.

The information of firm i is (x,ξ ,εi), where x and ξ represent the vectors with x`
and ξ`, respectively, at every location ` in the city. Firm i does not know the ε ′s of
other firms. Therefore, Nb` is unknown to the firm. Firms only know the probability
distribution of Nb`. Therefore, firms maximize expected profits. The expected profit of
firm i is:

Π
e
i` = x` β +∑

B
b=1 γb Ne

b`+ξ`+ εi` (5.67)

where Ne
b` represents E(Nb`|x,ξ ).

A firm’s strategy depends on the variables in its information set. Let αi(x,ξ ,εi) be a
strategy function for firm i such that αi : X×R2→{0,1, ...,L}. Given expectations Ne

b`,
the best response strategy of firm i is:

αi(x,ξ ,εi) = arg max
`∈{0,1,...,L}

{
x` β +∑

B
b=1 γb Ne

b`+ξ`+ εi`

}
(5.68)

Or similarly, αi(x,ξ ,εi) = ` if and only if x` β +∑
B
b=1 γb Ne

b`+ξ`+εi` is greater that x`′
β +∑

B
b=1 γb Ne

b`′+ξ`′+ εi`′ for any other location `′.
From the point of view of other firms that do not know the private information of

firm i but know the strategy function αi(x,ξ ,εi), the strategy of firm i can be described
as a probability distribution: Pi ≡ {Pi` : `= 0,1, ...,L} where Pi` is the probability that
firm i chooses location ` when following her strategy αi(x,ξ ,εi). That is,

Pi` ≡
∫

1{αi(x,ξ ,εi) = `} dF(εi) (5.69)

where F(εi) is the CDF of εi. By construction, ∑
L
`=0 Pi` = 1.

Given expectations Ne
b`, we can also represent the best response strategy of firm i as

a choice probability. A best response probability Pi` is:

Pi` =
∫

1
[
`= argmax

`′

{
x`′ β +∑

B
b=1 γb Ne

b`′+ξ`′+ εi`′
}]

dF(εi) (5.70)

And given the extreme value assumption on εi:

Pi` =
exp
{

x`β +∑
B
b=1 γb Ne

b`+ξ`

}
1+ exp

{
x`′β +∑

B
b=1 γb Ne

b`′+ξ`′
} (5.71)

In this application, there is no information on firms’ exogenous characteristics, and
Seim assumes that the equilibrium is symmetric: αi(x,ξ ,εi) = α(x,ξ ,εi) and Pi` = P̀
for every firm i.

The expected number of firms in ring b around location `, Ne
b`, is determined by the

vector of entry probabilities P≡ {P̀ ′ : `′ = 1,2, ...,L}. That is:

Ne
b` = ∑

L
`′=1 1{`′belongs to ring b around `} P̀ ′ N (5.72)

To emphasize this dependence we use the notation Ne
b`(P).
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Therefore, we can define a (symmetric) equilibrium in this game as a vector of
probabilities P ≡ {P̀ : ` = 1,2, ...,L} that solve the following system of equilibrium
conditions: for every `= 1,2, ...,L:

P̀ =
exp
{

x`β +∑
B
b=1 γb Ne

b`(P)+ξ`

}
1+ exp

{
x`′β +∑

B
b=1 γb Ne

b`′(P)+ξ`′
} (5.73)

By Brower’s Theorem an equilibrium exists. The equilibrium may not be unique. Seim
shows that if the γ parameters are not large and they decline fast enough with b, then the
equilibrium is unique.

Let θ = {N,β ,γ1,γ2, ...,γB} be the vector of parameters of the model. These param-
eters can be estimated even if we have data only from one city. Suppose that the data
set is {x`,n` : `= 1,2, ...,L} for L different locations in a city, where L is large, and n`
represents the number of stores in location `. We want to use these data to estimate θ .
We describe below the estimation with data from only one city. Later, we will see that
the extension to data from more than one city is trivial.

Let x be the vector {x` : `= 1,2, ...,L}. All the analysis is conditional on x, which
is a description of the "landscape" of observable socioeconomic characteristics in the
city. Given x, we can think of {n` : ` = 1,2, ...,L} as one realization of a spatial
stochastic process. In terms of the econometric analysis, this has similarities with
time series econometrics in the sense that a time series is a single realization from a
stochastic process. Despite having just one realization of a stochastic process, we can
estimate consistently the parameters of that process as long as we make some stationarity
assumptions.

