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The Dynamic Efficiency Costs  
of Common-Pool Resource Exploitation †

By Ling Huang and Martin D. Smith *

We conduct the first empirical investigation of common-pool 
resource users’ dynamic and strategic behavior at the micro level 
using  real-world data. Fishermen’s strategies in a fully dynamic 
game account for latent resource dynamics and other players’ 
actions, revealing the profit structure of the fishery. We compare the 
fishermen’s actual and socially optimal exploitation paths under 
a time-specific vessel allocation policy and find a sizable dynamic 
externality. Individual fishermen respond to other users by exert-
ing effort above the optimal level early in the season. Congestion 
is costly instantaneously but is beneficial in the long run because it 
partially offsets dynamic inefficiencies. (JEL D24, Q21, Q22)

Common-pool resource exploitation—known popularly as the “Tragedy of 
the Commons” (Hardin 1968)—has attracted attention from numerous scholars. 
Despite considerable intellectual effort,1 little is known empirically about the path-
ways through which the commons affects individual behavior and leads to inef-
ficiency. Open access to resources, or at least minimal levels of excludability, can 
generate multiple inefficiencies. First generation theoretical work focused on the 

1 Common-pool resources are rival in consumption but exhibit some degree of non-excludability with the limit-
ing cases being private goods (perfect excludability) and open access goods (perfect non-excludability). In his 
seminal article, Gordon (1954) observed that open access in a fishery leads to dissipation of economic rents and a 
resource stock that is below its economically optimal level. Subsequent work has applied common-pool resource 
theory to a wide range of natural resource uses including oil extraction (Libecap and Wiggins 1984); ground 
water withdrawals (Provencher and Burt 1993); hunting and large animal extinctions (Smith 1975); deforestation 
(Mendelsohn 1994); fuelwood collection (Linde-Rahr 2003); and even depletion of the environmental basis for a 
whole society (Brander and Taylor 1998). In their classic reference on exhaustible resource theory, Dasgupta and 
Heal (1979, p. 78) observe, “A remarkable feature of the problem of common property resource is the variety of 
examples that one can rather readily construct in exemplifying it.”
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stock  externality; the actions of one agent affect the stock of the resource, which in 
turn affects the well-being of another agent through decreased resource availability 
or increased costs (Gordon 1954; Smith 1969).2 Resource exploitation is sometimes 
too high and sometimes too low due to the stock externality, so open access can 
also lead to inefficient timing of exploitation (Smith 1969).3 A separate congestion 
externality is static in nature; resource users can increase each other’s costs contem-
poraneously through crowding on harvest grounds (Smith 1969).

The second generation of common-pool resource theory adopted a  game-theoretic 
approach, but direct empirical testing has been elusive. Game-theoretic models 
posit that resource users directly affect the actions of other resource users, giving 
rise to the “tragedy of the commons.” Users are typically modeled as players in an 
N-person game (Baland and Platteau 2003; Dawes 1973; Sethi and Somanathan 
1996).4 While an N-person game matches the story of the commons nicely, empiri-
cal work has focused on the aggregate level (Bjørndal and Conrad 1987; Wilen 
1976). Little progress has been made in empirically estimating the strategic inter-
actions of resource users, and we still have limited information about how micro 
behavior generates patterns of aggregate common-pool exploitation.5 Empirical 
developments using micro data to study the commons ultimately have been ham-
pered by the inability to observe repeated decisions of individual resource users and 
the methodological challenges of estimating dynamic games.6

A return to Gordon’s original application of the fishery provides a unique opportu-
nity to estimate strategic interactions and quantify the inefficiencies of  common-pool 
exploitation. The specific application in this paper is the North Carolina shrimp fish-
ery for which we have daily fishing participation choices of a heterogeneous fleet 
of resource users over multiple years. We model these daily decisions in a finite-
horizon dynamic game. For each fishing vessel, we specify a choice-specific value 
function, which consists of the current payoff plus the discounted payoff for future 
periods, and we recover structural profit parameters that can be used for ex ante and 
ex post policy evaluation.

The ability to measure efficiency losses from common-pool resource exploitation 
hinges not only on data availability but also on recent methodological developments 
in dynamic discrete choice modeling. For estimating the dynamic game, we use a 
two-stage estimator. In the first stage, we estimate the evolution of state variables 

2 If resource users are forward-looking rather than myopic as in the Gordon/Smith model, open access still leads 
to rent dissipation in the steady state but with a different dynamic adjustment path (Berck and Perloff 1984).

3 Models that include growth and aging of biological resources reinforce the potential for timing effects (Clark 
1990). Open access can lead to harvest before animals are reproductively mature or before they have reached a size 
that maximizes economic yield.

4 A complementary literature applies game theory to common-pool fishery exploitation (Hannesson 1997; 
Levhari and Mirman 1980; Sumaila 1997). These studies focus on aggregate level modeling such that players are 
individual nations rather than fishing vessels.

5 A large literature on capacity utilization in fisheries uses micro data to quantify the excess capacity in fisheries 
due to open access but without the dynamic component, e.g., Segerson and Squires (1993). See Kirkley, Paul, and 
Squires (2002) for a review. Moreover, excess fishing capacity can be exacerbated when the fishery is regulated with 
season closures but still subject to open access (Homans and Wilen 1997).

6 Many empirical studies examine whether Ostrom’s criteria for successful common property resource manage-
ment (Ostrom 1990) hold in particular cases, and small-N qualitative studies dominate this literature (Poteete and 
Ostrom 2008). While these studies are important for understanding how different institutions succeed or fail in 
excluding common-pool users, they do not provide empirical estimates of strategic interactions, nor do they quan-
tify the potential efficiency gains from rationalization.
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that influence players’ decisions. These factors are reflected in choice probabilities 
conditional on those state variables. In the second stage, since we have multiple 
continuous state variables, we use a simulation-based conditional choice prob-
ability estimator (Hotz et al. 1994; Bajari, Benkard, and Levin 2007) to evaluate a 
 choice-specific value function for each individual. Then we apply a pseudo maxi-
mum likelihood (PML) estimator (Aguirregabiria and Mira 2002, 2007) to recover 
the structural parameters.7

The central contribution of this paper is to provide an empirical estimate of inef-
ficiency from common-pool resource exploitation based on a dynamic structural 
model with strategic interactions. We compare actual exploitation paths to optimal 
ones under a daily vessel allocation policy that accounts for individual heterogene-
ity, and measure the efficiency costs in terms of lost industry rents. We evaluate two 
different efficiency costs in the fishery: costs due to a stock externality and costs due 
to a congestion externality. The stock externality can be further decomposed into the 
traditional stock effects (more fishing reduces the stock and raises costs) and stra-
tegic interactions among players (fishermen go fishing earlier in the season because 
they anticipate lower stocks later due to the actions of others). These effects lead 
fishermen to exert more effort than is socially optimal. Surprisingly, the congestion 
externality is positive on average and increases the present value fishery profits. It 
reduces instantaneous profits, but dynamically it reduces effort and mediates the 
stock externality, producing a net long-run gain.

The rest of the paper is organized as follows. Section I presents the main model, 
followed by an illustration of the estimation strategy in Section II. A description of 
the shrimp fishery and data are in Section III. Section IV discusses the estimation 
results. Section V conducts counterfactual policy experiments. In the final section, 
we conclude and discuss future research.

I. Model

The shrimp fishery is an annual industry due to shrimp biology. Shrimp repro-
duce annually and have a maximum lifespan of roughly 18 months. Juvenile shrimp 
migrate inshore in the spring, grow in estuaries during the summer and fall, and then 
swim back to the open ocean to spawn in the winter and spring. This behavior results 
in a major harvest season from early summer to early winter that concentrates in the 
estuaries and nearshore in the open ocean.

