Mathematics Skill Development - Module 4
 Assessment Test

The following questions will evaluate the student's ability to classify basic functions, find the domain and range of a given function and sketch algebraic transformations of functions.

1. Determine if the following are functions, if so, state their domain and classify them as either a power function, root function, polynomial function, rational function, logarithmic function, exponential function or algebraic function.
(a) $f(x)=\frac{x^{2}-4}{x-2}$
(b) $2 x^{2}-2 y^{2}=8$
(c) $f(x)=\sqrt{x}-\sqrt{-x}$.

Solution:

(a) This is a rational function whose numerator can be factored as $x^{2}-4=(x-2)(x+2)$. If $x \neq 2$, we can cancel out the term $x-2$ expression from the numerator and denominator to get $f(x)=x+2$ whenever $x \neq 2$. When $x=2$, we cannot make sense of the expression defining f since we cannot divide by 0 . Therefore f is a function with domain $\{x \in \mathbb{R}: x \neq 2\}$.
(b) We may rewrite this expression in the standard form

$$
\left(\frac{x}{2}\right)^{2}-\left(\frac{y}{2}\right)^{2}=1
$$

which is a hyperbola. Thus, it does not pass the vertical line test and is not a function. Alternatively, if $x=3$, then the values $y= \pm \sqrt{5}$ both satisfy the relation. That is, there are two y-values for a given x-value and this cannot be a function.
(c) This is the difference of two root functions and is algebraic. The function \sqrt{x} is well-defined only when $x \geq 0$, while $\sqrt{-x}$ is defined only when $x \leq 0$. The domain of f is the intersection of these domains $\{x \leq 0\} \cap\{x \geq 0\}=\{x=0\}$.
2. Match each equation with its graph. Explain your choices.
(a) $f(x)=5 x$
(b) $f(x)=5^{x}$
(c) $f(x)=x^{5}$
(d) $f(x)=(-x)^{5}$
(e) $f(x)=e^{x}$.

Solution:

The red function is linear and hence must be $f(x)=5 x$. The green and orange functions grow exponentially and tend to zero as x tends to the negative axis. Thus, these functions must be either $f(x)=5^{x}$ or $f(x)=e^{x}$. Since the growth rate is faster for the green function, we conclude that it is $f(x)=5^{x}$ and hence the orange function must be $f(x)=e^{x}$. Only the pink and blue functions remain with possible choices of $f(x)=x^{5}$ and $f(x)=(-x)^{5}$ (which are vertical reflections of one another). Note that if $x>0$, then $x^{5}>0$ while $(-x)^{5}<0$, therefore the blue function is $f(x)=x^{5}$ and the pink function is $f(x)=(-x)^{5}$.
3. Let $f(x)$ be an arbitrary function. How would you interpret the transformation $f(-x)$? How about $-f(-x)$? Can you think of a function which satisfies the relationship

$$
-f(-x)=f(x) ?
$$

How about the relationship

$$
f(-x)=f(x) ?
$$

Solution:

Given a function $f(x)$, we may interpret $f(-x)$ as a horizontal reflection of f about the y-axis. Then $-f(-x)$ would be a horizontal reflection followed by a vertical reflection.

A function which satisfies the relationship $-f(-x)=f(x)$ is called an odd function. One such example is $f(x)=x^{3}$.

A function which satisfies the relationship $f(-x)=f(x)$ is called an even function. One such example is $f(x)=x^{2}$.