This is the model considered by Seim (2006): there is city unobserved heterogeneity
(her dataset includes multiple cities) but within a city there is no unobserved location
heterogeneity.

Conditional on x, spatial correlation/dependence in the unobservable variables ξ`

can generate dependence between the number of firms at different locations {n`}. We
start with the simpler case where there is no unobserved location heterogeneity: that is,
ξ` = 0 for every location `.

Without unobserved location heterogeneity, and conditional on x, the variables n`
are independently distributed, and n` is a random draw from a Binomial random variable
with arguments (N, P̀ (x,θ)), where P̀ (x,θ) are the equilibrium probabilities defined
above where now we explicitly include (x,θ) as arguments.

n` ∼ i.i.d. over ` Binomial(N, P̀ (x,θ)) (5.74)

Therefore,

Pr(n1,n2, ...,nL | x,θ) = ∏
L
`=1 Pr(n` | x,θ)

= ∏
L
`=1

N!
n`(N−n`)!

P̀ (x,θ)n`(1− P̀ (x,θ))N−n`
(5.75)

The log-likelihood function is:

`(θ) =
L

∑
`=1

ln
(

N!
(N−n`)!

)
+n` ln P̀ (x,θ)+(N−n`) ln(1− P̀ (x,θ)) (5.76)
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The maximum likelihood estimator, θ̂ , is the value of θ that maximizes this likelihood.
The parameters of the model, including the number of potential entrants N, are identified.
Partly, the identification comes from functional form assumptions. However, there
are also exclusion restrictions that can provide identification even if some of these
assumptions are relaxed. In particular, for the identification of β and γb, the model
implies that Ne

b` depends on socioeconomic characteristics at locations other than ` (that
is, x`′ for `′ 6= `). Therefore, Ne

b` has sample variability that is independent of x` and this
implies that the effects of x` and Ne

b` on a firm’s profit can be identified even if we relax
the linearity assumption.1

Now, let’s consider the model where ξ` 6= 0. A simple (but restrictive approach)
is to assume that there is a number R of "regions" or districts in the city, where the
number of regions R is small relative to the number of locations L, such that all the
unobserved heterogeneity is between regions but there is no unobserved heterogeneity
within regions. Under this assumption, we can control for unobserved heterogeneity by
including region dummies. In fact, this case is equivalent to the previous case without
unobserved location heterogeneity with the only difference being that the vector of
observables x` now includes region dummies.

A more interesting case is when the unobserved heterogeneity is at the location level.
We assume that ξ = {ξ` : ` = 1,2, ...,L} is independent of x and it is a random draw
from a spatial stochastic process. The simplest process is when ξ` is i.i.d. with a known
distribution, say N(0,σ2

ξ
) where the zero mean is without loss of generality. However,

we can allow for spatial dependence in this unobservable. For instance, we may consider
a Spatial autoregressive process (SAR):

ξ` = ρ ξ̄
C
` +u` (5.77)

where u` is i.i.d. N(0,σ2
u ), ρ is a parameter, and ξ̄C

` is the mean value of ξ at the C
locations closest to location `, excluding location ` itself. To obtain a random draw of
the vector ξ from this stochastic process it is convenient to write the process in vector
form:

ξ = ρ WC
ξ +u (5.78)

where ξ and u are L×1 vectors, and WC is a L×L weighting matrix such that every row,
say row `, has values 1/C at positions that correspond to locations close to location `, and
zeroes otherwise. Then, we can write ξ = (I−ρ WC)−1u. First, we take independent
draws from N(0,σ2

u ) to generate the vector u, and then we pre-multiply that vector by
(I−ρ WC)−1 to obtain ξ .

Note that now the vector of structural parameters includes the parameters in the
stochastic process of ξ , that is, σu and ρ .

