ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION Lecture 8: Games of Oligopoly Competition with Non-Equilibrium Beliefs

Victor Aguirregabiria (University of Toronto)

March 24th & 31st, 2022

Victor Aguirregabiria

Empirical IO

March 24th & 31st, 2022 1 / 92

Games of Oligopoly Competition with Non-Equilibrium Beliefs

- 1. Introduction
- 2. Empirical evidence on firms' biased beliefs
- 3. Static games: Model
- 4. Identification & Estimation in Static Games
- 5. Application: Goldfarb & Xiao (AER, 2011)
- 6. Dynamic games: Model
- 7. Identification & Estimation in Dynamic Games
- 8. Application: Aguirregabiria & Magesan (REStud, 2020)

2/92

1. Introduction

э

A D N A B N A B N A B N

Firms' Information & Beliefs

- In oligopoly markets, a firm's behavior depends on its beliefs about the behavior of other firms in the market.
- Firms form their beliefs under **uncertainty and asymmetric information** .
- Firms are different in their **ability for collecting and processing information**, for similar reasons as they are heterogeneous in their costs of producing goods and services.
- We expect firms to be heterogeneous in their beliefs.
- This heterogeneity has implications on their performance and on market outcomes.

Possible Sources of Biased Beliefs

- In reality, firms can face substantial uncertainty about other competitors' strategies.
- There are different sources of bias in players beliefs:

(a) **Limited information / attention**: Some players do not have information about variables that are know to other players.

(b) **Bounded rationality**: Limited capacity to process information / compute;

(c) **Strategic uncertainty:** With multiple equilibria, players can have different beliefs about the selected equilibrium. Some players believe that they are playing equilibrium A, other players believe they are playing equilibrium B, ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relaxing Firms' Rational Beliefs

- Despite these arguments, in most fields in economics (and IO in particular), the status quo is assuming rational expectations.
- There are reasons to impose assumption of equilibrium beliefs:
 (a) This assumption has identification power.
 (b) Counterfactual analysis: model predicts how beliefs change endogenously.
- But it can be unrealistic in some applications, and can imply serious biases in our views on firms' competition.
- In these lectures, we will review some recent structural empirical papers of oligopoly competition that relax the assumption of firms' rational beliefs.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. Quick Review of Recent Empirical Evidence on Firms' Biased Beliefs

Victor Aguirregabiria

▲母 ト イ ヨ ト イ ヨ ト ヨ の Q C March 24th & 31st, 2022 7 / 92

US Telecommunication Industry After Deregulation

- Goldfarb and Xiao (AER, 2011) study entry decisions into local US telecommunication markets following the deregulation Telecommunications Act of 1996, which allowed free competition.
- Holding other market characteristics constant, more experienced and better educated managers have a lower propensity to enter (and a lower propensity to exit after entry) into very competitive markets.
- This suggests that better-educated managers are better at predicting competitors' behavior.
- This hypothesis is confirmed from the estimation of a structural game of market entry with Cognitive Hierarchy beliefs.

Learning to Bid After Market Deregulation

- **Doraszelski, Lewis, and Pakes (AER, 2018)** investigate firms' learning about competitors' bidding behavior just after the deregulation of the UK electricity market.
- In the first year after deregulation, firms' bidding behavior was very heterogeneous and firms made frequent and sizable adjustments in their bids.
- During the second year, there is a dramatic reduction in the range of bids. After three years, firms' bids become very stable.
- During these three phases, demand and costs were quite stable.
- The authors argue that the changes in firms' bidding strategies can be attributed to strategic uncertainty and learning..

・ロト ・ 同ト ・ ヨト ・ ヨト

Learning to Price After Market Deregulation

- Huang, Ellickson, and Lovett (2018) study firms' price setting behavior in the Washington State liquor market following the privatization of the market in 2012.
- After liberalization, grocery chains newly entered the market. How did these new entrants learn about demand and learn to price optimally over time?
- The authors document large and heterogeneous price movements in the first two years after the privatization.
- The authors present evidence consistent with firms' learning about the idiosyncratic and common components of the demand shocks, and about the time persistence of these shocks.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Entry in the Early Years of The Fast Food Industry

- Aguirregabiria and Magesan (REStud, 2020) study competition in store location between McDonalds (MD) and Burger King (BK) during the early years of the fast-food restaurant industry in the UK.
- Reduced form evidence shows that the number of own stores has a strong negative effect on the probability that BK opens a new store but the effect of the competitor's number of stores is economically negligible.
- This behavior cannot be rationalized by an equilibrium model of market entry where firms have equilibrium beliefs about the behavior of competitors.

Bidding Behavior in the Texas Electricity Market

- Hortacsu and Puller (RAND, 2008) analyze firms' bidding behavior in the Texas electricity spot market.
- Their dataset contains detailed information not only on firms' bids but also on their marginal costs. Using these data, the authors construct the equilibrium bids of the game and compare them to the actual observed bids.
- They find statistically and economically very significant deviations between equilibrium and actual bids.
 Small firms don't supply much power even when is profitable to do so.
- This finding is consistent with low strategic ability in the bidding departments of small firms.
- This suboptimal behavior leads to significant efficiency losses.

Victor Aguirregabiria

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approach and Key Question

- Given observed firms' behavior, we want to identify both firms' payoff functions and firms' belief functions: A Revealed Preferences & Beliefs (RP&B) Approach.
- A key issue in all these applications is how to find convincing evidence that (some) firms have non-equilibrium or biased beliefs, and this is not just an artifact from the specification (or misspecification) of the model.
- How can we be (more or less) confident that what we call bias beliefs cannot be explained by observable or unobservable variables affecting firms' demand or costs?
- We need to study formally the identification of beliefs and structural parameters in profits in our model.

Victor Aguirregabiria

< □ > < □ > < □ > < □ > < □ > < □ >

3. STATIC GAMES: MODEL

Victor Aguirregabiria

Empirical IO

March 24th & 31st, 2022 14 / 92

э

< □ > < □ > < □ > < □ > < □ > < □ >

Static Game: Profit Function

• *N* firms competing in a market. The profit function of firm *i*:

$$\Pi_i(a_i, \boldsymbol{a}_{-i}, \varepsilon_i, \mathbf{x})$$

 a_i is the action of firm i,

either continuous or discrete with support $\{0, 1, ..., J\}$ a_{-i} is the vector with the actions of the other firms **x** represents variables that are common knowledge ε_i is private information of firm *i*

- Firms' types $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_N)$ are drawn from a distribution F.
- Firms choose simultaneously their actions *a_i* to maximize their respective expected profits.

(人間) とうきょうきょう

Static Games: Beliefs

- A firm does not know the private information of its competitors and therefore it does not know their actions.
- Firms form probabilistic beliefs about the actions of competitors.
- Let b_i(**a**_{-i} | ε_i, **x**) be a probability density function that represents the belief of firm *i*.

Static Games: Best Response

• Given its beliefs, a firm's expected profit is:

$$\Pi_i^e(a_i, \varepsilon_i, \mathbf{x}; b_i) = \int_{\mathbf{a}_{-i}} \Pi(a_i, \mathbf{a}_{-i}, \varepsilon_i, \mathbf{x}) \ b_i(\mathbf{a}_{-i} | \varepsilon_i, \mathbf{x}) \ d\mathbf{a}_{-i}$$

A firm chooses its strategy function σ_i(ε_i, x; b_i), to maximize expected profits:

$$\sigma_i(\varepsilon_i, \mathbf{x}; b_i) = \arg \max_{a_i \in \mathcal{A}} \ \Pi_i^e(a_i, \varepsilon_i, \mathbf{x}; b_i)$$

< □ > < □ > < □ > < □ > < □ > < □ >

Characterization of Best Response Strategies

• Let $\Delta \Pi_i(a_i, a_{-i}, \varepsilon_i, \mathbf{x})$ be the marginal profit function:

 $\begin{cases} \text{ continuous action:} & \Delta \Pi_i = \partial \Pi_i / \partial a_i \\ \text{ discrete action:} & \Delta \Pi_i = \Pi_i (a_i) - \Pi_i (a_i - 1) \end{cases}$

 ASSUMPTION 1: ΔΠ_i is strictly monotonic in a_i and additively separable in ε_i:

$$\Delta \Pi_i(\mathbf{a}_i, \mathbf{a}_{-i}, \varepsilon_i, \mathbf{x}) = \Delta \pi_i(\mathbf{a}_i, \mathbf{a}_{-i}, \mathbf{x}) - \varepsilon_i$$

• **ASSUMPTION 2**: (A) Independent private values ε_i . (B) The marginal CDF F_i is strictly increasing in \mathbb{R} . (C) The beliefs function $b_i(a_{-i}|\varepsilon_i, x)$ does not depend on the firm's own type, ε_i .

