Discussion Board Questions:

Week 1

Imagine a right triangle with area $25m^2$ How would you express the hypotenuse h as a function of its perimeter P?

Area of a triangle:
$$\frac{1}{2}(base)(height) = 25$$

 $\frac{1}{2}ba = 25 \rightarrow ba = 50$

Perimeter of a triangle is P = a + b + h

$$P-h=a+b$$

Squaring both sides:

$$(P-h)^{2} = (a+b)^{2}$$

$$p^{2} + 2Ph + h^{2} = a^{2} + 2ab + b^{2}$$

$$p^{2} + 2Ph + h^{2} = 2(50) + h^{2}$$

Note that $h^2 = a^2 + b^2$ from Pythagorean theorem

$$p^{2} + 2Ph + h^{2} = 100 + h^{2}$$
$$p^{2} + 2Ph = 100$$
$$h(P) = \frac{100 - P^{2}}{2P}$$

<u>Week 2 –</u>

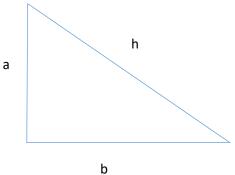
Solve the inequality for x, assuming that a, b, and c are positive constants: $a(bx - c) \ge bc$

$$abx - ac - bc \ge 0$$
$$abx - c(a + b) \ge 0$$
$$abx \ge c(a + b)$$
$$x \ge \frac{c(a + b)}{ab}$$
$$\left[\frac{c(a + b)}{ab}, \infty\right)$$

<u>Week 3 –</u>

Show that $f(x) = \ln(x + \sqrt{x^2 + 1})$ is an odd function. What would the inverse of this function be?

$$f(-x) = \ln(-x + \sqrt{(-x)^2 + 1})$$



$$\ln(-x + \sqrt{(x)^2 + 1})$$

We could rationalize the numerator to get

$$\ln[-x + \sqrt{(x)^{2} + 1} \times \frac{x + \sqrt{(x)^{2} + 1}}{x + \sqrt{(x)^{2} + 1}}]$$
$$\ln[\frac{-x^{2} + x^{2} + 1}{x + \sqrt{x^{2} + 1}}]$$
$$\ln\left(\frac{1}{x + \sqrt{x^{2} + 1}}\right)$$
$$\left(x + \sqrt{x^{2} + 1}\right)^{-1} = -\ln\left(x + \sqrt{x^{2} + 1}\right) = -f(x)$$

This is an odd function

 $x = \ln(y + \sqrt{y^2 + 1})$

In finding the inverse, let $y = \ln(x + \sqrt{x^2 + 1})$

ln

$$e^{x} = y + \sqrt{y^{2} + 1}$$

$$e^{x} - y = \sqrt{y^{2} + 1}$$

$$(e^{x} - y)^{2} = \left(\sqrt{y^{2} + 1}\right)^{2}$$

$$e^{2x} - 2ye^{x} + y^{2} = y^{2} + 1$$

$$e^{2x} - 2ye^{x} = 1$$

$$\frac{e^{2x} - 1}{2e^{x}} = y$$

1

<u>Week 4 –</u>

Show that $\tan\left(\frac{u}{2}\right) = \frac{1-\cos u}{\sin u}$ Method 1: We know that $\sin^2 a = \frac{1-\cos 2a}{2}$, therefore $\sin^2\left(\frac{u}{2}\right) = \frac{1-\cos u}{2} \rightarrow 2\sin^2\left(\frac{u}{2}\right) = 1 - \cos u$ $\sin u = 2\sin\frac{u}{2}\cos\frac{u}{2}$

Putting it all together, we get:

$$\frac{2\sin^2\frac{u}{2}}{2\sin\frac{u}{2}\cos\frac{u}{2}} = \frac{\sin\frac{u}{2}}{\cos\frac{u}{2}} = \tan(\frac{u}{2})$$

Method 2: We know that $\sin^2 a = \frac{1 - \cos 2a}{2}$, therefore $\sin^2 \left(\frac{u}{2}\right) = \frac{1 - \cos u}{2} \rightarrow \sin \left(\frac{u}{2}\right) = \pm \sqrt{\frac{1 - \cos u}{2}}$

Likewise, $cos\left(\frac{u}{2}\right) = \pm \sqrt{\frac{1+\cos u}{2}}$

$$\tan(\frac{u}{2}) = \pm \sqrt{\frac{1 - \cos u}{1 + \cos u}}$$
$$\tan(\frac{u}{2}) = \pm \sqrt{\frac{1 - \cos u}{1 + \cos u}} \times \frac{1 - \cos u}{1 - \cos u}$$
$$\tan(\frac{u}{2}) = \pm \sqrt{\frac{(1 - \cos u)^2}{1 - \cos^2 u}}$$
$$\tan(\frac{u}{2}) = \pm \frac{|1 - \cos u|}{|\sin u|}$$

Now, $1 - \cos u$ is nonnegative for all values of u. it is also true that $\sin u$ and $\tan \frac{u}{2}$ always have the same sign. It follows that

$$\tan(\frac{u}{2}) = \frac{1 - \cos u}{\sin u}$$