Modeling an annual industry simplifies the stock externality problem. In fisher-
ies, the stock externality can lead to two types of overfishing problems: (i) growth 
overfishing, which refers to harvesting a fish stock before it is economically mature 
(before the fish have grown large enough), and (ii) recruitment overfishing, which 

7 Compared to NPL (nested pseudo-likelihood) estimator (Aguirregabiria and Mira 2002, 2007), PML does not 
iterate and stops with only two stages. We choose PML because NPL requires discretization of state variables and it 
evaluates value function on each discretized state point. Higher precision of the discretization implies higher com-
putational costs. For our particular problem, we have many state variables, which limits the discretization precision. 
More importantly, we examine daily dynamic choices, requiring the state variable discretization to be on a very fine 
scale. For example, in the peak fishing time in 2000, hundreds of vessels go fishing that day, but it only decreases the 
fish stock index (one of the state variables) by 0.06, and the maximum stock index is 81 for that year. This implies 
that we require many points if we discretize the stock index. The precision requirement is so high that it simply pre-
vents us from implementing NPL. Thus, we use simulation-based PML that allows for continuous state variables.

09_A20100188_10412.indd   4073 11/11/14   2:50 PM



4074 THE AMERICAN ECONOMIC REVIEW DECEMbER 2014

refers to overharvesting adult fish that compromises the size of the fish stock in the 
following year. While it is important to differentiate these two stock externalities 
when choosing specific policy tools, most empirical bioeconomic studies are not 
able to do so. In our case, because shrimp are highly fecund and migrate offshore to 
spawn, the cross-year recruitment overfishing problem can be ignored, and we only 
need to consider growth overfishing within one year. This feature allows us to isolate 
the within-year stock growth externality and quantify the annual efficiency gains in 
the optimal scenario. Our empirical application resembles a repeated experiment in 
which each year of data is a replicate for examining the stock externality. Thus, we 
model individual daily fishing decisions in a finite-horizon framework in which one 
year is a complete decision period, letting t denote the day of the year t = 1, 2, … T, 
in which T = 365.

Another key feature of the shrimp industry is that, if a fisherman exits the industry, 
the cost of re-entering is low. After investing in a fishing vessel, a fisherman can eas-
ily change the species target and enter a different fishery. Due to the low switching 
barrier, there is no clear boundary between entering and exiting the shrimp industry. 
For this reason, we make a reasonable assumption that there is a fixed and finite 
number of players (i.e., vessels) each year, indexed by i = 1, … , N, in which, N is 
the maximum number of regular participants observed in all years in our sample.

The timing of the game is as follows: on each day of a year, each fisherman has 
an expectation of harvest and receives a random profit shock, and then all fishermen 
simultaneously decide whether to fish. After each fisherman makes his decision, he 
receives a flow utility from his action. The game is repeated each day throughout 
the year. Formally, each player faces the same binary action set  a i  ∈ {0, 1}, with 0 
denoting not fishing and 1 denoting fishing. Let A ≡ {0, 1 } N , which is a compre-
hensive list of possible actions for all players.

A. Payoff

In each period t, a fisherman i receives the time-specific profit,  Π it  , which consists 
of a return to his individual characteristics and a random profit shock. His profit at 
time t, given his action, can be written as

(1)   Π it ( a i ) =  {  α Pric e t  × E( h it ) − β′ S +  ξ it1  ,            
 ξ it  0  ,

   
 
   if  a i  = 1;

    
if  a i  = 0.

 

In this equation, if i does not go fishing, his profit is reserved to be zero plus some 
random shock; if i goes fishing, his profit is equal to the revenue minus cost plus a 
random profit shock. The profit when going fishing is related to two random shocks, 
one is a profit shock  ξ it1 , the other one is a harvest shock. The profit shock,  ξ it  , 
reflects random personal fishing costs (for example, illness, fatigue, or mood), idio-
syncratic knowledge of that day’s market or fishing conditions, or outside employ-
ment opportunities. It is different across choices and observed by fishermen before 
they make their fishing decisions. In addition, it is private information and observed 
only by themselves, and not by other fishermen and the researcher. This profit shock 
is assumed to be independently and identically distributed (i.i.d.) across fishermen 
and across periods, and drawn from an extreme value distribution. Another random 
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shock is a harvest shock that appears in harvest ( h it ). We assume that this random 
shock is not observed before fishermen go fishing. Thus, both revenue and cost are 
a function of expected harvest (E( h it )), which has been integrated over the random 
harvest shock.

The revenue is the product of price (Pric e t ) and expected harvest, and β′ S is the 
cost of fishing, which is a function of state variables including the fish stock, fuel 
prices, weather, vessel length, and expected harvest:

(2)  β′ S = g (Le n i  , WSP D t  , WVH T t  , Diese l t  , Weeken d t  , E ( h it ),  X t ).

Production costs include fixed, quasi-fixed, and variable costs. Fixed costs consist 
of capital investments in vessels, fishing gear, and safety and navigation equipment. 
The cost function here does not include fixed costs. When making the fishing or 
not fishing decisions, the fixed costs are sunk and irrelevant. Therefore, we cannot 
recover fixed costs through fishing behavior observed in our data. Quasi-fixed costs 
are costs that are incurred if a vessel chooses to fish on a given day, but are not related 
to the level of harvest. These include the depreciation value of vessel and gear, labor 
costs (assuming a fixed wage), food for the crew, and storage costs for the catch (ice 
or refrigeration, depending on the vessel).8 The number of workers required to oper-
ate a vessel increases in vessel length (Le n i ), so we expect that the quasi-fixed costs 
of each trip are roughly proportional to the vessel length.  Quasi-fixed costs also 
include the costs of exposure to bad weather (wind speed (WSPD) and wave height 
WVHT )), fuel (diesel) price (Diesel ), whether it is a weekend (Weekend ), and fish 
stock index (X ). The cost from Weeken d t  is due to government regulations (will be 
discussed later), and is also consistent with other studies of fisheries in which mar-
ket conditions limit activity on weekends (Smith and Wilen 2005). Variable costs 
depend on the size of the harvest. Since fishermen only observe the harvest shock 
after they go fishing, we model the variable costs on the level of expected harvest. 
We expect that as harvest increases, the variable costs will increase. Note that the 
harvest level in the cost is also in the form of expected harvest as in the revenue.

Fishermen compete to produce shrimp by fishing, and harvest is a function of 
inputs. Fisheries economists usually measure fishing inputs by “effort,” i.e., num-
ber of trip days, number of crew, amount of gear deployed, and vessel size, etc. In 
addition, harvest is also determined by inputs outside the fisherman’s direct control, 
including whether there is a season closure, wind speed, wave height, and the fish 
stock. Combining all these factors, we use the following restricted Cobb-Douglas 
production function:

(3)   h it  =  q i  ×  e  a 1 Closur e t + a 2 WSP D t + a 3 WVH T t   ×  X t  ×  e   ε  it  
h
   

 =  q i  ×  e  W t   ×  X t  ×  e   ε  it  
h
    .

8 Many fisheries use the share system to pay the crew, but the majority of shrimp fishing in North Carolina uses 
wage compensation.
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In the above equation,  q i  is individual catchability, which includes unobserved ves-
sel fishing technology as well as captain skill and experience.9 After  log-transforming 
equation (3), fixed effects capture this unobserved individual heterogeneity. We 
assume that  q i  is common knowledge. The fish stock,  X t  , is a major factor that deter-
mines catch. Stock is not observed by the researcher, although fishermen may have 
estimates of it based on their experiences and collectively on any given day face the 
same stock (Zhang and Smith 2011). Thus, in our production function, the stock 
is assumed to be observed by every vessel before they make decisions but treated 
as a latent state variable in our model. Besides the fish stock, the season closure 
policy and weather conditions also affect the catch. The total impact  a 1 Closur e t  +  

 a 2 WSP D t  +  a 3 WVH T t  is denoted by  W t  . The stochastic component,  e   ε  it  
h
   , is the har-

vest shock we mentioned above in describing equation (1). It is assumed to be i.i.d. 
across individuals and time, and mean 1. The expectation of harvest in equation (1) 
is integrated over this random shock. Note that there are no days at sea as a measure 
of fishing effort in this production function. This is because we convert multi-day 
trips to a series of one-day trips in order to simplify the model.10

We further allow for the possibility of agglomeration or congestion effects, which 
could affect revenue. Equation (3) accordingly includes an additional term:

(4)   h it  =  q i  ×  e γ×Tvesse l t + W t   ×  X t   e   ε  it  
h
    .