Characterization of Best Response Strategies [2]

• Let $\Delta \pi_i^e(a_i, \mathbf{x}; b_i)$ be the expected marginal profit up to ε_i .

$$\Delta \pi_i^{\boldsymbol{e}}(\boldsymbol{a}_i, \boldsymbol{\mathbf{x}}; \boldsymbol{b}_i) \equiv \int_{\boldsymbol{a}_{-i}} \Delta \pi_i(\boldsymbol{a}_i, \boldsymbol{a}_{-i}, \boldsymbol{\mathbf{x}}) b_i(\boldsymbol{a}_{-i} | \boldsymbol{\mathbf{x}}) d\boldsymbol{a}_{-i}$$

• [A] A necessary & sufficient condition for best response a_i is:

 $\begin{cases} \text{ continuous action:} & \Delta \pi_i^e(a_i, \mathbf{x}; b_i) - \varepsilon_i = 0 \\ \text{ discrete action:} & \Delta \pi_i^e(a_i + 1, \mathbf{x}; b_i) < \varepsilon_i \leq \Delta \pi_i^e(a_i, \mathbf{x}; b_i) \end{cases}$

Characterization of Best Response Strategies [3]

 [B] For any value a⁰, the cumulative choice probability function (CCP) P_i(a⁰|x) ≡ Pr(a_i ≤ a⁰|x) satisfies the condition:

$$P_i(a^0|\mathbf{x}) = F_i\left[\Delta \pi_i^e(a^0, \mathbf{x}; b_i) \mid \mathbf{x}\right] \quad \text{for } a^0 > 0$$

• **[C]** The quantile function $Q_i(a^0|\mathbf{x}) \equiv F_i^{-1} [P_i(a^0|\mathbf{x})]$: $Q_i(a^0|\mathbf{x}) = \Delta \pi_i^e(a^0, \mathbf{x}; b_i) \text{ for } a^0 > 0$

ヘロト 不得下 イヨト イヨト 二日

Example 1: Cournot with Independent Private Costs

- $a_i \in \mathbb{R}_+$ is firm *i*'s amount of output.
- Inverse demand function is $p = p(Q, \mathbf{x})$ where $Q = \sum_{i=1}^{N} a_i$.
- A firm's marginal cost function is $c_i(a_i, \mathbf{x}) + \varepsilon_i$.
- Then, the quantile condition (= expected marginal profit up to ε_i):

$$Q_i(a^0|\mathbf{x}) = -c_i(a^0, \mathbf{x}) + \int_{\mathbf{a}_{-i}} p\left(a^0 + \sum_{j \neq i} a_j, \mathbf{x}\right) + p'\left(a^0 + \sum_{j \neq i} a_j, \mathbf{x}\right) a^0 b_i(\mathbf{a}_{-i})$$

< □ > < □ > < □ > < □ > < □ > < □ >

Example 2: Market Entry with IP Entry Costs

- $a_i \in \{0, 1\}$ indicator of "firm *i* is active in the market".
- A firm's profit **if not active** is zero, $\Pi_i(0) = 0$.
- A firm's profit if active is: $\Pi_i(1) = v_i(\boldsymbol{a}_{-i}, \mathbf{x}) ec_i(\mathbf{x}) \varepsilon_i$.
- Then, the quantile condition is:

(

$$Q_i(1|\mathbf{x}) = -ec_i(\mathbf{x}) + \sum_{\mathbf{a}_{-i}} v_i(\mathbf{a}_{-i}, \mathbf{x}) b_i(\mathbf{a}_{-i}|\mathbf{x})$$

イロト 不得 トイラト イラト 一日

Example 3: Procurement Auction with IP Costs

- $a_i \in \mathbb{R}$ represents firm *i*'s bid.
- Profit function: $\Pi_i = (a_i c_i(\mathbf{x}) \varepsilon_i) \ 1\{a_j > a_i \ \forall j \neq i\}$
- The expected profit function is:

$$\Pi_i^e(a_i, \varepsilon_i, \mathbf{x}; b_i) = (a_i - c_i(\mathbf{x}) - \varepsilon_i) \ W(a_i, \mathbf{x}, b_i)$$

where $W(a_i, \mathbf{x}, b_i) \equiv_{\mathbf{a}_{-i}} 1\{a_j > a_i \ \forall j \neq i\} \ b_i(\mathbf{a}_{-i}|\mathbf{x}) \ d\mathbf{a}_{-i}$ is firm *i*'s subjective probability of wining the auction.

イロト 不得 トイラト イラト 二日

Example 3: Procurement Auctions [2]

• The expected marginal profit function is:

 $\Delta \Pi_i^{\mathbf{e}}(a_i, \varepsilon_i, \mathbf{x}; b_i) = W(a_i, \mathbf{x}, b_i) + (a_i - c_i(\mathbf{x}) - \varepsilon_i) \Delta W(a_i, \mathbf{x}, b_i),$ where $\Delta W(a_i, \mathbf{x}, b_i) = \partial W(a_i, \mathbf{x}, b_i) / \partial a_i.$

• We have that $\sigma_i(\varepsilon_i, \mathbf{x}, b_i) = a^0$ if and only if

$$W(a^{0},\mathbf{x},b_{i})+(a^{0}-c_{i}(\mathbf{x})-\varepsilon_{i})\Delta W(a^{0},\mathbf{x},b_{i})=0$$

• Then, $\sigma_i(\varepsilon_i, \mathbf{x}, b_i) \leq a^0$ iff $\varepsilon_i \leq a^0 - c_i(\mathbf{x}) + \frac{W(a^0, \mathbf{x}, b_i)}{\Delta W(a^0, \mathbf{x}, b_i)}$ such that:

$$Q_i(a^0|\mathbf{x}) = a^0 - c_i(\mathbf{x}) + \frac{W(a^0, \mathbf{x}, b_i)}{\Delta W(a^0, \mathbf{x}, b_i)}$$

General Model of Firms' Beliefs

$$P_i(\mathbf{a}^0|\mathbf{x}) = F_i\left[\int \Delta \pi_i(\mathbf{a}^0, \mathbf{a}_{-i}, \mathbf{x}) \ b_i(\mathbf{a}_{-i}|\mathbf{x}) \ d\mathbf{a}_{-i}\right]$$

- These best response conditions contain all the restrictions of the model on beliefs function b_i and profit function $\Delta \pi_i$.
- Many models of competition in IO under different types of equilibrium concepts are particular versions of this model.
- Auctions, Bertrand competition, Cournot competition, Entry models under different types of restrictions on firms' beliefs:
 - o Bayesian Nash equilibrium.
 - o Level-K and Cognitive Hierarchy Beliefs.
 - Rationalizability.

Bayesian Nash Equilibrium

• Under Bayesian Nash Equilibrium (with independent private values):

$$b_i(\boldsymbol{a}_{-i} \mid \mathbf{x}) = \Pr\left(\boldsymbol{a}_{-i} \mid \mathbf{x}\right)$$

- This is the most commonly used solution concept in games of incomplete information in IO.
- It has received particular attention in **auction games** and in discrete choice models of **market entry**, but it has been also applied to games of quantity or price competition.