Now, conditional on both x and ξ , the variables n` are independently distributed, and
n` is a random draw from Binomial random variable with arguments (N, P̀ (x,ξ ,θ)),
where P̀ (x,ξ ,θ) are the equilibrium probabilities. Importantly, for different values of ξ

1Xu (2018) studies the asymptotics of this type of estimator. His model is a bit different to Seim’s
model because players and locations are interchangeable.
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we have different equilibrium probabilities. Then,

Pr(n1,n2, ...,nL | x,θ) =
∫

Pr(n1,n2, ...,nL | x,ξ ,θ) dG(ξ )

=
∫ [

∏
L
`=1 Pr(n` | x,ξ ,θ)

]
dG(ξ )

= ∏
L
`=1

N!
n`(N−n`)!∫ [

∏
L
`=1 P̀ (x,ξ ,θ)n`(1− P̀ (x,ξ ,θ))N−n`

]
dG(ξ )

(5.79)
And the log-likelihood function is:

`(θ) =
L

∑
`=1

ln
(

N!
(N−n`)!

)
(5.80)

(5.81)

+ ln
(∫ [

∏
L
`=1 P̀ (x,ξ ,θ)n`(1− P̀ (x,ξ ,θ))N−n`

]
dG(ξ )

)
(5.82)

The maximum likelihood estimator is defined as usual.
In their empirical study on competition between big-box discount stores in the

US (that is, Kmart, Target and Walmart), Zhu and Singh (2009) extend Seim’s entry
model by introducing firm heterogeneity. The model allows competition effects to be
asymmetric across three different chains. For example, the model can incorporate a
situation where the impact on the profits of Target from a Walmart store 10 miles away
is stronger than the impact from a Kmart store located 5 miles away. The specification
of the profit function of a store of chain i at location ` is:

πi` = x` βi +∑
j 6=i

B

∑
b=1

γbi j nb` j +ξ`+ εi` (5.83)

where nb` j represents the number of stores that chain j has within the b− ring around
location `. Despite the paper studying competition between retail chains, it still makes
similar simplifying assumptions as in Seim’s model that ignores important aspects of
competition between retail chains. In particular, the model ignores economies of density,
and firms’ concerns about cannibalization between stores of the same chain. It assumes
that the entry decisions of a retail chain are made independently at each location. Under
these assumptions, the equilibrium of the model can be described as a vector of N ∗L
entry probabilities, one for each firm and location, that solves the following fixed point
problem:

Pi` =
exp
{

x`βi +∑ j 6=i∑
B
b=1γbi j N

[
∑

L
`′=1Db

``′ Pj`′
]
+ξ`

}
1+∑

L
`′=1 exp

{
x`′βi +∑ j 6=i∑

B
b=1γbi j N

[
∑

L
`
′′
=1Db

`′`′′ Pj`′′
]
+ξ`′

} (5.84)

The authors find substantial heterogeneity in the competition effects between these three
big-box discount chains, and in the pattern of how these effects decline with distance.
For instance, Walmart’s supercenters have a very substantial impact even at a large
distance.
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Datta and Sudhir (2013) estimate an entry model of grocery stores that endogenizes
both location and product type decisions. They are interested in evaluating the effects
of zoning restrictions on market structure. Zoning often reduces firms’ ability to avoid
competition by locating remotely each other. Theory suggests that in such a market firms
have a stronger incentive to differentiate their products. Their estimation results support
this theoretical prediction. The authors also investigate different impacts of various
types of zoning (‘centralized zoning’, ‘neighborhood zoning’, and ‘outskirt zoning’) on
equilibrium market structure.

5.4.7 Multi-store firms
As we have mentioned above, economies of density and cannibalization are potentially
important factors in store location decisions of retail chains. A realistic model of
competition between retail chains should incorporate this type of spillover effects. Taking
into account these effects requires a model of competition between multi-store firms
similar to the one in section 2.1.2. The model takes into account the joint determination
of a firm’s entry decisions at different locations. A firm’s entry decision is represented
by the L-dimension vector ai ≡ {ai` : `= 1,2, . . . ,L}, with ai` ∈ {0,1}, such that the set
of possible actions contains 2L elements. For instance, Jia (2008) studies competition
between two chains (Walmart and Kmart) over 2065 locations (US counties). The
number of possible decisions of a retail chain is 22065. Without further restrictions,
computing firms’ best responses is intractable.