Here, the total number of vessels fishing Tvesse l t  = ∑ ( a i  = 1) on day t affects 
the catch through γ, which captures agglomeration or congestion effects. A positive 
(negative) γ indicates agglomeration (congestion). Agglomeration in this context 
means that having more vessels increases the productivity of fishing, most likely by 
reducing the search costs. With congestion, more vessels reduce average harvests, 
likely because trawling disperses shrimp aggregations.11

With  e   ε  it  
h
    being stochastic with mean 1, we can obtain the payoff function for ves-

sel i by replacing E( h it ) in equation (1) when  a i  = 1.

(5)   Π it  = α Pric e t  ×  q i  ×  e γ×Tvesse l t + W t   ×  X t  − β′ S +  ξ it  .

In this equation, all the state variables can be either observed or estimated.

9 This model is motivated by the Schaefer production function used commonly in fisheries bioeconomic model-
ing (Schaefer 1957). See Clark (1990) for further discussion. Fishing effort is omitted from the production function 
because implicitly effort is one in our model when fishing takes place and zero otherwise. Our model is more gen-
eral than the Schaefer model in that it accounts for congestion, weather, regulations, and vessel-level fixed effects.

10 The data show that 73.7 percent of trips are one day, and 25.9 percent of trips are between two to six days. To 
convert multi-day trips, we allocate the average daily harvest for the trip to each day.

11 The congestion effect enters multiplicatively such that it scales the catchability up or down, depending on 
whether there is congestion or agglomeration. An additive term would wrongly suggest that there could be positive 
(or negative) harvest in the absence of any other inputs. Other multiplicative functional forms are possible, but we 
have chosen one that is convenient for identification; it allows us to run linear instrumental variables.
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B. Transitions between States

Recall that the state variables include all individual characteristics and environ-
mental information that affect a fisherman’s utility. The variables Le n i  and Weeken d t   
are deterministic, while all others are stochastic. Wind speed and wave height are 
not influenced by fishermen’s decisions and modeled as exogenous variables with 
Markov chains. The shrimp price is also assumed to be a stochastic exogenous 
variable because it is determined by the global market (the North Carolina shrimp 
industry is only 0.6 percent of the world market).12

Formally, the shrimp price, wind speed, and wave height are modeled as follows:

(6)  log (Pric e t+1 ) =  ρ 0  +  ρ 1  log (Pric e t ) +  ε  t  
p
 

(7)  log (WSP D t+1 ) =  ρ 2  +  ρ 3  log (WSP D t ) +  ε  t  w 

(8)  log (WVH T t+1 ) =  ρ 4  +  ρ 5  log (WVH T t ) +  ε  t  v 

(9) 

⎛
⎜
⎜
⎜
⎝

 ε  t  
p
 ⎞⎟
⎟
⎟
⎠

∼ i.i.d. Normal

⎛
⎜
⎜
⎜
⎝

0 ⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

 σ  p  2  0 0 ⎞
⎟
⎟
⎟
⎠

 . ε  t  w 0 0  σ  w  2
   σ w, v 

 ε  t  v 0 0  σ v, w   σ  v  2 

The error term of shrimp price is assumed to be i.i.d. across time from a normal 
distribution with mean 0. Note that the correlations between wave speed and wave 
height are not zero because they are not independent of each other, while the cor-
relations between wind speed or wave height and shrimp price are assumed to be 
zero. The diesel price, which is also stochastic but exogenous to the North Carolina 
shrimp fishery, is modeled with a flexible b-spline function (Chen 2007):

(10)  Diese l t  =  ρ 6  × bs (Week) +  ε  t  d  .

The variable “Week” is the week number within a year. The basis functions are 
b-splines to allow flexible fitting of the data, denoted as bs(·). The mean of error 
term, E (  ε  t  d  ) , is equal to 0.

The stock index is an endogenous latent state variable and is modeled as a discrete 
time stochastic difference equation (Reed 1974):

(11)   X t  =  X 0  G (t)  e −ϕ  ∑  s=0  
t
   h(s)   e   ζ  t   .

The term  X 0  denotes initial stock at time 0 determined by nature (exogenous recruit-
ment at the beginning of each year), G denotes the deterministic portion of biological 
growth that is fixed across years, and  ∑  s=0  

t
   h(s) is the cumulative harvest up to day 

t within a year. ϕ is the fishing mortality coefficient to be estimated. Basically, the 

12 This number is calculated using information from State of World Fisheries and Aquaculture (SOFIA), 2006. 
Price appears to be exogenous even in the much larger Gulf of Mexico shrimp fishery (Asche et al. 2012).

09_A20100188_10412.indd   4077 11/11/14   2:50 PM



4078 THE AMERICAN ECONOMIC REVIEW DECEMbER 2014

initial period’s stock after harvest, multiplied by growth (G(t)), past fishing mortal-
ity within the same year  (  e −ϕ  ∑  s=0  

t
   h(s)  ) , and a random shock from nature  (  e   ζ t   ) , yields 

period t ’s stock. Since there is no good prior information to describe the multiple types 
of shrimp in the aggregate, we estimate natural growth G(t) directly from our data.13 
As in Reed (1974), we make the simplifying assumption that the stock population is 
not age-structured and can be described by a continuous variable. To capture seasonal-
ity of shrimp growth, we specify G as a polynomial of time (days within each year),  
e   b 1 ln(t)+ b 2 ln(t )  2 + b 3 ln(t )  3 + b 4 ln(t )  4  . This seasonal component proxies for age structure of an 
annual species like shrimp as long as growth and aging are linked to calendar days 
consistently across years. The error term,  ζ t  , incorporates fluctuations in population 
growth and is known by fishermen before their fishing decisions are made. We discuss 
the stock index in more detail below in the section on estimation strategy.

C. Choice-Specific Utility and Expected Utility

To define the value function, it is useful to distinguish choice-specific utility from 
expected utility. Following common notation in the literature, let a = ( a 1 , …  a N ) 
denote the vector of actions for all players and  a −i  = ( a 1 , …  a i−1 ,  a i+1 , … ,  a N ) denote 
the vector of strategies of all players excluding player i. Define  s i  ∈   i  as a vector of 
state variables {Pric e t  , le n i  ,  X t  , Weeken d t  , WSP D t  , WVH T t  , Diese l t  ,  q i  , t}, which are 
common knowledge to all the agents. Let θ denote the set of all the parameters in the 
utility function. Dropping t subscripts, the choice-specific utility is

(12)

 u i  ( a i  ,  a −i  , s,  ξ i  ; θ) =  {  α Price ×  q i  ×  e  γ×Tvessel+W  × X − β′ S +  ξ i1 ,                
 ξ i  0 ,

   
 
   if  a i  = 1;

    
if  a i  = 0.