Cognitive Hierarchy & Level-K Models

- Equilibrium concepts where firms have biased beliefs, that is, $b_i(\mathbf{a}_{-i} | \mathbf{x}) \neq \Pr(\mathbf{a}_{-i} | \mathbf{x})$.
- There is a finite number K of belief types that correspond to different levels of strategic sophistication.
- Believes for Level-0 can be arbitrary, $b^{(0)}$ (or CDF $B^{(0)}$).
- Level-1 firms believe that all the other firms are level 0: (CDF $B^{(1)}$)

$$B^{(1)}\left(\boldsymbol{a}_{-i} \mid \mathbf{x}\right) = \prod_{j \neq i} F\left[\int \Delta \pi(\boldsymbol{a}_{j}, \boldsymbol{a}_{-j}, \mathbf{x}) \ dB^{(0)}(\boldsymbol{a}_{-j} | \mathbf{x})\right]$$

< □ > < 同 > < 三 > < 三 >

Cognitive Hierarchy & Level-K Models [2]

• In Level-k model, level-k firm believes all other firms are k - 1:

$$B^{(k)}(\boldsymbol{a}_{-i} \mid \boldsymbol{x}) = \prod_{j \neq i} F\left[\int \Delta \pi(\boldsymbol{a}_j, \boldsymbol{a}_{-j}, \boldsymbol{x}) \ dB^{(k-1)}(\boldsymbol{a}_{-j} \mid \boldsymbol{x})\right]$$

- In **Cognitive Hierarchy model**, a level-k firm believes that all other firms come from a probability distribution over levels 0 to k 1.
- These models impose restrictions on beliefs.
 - o There is a finite number K of belief types (typically 2 or 3).
 - o These belief functions satisfy a hierarchical equilibrium.

イロト イヨト イヨト イヨト

Rationalizability

• The concept of *Rationalizability* (Bernheim, 1984; Pearce, 1984) imposes two restrictions on firms' beliefs and behavior.

[A.1] Every firm is rational in the sense that it maximizes its own expected profit given beliefs.

[A.2] This rationality is common knowledge, i.e., every firms knows that all the firms know that it knows ... that all the firms are rational.

- Aradillas-Lopez & Tamer (2008) study identification under Rationalizability.
- In a game with multiple equilibria, the solution concept of Rationalizability allows for biased beliefs.
- Each firm has beliefs that are consistent with a BNE, but these beliefs may not correspond to the same BNE.

Victor Aguirregabiria

Empirical IO

March 24th & 31st, 2022 29 / 92

4. STATIC GAMES: IDENTIFICATION

Victor Aguirregabiria

Empirical IO

March 24th & 31st, 2022 30 / 92

Data

 The researcher has a sample of *M* local markets, indexed by *m*, where she observes firms' actions and state variables (firms' choice data):

$$\{a_{imt}, \mathbf{x}_{mt} : i = 1, 2, ..., N; t = 1, 2, ..., T^{data}\}$$

- In addition to these data, the researcher may have data on some components of the profit function.
- I distinguish three cases, from better to worse scenarios:

(a) Choice data + Revenue function + Cost function
(b) Choice data + Revenue function
(c) Only Choice Data

イロト イヨト イヨト イヨト

Revenue and Costs

 It is convenient now to distinguish between revenue and costs in the profit function:

$$\pi_i = r_i - c_i$$

Such that:

$$\Delta \pi_i = \Delta r_i - \Delta c_i$$

• Both Δr_i and Δc_i may depend on the actions of other firms, \boldsymbol{a}_{-i} . It depends on the model, on the type of decision variable.

* In an entry model or in a Cournot model, Δc_i typically does not depend on \boldsymbol{a}_{-i} .

*In a model of price competition with differentiated product, Δc_i typically depends on \mathbf{a}_{-i} : Δc_i depends on the quantity produced & sold by *i*, this quantity depends (through demand) on the own price and the price of competitors.

イロト イヨト イヨト イヨト

Binary Choice – Two Players Game

- Game of price competition where firms choose between a low price $(a_i = 0)$ and a high price $(a_i = 1)$.
- Notation:

$$\begin{array}{l} \Delta r_i(a_{-i},\mathbf{x}) \equiv r_i(1,a_{-i},\mathbf{x}) - r_i(0,a_{-i},\mathbf{x}) \\ \Delta c_i(a_{-i},\mathbf{x}) \equiv c_i(1,a_{-i},\mathbf{x}) - c_i(0,a_{-i},\mathbf{x}) \\ p_i(\mathbf{x}) \equiv p_i(1|\mathbf{x}) = \text{prob. choosing high price} \\ b_i(\mathbf{x}) \equiv b_i(1|\mathbf{x}) = \text{belief prob. competitor chooses high price.} \end{array}$$

• Expected marginal profit (up to ε_i):

$$\Delta \pi_i^e(\mathbf{x}) = [1 - b_i(\mathbf{x})] [\Delta r_i(0, \mathbf{x}) - \Delta c_i(0, \mathbf{x})]$$

+ $b_i(\mathbf{x}) [\Delta r_i(1, \mathbf{x}) - \Delta c_i(1, \mathbf{x})]$

< □ > < □ > < □ > < □ > < □ > < □ >

Binary Choice – Two Players Game [2]

• Best response probability:

$$p_i(\mathbf{x}) = F_i \left(\begin{array}{c} \Delta r_i(0, \mathbf{x}) - \Delta c_i(0, \mathbf{x}) \\ +b_i(\mathbf{x}) \left[\Delta r_i(1, \mathbf{x}) - \Delta r_i(0, \mathbf{x}) - \Delta c_i(1, \mathbf{x}) + \Delta c_i(0, \mathbf{x}) \right] \end{array} \right)$$

• Using quantile $Q_i(\mathbf{x}) \equiv F_i^{-1}(p_i(\mathbf{x}))$:

$$Q_i(\mathbf{x}) = \Delta r_i(0, \mathbf{x}) - \Delta c_i(0, \mathbf{x})$$

+ $b_i(\mathbf{x}) [\Delta r_i(1, \mathbf{x}) - \Delta r_i(0, \mathbf{x}) - \Delta c_i(1, \mathbf{x}) + \Delta c_i(0, \mathbf{x})]$

• For the moment, I assume that F_i is known to the researcher.

Identification with Revenue & Cost Data

• In the static case with two-players, beliefs are identified:

$$b_i(\mathbf{x}) = \frac{Q_i(\mathbf{x}) - \Delta r_i(0, \mathbf{x}) + \Delta c_i(0, \mathbf{x})}{\Delta r_i(1, \mathbf{x}) - \Delta r_i(0, \mathbf{x}) - \Delta c_i(1, \mathbf{x}) + \Delta c_i(0, \mathbf{x})}$$

• This belief function can be compared to the actual choice probability of the competitor to test unbiased / rational beliefs:

$$b_i(\mathbf{x}) - p_{-i}(\mathbf{x}) = 0 \quad ?$$

- We can also test other restrictions on beliefs such as level-K or Cognitive Hierarchy models.
- If panel data, we can study how beliefs evolve over time (learning).

Identification with Revenue but No Cost Data

- MR functions $r_i(0, \mathbf{x})$ and $r_i(1, \mathbf{x})$ are known to the researcher but the MC is not known.
- Without further restrictions, the system of equations

$$Q_i(\mathbf{x}) = \Delta r_i(0, \mathbf{x}) - \Delta c_i(0, \mathbf{x})$$

+
$$b_i(\mathbf{x}) [\Delta r_i(1, \mathbf{x}) - \Delta r_i(0, \mathbf{x}) - \Delta c_i(1, \mathbf{x}) + \Delta c_i(0, \mathbf{x})]$$

cannot identify the unknown functions $b_i(\mathbf{x})$ and Δc_i .

Without further restrictions, any belief function (including the BNE belief) is consistent with observed behavior, Q_i(x), given the appropriate Δc_i function.

< □ > < □ > < □ > < □ > < □ > < □ >
Identification: Firm-Specific Cost Shifter

• Exclusion Restriction (Firm specific cost shifter):

The vector \mathbf{x} has a firm-specific components that affect the marginal profit of a firm but not the marginal profit of other firms.