In her paper, Jia therefore imposes restrictions on the specification of firms’ profits
that imply the supermodularity of the game and facilitate substantially the computation
of an equilibrium. Suppose that we index the two firms as i and j. The profit function of
a firm, say i, is Πi =Vi(ai,a j)−ECi(ai), where Vi(ai,a j) is the variable profit function
such that:

Vi(ai,a j) =
L

∑
`=1

ai`
[
x` βi + γi j a j`

]
(5.85)

x` is a vector of market/location characteristics. γi j is a parameter that represents the
effect on the profit of firm i of competition from a store of chain j. ECi(ai) is the entry
cost function such that:

ECi(ai) =
L

∑
`=1

ai`

[
θ

EC
i` −

θ ED

2

L

∑
`′=1

ai`′

d``′

]
(5.86)

θ EC
i` is the entry cost that firm i would have in location ` in the absence of economies

of density (that is, if it were a single-store firm); θ ED is a parameter that represents the
magnitude of the economies of density and is assumed to be positive; and d``′ is the
distance between locations ` and `′.

Jia further assumes that the entry cost θ EC
i` consists of three components:

θ
EC
i` = θ

EC
i + (1−ρ) ξ`+ εi`, (5.87)

where θ EC
i is chain-fixed effects, ρ is a scale parameter, ξ` is a location random effect,

and εi` is a firm-location error term. Both ξ` and εi` are i.i.d. draws from the standard
normal distribution and known to all the players when making decisions. To capture
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economies of density, the presence of stores from the same firm at other locations is
weighted by the inverse of the distance between locations, 1/d``′ . This term is multiplied
by one-half to avoid double counting in the total entry cost of the retail chain.

The specification of the profit function in equations (5.85) and () imposes some im-
portant restrictions. Under this specification, locations are interdependent only through
economies of density. In particular, there are no cannibalization effects between stores of
the same chain at different locations. Similarly, there is no spatial competition between
stores of different chains at different locations. In particular, this specification ignores
the spatial competition effects between Kmart, Target, and Walmart that Zhu and Singh
(2009) find in their study. The specification also rules out cost savings that do not depend
on store density such as lower wholesale prices owing to strong bargaining power of
chain stores. The main motivation for these restrictions is to have a supermodular game
that facilitates very substantially the computation of an equilibrium, even when the
model has a large number of locations.

In a Nash equilibrium of this model, the entry decisions of a firm, say i, should
satisfy the following L optimality conditions:

ai` = 1

{
x` βi + γi j a j`−θ

EC
i` +

θ ED

2

L

∑
`′=1

ai`′

d``′
≥ 0

}
(5.88)

These conditions can be interpreted as the best response of firm i in location ` given the
other firm’s entry decisions, and given also firm i’s entry decisions at locations other
than `. We can write this system of conditions in a vector form as ai = bri(ai,a j). Given
a j, a fixed point of the mapping bri(.,a j) is a (full) best response of firm i to the choice
a j by firm j. With θ ED > 0 (that is, economies of density), it is clear from equation
(9.31) that the mapping bri is increasing in ai. By Topkis’s theorem, this increasing
property implies that: (1) the mapping has at least one fixed point solution; (2) if it has
multiple fixed points they are ordered from the lowest to the largest; and (3) the smallest
(largest) fixed point can be obtained by successive iterations in the mapping bri using
as starting value ai = 0 (ai = 1). Given these properties, Jia shows that the following
algorithm provides the Nash equilibrium that is most profitable for firm i:

Step [firm i]: Given the lowest possible value for a j = 0, that is, ai = (0,0, . . .0), we
apply successive iterations with respect to ai in the fixed point mapping bri(.,a j = 0)
starting at ai = (1,1, . . .1). These iterations converge to the largest best response of firm
i, that we denote by a(1)i = BR(High)

i (0).

Step [firm j]: Step [j]: Given a(1)i , we apply successive iterations with respect to a j in
the fixed point mapping br j(.,a

(1)
i ) starting at a j = 0. These iterations converge to the

lowest best response of firm j, that we denote by a(1)j = BR(Low)
j (a(1)i ).

We keep iterating in Step [firm i] and Step [firm j] until convergence. At every iteration,
say k, given a(k−1)

j we first apply (Step [i]) to obtain a(k)i =BR(High)
i (a(k−1)

j ), and then we

apply (Step [j]) to obtain a(k)j = BR(Low)
j (a(k)i ). The supermodularity of the game ensures

the convergence of this process and the resulting fixed point is the Nash equilibrium
that most favors firm i. Jia combines this solution algorithm with a simulation of
unobservables to estimate the parameters of the model using the method of simulated
moments (MSM).
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In his empirical study of convenience stores in Okinawa Island of Japan, Nishida
(2015) extends Jia’s model in two directions. First, a firm is allowed to open multiple
stores (up to four) in the same location. Second, the model explicitly incorporates some
form of spatial competition: a store’s revenue is affected not only by other stores in the
same location but also by those in adjacent locations.