 

The choice-specific utility is the payoff corresponding to different choices. Note 
that the utility value only depends on player i ’s private profit shocks and not on other 
agents’ profit shocks. In the utility, “Tvessel ” is not a state variable but affects choices 
instantaneously. Since it depends on other players’ actions, it makes the current 
period utility not only dependent on his own action, but also dependent on other fish-
ermen’s actions. Therefore, we need to integrate out  a −i  to obtain the expected utility  
 u i  ( a i  , s,  ξ i ; θ). Define  σ i ( a i  = k | s) as the probability of player i choosing k condi-
tional on known state information, in which k ∈ {0, 1}. Then the expected utility is

(13)   u i  ( a i  , s,  ξ i  ; θ) =  ∑  
 a −i 

   
 

    u i  ( a i  ,  a −i  , s,  ξ i  ; θ) ×  σ −i  ( a −i  | s).

Note that since  u i ( a i  ,  a −i  , s,  ξ i  ; θ) is a function of  e γ×Tvessel , integrating other play-
ers’ actions in  u i ( a i  ,  a −i  , s,  ξ i  ; θ) with  e γ×Tvessel  directly does not yield an analytical 

13 Traditional ways of modeling growth use the Von-Bertalanffy growth function, which models changes in 
shrimp number and weight over time. Our stock index consists of three different types of shrimp (brown shrimp, 
white shrimp, and pink shrimp), and biologists only collect parameters in the Von-Bertalanffy growth function for 
the three types of shrimp separately from the field experiments. Our index can be viewed as an empirical approxi-
mation to the mixture of these growth functions (see different species profiles at http://portal.ncdenr.org/web/mf/
nc-shrimp (accessed October 6, 2014)).
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expression for  u i ( a i  , s,  ξ i  ; θ). In order to obtain an analytical solution, we approxi-
mate  e γ×Tvessel  using a Taylor expansion.

(14)   e γ×Tvessel  ≈ 1 + γ × Tvessel +   
 γ  2 

 _ 
2
   × Tvesse l  2 .

Then  u i ( a i  = 1,  a −i  , s,  ξ i  ; θ) becomes

(15)  u i  ( a i  = 1,  a −i , s,  ξ i ; θ) 

 = α Price ×  q i  ×  ( 1 + γ × Tvessel +   
 γ  2 

 _ 
2
   × Tvesse l  2  )  ×  e W  × X − β′ S +  ξ i  ,

in which

  Tvessel =  ∑  
j
   
 

   1 { a j  = 1}.

Integrating out all the other fishermen’s actions for Tvessel (see the online 
Appendix for detailed information and Bajari et al. 2010 for a simple example),  
we obtain

(16)  u i  ( a i  = 1, s,  ξ i  ; θ) = α Price ×  q i  ×  e W  × X

 ×  [ 1 + γ +   
 γ  2 

 _ 
2
   +  ( γ +   

3 γ  2 
 _ 

2
   )   ∑  

j≠i
   

 

    σ j  ( a j  = 1 | s)

 +   
 γ  2 

 _ 
2
      ∑  

j≠k, j≠i
  

 

     ∑  
k≠i

   
 

    σ j  ( a j  = 1 | s)  σ j  ( a k  = 1 | s) ] 
 − β′ S +  ξ i  .

D. Equilibrium Concept

Given the primitives of the model above, we can write down the fisherman’s opti-
mization problem resulting in a Markov Perfect Equilibrium (MPE). Every period t 
the agent chooses his action to maximize the expected utility

(17)   max   
{ a it }

    E t   [  ∑  
j=t

   
T

    λ   j−1   u i  j  ( a i  j  ,  s j  ,  ξ i  j  ; θ) ] .
Here, λ is the daily discount factor and T is the maximum time of a year. In this 

maximization expression, all other players’ actions and player i ’s own future actions 
have already been integrated away. If with details of other players’ action, the objec-
tive function can be written as

(18)  V ( s it  ,  ξ it ) =  max   
{ a it }

    E t   [  ∑  
j=t

   
T

    λ   j−1   ∑  
 a −i  j 

  
 

    u i  j  ( a i  j  ,  a −i  j  ,  s j  ,  ξ i  j  ; θ) ×  σ −i  j  ( a −i  j  |  s j ) ] .
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Players need to take into consideration current state variables, expectation of other 
players’ current actions, their current private profit shocks, and expectation of future 
state variables, expectation of other players’ future actions, and their own future 
private shocks. Following notations in Aguirregabiria and Mira (2010), we define a 
set of strategy functions for each agent as  φ it ( s t  ,  ξ it ) that depends on common state 
variables and his own private shock. Then, the probability that player i chooses to 
fish at time t is  σ it  ( a it  = 1 |  s t ) =  ∫     

   I( φ it  ( s t  ,  ξ it ) = 1) dF ( ξ it ). Let  V  it  
φ ( a it  ,  s t  ,  ξ it ) denote 

the expected discounted present value when individual i takes action  a it  , all other 
players behave according to strategies  φ −i (s,  ξ −i ) now and in the future, and player 
i follows strategy  φ i  (s,  ξ i ) in the future periods. Then, the best response function of 
each player given other players’ strategies is

(19)   b it  ( s t  ,  ξ it  ,  φ −it ) =  arg max   
{ a it }

    [  V  it  
φ  ( a it  ,  s t  ,  ξ it ) ] .

The resulting optimal fishing decision must maximize the choice-specific value 
function. The equilibrium is a set of strategy functions  φ  it  ∗   ( s t  ,  ξ it ) that

(20)   φ  it  ∗   ( s t  ,  ξ it ) =  b it  ( s t  ,  ξ it  ,  φ  −it  ∗   ),

which indicates that the resulting decision rules are consistent with the beliefs about 
behavior of other players, i.e., the decision rules and beliefs are the same in the equi-
librium. This equilibrium concept imposes significant structure on the equilibrium 
noncooperative behavior of all players, and the empirical two-stage estimator we 
adopt is based on this condition.

II. Estimation Strategy

Since there are many agents and continuous state variables, we employ a condi-
tional choice probability (CCP) two-stage estimator (Hotz and Miller 1993). This 
approach alleviates the curse of dimensionality that can arise in Nested Fixed Point 
Algorithm (NFXP) methods, which are typically used for single agent applications 
(Karlstrom, Palme, and Svensson 2004; Rust 1987; Timmins 2002).14 The intuition 
for the CCP estimator is that there is a one-to-one mapping between the conditional 
choice probability and the choice-specific value function under certain conditions 
(Hotz and Miller 1993). By inverting this mapping, the discounted part of the value 
function can be represented as a function of state transition probabilities and CCPs, 

14 Since NFXP needs to solve the dynamic programming (DP) problem, the computational costs are often pro-
hibitively high. In our model, several continuous state variables and hundreds of agents prevent solving the DP 
problem directly. Just solving the social planner’s dynamic programming problem in our counterfactual experi-
ment requires significant computational time, and that problem need only be solved once and has no strategic 
interactions. In NFXP models, the DP needs to be solved in every iteration of the econometric estimation. For a 
multiple-agent problem like our model, NFXP becomes computationally infeasible; the DP problem needs to be 
solved in every iteration for every agent. As a solution, Hotz and Miller propose the Conditional Choice Probability 
estimator, which does not require solving the dynamic programming problem even once. Subsequently in the lit-
erature, a number of computationally feasible estimators are proposed, e.g., recursive CCP, simulation-based CCP, 
two-step methods to improve or solve different problems. For instance, Slade (1998) applies this estimator to price 
adjustment in grocery stores and Aguirregabiria (1999) applies it to inventories and markups in retailing firms. 
Aguirregabiria and Mira (2010) review the estimators of dynamic discrete choice models.
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which in turn can be estimated nonparametrically or approximated parametrically 
in a separate first stage.

We specifically apply a two-stage estimation procedure developed by 
Aguirregabiria and Mira (2002, 2007) based on simulated CCP (Hotz et al. 1994; 
Bajari, Benkard, and Levin 2007). The first stage is to estimate parameters of the 
state equations that describe stock growth, shrimp price, weather variables, and die-
sel price, and then estimate conditional choice probabilities for fishing participa-
tion. In the second stage, we simulate the dynamics of state variables and evaluate 
the expected utilities over different paths, and recover structural profit parameters 
by maximizing a Pseudo Log-Likelihood.15 Using this method, there is no need to 
solve the dynamic game in the estimation procedure.

