## Mathematics Skill Development - Module 1 <br> Assessment Test

The following questions will evaluate the student's understanding of the material in module 1. Topics include: number types, interval notation of the real number line, simplification of expressions, factoring and long division of polynomials.

1. Find two irrationals whose sum is rational.

## Solution:

Since $\pi$ is an irrational number, so are the numbers $a=\pi+1$ and $b=-\pi+1$. Indeed, if $a$ were a rational number, we could find integers $m$ and $n$ to write $a=\frac{m}{n}$. Since $a=\pi+1$, we could then write $\pi=-1+\frac{m}{n}$ and contradict the fact that $\pi$ is an irrational number. The same argument shows that $b$ is also an irrational number (can you explain why?).

However the sum of $a$ and $b$ is $a+b=2$ which is clearly a rational number.
2. The set which contains no elements is referred to as the empty set and is denoted by $\emptyset$. Let $A=$ $(-1,2), B=(-1,4], C=\emptyset, D=(2,5)$ and $E=\mathbb{Z}$.
(a) Write $(A \cap B) \cup C$ in interval notation.
(b) Using the each of the sets $A, B, D$ and $E$ at least once along with the symbols " $\cap$ " and " $\cup$ ", write an expression that equals $\emptyset$.

## Solution:

(a) $A \cap B=(-1,2)$. Since $C=\emptyset$ and contains no elements, $(A \cap B) \cup C=(-1,2)$.
(b) The intersection of the empty set $\emptyset$ with any other set must be empty (how could they have elements in common if $\emptyset$ ahs no elements to begin with?). Therefore any combination of $A, B, D$ and $E$ intersected with $C$ will be empty. For example:

$$
(A \cap B \cap D \cap E) \cap C=\emptyset
$$

3. Use the difference of squares formula to factor $x^{16}-1$ into a product of five polynomial terms.

Solution: Recall the difference of squares formula: for any numbers $a$ and $b$, we have that $a^{2}-b^{2}=$ $(a+b)(a-b)$. Since $x^{16}=\left(x^{8}\right)^{2}$ and $1=1^{2}$, we have

$$
x^{16}-1=\left(x^{8}+1\right)\left(x^{8}-1\right)
$$

In the same way $x^{8}=\left(x^{4}\right)^{2}$ and

$$
x^{8}-1=\left(x^{4}+1\right)\left(x^{4}-1\right)
$$

Two more steps on the second term give

$$
x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right)=\left(x^{2}+1\right)(x+1)(x-1) .
$$

Putting these 3 equations together, we have

$$
x^{16}-1=\left(x^{8}+1\right)\left(x^{4}+1\right)\left(x^{2}+1\right)(x+1)(x-1)
$$

4. Simplify $\frac{x-3}{\sqrt{x}-1}+\frac{4}{\sqrt{x}+1}$.

Solution: The common denominator of these fractions is $(\sqrt{x}-1)(\sqrt{x}+1)$. Adding the 2 terms together and simplifying:

$$
\begin{aligned}
\frac{x-3}{\sqrt{x}-1}+\frac{4}{\sqrt{x}+1} & =\frac{(x-3)(\sqrt{x}+1)+4(\sqrt{x}-1)}{x-1} \\
& =\frac{x^{3 / 2}+x-3 x^{1 / 2}-3+4 x^{1 / 2}-4}{x-1} \\
& =\frac{x^{3 / 2}+x+x^{1 / 2}-7}{x-1}
\end{aligned}
$$

5. Solve $x^{3}+2 x^{2}-5 x=6$. (Hint: try $x=2$ first and then find all the other solutions).

Solution: The given equation is equivalent to

$$
x^{3}+2 x^{2}-5 x-6=0 .
$$

and we find all the roots of $x^{3}+2 x^{2}-5 x-6$. It is easy to check that $x=2$ is one of the roots and therefore $(x-2)$ must be one of the factors of this expression. Using long division:

$$
x-2) \begin{array}{r}
x^{2}+4 x+3 . \\
\frac{x^{3}+2 x^{2}-5 x-6}{-x^{3}+2 x^{2}} \begin{array}{r}
4 x^{2}-5 x \\
\frac{-4 x^{2}+8 x}{3 x}-6 \\
\frac{-3 x+6}{0}
\end{array}
\end{array}
$$

we see that $x^{3}+2 x^{2}-5 x-6=(x-2)\left(x^{2}+4 x+3\right)$. Factoring the quadratic term on the right hand side, we conclude $x^{3}+2 x^{2}-5 x-6=(x-2)(x+3)(x+1)$. The roots of the original expression are precisely the roots of the individual factors, namely $x=2,-3,-1$.