• That is,
$$\mathbf{x} = (\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i})$$
 such that:

$$\Delta \pi_i(\mathbf{a}_i, \mathbf{a}_{-i}, \mathbf{x}) = \Delta \pi_i(\mathbf{a}_i, \mathbf{a}_{-i}, \widetilde{\mathbf{x}}, \mathbf{z}_i)$$

4 1 1 4 1 1 1

Identification of Beliefs

• Let
$$\mathbf{z}_{-i}^1$$
, \mathbf{z}_{-i}^2 , and \mathbf{z}_{-i}^3 be three values for \mathbf{z}_{-i} .

$$\begin{cases} Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^2) - Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1) \\ = \left[b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^2) - b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1) \right] & \left[\Delta \pi_i(1, \widetilde{\mathbf{x}}, \mathbf{z}_i) - \Delta \pi_i(0, \widetilde{\mathbf{x}}, \mathbf{z}_i) \right] \\ Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^3) - Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1) \\ = \left[b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^3) - b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1) \right] & \left[\Delta \pi_i(1, \widetilde{\mathbf{x}}, \mathbf{z}_i) - \Delta \pi_i(0, \widetilde{\mathbf{x}}, \mathbf{z}_i) \right] \end{cases}$$

• And taking the ratio between these two differences, we have that:

$$\frac{b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^2) - b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1)}{b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^3) - b_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1)} = \frac{Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^2) - Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1)}{Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^3) - Q_i(\widetilde{\mathbf{x}}, \mathbf{z}_i, \mathbf{z}_{-i}^1)}$$

Victor Aguirregabiria

▲ 🗇 ▶ ▲ 🖹 ▶ ▲ 🖹 ▶ 🗐 🖉 🛇 Q (C) March 24th & 31st, 2022 38 / 92

Testing Different Models of Beliefs

- Given this identified beliefs object, we can test different models or restrictions on beliefs such that:
 - Unbiased beliefs of firm i
 - Bayesian Nash equilibrium
 - Rationalizability
 - Cognitive Hierarchy model; Level-k
- If we have panel data over several periods of time, we can also test different models of learning:
 - Bayesian learning
 - Fictitious play and other types of adaptive learning.

Extensions

- The paper extends this identification result in different ways:
 - More than two players.
 - Continuous choice games.
 - Ordered multinomial choice games
 - Dynamic games (discrete and continuous choice)
 - Nonparametric distribution of private information F_i

Identification with Nonparametric Distribution

- When the decision variable is continuous, there is identification of beliefs even if *F_i* is nonparametrically specified.
- Suppose that:

(i) the distribution F_i is independent of z_i and z_{-i} but it may depend on $\tilde{\mathbf{x}}$;

(ii) z_i and z_{-i} are continuous random variables; (

(iii) $p_i(\tilde{\mathbf{x}}, z_i, z_{-i})$ is strictly monotonic in z_i and z_{-i} and asymmetric in these two arguments;

(iv) the researcher knows the revenue function;

(v) firm *i*'s marginal cost does not depend on a_{-i} .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Identification with Nonparametric Distribution [2]

- Let (z_i^A, z_{-i}^A) and (z_i^B, z_{-i}^B) be two arbitrary values of (z_i, z_{-i}) . Under (i) to (v), the following results hold.
- (A) There exist values z_{-i}^{AB*} and z_{-i}^{BA*} which are uniquely identified and satisfy the following three properties:

(1)
$$z_{-i}^{AB^*} \neq z_{-i}^{BA^*}$$
;
(2) $p_i(z_i^A, z_{-i}^A) = p_i(z_i^B, z_{-i}^{AB^*}) \& p_i(z_i^B, z_{-i}^B) = p_i(z_i^A, z_{-i}^{BA^*}).$

• Using (A), we can show that the following condition holds:

$$\frac{b_i(z_i^A, z_{-i}^A) - b_i(z_i^A, z_{-i}^{BA*})}{b_i(z_i^B, z_{-i}^B) - b_i(z_i^B, z_{-i}^{AB*})} = -\frac{\Delta r_i(1, z_i^A) - \Delta r_i(0, z_i^A)}{\Delta r_i(1, z_i^B) - \Delta r_i(0, z_i^B)}$$

such that an object that depends only on beliefs is identified using the firm's observed behavior and revenue function.

Victor Aguirregabiria

March 24th & 31st, 2022 42 / 92

・ロット 御 とう きょう く 目 とうしょう

5. Goldfarb and Xiao (2011) Entry decisions into local US telecommunication markets

Victor Aguirregabiria

▲ ⑦ ▶ ▲ ≧ ▶ ▲ ≧ ▶ ○ 및 ◇ Q ○ March 24th & 31st, 2022 43 / 92

US Telecom After Deregulation

- Goldfarb and Xiao (AER, 2011) study entry decisions into local US telecommunication markets following the deregulatory Telecommunications Act of 1996.
- This act:

(1) eliminated the possibility that State regulators deny entry to potential entrants;

(2) Forced incumbents to facilitate interconnections and share other infrastructure with new entrants.

- A new entrant is denoted "Competitive Local Exchange Carriers" (CLEC).
- New entry started to be effective in 1998.
- Shakeout of the industry in 2002: Excess entry followed by exit.

Data

- CLEC annual reports from years 1998 and 2002: year of entry; firm characteristics; CEO names
- **CEO characteristics, CV** from multiple sources: public companies annual reports, "Who is Who", company websites, archives.
 - Experience; education achievements.
- Local market characteristics. Local market is a "census place".

- Population census: Population; median income; racial composition; median age; HH size; Poverty rate.

- Business census: # establishments; # employees per establishment; sectorial composition.

Information from incumbents

ヘロト 不得下 イヨト イヨト 二日

Data: Potential Entrants

- A nice feature of the local TCOM industry is that it is possible to identify the set of potential entrants in a local market such that we do not need to assume that every firm is a potential entrant everywhere.
- CLEC should apply and being approved by the state regulator to be a potential entrant in every local market of the state.
- Data on potential entrants

Data: Selection of Local Markets

- 234 midsize markets: Population between 100,000 and 1,000,000.
- Similar selection approach as other applications of market entry following Bresnahan & Reiss (1990).

Descriptive Statistics: Market Level

Variable	Mean	SD	Min	Max
Population (in thousands)	224.1	160.8	100.3	951.3
Median household income (in \$1,000)	41.7	11.7	23.5	88.8
Median age	32.8	3.1	22.9	41.8
Household size	2.6	0.418	2.03	4.55
Percent foreign born	15.6	12.5	1.1	72.1
Percent African American	17.8	18.0	0.3	84.0
Percent below poverty line	14.5	6.3	2.2	35.6
GTE	0.107	0.310	0	1
RBOC	0.808	0.395	0	1
Number of establishments in thousands	4.7	3.8	0.661	24.5
Average number of employees/establishment	16.9	5.0	8.18	58.0
Percent establishments in manufacturing	18.1	10.3	0.001	60.36
Number of operating CLECs	2.02	2.9	0	18
Number of potential entrants	25.2	7.2	8	35
Observations	234			

TABLE 1B-DESCRIPTIVE STATISTICS BY MARKET

Victor Aguirregabiria

March 24th & 31st, 2022 4

A D N A B N A B N A B N

48 / 92

3

Descriptive Statistics: CLEC Level

	1998		2002		
Variable	Mean	SD	Mean	SD	
Number of markets to enter	61.5	66.9	90.3	70.6	
Number of markets entered	4.9	9.4	15.7	16.8	
Firm age	7.9	17.9	10.3	14.9	
Subsidiary	0.312	0.465	0.218	0.416	
Privately owned	0.645	0.480	0.625	0.487	
Financed by venture capital	0.177	0.383	0.296	0.460	
Employees (in thousands) 1998 ($N = 81$)	3.517	16.71	N/A		
Survive to 2002	0.427	0.497	N/A		
Alternate definition of survive to 2002	0.667	0.474	N/A		
Revenue 2002 (million $N = 48$)	535	1550	N/A		
Local phone revenue 2002 (million $, N = 46$)	150	362	N/A		
Manager characteristics (with imputations)					
Experience	17.7	9.3	20.3	11.3	
Undergraduate school average SAT > 1400	0.094	0.293	0.096	0.297	
Any graduate degree	0.554	0.475	0.501	0.469	
Any economics or business degree	0.733	0.445	0.682	0.433	
Any engineering or science degree	0.364	0.463	0.339	0.443	
Observations (CLECs)	96		83		