The specification of the period utility function implies another important assump-
tion of this model: observed and unobserved components of utility are additive, 
where the unobserved error is drawn from a known distribution (specifically, a 
Type I Extreme Value distribution), and is distributed i.i.d. across agents and time. 
Separability implies that the marginal utilities of observed state variables do not 
depend on unobservables (Aguirregabiria and Mira 2010). This assumption is 
imposed to facilitate identification of the second-stage parameters. If the additive 
separability assumption is violated, then additional computational problems will 
occur in maximum likelihood estimation (Rust 1994). The parametric known form 
of the error term is needed due to the fact that it is not possible to recover both 
parameters in observable components and the joint distribution of  ξ i  simultaneously 
(see Bajari et al. 2009). Therefore, the known distribution is also a necessary identi-
fication assumption imposed on the error term.

A. First-Stage Estimation

The goal of the first stage is to estimate the state variable dynamics and choice 
probabilities flexibly without imposing the structure of the dynamic discrete choice 
model.

Estimation of the State Variable Dynamics.—We use a Generalized Least Square 
(GLS) estimator to estimate the evolution of shrimp price and diesel price and a 
Seemingly Unrelated Regression (SUR) model for WSPD and WVHT. To esti-
mate the stock index, we first linearize equation (4) with equation (11) and use an 
Instrumental Variable (IV) regression model.

(21)  ln ( h it ) = ln ( X 0 ) + ln ( q i ) + ln  ( G (t) )  − ϕ  ∑  
s=0

  
t

   h (s) 

 + γ × Tvesse l t  +  W t  +  ε  it  h
   +  ζ t  .

15 The efficiency of this two-stage estimator can be improved by iterations (Aguirregabiria and Mira 2002, 
2007). Using the structural result of the second stage, the conditional choice probabilities can be updated and 
then used to reestimate the second stage, which completes the second iteration. However, as described above, 
the state space in our model is so large that it prevents us from implementing the recursive version described in 
Aguirregabiria and Mira (2002, 2007).
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Our estimation strategy for this equation is that we first estimate the regression 
model regarding  ε  it  h

   +  ζ t  as one error term, and then regress the whole component 
on daily dummies to identify  ζ t  . The first regression estimation has two issues. First, 
Tvesse l t  and  ζ t  are not independent of each other due to the fact that the unobserved  
ζ t  could affect fishermen’s decisions; a common positive (negative) stock shock for 
one vessel is likely correlated with that of other vessels and would attract more 
(fewer) vessels to the fishery on that day. In order to resolve the endogeneity prob-
lem, we use Weekend as an instrumental variable. Given that vessel i is going fish-
ing, Weekend is a valid instrument because it is correlated with fishing choices of 
everybody else but not correlated with a stock shock  ζ t  from nature. Second, because 
we only observe output when vessels choose to fish, sample selection bias from 
unobserved shocks in the production function is possible. We may ameliorate this 
problem to a large extent by including the individual fixed effect  q i  .16

In the IV regression, the regressors for  X 0  are yearly dummy variables, and G(t) 
are fixed across years from latent stock information but varies within a year. The 
term ϕ  ∑  s=0  

t
   h(s) proxies for cumulative fishing mortality throughout the season,  

ln( q i ) can be estimated using individual fixed effect. After obtaining  ε  it  h
   +  ζ t  , we 

identify  ζ t  by regressing the whole error term on daily dummies across all years 
assuming that  ε  it  h

   and  ζ t  are independent of each other. The year × daily dummies 
are further approximated by a Markov chain to capture their dynamics. In the sec-
ond stage of the structural estimation,  ζ t  will be simulated according to the Markov 
chain. In theory,  ζ t  reflects the random shock to fish stock. But since we do not 
observe stock and use daily fixed effect to identify it, it is possible that this daily 
fixed effect captures some individual-invariant but time-variant effect from harvest. 
If so,  ζ t  is more general, but it is still a source of endogeneity and does not affect 
other estimation and interpretation.

Conditional Choice Probabilities.—We estimate the fishing decision conditional 
on the state vector with a flexible logit model. In essence, we could use a non-
parametric method to mimic the relationship between the state variables and the 
probabilities (Hotz and Miller 1993). But due to our large dataset and long conver-
gence rate of nonparametric methods, we use a logit model. As a way to replace 
the nonparametric method, we include all state variables (along with vessel fixed 
effects), squared terms, and the interactions among different state variables to add 
flexibility. Ideally, we would include individual fixed effects, daily fixed effects, 
and interactions with states. However, to preserve degrees of freedom and rely on 
structural elements that can be used in a holdout sample, we interact individual fixed 
effects from the production function with state variables and include the daily stock 
shock as a regressor. Because individual and daily fixed effects cannot be known 
 out-of-sample, including them in the first-stage CCP prevents out-of-sample model 
validation and thus limits the ability to conduct counterfactual policy experiments.

16 In fact, our model assumes that vessel-specific harvest shocks  ε  it  h
   are observed after fishing decisions are made, 

and the private payoff shocks  ξ it  do not enter the harvest function and are independent of the harvest shocks. We also 
control for the random component of the fish stock  ζ t  . Under these assumptions, there should be no sample selec-
tion bias. Ellickson and Misra (2012) address a similar selection issue using post-choice outcome data. Although 
we lack post-choice outcomes for non-fishing alternatives and cannot apply this method here, their approach is 
potentially applicable to selection bias in multispecies fisheries.

09_A20100188_10412.indd   4082 11/11/14   2:50 PM



4083huang and smith: dynamics of common-pool resourcesVol. 104 no. 12

B. Second-Stage Estimation

As discussed above, this model is a finite horizon repeated game with an end 
period denoted as T. Let  u it  ( a it ,  s t ; θ) denote the expected choice specific utility 
without  ξ it  . We derive the recursive value function as

(22)  V it  ( a it  ,  s t ; θ) =  u it  ( a it  ,  s t  ; θ)

+  ∑  
τ=t+1

  
T

    λ τ−t   ∫  
 
  
 
  ∫  

 
  
 
   ∑  
 a −iτ 

  
 

    u iτ  ( φ  iτ  ∗   ( s τ  ,  ξ iτ ),  a −iτ  ,  s τ  ,  ξ iτ  ; θ) σ −iτ  ( a −iτ  |  s τ ) dF ( ξ iτ ) dF ( s τ  |  a  τ−1 ,  s τ−1 ).

For the continuation part, we use simulations to approximate the recursive forward 
integration. Based on the observations of state variables and actions for each vessel 
at time t, we simulate the next period state variables according to the state transitions 
F( s t+1  |  a t  ,  s t ). Then we draw  ξ i(t+1)  for two potential actions from an i.i.d. Type I 
Extreme Value distribution. The decision rule,  φ ∗ ( s t+1 ,  ξ i(t+1) ), can subsequently be 
applied to determine the action of each vessel. Given state variables and actions at 
t + 1, state variables can be simulated for t + 2, and the procedure repeats until it 
reaches time T. The state variables from time t + 1 to T are simulated a sufficient 
number of times to obtain the continuation part in equation (22). The daily dis-
count factor, λ, is set to 0.9998 in the estimation, which is equivalent to an annual 
discount rate of 7.04 percent. Because we assume the one-period utility function 
is additively separable for observable and unobservable variables (equation (12)), 
the future component in equation (22) is also separable in the observed part and ξ. 
Equation (22) enables us to simulate different paths of the state dynamics and evalu-
ate the associated choice-specific value functions for different vessels at different 
times. Since  ξ it  is generated from a Type I Extreme Value distribution, the equilib-
rium conditions imply that

(23)  σ ( a i  = 1 | s) =   
exp  (  V i  ( a i  = 1, s; θ) ) 

   __   
1 + exp  (  V i  ( a i  = 1, s; θ) ) 

   .

