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Datasets in applications

Type of Data in most Empirical Applications

Panel data of M geographic markets, over T periods, and N firms.

Data = {amt , xmt : m = 1, 2, ...,M; t = 1, 2, ...,T}

Example 1: Major airlines in US (N = 10), in the markets/routes
defined by all the pairs of top-50 US airports (M = 1, 275), over
T = 20 quarters (5 years).

Example 2: Supermarket chains in Ontario (N = 6), in the
geographic markets defined by census tracts (M > 1k), over T = 24
months.
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Datasets in applications

Type of Data in most Empirical Applications [2]

This data structure applies to industries characterized by many
geographic markets, where a separate (dynamic) game is played in
each market: e.g., retail industries, services, airline markets,
procurement auctions, ...

However, there are many manufacturing industries where
competition is more global: a single national or even international
market: e.g., microchips.

For these ”global” industries, applications rely on sample variability
that comes from a combination of modest N, M, and T .

Some other industries are characterized by a large number of
heterogeneous firms (large N), e.g., NYC taxis.
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The identification problem
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The identification problem

Our identification problem

The primitives of the model are:

{πi (.), δi , Fx (.) : i ∈ I}

Empirical applications assume that these primitives are known to the
researcher up to a vector of structural parameters θ.

The identification problem consists in using the data and the
restrictions of the model to:

- uniquely determine the value of θ (point identification)
- or to obtain bounds on θ (partial / set identification).

This is a revealed preference identification approach: under the
assumption that firms’ are maximizing profits, their actions reveal
information about the structure of their profit functions.
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Basic assumptions and Non-identification result
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3. Basic Assumptions

and Non-Identification Result

————————————————————————————

Victor Aguirregabiria Introduction to the course January 20, 2022 8 / 16



Basic assumptions and Non-identification result

Basic Assumptions

Set of assumptions used in many applications in this literature.

ID.1 No common knowledge unobservables. The researcher observes
xt . The only unobservables are ε it .

ID.2 Single equilibrium in the data. Every observation (i ,m, t) in the
data comes from the same MPE.

ID.3 Additive unobservables. The unobservables ε it enter additively in
the payoff function: πi (at , xt) + ε it(ait).

ID.4 Known distribution of unobservables. The distribution of ε it is
completely known to the researcher.

ID.5 Conditional independence. Conditional on (at , xt) the distribution
of xt+1 does not depend on εt .
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Basic assumptions and Non-identification result

A Positive Identification Result but Not for Primitives

Under Assumptions [ID.1] and [ID.2], the vector of equilibrium CCPs
in the population, P0, is identified from the data. For every (i , ai , x:

P0
i (ai |x) = E (1{aimt = ai} | xmt = x)

Given CCPs and under assumptions [ID.3] to [ID.5], Hotz-Miller
Inversion Theorem implies the identification of conditional-choice
value function relative to a baseline alternative (say 0):

ṽPi (ai , x) ≡ vPi (ai , x)− vPi (0, x)

For instance, when ε is Type I extreme value:

ṽPi (ai , x) = lnP0
i (ai |x)− lnP0

i (0|x)
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Basic assumptions and Non-identification result

A Negative Identification Result (on Primitives)

Unfortunately, the identification of function ṽPi (ai , x) is not sufficient
to identify the primitive preference function (πi (a, x), δi ).
See Rust (1994, Handbook), Magnac & Thesmar (2002, ECMA)

There are three identification issues.

P1. Non innocuous normalizations. In contrast to static models,
normalizing πi (0, x) = 0 has implications on important empirical
questions.

P2. No identification of discount factor.

P3. No identification competition effects. ṽPi (ai , x) does not have a−it

as an argument, but we are interested in the effect of a−it on πi .
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Basic positive identification result
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Basic positive identification result

Additional Assumptions Restrictions

ID.6 Normalization of payoff of one choice alternative.
πi (ai = 0, a−i , x) = 0 for every (i , a−i , x).

Example: If a firm decides not being in the market its profit is zero,
regardless she is a potential entrant or an incumbent (i.e., no scrap
value of exit costs).

ID.7 Known discount factor. δi is known to the researcher.

Example: With annual frequency, δi = 0.95 for every firm.

ID.8 Exclusion restriction in profit function. xt = (xct ), zit : i ∈ I such
that πi (at , xc , zit) does not depend on zjt) for j ̸= i .

Example: In a game of market entry-exit, firm i ’s profit depends on
the current entry decisions of competitors (a−it), and on the own
incumbency status (ai ,t−1) but there is not a (direct) effect of the
competitors’ incumbency status (a−i ,t−1).

Victor Aguirregabiria Introduction to the course January 20, 2022 13 / 16



Basic positive identification result

Positive Identification Result

Under Assumptions [ID.1] to [ID.8], the profit functions πi (a, x) are
nonparametrically identified from the conditional-choice values
ṽPi (ai , x).

Proposition 3 in Pesendorfer & Schmidt-Dengler (REStud, 2008).

Assumptions [ID.1] to [ID.8] are very common in empirical
applications of dynamic games in IO. In most cases, they are
combined with parametric restrictions on function πi .
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Relaxing restrictions in basic identification result
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Relaxing restrictions in basic identification result

Relaxing Restrictions

Serially correlated unobservables

Multiple equilibria in the data

Relaxing normalization restrictions

Identification of discount factors

Non-additive unobservables

Nonparametric distribution of unobservables

Non-equilibrium beliefs
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