Although the approach used in these two studies is elegant and useful, its use in other
applications is somewhat limited. First, supermodularity requires that the own network
effect on profits is monotonic, that is, the effect is either always positive (θ ED > 0) or
always negative (θ ED < 0). This condition rules out situations where the net effect of
cannibalization and economies of density varies across markets. Second, the number
of (strategic) players must be equal to two. For a game to be supermodular, players’
strategies must be strategic complements. In a model of market entry, players’ strategies
are strategic substitutes. However, when the number of players is equal to two, any
game of strategic substitutes can be transformed into one of strategic complements by
changing the order of strategies of one player (for example, use zero for entry and one
for no entry). This trick no longer works when we have more than two players.

Ellickson, Houghton, and Timmins (2013, hereafter EHT) propose an alternative
estimation strategy and apply it to data of US discount store chains. Their estimation
method is based on a set of inequalities that arise from the best response condition of a
Nash equilibrium. Taking its opponents’ decisions as given, a chain’s profit associated
with its observed entry decision must be larger than the profit of any alternative entry
decision. EHT consider particular deviations that relocate one of the observed stores to
another location.

Let a∗i be the observed vector of entry decisions of firm i, and suppose that in
this observed vector the firm has a store in location ` but not in location `′. Consider
the alternative (hypothetical) choice a`→`′

i that is equal to a∗i except that the store in
location ` is closed and relocated to location `′. Revealed preference implies that
πi(a∗i ) ≥ πi(a`→`′

i ). EHT further simplify this inequality by assuming that there are
no economies of scope or density (for example, θ ED = 0), and that there are no firm-
location-specific factors unobservable to the researcher, that is, εi` = 0. Under these two
assumptions, the inequality above can be written as the profit difference between two
locations:

[x`− x`′]βi +∑
j 6=i

γi j

[
a∗j`−a∗j`′

]
+[ξ`−ξ`′]≥ 0 (5.89)

Now, consider another chain, say k, that has an observed choice a∗k with a store in
location `′ but not in location `. For this chain, we consider the opposite (hypothetical)
relocation decision from firm i above: the store in location `′ is closed and a new store is
open in location `. For this chain, revealed preference implies that

[x`′− x`]βk + ∑
j 6=k

γk j

[
a∗j`−a∗j`′

]
+[ξ`′−ξ`]≥ 0 (5.90)

Summing up the inequalities for firms i and k, we generate an inequality that is free from
location fixed effects ξ .

[x`′− x`] [βi−βk]+∑
j 6=i

γi j

[
a∗j`−a∗j`′

]
+ ∑

j 6=k
γk j

[
a∗j`−a∗j`′

]
≥ 0 (5.91)



5.5 Estimation 187

EHT construct a number of inequalities of this type and obtain estimates of the
parameters of the model by using a smooth maximum score estimator (Manski, 1975;
Horowitz, 1992; Fox, 2007).

Unlike the lattice theory approach of Jia and Nishida, the approach applied by EHT
can accommodate more than two players, allows the researcher to be agnostic about
equilibrium selections, and is robust to the presence of unobserved market heterogeneity.
Their model, however, rules out any explicit interdependence between stores in different
locations, including spatial competition, cannibalization and economies of density.
Although incorporating such inter-locational interdependencies does not seem to cause
any fundamental estimation issue, doing so can be difficult in practice as it considerably
increases the amount of computation. Another possible downside of this approach
is the restriction it imposes on unobservables. The only type of structural errors that
this model includes are the variables ξ` that are common for all firms. Therefore, to
accommodate observations that are incompatible with the inequalities in EHT model, the
model requires non-structural errors, which may be interpreted as firms’ optimization
errors.

5.5 Estimation
The estimation of games of entry and spatial competition in retail markets should deal
with some common issues in the econometrics of games and dynamic structural models.
Here we do not try to present a detailed discussion of this econometric literature. Instead,
we provide a brief description of the main issues, with an emphasis on aspects that are
particularly relevant for empirical applications in retail industries.