The above equation is a standard logit model except for the value function. We 
use the Pseudo-Likelihood Estimator (PML) to estimate θ (Aguirregabiria and Mira 
2002, 2007). The log-likelihood function is

(24)  L (θ) =  ∑  
i=1

   
N

    ∑  
t=1

   
T

    ∑  
k=0

  
1

   ln  ( σ ( a it  = k | s) )  × 1 ( a it  = k).

The entire model estimation is based on the assumption that fishermen’s observed 
actions constitute a Markov Perfect Equilibrium. Given equations (23) and (24), the 
estimator for θ is

(25)     θ  =  arg max   
θ∈Θ

   L (θ).

The complete estimation procedure can be summarized in nine steps. 
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Step 1:  Perform the first stage estimation, including exogenous state variable tran-
sitions, the fishing production function, stock dynamics, and conditional 
choice probabilities; 

Step 2:  Given state variables and actions at initial time t = 1, draw new state vari-
ables and  ξ i  for each vessel i for the next period; 

Step 3: Decide actions according to the decision rule estimated in the first step; 
Step 4: Continue steps 2 and 3 for each day t = 2, 3, … T ; 
Step 5: Repeat steps 2 to 4 a sufficient number of times and compute the average; 
Step 6:  Repeat steps 2 through 5 resetting the initial time on each loop t = 2, 3, … T ; 
Step 7: Do steps 2 through 6 for each year in the sample; 
Step 8: Compute equation (22); 
Step 9: Estimate θ using equation (25). 

The simulation-based Conditional Choice Probability and Pseudo Maximum 
Likelihood estimators save computational time. Because the period profit is a linear 
function of θ which have not already been estimated in the first stage, we can sepa-
rate these parameters from the variables, and do not need to repeat step 2 to step 7 
as many times as we iterate over θ to compute equation (22). In other words, when 
we maximize log-likelihood function (equation (24)) to estimate θ, we iterate over 
θ spaces to find the maximum without re-simulating the model.

III. Empirical Setting and Data

The empirical application is the North Carolina shrimp fishery. The economic 
value of the shrimp fishery has ranked first or second among all the fisheries in 
North Carolina over the last 30 years. The annual average landings between 1962 
and 2003 are 7,011,236 pounds and the landings and shrimp abundance vary largely 
from year to year due to variation in environmental conditions (NCDENR-DMF 
2006).

White shrimp (Penaeus setiferus), brown shrimp (Penaeus aztecus), and pink 
shrimp (Penaeus duorarum) are the three major shrimp species harvested commer-
cially in North Carolina. They are landed predominantly from the Pamlico Sound, 
the Core Sound, and the Atlantic Ocean. The life histories of these three species are 
similar except that the spawning times of the species vary.

All three shrimp species have an annual life cycle that begins in the spring in deep 
offshore areas. After a few weeks of development, the postlarvae migrate inshore to 
estuarine nursery areas. These areas provide young shrimp with food and protection 
from predation. As shrimp mature, they start to move from the shallow nursery areas 
into deeper water. Adult shrimp continue to emigrate to offshore areas, leaving the 
estuary and preparing to spawn. Most adults spawn a single time, and then complete 
an annual life cycle.17

There are two main regulations in North Carolina that affect commercial shrimp 
fishing besides rules about net size and gear type. First, the shrimp season and fishing 

17 Some shrimp can even survive as long as 18 months, but the annual life cycle is an accepted assumption in 
most shrimp biological modeling.
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areas are specified each month to prevent overfishing.18 For the Albemarle-Pamlico 
Estuary, where much of shrimp harvest occurs, the season usually closes in May 
and reopens in early June each year. Second, in order to protect recreational boating 
and fishing, shrimp trawling is banned in some of the inner estuaries on weekends 
(NCDENR-DMF 2006).

Three types of data are used in the analysis: harvest data, weather information, 
and diesel prices. Harvest data is the primary dataset and is collected by the North 
Carolina Division of Marine Fishery’s (DMF) trip ticket program (2000–2005). The 
trip ticket is a required form on which dealers report commercial landings and other 
trip information. It records vessel length, number of crew, gear type, trip starting and 
landing dates, price, fishing location, and quantity of each species landed for each 
trip. The dealers are required to submit the trip tickets to DMF every month. From 
1978 to 1993, commercial landings information were collected on a voluntary basis. 
Since 1994, the North Carolina General Assembly has mandated trip-level report-
ing, which has produced one of the most detailed state-level fisheries data collection 
programs in the United States.

In the trip ticket data, each vessel has a unique ID. The dataset contains over 
2,000 unique IDs. However, not all the vessels are “active” ones. Shrimp may be 
caught as bycatch, i.e., caught incidentally on fishing trips that predominantly target 
other species. Or, shrimp can be caught by vessels that only go shrimping rarely. 
These vessels have very few landings but would significantly increase the computa-
tional burden if included in the model. Thus, we define an active vessel as one that 
has more than 100 records of landing shrimp over six years. This restriction leaves 
439 individual vessels that constitute 85 percent of the total landings. Inactive ves-
sels would likely have minor effects on the parameter estimation of our model.

Restricting the harvest data to only active vessels still leaves more than 
63,000 observations of shrimp landings from 2000–2005. Figure 1 shows the total 
daily harvest over the six years and illustrates the annual seasonal pattern. Peak 
landings occur from July through October, which account for 80.83 percent of the 
annual harvest. This harvest distribution is consistent with a shrimp’s annual life 
cycle. Shrimp harvest also varies substantially from year to year. Shrimp trawl dom-
inates other gear types, accounting for 89.5 percent of total landings in sample.

Weather data, including wind speed and wave height, are compiled from the 
National Data Buoy Center (National Data Buoy Center 1994–2005). Since no 
buoy data directly represent the weather of the large Albemarle-Pamlico Estuary 
areas, we average weather data over three stations: Station DSLN7, Station CLKN7, 
and Station 44014. Vessels use #2 marine diesel, but a detailed time series of its 
regional price is not available. As a substitute, we use weekly East Coast No. 2 
diesel retail price obtained from the Energy Information Administration (EIA) (US 
Energy Information Administration 1994–2005).

By merging the landings data with weather and diesel price data, we con-
struct a panel that includes daily decisions and harvest of 439 vessels in the  
Albemarle-Pamlico Estuary from 2000 to 2005, as well as vessel characteristics, 
daily weather, and weekly diesel price. Table 1 provides summary statistics for 

18 For the detailed proclamation, see the North Carolina Division of Marine Fisheries, http://www.ncfisheries.
net/procs/index2k8.html.
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selected variables. The table shows that the total annual harvest varies over years, 
and daily catches have high volatility. Daily catch variation reflects variation in the 
shrimp stock dynamics as well as heterogeneous catching power and fishing skills 
of the different subsets of vessels participating on each day. The shrimp price is a 
weighted average obtained by dividing total value by total weight. Shrimp prices and 
diesel prices are adjusted for inflation using the Consumer Price Index. The mean 
shrimp price shows that real prices trend downward over these six years. Erosion of 
shrimp prices is generally attributed to increased competition from imports, includ-
ing farm-raised shrimp from Asia (Asche et al. 2012). The diesel price also has 
a large variance, and not surprisingly, a clear increasing trend over 2000–2005. 
Incorporating the diesel prices into the cost structure allows for the examination of 
the effect of energy price changes on shrimp supplies. Note that we pool all years 
for estimating dynamics of shrimp prices and diesel prices.
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Figure 1. Total Daily Harvest (Pounds)
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IV. Empirical Results

A. State Transitions

We first estimate the dynamics of the exogenous state variables. Before estimating 
time series models, we use Augmented Dickey-Fuller tests to see whether they are 
stationary processes. The output indicates that the natural log of shrimp price, wind 
speed, and wave height are stationary processes, and the natural log of diesel price 
is in need of differencing in order to render it stationary.

