Mathematics Skill Development - Module 5
 Assessment Test

The following questions will evaluate the student's understanding of compositions of functions, even and odd functions, one-to-one functions and their inverses, logarithmic functions and exponential functions.

1. Let $h(x)=\sqrt[3]{\sqrt{x}+1}$ and $g(x)=x-1$. Find two functions $f(x)$ and $a(x)$ such that we may write h as the composition

$$
h(x)=f \circ g \circ a(x) .
$$

Solution:

Since $g \circ a(x)=g(a(x))=a(x)-1$, the simplest choice is to set $f(x)=\sqrt[3]{x}$. Then

$$
f \circ g \circ a(x)=\sqrt[3]{a(x)-1}
$$

and we need only choose $a(x)$ so that the expressions inside the cubic root match up. Solving $a(x)-1=\sqrt{x}+1$ gives $a(x)=\sqrt{x}+2$ and

$$
f \circ g \circ a(x)=\sqrt[3]{(\sqrt{x}+2)-1}=\sqrt[3]{\sqrt{x}+1}=h(x)
$$

2. Determine if the following functions are even, odd or neither:
(a) $f(x)=2-x^{2}-x^{4}$.
(b) $f(x)=\frac{x^{4}}{x^{2}+1}$.
(c) $f(x)=1-\sqrt{x}$.

Solution:

(a) Since f is a sum of 3 even functions, we expect it to be even also. Computing

$$
\begin{aligned}
f(-x) & =2-(-x)^{2}-(-x)^{4} \\
& =2-(-1)^{2} x^{2}-(-1)^{4} x^{4} \\
& =2-x^{2}-x^{4} \\
& =f(x),
\end{aligned}
$$

and f is even as expected.
(b) In this case, f is a ratio of 2 even functions and we expect that it is also even. Computing

$$
\begin{aligned}
f(-x) & =\frac{(-x)^{4}}{(-x)^{2}+1} \\
& =\frac{(-1)^{4} x^{4}}{(-1)^{2} x^{2}+1} \\
& =\frac{x^{4}}{x^{2}+1} \\
& =f(x)
\end{aligned}
$$

explicitly shows that f is an even function.
(c) Since \sqrt{x} is defined only when $x \geq 0$, negative numbers are not in the domain of f. Therefore, we cannot make sense of the expression for $f(-x)$ when $x>0$ and f is neither even nor odd (since it cannot satisfy the definition of either).
3. Suppose $e^{g(x)}=x+2$. Use this fact to solve the equation

$$
g(x)=\ln \left(\frac{3}{x}\right)
$$

Solution:

Taking the natural logarithm of both sides of the equation $e^{g(x)}=x+2$, we get $g(x)=\ln (x+2)$. Therefore, we solve the equation $\ln (x+2)=\ln \left(\frac{3}{x}\right)$ and use the properties of logarithms to get

$$
\begin{aligned}
\ln (x+2) & =\ln 3-\ln x \\
\ln (x+2)+\ln x & =\ln 3 \\
\ln (x(x+2)) & =\ln 3 \\
\ln \left(x^{2}+2 x\right) & =\ln 3
\end{aligned}
$$

From here, we exponentiate both sides to obtain

$$
\begin{aligned}
x^{2}+2 x & =3 \\
x^{2}+2 x-3 & =0 .
\end{aligned}
$$

Factoring this quadratic equation gives 2 possible solutions: $x=-3$ and $x=1$. However, when $x=-3$, $\ln (x+2)$ and $\ln \left(\frac{3}{x}\right)$ are both undefined (we can only take logarithms of positive numbers). Therefore $x=1$ is the only solution of $\ln (2+x)=\ln \left(\frac{3}{x}\right)$.
4. Assume that the function $f(x)=\frac{e^{x}}{2 e^{x}+1}$ is one-to-one. Find $f^{-1}(x)$.

Solution:

Let $y=f(x)$ and solve for x in terms of y :

$$
\begin{aligned}
y & =\frac{e^{x}}{2 e^{x}+1} \\
2 y e^{x}+y & =e^{x} \\
e^{x}(2 y-1) & =-y \\
e^{x} & =\frac{-y}{2 y-1}
\end{aligned}
$$

Taking the natural logarithm of both sides of this equation gives

$$
x=\ln \left(\frac{-y}{2 y-1}\right) .
$$

Therefore,

$$
f^{-1}(x)=\ln \left(\frac{-x}{2 x-1}\right)
$$