5.5.1 Multiple Equilibria
Entry models with heterogeneous firms often generate more than one equilibrium for a
given set of parameters. Multiple equilibria pose challenges to the researcher for two
main reasons. First, standard maximum likelihood estimation no longer works because
the likelihood of certain outcomes is not well defined without knowing the equilibrium
selection mechanism. Second, without further assumptions, some predictions or counter-
factual experiments using the estimated model are subject to an identification problem.
These predictions depend on the type of equilibrium that is selected in a hypothetical
scenario not included in the data.

Several approaches have been proposed to estimate an entry game with multiple
equilibria. Which method works the best depends on assumptions imposed in the model,
especially its information structure. In a game of complete information, there are at
least four approaches. The simplest approach is to impose some particular equilibrium
selection rule beforehand and estimate the model parameters under this rule. For
instance, Jia (2008) estimates the model of competition between big-box chains using
the equilibrium that is most preferable to K-mart. She also estimates the same model
under alternative equilibrium selection rules to check for the robustness of some of her
results. The second approach is to construct a likelihood function for some endogenous
outcomes of the game that are common across all the equilibria. Bresnahan and Reiss
(1991) estimate their model by exploiting the fact that, in their model, the total number
of entrants is unique in all the equilibria.
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A third approach is to make use of inequalities that are robust to multiple equilibria.
One example is the profit inequality approach of EHT, which we described above.
Another example is the method of moment inequality estimators proposed by Ciliberto
and Tamer (2009). They characterize the lower and upper bounds of the probability
of a certain outcome that are robust to any equilibrium selection rule. Estimation of
structural parameters relies on the set of probability inequalities constructed from these
bounds. In the first step, the researcher nonparametrically estimates the probabilities
of equilibrium outcomes conditional on observables. The second step is to find a set of
structural parameters such that the resulting probability inequalities are most consistent
with the data. The application of Ciliberto and Tamer’s approach to a spatial entry model
may not be straightforward. In models of this class, the number of possible outcomes
(that is, market structures) is often very large. For example, consider a local market
consisting of ten sub-blocks. When two chains decide whether they enter into each of
these sub-blocks, the total number of possible market structures is 210. Such a large
number of possible outcomes makes it difficult to implement this approach for two
reasons. The first stage estimate is likely to be very imprecise even when a sample size is
reasonably large. The second stage estimation can be computationally intensive because
one needs to check, for a given set of parameters, whether each possible outcome meets
the equilibrium conditions or not.

A fourth approach proposed by Bajari, Hong, and Nekipelov (2010) consists in the
specification of a flexible equilibrium selection mechanism and in the joint estimation of
the parameters in this mechanism and the structural parameters in firms’ profit functions.
Together with standard exclusion restrictions for the identification of games, the key
specification and identification assumption in this paper is that the equilibrium selection
function depends only on firms’ profits.

In empirical games of incomplete information, the standard way to deal with multiple
equilibria is to use a two-step estimation method (Aguirregabiria and Mira 2007); Bajari,
Hong, and Ryan 2010). In the first step, the researcher estimates the probabilities of firms’
entry conditional on market observables (called policy functions) in a nonparametric way,
for example, a sieves estimator. The second step is to find a set of structural parameters
that are most consistent with the observed data and these estimated policy functions. A
key assumption for the consistency of this approach is that, in the data, two markets
with the same observable characteristics do not select different types of equilibria, that
is, same equilibria conditional on observables. Without this assumption, the recovered
policy function in the first stage would be a weighted sum of firms’ policies under
different equilibria, making the second-stage estimates inconsistent. Several authors
have recently proposed extensions of this method to allow for multiplicity of equilibria
in the data for markets with the same observable characteristics.

Identification and multiple equilibria

Tamer (2003) showed that all the parameters of the previous entry model with N = 2
is (point) identified under standard exclusion restrictions, and that multiple equilibria
do not play any role in this identification result. Tamer’s result can be extended to any
number N of players, as long as we have the appropriate exclusion restrictions.

More generally, equilibrium uniqueness is neither a necessary nor a sufficient condi-
tion for the identification of a model (Jovanovic, 1989). To see this, consider a model
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with a vector of structural parameters θ ∈Θ, and define the mapping C(θ) from the set
of parameters Θ to the set of measurable predictions of the model. For instance, C(θ)
may contain the probability distribution of players’ actions conditional on exogenous
variables Pr(a1,a2, ...,aN |x,θ).