We fit autoregressive (AR) models to shrimp price, wind speed, and wave height 
series. The output is a vector AR(1) model. Wind speed and wave height may be 
highly correlated with each other, so we use a Seemingly Unrelated Regressions 
(SUR) model to recover their data generating processes simultaneously. The result 
shows that the model correlation between logged wind speed and logged wave 
height is 0.58. For diesel price dynamics, we use cubic b-splines (degree equal to 3) 
with 30 knots of Week because diesel prices are collected on a weekly basis. The 

Table 1—Summary Statistics for Selected State Variables

Variable Statistics 2000 2001 2002 2003 2004 2005

Annual harvest Sum 10,334.9 5,254.2 9,969.0 6,167.4 4,880.8 2,123.5
 (thousand pounds)

Daily total Mean 28.3 14.4 27.3 16.9 13.4 5.8
 harvest SD 31.2 20.1 33.9 23.1 15.2 8.7
  (thousand Minimum 0 0 0 0 0 0
   pounds) Maximum 163.0 87.0 175.2 99.0 71.1 36.3

Trip harvest Mean 313.6 199.9 272.4 251.1 220.5 207.0
 (pound) SD 473.8 255.3 333.3 371.4 309.3 228.0

Minimum 0.3 1.0 0.9 1.0 0.2 0.5
Maximum 16,326.1 7,067.0 10,012.6 10,281.5 6,941.2 4,051.9

Fishing vesel Mean 71.5 63.0 88.2 61.7 52.9 25.2
 number SD 75.5 76.5 87.1 75.6 58.4 37.0

Minimum 0 0 0 0 0 0
Maximum 277 273 303 292 230 145

Shrimp price Mean 2.4 2.2 2.0 1.9 1.9 1.8
 ($/pound) SD 0.6 0.5 1.6 0.9 0.9 0.7

Minimum 1.0 1.0 0.6 0.9 0.7 0.7
Maximum 7.1 6.4 16.1 15.7 15.1 7.1

Diesel price Mean 150.3 135.8 126.1 144.0 164.0 212.9
 (cents/gallon) SD 9.8 10.4 8.4 10.3 18.9 27.3

Minimum 130.2 114.0 111.7 134.4 137.8 176.7
Maximum 166.7 154.2 143.6 170.9 200.7 282.6

Wind speed Mean 7.3 6.7 7.0 6.4 6.1 7.1
 (100m/s) SD 2.7 2.6 2.3 2.5 2.7 2.9

Minimum 2.0 2.1 2.5 1.8 1.8 1.2
Maximum 17.0 14.5 14.2 19.3 14.9 21.6

Wave height Mean 1.2 1.3 1.4 1.5 1.4 1.5
 (m) SD 0.5 0.5 0.5 0.7 0.7 0.8

Minimum 0.3 0.1 0.5 0.1 0.4 0.5
Maximum 3.0 3.2 5.3 8.5 5.3 5.8
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b-spline allows for a flexible approximation for the diesel dynamics, which has a 
high adjusted R2 0.98. Full results for the exogenous state variables, including tests 
for stationarity and b-spline estimation, are available in the online Appendix.

Parameter estimates of the production function and stock dynamics are presented 
in Table 2. The OLS column reports the result from regressing logged harvest on 
logged total vessel number (Tvessel ), season closure, and dummies for year, vessel, 
and polynomials of ln(t). The columns labeled “IV” use “Weekend ” as an instru-
ment for total vessel number. Table 2 also contains the fishing mortality coefficient, 
which is negative as expected; more cumulative harvest reduces the stock relative to 
its deterministic within-season baseline. We do not report the 439 vessel dummies 
due to space limitations. The coefficient for total vessel number is positive and sig-
nificant in OLS, but negative and significant in the two-stage least square estimation. 
Thus using an instrument changes the results.19 According to the IV coefficient, 
one unit increase in vessel number will decrease each vessel’s harvest in one day 
by 0.127 percent. This result reflects an instantaneous congestion externality. It is 
consistent with the tendency of shrimp trawling to disperse aggregations of shrimp.

Table 2 also reports instrument validity tests for IV strength. The partial  R 2  and 
F-tests suggest that “Weekend ” is a relevant instrument because it explains signifi-
cant variation in Tvessel in an auxiliary regression. We also recover the parameters 

19 This sign reversal after instrumenting is consistent with findings in the recreational demand literature on con-
gestion (Timmins and Murdock 2007).

Table 2—Production Regression

OLS IV

Parameter Coefficient SE Coefficient SE

Panel A. Production function
Tvessel 0.00291 (0.000) −0.00127 (0.000)
Season closure (1 if open) 0.491 (0.015) 0.717 (0.018)
Wind speed 0.0004 (0.002) −0.004 (0.002)
Wave height 0.040 (0.007) 0.022 (0.007)
Vessel dummies Yes Yes Yes Yes

Panel B. Stock dynamics
year2000 0.375 (0.022) 0.577 (0.023)
year2001 −0.188 (0.015) 0.067 (0.018)
year2002 0.446 (0.021) 0.690 (0.023)
year2003 0.189 (0.016) 0.381 (0.017)
year2004 −0.044 (0.013) 0.080 (0.014)
year2005 — — — —
ln(t) 5.050 (0.271) 9.855 (0.323)
ln(t)2 −3.818 (0.152) −7.395 (0.205)
ln(t)3 0.906 (0.033) 1.797 (0.048)
ln(t)4 −0.066 (0.002) −0.137 (0.004)
Harvest_accumulated −0.000000177 (0.000) −0.000000127 (0.000)

Observations 80,802 80,802

Panel C. Tests for instrument validity
Partial R2 F(1, 80349) p-value

0.1752 17,065.66 0.0000

Note: The columns labeled with “IV” use “Weekend” as an instrument for total vessel number.
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of the within-season stock dynamics in the production function, shown in Table 2. 
Figure 2 illustrates the deterministic stock index in year 2000. The bottom line 
depicts the stock index with harvest, while the top line plots the stock index without 
harvest. The stock is consistent with the harvest season. The IV regression error 
term is regressed on daily fixed effect to obtain  ζ t  . Furthermore,  ζ t  is approximated 
by a Markov chain, which is shown in the online Appendix.

B. Policy Function of Fishing

We use a flexible logit model to estimate the first-stage conditional choice proba-
bilities (CCP) of the decision to fish. The results are presented in the online Appendix 
due to space limits. The full model contains polynomials of shrimp price, determin-
istic part of stock index,  ζ t  , diesel price, weekend, wind speed, wave height, season 
closure, individual catchability  q i  , and interactions among different variables. This 
flexible structure is intended to capture as much information as possible to mimic 
the initial conditional choice probabilities.

C. Profit Structure

Given the state transitions and CCP estimated above, we are able to simulate the 
state variables and actions dynamically. After evaluating equation (22), the pseudo 
maximum likelihood estimator is applied to derive the structural parameters.

The final estimates of the profit function reported in Table 3 comport with basic 
intuition. The third column shows the scale of different independent variables. If 
we calculate the marginal effect of different variables on the profit based on these 
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 parameters, we find that if harvest increases, both the total revenue and the cost 
increase. In fact, the profit is a concave function of the harvest since the coeffi-
cient for harvest squared is negative. Also, profit increases when the stock index 
increases. Higher wind speed and wave height induce higher costs, which are 
expected. Interactions between vessel length and weather suggest that larger ves-
sels have lower costs with high wind speed and wave height, a reasonable finding 
because larger vessels face lower risks in bad weather. In addition, the relationship 
between vessel length and cost is convex. Larger vessels face higher marginal costs 
that increase in vessel size.

