ECO 3901 EMPIRICAL INDUSTRIAL ORGANIZATION Lecture 2 Data and Identification of structural dynamic games

Victor Aguirregabiria (University of Toronto)

January 20, 2022

N / * .		
Victor	4 gillirrega	hiria

Introduction to the course

Lecture 2: Data & Identification of dynamic games Outline

- 1. Datasets in applications
- 2. The identification problem
- 3. Basic assumptions and Non-identification result
- 4. Basic positive identification result
- 5. Relaxing restrictions in basic identification result

1. Datasets in Applications

< □ > < 同 > < 回 > < 回 > < 回 >

э

Type of Data in most Empirical Applications

• Panel data of M geographic markets, over T periods, and N firms.

$$\mathit{Data} = \{ \pmb{a}_{mt}, \; \pmb{\mathsf{x}}_{mt} : m = 1, 2, ..., M; \; t = 1, 2, ..., T \}$$

- Example 1: Major airlines in US (N = 10), in the markets/routes defined by all the pairs of top-50 US airports (M = 1, 275), over T = 20 quarters (5 years).
- Example 2: Supermarket chains in Ontario (N = 6), in the geographic markets defined by census tracts (M > 1k), over T = 24 months.

(日)

Type of Data in most Empirical Applications [2]

- This data structure applies to industries characterized by **many geographic markets**, where a separate (dynamic) game is played in each market: e.g., retail industries, services, airline markets, procurement auctions, ...
- However, there are many manufacturing industries where competition is more global: a single national or even international market: e.g., microchips.
- For these "global" industries, applications rely on sample variability that comes from a **combination of modest** *N*, *M*, and *T*.
- Some other industries are characterized by a large number of heterogeneous firms (large *N*), e.g., NYC taxis.

Victor Aguirregabiria

2. The identification problem

- ∢ ⊒ →

Image: A mathematical states and a mathem

э

Our identification problem

• The primitives of the model are:

$$\{\pi_i(.), \delta_i, F_x(.): i \in \mathcal{I}\}$$

- Empirical applications assume that these primitives are known to the researcher up to a vector of structural parameters θ .
- The **identification problem** consists in using the data and the restrictions of the model to:
 - uniquely determine the value of θ (point identification)
 - or to obtain bounds on θ (partial / set identification).
- This is a **revealed preference identification approach**: under the assumption that firms' are maximizing profits, their actions reveal information about the structure of their profit functions.

Victor Aguirregabiria

Introduction to the course

3. Basic Assumptions and Non-Identification Result

Basic Assumptions

- Set of assumptions used in many applications in this literature.
- ID.1 No common knowledge unobservables. The researcher observes \mathbf{x}_t . The only unobservables are ε_{it} .
- ID.2 Single equilibrium in the data. Every observation (i, m, t) in the data comes from the same MPE.
- ID.3 Additive unobservables. The unobservables ε_{it} enter additively in the payoff function: $\pi_i(\mathbf{a}_t, \mathbf{x}_t) + \varepsilon_{it}(\mathbf{a}_{it})$.
- ID.4 Known distribution of unobservables. The distribution of ε_{it} is completely known to the researcher.

ID.5 **Conditional independence**. Conditional on $(\mathbf{a}_t, \mathbf{x}_t)$ the distribution of \mathbf{x}_{t+1} does not depend on ε_t .

A Positive Identification Result but Not for Primitives

 Under Assumptions [ID.1] and [ID.2], the vector of equilibrium CCPs in the population, P⁰, is identified from the data. For every (*i*, *a_i*, x:

$$P_i^0(a_i|\mathbf{x}) = \mathbb{E}\left(1\{a_{imt} = a_i\} \mid \mathbf{x}_{mt} = \mathbf{x}\right)$$

• Given CCPs and under assumptions [ID.3] to [ID.5], Hotz-Miller Inversion Theorem implies the identification of conditional-choice value function relative to a baseline alternative (say 0):

$$\widetilde{v}_i^{\mathbf{P}}(a_i, \mathbf{x}) \equiv v_i^{\mathbf{P}}(a_i, \mathbf{x}) - v_i^{\mathbf{P}}(0, \mathbf{x})$$

• For instance, when ε is Type I extreme value:

$$\widetilde{v}_i^{\mathbf{P}}(a_i,\mathbf{x}) = \ln P_i^0(a_i|\mathbf{x}) - \ln P_i^0(0|\mathbf{x})$$

< 日 > < 同 > < 三 > < 三 >

A Negative Identification Result (on Primitives)

- Unfortunately, the identification of function *v*_i^P(*a_i*, **x**) is not sufficient to identify the primitive preference function (*π_i*(*a*, **x**), *δ_i*).
 See Rust (1994, Handbook), Magnac & Thesmar (2002, ECMA)
- There are three identification issues.
- P1. Non innocuous normalizations. In contrast to static models, normalizing $\pi_i(0, \mathbf{x}) = 0$ has implications on important empirical questions.
- P2. No identification of discount factor.
- P3. No identification competition effects. $\tilde{v}_i^{\mathbf{P}}(a_i, \mathbf{x})$ does not have a_{-it} as an argument, but we are interested in the effect of a_{-it} on π_i .

Victor Aguirregabiria

イロト イポト イヨト イヨト

4. Basic Positive Identification Result

Victor Aguirregabiria

Introduction to the course

January 20, 2022

Additional Assumptions Restrictions

ID.6 Normalization of payoff of one choice alternative.

 $\pi_i(a_i = 0, \mathbf{a}_{-i}, \mathbf{x}) = 0$ for every $(i, \mathbf{a}_{-i}, \mathbf{x})$.

Example: If a firm decides not being in the market its profit is zero, regardless she is a potential entrant or an incumbent (i.e., no scrap value of exit costs).

ID.7 Known discount factor. δ_i is known to the researcher.

Example: With annual frequency, $\delta_i = 0.95$ for every firm.

ID.8 Exclusion restriction in profit function. $\mathbf{x}_t = (\mathbf{x}_t^c), z_{it} : i \in \mathcal{I}$ such that $\pi_i(\mathbf{a}_t, \mathbf{x}^c, z_{it})$ does not depend on z_{jt}) for $j \neq i$.

Example: In a game of market entry-exit, firm *i*'s profit depends on the current entry decisions of competitors (\mathbf{a}_{-it}) , and on the own incumbency status $(\mathbf{a}_{i,t-1})$ but there is not a (direct) effect of the competitors' incumbency status $(\mathbf{a}_{-i,t-1})$.

Victor Aguirregabiria

Positive Identification Result

Under Assumptions [ID.1] to [ID.8], the profit functions π_i(**a**, **x**) are nonparametrically identified from the conditional-choice values τ̃_i^P(a_i, **x**).

Proposition 3 in Pesendorfer & Schmidt-Dengler (REStud, 2008).

 Assumptions [ID.1] to [ID.8] are very common in empirical applications of dynamic games in IO. In most cases, they are combined with parametric restrictions on function π_i.

5. Relaxing Restrictions Basic Identification Result

Relaxing Restrictions

- Serially correlated unobservables
- Multiple equilibria in the data
- Relaxing normalization restrictions
- Identification of discount factors
- Non-additive unobservables
- Nonparametric distribution of unobservables
- Non-equilibrium beliefs