Online Mathematics Preparedness Course Quiz 1 – Solutions

- 1. The set of whole numbers included in the interval (-1,1) U [2,7] are 0, 2, 3, 4, 5, 6, 7 (note that the open brackets indicate that the numbers -1 and 1 are not be included.
- 2. For what values of *a* does the following polynomial $x^2 16x + a$ have no roots? We need to find the discriminant $D = b^2 - 4ac$ as that determines how many roots a quadratic equation can have. Having D < 0 would mean that there would be no solutions

$$D < 0 \rightarrow (-16)^2 - 4(1)(a) < 0$$

$$256 - 4a < 0$$

$$256 < 4a$$

$$\frac{256}{4} < a$$

$$64 < a$$

$$(64, \infty)$$

- 3. $\frac{x^2+1}{x+1}$ does not simplify to x
- 4. Define |ax + b| as an absolute value function

We have
$$|ax + b| = \begin{cases} ax + b & \text{if } ax + b \ge 0 \to x \ge -\frac{b}{a} \\ -(ax + b) & \text{if } ax + b < 0 \to x < -\frac{b}{a} \end{cases}$$

- 5. Let $A = [-6,1), B = Z, C = \{0\}$, and D = [-5,5]. Express $(A \cap D) \cap C$ in an interval notation. $(A \cap D) = [-5,1)$ $(A \cap D) \cap C = [-5,1) \cap \{0\} = \{0\}$
- 6. Given the inequality, |x 3| + |x + 2| < 11, pick the option that includes all the intervals that are of interest

We have $|x - 3| = \begin{cases} x - 3 & \text{if } x \ge 3 \\ -(x - 3) & \text{if } x < 3 \end{cases}$

We have $|x + 2| = \begin{cases} x + 2 & \text{if } x \ge -2 \\ -(x + 2) & \text{if } x < -2 \end{cases}$

Intervals of interest are: $(-\infty, -2), (-2,3), (3, \infty)$

(−∞,−2)	(-2,3)	(3,∞)	
-(x-3) - (x+2) < 11	-(x-3) + (x+2) < 11	(x-3) + (x+2) < 11	
-x + 3 - x - 2 < 11	-x + 3 + x + 2 < 11	x - 3 + x + 2 < 11	

5 < 11

2x - 1 < 11

2x < 12

x < 6

Works

7.	Given the inequality,	x-3 +	x+2 <	< 11, give the solution	set that satisfies the	inequality
----	-----------------------	--------	--------	-------------------------	------------------------	------------

True mathematically

Combining the three cases we see that the inequality is satisfied when -5 < x < 6. The solution set is (-5,6)

8. Factor: $3x^{\frac{3}{2}} - 9x^{\frac{1}{2}} + 6x^{-\frac{1}{2}}$

-2x + 1 < 11

-2x < 10

x > -5

Okay, as it is within the given

interval

$$3x^{\frac{1}{2}}(x-3+\frac{2}{x})$$

9. Solve:
$$2x(4-x)^{-\frac{1}{2}} - 3\sqrt{4-x} = 0$$

 $2x(4-x)^{-\frac{1}{2}} - 3(4-x)^{\frac{1}{2}} = 0$
 $(4-x)^{-\frac{1}{2}}(2x-3(4-x)) = 0$
 $(4-x)^{-\frac{1}{2}}(2x-12+3x) = 0$
 $(4-x)^{-\frac{1}{2}}(5x-12) = 0$
 $5x = 12$
 $x = \frac{12}{5}$, provided that $x \neq 4$

10. Simplify:

$$\frac{x^2}{x-3} - \frac{-2x+15}{x-3}$$
$$\frac{x^2+2x-15}{x-3}$$
$$\frac{(x-3)(x+5)}{x-3} = x+5, x \neq 3$$

4

11. In factoring $-4x + 12x^2 + 3$, the product and sum respectively are: 36, -4It is integral that you rearrange the polynomial in $ax^2 + bx + c$, as product is $a \times c$, and sum is b

12. Given the expression $x^5y^2 - xy^6$, the fully factored version is

$$x^{5}y^{2} - xy^{6} = xy^{2}(x^{4} - y^{4}) = xy^{2}(x^{2} - y^{2})(x^{2} + y^{2}) = xy^{2}(x + y)(x - y)(x^{2} + y^{2})$$

13. In simplifying $\frac{\frac{x}{y+1}}{1-\frac{y}{x}}$, there are no common factors that are canceled between the numerator and the denominator

$$\frac{\frac{x}{y}+1}{1-\frac{y}{x}} = \frac{\frac{x+y}{y}}{\frac{x-y}{x}} = \frac{x+y}{y} \times \frac{x}{x-y} = \frac{x(x+y)}{y(x-y)}$$

True. No terms were cancelled, as there are no common factors