TABLE 1A-DESCRIPTIVE STATISTICS BY CLEC

Victor Aguirregabiria

Empirical IO

March 24th & 31st, 2022 49 / 92

3

< □ > < □ > < □ > < □ > < □ >

Motivating Analysis: Ex-Post Monopoly Markets

FIGURE 1. PERCENT MARKETS WHERE THE FIRM IS THE ONLY OPERATING CLEC

Victor Aguirregabiria

Empirical IO

March 24th & 31st, 2022 50 / 92

3

<ロト < 四ト < 三ト < 三ト

Motivating Analysis

(1)
$$Entry_{jm} = \alpha_0 + \alpha_1 (\#competitors)_m + \mathbf{Z}_j \alpha_2$$

+ $(\#competitors)_m \mathbf{Z}_j \alpha_3 + \mathbf{X}_m \alpha_4 + \varepsilon_{jm}$,

- The main interest is the sign of the parameters α_3 .
- The interaction between managers characteristics and number of competitors.

Victor Aguirregabiria

Empirical IO

March 24th & 31st, 2022 51 / 92

Motivating Analysis [2]

								_
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1)	No. of competitors $\times \log(\text{experience})$	-0.007 (0.002)***			-0.007 (0.002)***	-0.022 (0.009)**	-0.007 (0.002)***	-0.022 (0.009)**
(2)	No. of competitors × manager attended school with SAT score above 1400		-0.018 (0.007)***		-0.016 (0.007)**	-0.016 (0.007)**	-0.017 (0.007)**	-0.016 (0.007)**
(3)	No. of competitors × manager has degree in economics or business			-0.010 (0.003)***	-0.008 (0.004)**	-0.061 (0.031)*	-0.008 (0.004)**	-0.059 (0.030)*

TABLE 2A-OLS REGRESSIONS OF 1998 ENTRY ON MANAGER CHARACTERISTICS

э

< □ > < /□ >

Structural Model: Profit Function

(2)
$$\Pi_{jm} = \beta_0 + \mathbf{X}_m \boldsymbol{\beta} + \psi(\# \text{ competitors})_m + \xi_m + \varepsilon_{jm}.$$

- Private information entry game.
- Note strong assumption: Profit does not depend on manager characteristics (ability) Z_j.
- Strong exclusion restriction: Z_j only affects (the probability distribution of) a manager's level of strategic sophistication.

Victor Aguirregabiria

Structural Model: Cognitive Hierarchy (CH)

- Level k = 0: Believe they are monopolist in the market.
- Firm j's type is a random draw from a Poisson distribution with parameter τ_i , with:

$$\tau_j = \exp\{\gamma_0 + \mathbf{Z}_j \ \gamma\}$$

• A type k firm beliefs that the type of firm j comes from a:

Poisson (τ_i) truncated at k-1

< □ > < □ > < □ > < □ > < □ > < □ >

Poisson distributions with different taos (lambdas)

Victor Aguirregabiria

March 24th & 31st, 2022 55 / 92

Structural Parameters

• The vector of structural parameters includes:

$$\boldsymbol{ heta}=\left(eta_{0},\ \boldsymbol{eta},\ \psi,\ \sigma_{\xi},\ \gamma_{0},\ \gamma
ight)$$

• Parameters in the profit function: β_0 , β , ψ , σ_{ξ}

- Parameters in the Poisson distribution of strategic types: γ_0 , γ
- Model **does not identify** (pointwise) the strategic type k of a firm.
- But it does identify the probability distribution over types (levels of strategic sophistication) of a firm with observable characteristics Z_j: Poisson(τ_j = exp{γ₀ + Z_j γ}).

イロト イヨト イヨト イヨト

Identification

- Based on the exclusion restriction of the model i.e., Z_j does not have a direct effect on the profit function – all the parameters are identified.
- As we have seen in previous lecture, this assumption is stronger than necessary.
- Z_j could be included in the profit function of firm j.
 We still have that Z_i for i ≠ j does not have a direct effect on the profit function of firm j.

< □ > < □ > < □ > < □ > < □ > < □ >

Empirical Results: Strategic Ability

	Variables	Main (1)	No covariates in Z (2)	Only manager characteristics (3)	Alternative treatment of missing variables (4)	No random effects (5)
Coe	fficients on strategic ability parameter lo	$g(\tau)$				
(1)	Log(experience)	0.161 (0.061)***		0.180 (0.053)***	0.147 (0.057)***	0.235 (0.080)***
(2)	Manager attended school with SAT score above 1400	0.069 (0.039)*		0.041 (0.034)	0.062 (0.038)	0.117 (0.052)**
(3)	Manager has degree in economics or business	0.396 (0.215)*		0.358 (0.162)**	0.375 (0.193)*	0.558 (0.253)**

TABLE 4—STRATEGIC ABILITY AND ENTRY COEFFICIENTS (N = 5,906)

12

イロト イポト イヨト イヨト

Empirical Results: Distribution of tau

• At Mean $\tau = 2.59$:

Type 4 or higher = 26.2%

Victor Aguirregabiria

March 24th & 31st, 2022 59 / 92

э

A D N A B N A B N A B N

6. Dynamic Games: Introduction

(4) (5) (4) (5)

Introduction

- Firms are **heterogeneous** in their ability to **acquire and process information**.
- The implications of firms' heterogeneous expectations on firms' performance and market outcomes have been long recognized in economics, at least since the work of **Herbert Simon** (1958, 1959).
- However, the assumption of rational expectations has been the status quo to represent agents' beliefs in many areas in economics, and in particular in IO.
- It has not been until recently that **firms' biased beliefs** has received substantial attention in structural models in empirical IO.

< □ > < □ > < □ > < □ > < □ > < □ >

Aguirregabiria & Magesan (REStud, 2020)

- [1] Present a **dynamic game of oligopoly competition** that allows for **biased beliefs** and learning, but it is agnostic about the source of biased beliefs and the form of learning (if any).
- [2] Study **nonparametric identification of firms' belief functions** and structural parameters in the profit function.
- [3] Application to market entry and geographic expansion of McDonalds and Burger King during the early years of this industry in Britain.

イロト 不得 トイラト イラト 二日

7. Dynamic Games: Model

э

< □ > < □ > < □ > < □ > < □ > < □ >

Model: Dynamic Game

- *N* firms indexed by *i*. Every period *t*, each firm takes an action $a_{it} \in \{0, 1, ..., J\}$.
- One-period profit function is:

$$\Pi_{it} = \pi_{it}(a_{it}, \mathbf{a}_{-it}, \mathbf{x}_t) + \varepsilon_{it}(x_{it})$$

• \mathbf{x}_t = vector of common knowledge state vars. with transition prob.

$$f_t(\mathbf{x}_{t+1} \mid a_{it}, \mathbf{a}_{-it}, \mathbf{x}_t)$$

• $\varepsilon'_{it}s$ are private info of player *i* and unobservable to researcher. It is i.i.d. over time and players.