Multiple equilibria implies that the mapping C is a correspondence. A model is not
point-identified if at the observed data (say P0 = Pr(a1,a2, ...,aN |x,θ) for any vector
of actions and x′s) the inverse mapping C−1 is a correspondence. In general, C being a
function (that is, equilibrium uniqueness) is neither a necessary nor a sufficient condition
for C−1 being a function (that is, for point identification).

Figure 5.3: Multiple Equilibria

To illustrate the identification of a game with multiple equilibria, we start with a
simple binary choice game with identical players and where the equilibrium probability
P is implicitly defined as the solution to the condition P = Φ(−1.8+θ P), where θ

is a structural parameter, and Φ(.) is the CDF of the standard normal. Suppose that
the true value θ0 is 3.5. It is possible to verify that the set of equilibria associated
with θ0 is C(θ0) = { P(A)(θ0) = 0.054, P(B)(θ0) = 0.551, and P(C)(θ0) = 0.924}. The
game has been played M times and we observe players’ actions for each realization
of the game {aim : i,m}. Let P0 be the population probability Pr(aim = 1). Without
further assumptions the probability P0 can be estimated consistently from the data. For
instance, a simple frequency estimator P̂0 = (NM)−1

∑i,m aim is a consistent estimator
of P0. Without further assumption, we do not know the relationship between population
probability P0 and the equilibrium probabilities in C(θ0). If all the sample observations
come from the same equilibrium, then P0 should be one of the points in C(θ0). However,
if the observations come from different equilibria in C(θ0), then P0 is a mixture of
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Figure 5.4: Multiple Equilibria versus Identification

the elements in C(θ0). To obtain identification, we can assume that every observation
in the sample comes from the same equilibrium. Under this condition, since P0 is an
equilibrium associated with θ0, we know that P0 = Φ(−1.8+θ0 P0). Given that Φ is an
invertible function, we have that θ0 = (Φ−1 (P0)+1.8)/P0. Provided that P0 is not zero,
it is clear that θ0 is point identified regardless of the existence of multiple equilibria in
the model.

5.5.2 Unobserved market heterogeneity
Some market characteristics affecting firms’ profits may not be observable to the re-
searcher. For example, consider local attractions that spur the demand for hotels in a
particular geographic location. Observing and controlling for all the relevant attractions
are often impossible to the researcher. This demand effect implies that markets with
such attractions should have more hotels than those without such attractions but with
equivalent observable characteristics. Therefore, without accounting for this type of
unobservables, researchers may wrongly conclude that competition boosts profits, or
underestimate the negative effect of competition on profits.

Unobserved market heterogeneity usually appears as an additive term (ω`) in the
firm’s profit function (πi`) where ω` is a random effect from a distribution known up to
some parameters. The most common assumption (for example, Seim 2006; Zhu and
Singh 2009; Datta and Sudhir 2013) is that these unobservables are common across
locations in the same local market (that is, ω` = ω for all `). Under this assumption,
the magnitude of unobserved market heterogeneity matters in terms of whether the firm
enters some location in this market, but not the location itself. Orhun (2013) relaxes this
assumption by allowing unobserved heterogeneity to vary across locations in the same
market.
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In a game of complete information, accommodating unobserved market hetero-
geneity does not require a fundamental change in the estimation process. In a game
of incomplete information, however, unobserved market heterogeneity introduces an
additional challenge. Consistency of the two-step method requires that the initial non-
parametric estimator of firms’ entry probabilities in the first step should account for
the presence of unobserved market heterogeneity. A possible solution is to use a finite
mixture model. In this model, every market’s ω` is drawn from a distribution with
finite support. Aguirregabiria and Mira (2007) show how to accommodate such market-
specific unobservables into their nested pseudo likelihood (NPL) algorithm. arcidiacono
and Miller (2011) propose an expectation-maximization (EM) algorithm in a more
general environment. An alternative way to deal with this problem is to use panel data
with a reasonably long time horizon. In that way, we can incorporate market fixed effects
as parameters to be estimated. This approach is popular when estimating a dynamic
game (for example, Ryan 2012; Suzuki 2013). A necessary condition to implement this
approach is that every market at least observes some entries during the sample period.
Dropping markets with no entries from the sample may generate a selection bias.

