Online Mathematics Preparedness Course
 Quiz 1 - Solutions

1. The set of whole numbers included in the interval $(-1,1) U[2,7]$ are $0,2,3,4,5,6,7$ (note that the open brackets indicate that the numbers -1 and 1 are not be included.
2. For what values of a does the following polynomial $x^{2}-16 x+a$ have no roots?

We need to find the discriminant $D=b^{2}-4 a c$ as that determines how many roots a quadratic equation can have. Having $D<0$ would mean that there would be no solutions

$$
\begin{gathered}
D<0 \rightarrow(-16)^{2}-4(1)(a)<0 \\
256-4 a<0 \\
256<4 a \\
\frac{256}{4}<a \\
64<a \\
(64, \infty)
\end{gathered}
$$

3. $\frac{x^{2}+1}{x+1}$ does not simplify to x
4. Define $|a x+b|$ as an absolute value function

We have $|a x+b|= \begin{cases}a x+b & \text { if } a x+b \geq 0 \rightarrow x \geq-\frac{b}{a} \\ -(a x+b) & \text { if } a x+b<0 \rightarrow x<-\frac{b}{a}\end{cases}$
5. Let $A=[-6,1), B=Z, C=\{0\}$, and $D=[-5,5]$. Express $(A \cap D) \cap C$ in an interval notation.

$$
(A \cap D)=[-5,1)
$$

$(A \cap D) \cap C=[-5,1) \cap\{0\}=\{0\}$
6. Given the inequality, $|x-3|+|x+2|<11$, pick the option that includes all the intervals that are of interest
We have $|x-3|= \begin{cases}x-3 & \text { if } x \geq 3 \\ -(x-3) & \text { if } x<3\end{cases}$

We have $|x+2|= \begin{cases}x+2 & \text { if } x \geq-2 \\ -(x+2) & \text { if } x<-2\end{cases}$
Intervals of interest are: $(-\infty,-2),(-2,3),(3, \infty)$
7. Given the inequality, $|x-3|+|x+2|<11$, give the solution set that satisfies the inequality

$(-\infty,-2)$	$(-2,3)$	$(3, \infty)$
$-(x-3)-(x+2)<11$	$-(x-3)+(x+2)<11$	$(x-3)+(x+2)<11$
$-x+3-x-2<11$	$-x+3+x+2<11$	$x-3+x+2<11$
$-2 x+1<11$	$5<11$	$2 x-1<11$
$-2 x<10$	True mathematically	$2 x<12$
$x>-5$		$x<6$
Okay, as it is within the given		Works
interval		

Combining the three cases we see that the inequality is satisfied when $-5<x<6$.
The solution set is $(-5,6)$
8. Factor: $3 x^{\frac{3}{2}}-9 x^{\frac{1}{2}}+6 x^{-\frac{1}{2}}$

$$
3 x^{\frac{1}{2}}\left(x-3+\frac{2}{x}\right)
$$

9. Solve: $2 x(4-x)^{-\frac{1}{2}}-3 \sqrt{4-x}=0$

$$
\begin{gathered}
2 x(4-x)^{-\frac{1}{2}}-3(4-x)^{\frac{1}{2}}=0 \\
(4-x)^{-\frac{1}{2}}(2 x-3(4-x))=0 \\
(4-x)^{-\frac{1}{2}}(2 x-12+3 x)=0 \\
(4-x)^{-\frac{1}{2}}(5 x-12)=0 \\
5 x=12 \\
x=\frac{12}{5}, \text { provided that } x \neq 4
\end{gathered}
$$

10. Simplify:

$$
\begin{gathered}
\frac{x^{2}}{x-3}-\frac{-2 x+15}{x-3} \\
\frac{x^{2}+2 x-15}{x-3} \\
\frac{(x-3)(x+5)}{x-3}=x+5, x \neq 3
\end{gathered}
$$

11. In factoring $-4 x+12 x^{2}+3$, the product and sum respectively are: $36,-4$

It is integral that you rearrange the polynomial in $a x^{2}+b x+c$, as product is $a \times c$, and sum is b
12. Given the expression $x^{5} y^{2}-x y^{6}$, the fully factored version is

$$
x^{5} y^{2}-x y^{6}=x y^{2}\left(x^{4}-y^{4}\right)=x y^{2}\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)=x y^{2}(x+y)(x-y)\left(x^{2}+y^{2}\right)
$$

13. In simplifying $\frac{\frac{x}{v}+1}{1-\frac{y}{x}}$, there are no common factors that are canceled between the numerator and the denominator

$$
\frac{\frac{x}{y}+1}{1-\frac{y}{x}}=\frac{\frac{x+y}{y}}{\frac{x-y}{x}}=\frac{x+y}{y} \times \frac{x}{x-y}=\frac{x(x+y)}{y(x-y)}
$$

True. No terms were cancelled, as there are no common factors