イロト 不得 トイラト イラト 二日

Maintain some assumptions from MPE

- ASSUMPTION 1 (Payoff relevant state variables): Players' strategy functions depend only on payoff relevant state variables: x_t and ε_{it}.
- ASSUMPTION 2 (Maximization of intertemporal payoffs): Players are forward looking and maximize expected intertemporal payoffs.
- **ASSUMPTION 3 (Rational beliefs on own future behavior):** Players have rational expectations on their own behavior in the future.
- We relax the assumption that firms have unbiased or equilibrium beliefs on other players' behaviour,

< □ > < □ > < □ > < □ > < □ > < □ >

Strategies, Choice Probabilities, and Beliefs

- Let $\sigma_{it}(\mathbf{x}_t, \varepsilon_{it})$ be the strategy function for player *i* at period *t*.
- $P_{it}(a_i | \mathbf{x}_t) \equiv \Pr(\sigma_{it}(\mathbf{x}_t, \varepsilon_{it}) = a_i | \mathbf{x}_t)$ choice probability of player *i*.
- B^(t)_{it+s}(**a**_{-i}|**x**_{t+s}) beliefs of player i at period t about the behavior of other players at period t + s.
- The model allows the belief functions $B_{it+s}^{(t)}$ to vary freely both over t (i.e., over the period when these beliefs are formed) and over t + s (i.e., over the period of the other players' behavior).
- In particular, the model allows players to update their beliefs and learn (or not) over time *t*.

イロト 不得下 イヨト イヨト 二日

Sequence of Beliefs $B_{it+s}^{(t)}$

Beliefs	Period of the opponents' behavior $\left(t+s ight)$						
formed (t)	t+s=1	t + s = 2	t + s = 3		t + s = T		
	$\mathbf{p}^{(1)}$	$\mathbf{p}^{(1)}$	$\mathbf{p}^{(1)}$		D ⁽¹⁾		
t = 1	B_{i1}	B_{i2}	B_{i3}		B_{iT}		
<i>t</i> = 2	-	$B_{i2}^{(2)}$	$B_{i3}^{(2)}$		$B^{(2)}_{iT}$		
÷	÷	÷	÷	÷	÷		
t = T	_	-	-		$B_{iT}^{(T)}$		

æ

A D N A B N A B N A B N

Best Response Functions

- Given her beliefs at period t, $\mathbf{B}_i(t) = \left\{ B_{i,t+s}^{(t)} : s \ge 0 \right\}$, a player best response at period t is the solution of a single-agent Dynamic Programming problem.
- At period *t*, the DP problem can be described in terms of: (1) a sequence of expected one-period payoff functions:

$$\pi_{it+s}^{\mathbf{B}(t)}(a_{it+s}, \mathbf{x}_{t+s}) \equiv \sum_{\mathbf{a}_{-i}} B_{it+s}^{(t)}(\mathbf{a}_{-i} | \mathbf{x}_{t+s}) \ \pi_{it+s}(a_{it+s}, \mathbf{a}_{-i}, \mathbf{x}_{t+s})$$

• And (2) a sequence of transition probability functions:

$$f_{it+s}^{\mathbf{B}(t)}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{t+s}) \equiv \sum_{\mathbf{a}_{-i}} B_{it+s}^{(t)}(\mathbf{a}_{-i}|\mathbf{x}_{t+s}) f_{t+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{a}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{a}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{-i}) f_{it+s}(\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{t+s+1}|a_{it+s},\mathbf{x}_{t+s+1}|a$$

イロト イポト イヨト イヨト 二日

Best Response Functions [2]

• The solution of this DP problem implies the vector of **conditional choice value functions** at period *t*:

$$v_{it}^{\mathbf{B}(t)}(\mathbf{x}_t) = \left\{ v_{it}^{\mathbf{B}(t)}(a_i, \mathbf{x}_t) : a_i = 0, 1, ..., J \right\}$$

• And the best response choice probabilities:

$$P_{it}(a_i|\mathbf{x}_t) = \Pr\left(v_{it}^{\mathbf{B}(t)}(a_i,\mathbf{x}_t) + \varepsilon_{it}(a_i) \ge v_{it}^{\mathbf{B}(t)}(a'_i,\mathbf{x}_t) + \varepsilon_{it}(a'_i) \forall a'_i\right)$$

• For instance, in a logit model:

$$P_{it}(a_i | \mathbf{x}_t) = \frac{\exp\left\{v_{it}^{\mathbf{B}(t)}(a_i, \mathbf{x}_t)\right\}}{\sum_{j=0}^{J} \exp\left\{v_{it}^{\mathbf{B}(t)}(j, \mathbf{x}_t)\right\}}$$

Structure of the conditional choice values

• By definition the values $v_{it}^{\mathbf{B}(t)}(a_i, \mathbf{x}_t)$ have the following structure:

$$v_{it}^{\mathbf{B}(t)}(a_i, \mathbf{x}_t) = \mathbf{B}_{it}^{(t)}(\mathbf{x}_t)' \left[\pi_{it}(a_{it}, \mathbf{x}_t) + \mathbf{c}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, \mathbf{x}_t) \right]$$

•
$$\mathbf{B}_{it}^{(t)}(\mathbf{x}_t) = \text{vector of beliefs } [B_{it}^{(t)}(\mathbf{a}_{-i}|\mathbf{x}_t) \text{ for any value } \mathbf{a}_{-i}].$$

•
$$\mathbf{B}_{(>t)}^{(t)} =$$
 beliefs formed at t on rivals' behavior at $t + s > t$.

- $\pi_{it}(a_{it}, \mathbf{x}_t)$ = vector of payoffs $[\pi_{it}(a_{it}, \mathbf{a}_{-i}, \mathbf{x}_t)$ for any value $\mathbf{a}_{-i}]$.
- $\mathbf{c}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, \mathbf{x}_t) = \text{vector of continuation values } [\mathbf{c}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, \mathbf{a}_{-i}, \mathbf{x}_t) \text{ for any value } \mathbf{a}_{-i}]$ with:

$$\mathbf{c}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, \mathbf{a}_{-i}, \mathbf{x}_{t}) = \beta \sum V_{it+1}^{\mathbf{B}_{(>t)}^{(t)}}(\mathbf{x}_{t+1}) f_{t}(\mathbf{x}_{t+1}|a_{it}, \mathbf{a}_{-i}, \mathbf{x}_{t})$$

70 / 92

8. Identification of Beliefs

э

Data

• Random sample of M markets, indexed by m, where we observe

$$\{a_{imt}, \ \mathbf{x}_{mt}: i = 1, 2, ..., N; \ t = 1, 2, ..., T^{data}\}$$

- N and T^{data} are small and M is large.
- The payoff functions $\pi_{it}(a_{it}, \mathbf{a}_{-it}, \mathbf{x}_t)$ and the beliefs functions $B_{it+s}^{(t)}(\mathbf{a}_{-i}|\mathbf{x}_{t+s})$ are nonparametrically specified.
- The distribution of the unobservables Λ is assumed known.
- I focus here in a model with two players, *i* and *j*, but the paper results can be extended to *N* players.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Inversion of CCPs

• The model is described by the conditions:

$$P_{it}(a_i|\mathbf{x}_t) = \Lambda\left(a_i; v_{it}^{\mathbf{B}(t)}(\mathbf{x}_t)\right)$$

- The CCPs $P_{it}(a_i | \mathbf{x}_t)$ are identified using data from M markets.
- Hotz-Miller inversion theorem implies that we can invert the best response mapping to obtain value differences $\tilde{v}_{it}^{\mathbf{B}(t)}(a_i, \mathbf{x}_t) \equiv v_{it}^{\mathbf{B}(t)}(a_i, \mathbf{x}_t) v_{it}^{\mathbf{B}(t)}(0, \mathbf{x}_t)$ as functions of CCPs:

$$\widetilde{v}_{it}^{\mathbf{B}(t)}(\mathbf{a}_i,\mathbf{x}_t) = \Lambda^{-1}\left(\mathbf{a}_i;\mathbf{P}_{it}(\mathbf{x}_t)\right)$$

 The identification problem is to obtain beliefs and payoff functions given that Λ⁻¹ (a_i; P_{it}(x_t)) are known.

