Mathematics Skill Development - Module 1 Assessment Test

The following questions will evaluate the student's understanding of the material in module 1. Topics include: number types, interval notation of the real number line, simplification of expressions, factoring and long division of polynomials.

1. Find two irrationals whose sum is rational.

Solution:

Since π is an irrational number, so are the numbers $a = \pi + 1$ and $b = -\pi + 1$. Indeed, if a were a rational number, we could find integers m and n to write $a = \frac{m}{n}$. Since $a = \pi + 1$, we could then write $\pi = -1 + \frac{m}{n}$ and contradict the fact that π is an irrational number. The same argument shows that b is also an irrational number (can you explain why?).

However the sum of a and b is a + b = 2 which is clearly a rational number.

2. The set which contains no elements is referred to as the empty set and is denoted by \emptyset . Let $A = (-1,2), B = (-1,4], C = \emptyset, D = (2,5)$ and $E = \mathbb{Z}$.

(a) Write $(A \cap B) \cup C$ in interval notation.

(b) Using the each of the sets A, B, D and E at least once along with the symbols " \cap " and " \cup ", write an expression that equals \emptyset .

Solution:

(a) $A \cap B = (-1, 2)$. Since $C = \emptyset$ and contains no elements, $(A \cap B) \cup C = (-1, 2)$.

(b) The intersection of the empty set \emptyset with any other set must be empty (how could they have elements in common if \emptyset also no elements to begin with?). Therefore any combination of A, B, D and E intersected with C will be empty. For example:

$$(A \cap B \cap D \cap E) \cap C = \emptyset$$

3. Use the difference of squares formula to factor $x^{16} - 1$ into a product of five polynomial terms.

Solution: Recall the difference of squares formula: for any numbers a and b, we have that $a^2 - b^2 = (a+b)(a-b)$. Since $x^{16} = (x^8)^2$ and $1 = 1^2$, we have

$$x^{16} - 1 = (x^8 + 1)(x^8 - 1).$$

In the same way $x^8 = (x^4)^2$ and

$$x^{8} - 1 = (x^{4} + 1)(x^{4} - 1).$$

Two more steps on the second term give

$$x^{4} - 1 = (x^{2} + 1)(x^{2} - 1) = (x^{2} + 1)(x + 1)(x - 1).$$

Putting these 3 equations together, we have

$$x^{16} - 1 = (x^8 + 1)(x^4 + 1)(x^2 + 1)(x + 1)(x - 1)$$

Solution: The common denominator of these fractions is $(\sqrt{x} - 1)(\sqrt{x} + 1)$. Adding the 2 terms together and simplifying:

$$\frac{x-3}{\sqrt{x}-1} + \frac{4}{\sqrt{x}+1} = \frac{(x-3)(\sqrt{x}+1) + 4(\sqrt{x}-1)}{x-1}$$
$$= \frac{x^{3/2} + x - 3x^{1/2} - 3 + 4x^{1/2} - 4}{x-1}$$
$$= \frac{x^{3/2} + x + x^{1/2} - 7}{x-1}$$

5. Solve $x^3 + 2x^2 - 5x = 6$. (*Hint: try x = 2 first and then find all the other solutions*).

Solution: The given equation is equivalent to

$$x^3 + 2x^2 - 5x - 6 = 0.$$

and we find all the roots of $x^3 + 2x^2 - 5x - 6$. It is easy to check that x = 2 is one of the roots and therefore (x - 2) must be one of the factors of this expression. Using long division:

$$\begin{array}{r} x^{2} + 4x + 3. \\ x - 2) \hline x^{3} + 2x^{2} - 5x - 6 \\ - x^{3} + 2x^{2} \\ \hline 4x^{2} - 5x \\ - 4x^{2} + 8x \\ \hline 3x - 6 \\ - 3x + 6 \\ \hline 0 \end{array}$$

we see that $x^3 + 2x^2 - 5x - 6 = (x - 2)(x^2 + 4x + 3)$. Factoring the quadratic term on the right hand side, we conclude $x^3 + 2x^2 - 5x - 6 = (x - 2)(x + 3)(x + 1)$. The roots of the original expression are precisely the roots of the individual factors, namely x = 2, -3, -1.