5.5.3 Computation

The number of geographic locations, L, introduces two dimensionality problems in the
computation of firms’ best responses in games of entry with spatial competition. First, in
a static game, a multi-store firm’s set of possible actions includes all the possible spatial
configurations of its store network. The number of alternatives in this set is equal to 2L,
and this number is extremely large even with modest values of L, such as a few hundred
geographic locations. Without further assumptions, the computation of best responses
becomes impractical. This is an important computational issue that has deterred some
authors from accounting for multi-store retailers in their spatial competition models,
for example, Seim (2006), or Zhu and Singh (2009), among many others. As we have
described in section 2.2.5, two approaches that have been applied to deal with this issue
are (1) to impose restrictions that guarantee supermodularity of the game (that is, only
two players, no cannibalization effects), and (2) to avoid the exact computation of best
responses and use instead inequality restrictions implied by these best responses.

Looking at the firms’ decision problem as a sequential or dynamic problem helps
also to deal with the dimensionality in the space of possible choices. In a given period
of time (for example, year, quarter, or month), we typically observe that a retail chain
makes small changes in its network of stores, that is, it opens only a few new stores, or
closes only a few existing stores. Imposing these small changes as a restriction on the
model implies a very dramatic reduction in the dimension of the action space such that
the computation of best responses becomes practical, at least in a ‘myopic’ version of
the sequential decision problem.

However, to fully take into account the sequential or dynamic nature of a firm’s
decision problem, we also need to acknowledge that firms are forward-looking. In
the firm’s dynamic programming problem, the set of possible states is equal to all the
possible spatial configurations of a store network, and it has 2L elements. Therefore, by
going from a static model to a dynamic forward-looking model, we have just ‘moved’
the dimensionality problem from the action space into the state space. Recent papers
propose different approaches to deal with this dimensionality problem in the state space.
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arcidiacono et al. (2013) present a continuous-time dynamic game of spatial competition
in a retail industry and propose an estimation method of this model. The continuous-
time assumption eliminates the curse of dimensionality associated with integration
over the state space. Aguirregabiria and Vicentini (2016) propose a method of spatial
interpolation that exploits the information provided by the (indirect) variable profit
function.

5.6 Further topics
Spillovers between different retail sectors. Existing applications of games of entry and
spatial competition in retail markets concentrate on a single retail industry. However,
there are also interesting spillover effects between different retail industries. Some of
these spillovers are positive, such as good restaurants making a certain neighborhood
more attractive for shopping. There are also negative spillovers effects through land
prices. Retail sectors with high value per unit of space (for example, jewelry stores)
are willing to pay higher land prices than supermarkets that have low markups and
are intensive in the use of land. The consideration and measurement of these spillover
effects are interesting in and of themselves, and they can help to explain the turnover
and reallocation of industries in different parts of a city. Relatedly, endogenizing land
prices would also open the possibility of using these models for the evaluation of specific
public policies at the city level.

Richer datasets with store level information on prices, quantities, inventories. The
identification and estimation of competition effects based mainly on data of store
locations have been the rule more than the exception in this literature. This approach
typically requires strong restrictions in the specification of demand and variable costs.
The increasing availability of datasets with rich information on prices and quantities at
the product and store level should create a new generation of empirical games of entry
and spatial competition that relax these restrictions. Also, data on store characteristics
such as product assortments or inventories will enable the introduction of these important
decisions as endogenous variables in empirical models of competition between retail
stores.

Measuring spatial pre-emption. So far, all the empirical approaches to measure
the effects of spatial pre-emption are based on the comparison of firms’ actual entry
with firms’ behavior in a counterfactual scenario characterized by a change in either
(1) a structural parameter (for example, a store exit value), or (2) firms’ beliefs (for
example, a firm believes that other firms’ entry decisions do not respond to this firm’s
entry behavior). These approaches suffer from the serious limitation in which they do
not only capture the effect of pre-emption, but also other effects. The development of
new approaches to measure the pure effect of pre-emption would be a methodological
contribution with relevant implications in this literature.

Geography. Every local market is different in its shape and its road network. These
differences may have important impacts on the resulting market structure. For example,
the center of a local market may be a quite attractive location for retailers when all
highways go through there. However, it may not be the case anymore when highways
encircle the city center (for example, Beltway in Washington DC). These differences may
affect retailers’ location choices and the degree of competition in an equilibrium. The
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development of empirical models of competition in retail markets that incorporate, in a
systematic way, these idiosyncratic geographic features will be an important contribution
in this literature.