・ロット 御り とうりょうり しつ

Structure of the restrictions

• Value differences $\widetilde{v}_{it}^{\mathbf{B}(t)}(a_i, \mathbf{x}_t)$ are:

$$\widetilde{\mathbf{v}}_{it}^{\mathbf{B}(t)}(\mathbf{a}_i, \mathbf{x}_t) = \mathbf{B}_{it}^{(t)}(\mathbf{x}_t)' \left[\widetilde{\pi}_{it}(\mathbf{a}_{it}, \mathbf{x}_t) + \widetilde{\mathbf{c}}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(\mathbf{a}_{it}, \mathbf{x}_t) \right]$$

• $\widetilde{\pi}_{it}(a_{it}, \mathbf{x}_t) = \text{vector of payoff differences} [\pi_{it}(a_{it}, \mathbf{a}_{-i}, \mathbf{x}_t) - \pi_{it}(0, \mathbf{a}_{-i}, \mathbf{x}_t) \text{ for any value } \mathbf{a}_{-i}].$

•
$$\widetilde{\mathbf{c}}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, \mathbf{x}_{t}) = \text{vector of differences of continuation values}$$

 $[\widetilde{\mathbf{c}}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, \mathbf{a}_{-i}, \mathbf{x}_{t}) - \widetilde{\mathbf{c}}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(0, \mathbf{a}_{-i}, \mathbf{x}_{t}) \text{ for any value } \mathbf{a}_{-i}].$

Victor Aguirregabiria

March 24th & 31st, 2022 74 / 92

< 日 > < 同 > < 三 > < 三 >

Identification Assumptions

• **ASSUMPTION ID-1.** A player has the same beliefs in markets with the same **x** variables.

$$B_{imt+s}^{(t)}(.|\mathbf{x})=B_{it+s}^{(t)}(.|\mathbf{x})$$
 for any market m

ASSUMPTION ID-2 (Static Exclusion Restriction):
 x_t = (s_{it}, s_{jt}, w_t) such that s_{it} enters in the payoff function of player i but not in the payoff of the other player.

$$\pi_{it}\left(\mathsf{a}_{it}, \mathsf{a}_{jt}, \mathsf{s}_{it}, \mathsf{s}_{jt}, \mathsf{w}_{t}\right) = \pi_{it}\left(\mathsf{a}_{it}, \mathsf{a}_{jt}, \mathsf{s}_{it}, \mathsf{w}_{t}\right)$$

• ASSUMPTION ID-3 (Dynamic Exclusion Restriction): The transition probability of the state variable s_{it} is such that the value of s_{it+1} does not depend on (s_{it}, s_{jt}) :

$$f_t(s_{it+1} \mid a_{it}, s_{it}, s_{jt}, \mathbf{w}_t) = f_t(s_{it+1} \mid a_{it}, \mathbf{w}_t)$$

ヘロト 不得下 イヨト イヨト 二日

Static Exclusion Restriction (ID-2)

- The exclusion restriction ID-2 appears naturally in many applications of dynamic games of oligopoly competition.
- Incumbent status, capacity, capital stock, or product quality of a firm at period t - 1 are state variables that enter in a firm's payoff function at period t because there are investment and adjustment costs that depend on these lagged variables.
- A firm's payoff π_{it} depends also on the competitors' values of these variables at period t, but it does not depend on the competitors' values of these variables at t 1.
- Importantly, the assumption does not mean that player *i* does not condition her behavior on those excluded variables. Each player conditions his behavior on all the (common knowledge) state variables that affect the payoff of a player in the game, even if these variables are excluded from his own payoff.

Victor Aguirregabiria

Empirical IO

Dynamic Exclusion Restriction (ID-3)

$$f_t(s_{it+1} \mid a_{it}, s_{it}, s_{jt}, \mathbf{w}_t) = f_t(s_{it+1} \mid a_{it}, \mathbf{w}_t)$$

• An important class of models that satisfies this condition is when $s_{it} = a_{i,t-1}$, such that the transition rule is simply:

$$s_{it+1} = a_{it}$$

 Many dynamic games of oligopoly competition belong to this class, e.g., market entry/exit, technology adoption, and some dynamic games of quality or capacity competition, among others.

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶

Example: Quality competition

- Quality ladder dynamic game (Pakes and McGuire, 1994).
- s_{it} is the firm's quality at t-1.
- The decision variable *a_{it}* is the firm's quality at period *t*, such that:

$$s_{it+1} = a_{it}$$

 The model is dynamic because the payoff function includes a cost of adjusting quality that depends on a_{it} - s_{it}:

$$AC_i \left(a_{it} - s_{it}\right)$$

• Given competitors quality at period t, a_{jt} , firm *i*'s profit does not depend on competitors' qualities at t - 1.

Victor Aguirregabiria

イロト 不得 トイラト イラト 二日

Role of the Exclusion restrictions

$$\ln\left(\frac{P_{it}\left(a_{i} \mid s_{it}, \mathbf{s}_{-it}\right)}{P_{it}\left(0 \mid s_{it}, \mathbf{s}_{-it}\right)}\right) = \mathbf{B}_{it}^{(t)}(s_{it}, \mathbf{s}_{-it})' \left[\widetilde{\pi}_{it}(a_{it}, s_{it}) + \widetilde{\mathbf{c}}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, s_{it})\right]$$

- Under the two exclusion restrictions, the state variables \mathbf{s}_{-it} (the competitors s_j) do not enter in the payoffs $\tilde{\pi}_{it}(a_{it}, s_{it})$ and on the continuation values $\tilde{\mathbf{c}}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, s_{it})$.
- Note: Though $\widetilde{\mathbf{c}}_{it}^{\mathbf{B}_{(>t)}^{(t)}}(a_{it}, s_{it})$ depends on beliefs, these are beliefs at periods t + s > t and therefore depend on $(s_{it+s}, \mathbf{s}_{-it+s})$ for t + s > t.
- Therefore, the dependence of $\ln \left(\frac{P_{it} (a_i | s_{it}, \mathbf{s}_{-it})}{P_{it} (0 | s_{it}, \mathbf{s}_{-it})} \right)$ with respect to \mathbf{s}_{-it} captures the dependence of beliefs $\mathbf{B}_{it}^{(t)}(s_{it}, \mathbf{s}_{-it})$ with respect to \mathbf{s}_{-it} .

79 / 92

Identification of Beliefs

• For any player *i*, any period *t* in the data, any value of $(\mathbf{a}_{-i}, \mathbf{s}_{it})$, and any combination of three values \mathbf{s}_{-it} , say $(\mathbf{s}_{-i}^{(a)}, \mathbf{s}_{-i}^{(b)}, \mathbf{s}_{-i}^{(c)})$, the following function of beliefs is identified:

$$\frac{B_{it}^{(t)}(\mathbf{a}_{-i} \mid s_{it}, \mathbf{s}_{-i}^{(c)}) - B_{it}^{(t)}(\mathbf{a}_{-i} \mid s_{it}, \mathbf{s}_{-i}^{(a)})}{B_{it}^{(t)}(\mathbf{a}_{-i} \mid s_{it}, \mathbf{s}_{-i}^{(b)}) - B_{it}^{(t)}(\mathbf{a}_{-i} \mid s_{it}, \mathbf{s}_{-i}^{(a)})}$$

Identification of Beliefs [2]

• For instance, in a binary choice logit with two-players:

$$\begin{split} & \frac{B_{it}^{(t)}(1 \mid s_{it}, \mathbf{s}_{-i}^{(c)}) - B_{it}^{(t)}(1 \mid s_{it}, \mathbf{s}_{-i}^{(a)})}{B_{it}^{(t)}(1 \mid s_{it}, \mathbf{s}_{-i}^{(b)}) - B_{it}^{(t)}(1 \mid s_{it}, \mathbf{s}_{-i}^{(a)})} = \\ & \frac{\ln\left(\frac{P_{it}(1 \mid s_{it}, \mathbf{s}_{-i}^{(c)})}{P_{it}(0 \mid s_{it}, \mathbf{s}_{-i}^{(c)})}\right) - \ln\left(\frac{P_{it}(1 \mid s_{it}, \mathbf{s}_{-i}^{(a)})}{P_{it}(0 \mid s_{it}, \mathbf{s}_{-i}^{(a)})}\right)}{\ln\left(\frac{P_{it}(1 \mid s_{it}, \mathbf{s}_{-i}^{(b)})}{P_{it}(0 \mid s_{it}, \mathbf{s}_{-i}^{(a)})}\right) - \ln\left(\frac{P_{it}(1 \mid s_{it}, \mathbf{s}_{-i}^{(a)})}{P_{it}(0 \mid s_{it}, \mathbf{s}_{-i}^{(a)})}\right)} \end{split}$$

• Note that we cannot identify beliefs about competitors' behavior at future periods: $B_{it+s}^{(t)}$ for s > 0. However, $B_{it}^{(t)}$ can provide substantial information about learning.

EMPIRICAL APPLICATION

- Dynamic game of store location by McDonalds (MD) and Burger King (BK) using data for United Kingdom during the period 1990-1995.
- Panel of 422 local markets (districts) and six years, 1990-1995.
- Information on the number of stores of McDonalds (MD) and Burger King (BK) in United Kingdom.
- Information on local market characteristics such as population, density, income per capita, age distribution, average rent, local retail taxes, and distance to the headquarters of each firm in UK.

< □ > < □ > < □ > < □ > < □ > < □ >

Evolution of the Number of Stores & Markets

Data: 422 markets, 2 firms, 5 years = 4,220 observations

	Burger King				McDonalds					
	1991	1992	1993	1994	1995	1991	1992	1993	1994	19
# Markets	98	104	118	131	150	213	220	237	248	25
$\Delta \#$ Markets	17	6	14	13	19	7	7	17	11	6
# of stores	115	128	153	181	222	316	344	382	421	44
$\Delta \#$ of stores	36	13	25	28	41	35	28	38	39	2
stores per market	1.17	1.23	1.30	1.38	1.48	1.49	1.56	1.61	1.70	1.7
<□> <畳> <差> <差> ≤ のへぐ						ঀ৻৵				
Victor Aguirreg	ahiria			Empirical IC	2		March 24t	h & 31ct 2	022 83	/ 92

Model

- $k_{imt} \in \{0, 1, ..., |\mathcal{K}|\}$ number of stores of firm *i* in market *m* at period t-1.
- $a_{imt} \in \{0, 1\}$ decision of firm *i* to open a new store.
- $a_{imt} + k_{imt} = \#$ stores of firm *i* at period *t*.
- S_{imt} = Distance of the centroid of marker *m* to the centroid of the closest market where firm *i* had stores at year t 1.
- Firm *i*'s total profit function is equal to:

$$\Pi_{imt} = VP_{imt} - EC_{imt} - FC_{imt}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model [2]

• Variable profit function:

$$VP_{imt} = (\mathbf{W}_m \gamma) (\mathbf{a}_{imt} + \mathbf{k}_{imt}) \begin{bmatrix} \theta_{0i}^{VP} + \theta_{can,i}^{VP}(\mathbf{k}_{imt} + \mathbf{a}_{imt}) \\ + \theta_{com,i}^{VP}(\mathbf{a}_{jmt} + \mathbf{k}_{jmt}) \end{bmatrix}$$

• Entry cost:

$$EC_{imt} = 1\{a_{imt} > 0\} \left[\theta_{0i}^{EC} + \theta_{K,i}^{EC} \ 1\{k_{imt} > 0\} + \theta_{S,i}^{EC} \ S_{imt} + \varepsilon_{it}\right]$$

• Fixed cost:

$$FC_{imt} = 1\{(k_{imt} + a_{imt}) > 0\} \begin{bmatrix} \theta_{0i}^{FC} + \theta_{lin,i}^{FC}(k_{imt} + a_{imt}) \\ + \theta_{qua,i}^{FC}(k_{imt} + a_{imt})^2 \end{bmatrix}$$

12

<ロト < 四ト < 三ト < 三ト

Tests of Unbiased Beliefs

Data: 422 markets, 5 years = 2,110 observations

BK: \widehat{D} (p-value)66.841 (0.00029)MD: \widehat{D} (p-value)42.838 (0.09549)

- We can reject hypothesis that BK beliefs are unbiased (p-value 0.00029).
- Restriction is more clearly rejected for large values of the state variable (distance to chain network) S_{MD} .

イロト イヨト イヨト イヨト

Where to impose unbiased beliefs?

- We propose three different criteria:
 - [1] Minimize distance $||B_i P_j||$
 - [2] Impose unbiased beliefs for smallest values of S_j .
 - [3] Most visited values of S_j .
- In this empirical application, the three criteria have the same implication: impose unbiased beliefs at the lowest values for the distance S_j.

Estimation of Dynamic Game

Data: 422 markets, 2 firms, 5 years = 4,220 observations

					-	
	eta=0.95 (not estimated)					
	Equilibriur	n Beliefs	Biased I			
	BK	MD	BK	MD		
Var Profits:						
θ_0^{VP}	0.5413	0.8632	0.4017	0.8271		
-	$(0.1265)^{*}$	$(0.2284)^{*}$	$(0.2515)^*$	$(0.4278)^{*}$		
θ_{can}^{VP} cannibalization	-0.2246	0.0705	-0.2062	0.0646		
	$(0.0576)^{*}$	$(0.0304)^{*}$	$(0.1014)^*$	(0.0710)		
$ heta_{com}^{VP}$ competition	-0.0541	-0.0876	-0.1133	-0.0856		
	(0.0226)*	(0.0272)	(0.0540)*	(0.0570)		
Log-Likelihood	-848.4		-840			
			• • • • • • • • • • • • • • • • • • •	୬୯୯		
Victor Aguirregabiria	Emp	irical IO	March 24	March 24th & 31st, 2022 88 /		

Estimation of Dynamic Game

Data: 422 markets, 2 firms, 5 years = 4,220 observations

	$\beta = 0.95$ (not estimated)					
	Equilibriu	ım Beliefs	Biased Beliefs			
	BK	MD	BK	MD		
Fixed Costs:	0.0350	0.0374	0.0423	0.0307		
θ_0^{FC} fixed	(0.0220)	(0.0265)	(0.0478)	(0.0489)		
$ heta_{\mathit{lin}}^{\mathit{FC}}$ linear in k	0.0687	0.0377	0.0829	0.0467		
	(0.0259)*	(0.0181)*	(0.0526)*	(0.0291)		
$ heta_{qua}^{FC}$ quadratic in k	-0.0057	0.0001	-0.0007	0.0002		
	(0.0061)	(0.0163)	(0.0186)	(0.0198)		

Image: A matrix

Estimation of Dynamic Game

Data: 422 markets, 2 firms, 5 years = 4,220 observations

	eta=0.95 (not estimated)					
	Equilibriu	m Beliefs	Biased Beliefs			
	BK	MD	BK	MD		
Entry Cost: θ_0^{EC} fixed	0.2378 (0.0709)*	0.1887 (0.0679)*	0.2586 (0.1282)*	0.1739 (0.0989)*		
$ heta_{\mathcal{K}}^{EC}$ (K¿0)	-0.0609 (0.043)	- 0.1070 (0.0395)*	-0.0415 (0.096)	- 0.1190 (0.0628)*		
$ heta_S^{EC}$ (linear in S)	0.0881 (0.0368)*	0.0952 (0.0340)*	0.1030 (0.0541)*	0.1180 (0.0654)*		

90 / 92

Implications of biased beliefs on BK's profits

• We compare the value of BK's profits during years 1991 to 1994 given its actual entry decisions with this firm's profits if its entry decisions were based on unbiased beliefs on MD's behaviour.

• Having unbiased would increase BK's total profits in UK by:

- 2.78% in 1991; 2.11% in 1992; 1.20% in 1993; 0.87% in 1994.
- Biased beliefs occur in markets which are relatively far away from the firm's network of stores. These markets are relatively smaller, and biased beliefs decline over time in the sample period as the result of geographic expansion.

< □ > < □ > < □ > < □ > < □ > < □ >

Summary and Conclusions

- Strategic uncertainty can be important for competition in oligopoly markets. Under these conditions, the assumption of equilibrium beliefs can be too restrictive.
- We present sufficient conditions for the NP identification of preferences and beliefs.
- We apply these ideas to actual data and find that bias beliefs can be useful to explain a puzzle in the data.