D. Model Validation

One natural concern about multiple stage estimation is the model performance. 
The second stage estimator depends on the accuracy of the first stage, i.e., CCP 
estimation. One way to resolve this issue is to iterate multiple times using NPL pro-
posed by Aguirregabiria and Mira (2002, 2007).20 However, it is not computation-
ally feasible to apply NPL directly to our problem. Thus, it is important to check the 
performance of our structural model.

To validate the model, we examine the explanatory power of the model predictions 
for the actual observations. When we simulate the system, we can predict fisher-
men’s fishing choices and use equation (21) to predict harvest. Then we regress the 
actual observations on the predicted values of total harvest and fishing vessel number 
using both the first-stage CCP estimator and the final structural  estimator. Table 4 
presents the results. The first row shows the result of regressing the observed daily 
total vessel number on the daily total vessel number predicted using the  first-stage 

20 In fact, we tried a Pseudo-NPL method. Using second-stage PML results, we calculate the probabilities for 
all observed state variables. Then we regress the probability on a flexible function of state variables. Based on this 
function, we can repeat the first-stage simulation based CCP estimation again, which starts the second round. PML 
is again applied to obtain the new profit structure and then the new updated probability, and so on. Altogether we 
have done six iterations. Online Appendix Table 6 reports the profit structure for second to sixth iterations. The 
method is similar in spirit to Sweeting (2013).

Table 3—Profit Structure

Parameter Description Scale Coefficient SE

Revenue Shrimp price × harvest 1,000 dollars 1.43 (0.021)
Wspd Wind speed 1 m/s −0.13 (0.003)
Wvht Wave height 1 meter −0.29 (0.015)
Diesel Diesel price 1 dollars −0.02 (0.000)
Weekend Saturday or Sunday 1 −0.84 (0.008)
stock Stock size 1 stock index unit 0.06 (0.000)
len Vessel length 10 feet −0.31 (0.009)
len2 Vessel length squared 100 −0.04 (0.001)
len_wspd Length × wind speed 100 0.13 (0.006)
len_wvht Length × wave height 100 0.33 (0.029)
len_diesel Length × diesel 100 0.02 (0.000)
har Harvest 1,000 pounds −1.61 (0.109)
har_len Harvest × length 10,000 0.67 (0.021)
har2 Harvest squared 1E + 6 −5.16 (0.086)

Note: All harvest in this table is expected harvest.
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CCPs. Recall that in this stage, the CCPs are estimated using a logit model with 
flexible polynomial functions and interactions that do not lend themselves to a struc-
tural interpretation. The second row is the regression result for total daily harvest 
using the same logic. Between 57 percent to 83 percent of the observed variation 
can be explained by the predicted data. The third and fourth rows show R2 from 
 out-of-sample validation. Here, we estimate the state transitions using six years of 
data (2000–2005), but estimate the policy function of fishing (CCP) based on five 
years of data (2000–2004), leaving year 2005 out. Then the total daily harvest and 
daily vessel numbers are predicted for all years using the new coefficients estimated 
from the partial data. We choose 2005 as our hold-out year because it is the most 
unusual year in our sample and thus likely to be the most difficult one to predict; the 
shapes of daily total effort and harvest in 2005 do not fit as well as those in other 
years, but the R2s are not very low. For other years, the prediction power is similar.

The fifth and sixth rows of Table 4 present results for regressing the actual obser-
vations on the predicted values using the full structural model with full data. R2s 
show that 59 percent to 81 percent of the observed variation can be explained by the 
predicted data. The explanatory power is preserved compared to the first-stage CCP. 
By construction, the two-stage estimator imposes more structure and has fewer free 
parameters than the first-stage CCP. Figure 3 visually illustrates the validation of the 
model for the fifth row in the table.

The final two rows of Table 4 present the results of using the two-stage structural 
model on 2000–2004 data to predict 2000–2005. The first stage is the same model 

Table 4—Model Validation

2000 2001 2002 2003 2004 2005

Panel A. R2 of regressing actual data on simulated data
Model estimation using all data CCP only
 Total vessel number 0.75 0.83 0.72 0.75 0.79 0.73
 Total daily harvest 0.68 0.61 0.57 0.62 0.69 0.65

Model estimation using data 2000–2004 CCP only
 Total vessel number 0.70 0.82 0.80 0.80 0.81 0.41
 Total daily harvest 0.65 0.66 0.62 0.67 0.72 0.53

Model estimation using all data: structural model
 Total vessel number 0.69 0.74 0.81 0.81 0.80 0.63
 Total daily harvest 0.70 0.59 0.70 0.72 0.72 0.65

Model estimation using data 2000–2004: structural model
 Total vessel number 0.69 0.77 0.81 0.83 0.81 0.66
 Total daily harvest 0.70 0.60 0.70 0.73 0.73 0.66

Panel B. Weighted mean absolute percentage error
Model estimation using all data CCP only
 Total vessel number 0.33 0.34 0.33 0.42 0.31 0.36
 Total daily harvest 0.48 0.53 0.49 0.56 0.45 0.57

Model estimation using data 2000–2004 CCP only
 Total vessel number 0.46 0.29 0.28 0.47 0.38 2.35
 Total daily harvest 0.50 0.53 0.47 0.50 0.38 1.37

Model estimation using all data: structural model
 Total vessel number 0.35 0.43 0.26 0.36 0.39 0.45
 Total daily harvest 0.49 0.59 0.46 0.49 0.47 0.67

Model estimation using data 2000–2004: structural model
 Total vessel number 0.36 0.42 0.25 0.35 0.35 0.40
 Total daily harvest 0.49 0.58 0.45 0.48 0.44 0.69
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estimation from row three and four, i.e., six years for state transitions estimation 
and five years for CCP estimation. The second-stage estimation relies on five years 
of data, leaving 2005 out. Using the structural result, we then predict behavior in 
2000–2005. Again, we see similar explanatory power compared to that using all of 
the data. Compared to the full sample, the R2 for 2005 actually improves slightly 
both for vessel number and harvest. Most importantly, the structural model outper-
forms the first-stage CCP out of sample despite CCP having much more flexibility 
to fit the data. This provides independent evidence that the structural model is useful 
for policy analysis. In all, the profit structure revealed in the two-stage estimator 
appears reasonable to implement the following counterfactual experiments. In the 
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same table, we also report the weighted mean absolute percentage error (WMAPE) 
for different models. The WPAPE is defined as the absolute distance between pre-
dicted and actual data relative to actual data, which are then weighted by daily har-
vest. The result shows a similar pattern as the R2.

V. Counterfactual Experiments

With the profit structure of the North Carolina shrimp fishery recovered, we are 
able to compute the potential efficiency gains from rationalization. In the following, 
we first measure the economic gains if a daily vessel allocation policy is enforced to 
improve efficiency. We then evaluate the existing season closure policy. Finally, we 
calculate the efficiency change if there is no congestion effect.

A. Efficiency Gains under Daily Vessel Allocation Policy

As individuals maximize their own profits taking other players’ actions as given, 
the system achieves micro level efficiency. By contrast, at the macro level the exploi-
tation might not be efficient. Individuals pursuing their self interests will not lead 
to the social optimum when there are externalities. The social planner should maxi-
mize the total benefits to fishermen from the common-pool resource in terms of all 
individuals and all periods. To this end, the planner ideally can enforce a daily vessel 
allocation policy, in which the social planner decides which vessels are permitted to 
go fishing every day.

Consider the social planner’s problem:

(26)  V =   max   
{ I t  }  t=1  
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Let  I t  define a 439 by 1 vector determining whether vessel i is allowed to go fish-

ing or not at time t.  I it  is the i  th element of  I t  . If the i  th element is equal to 1, it means 
that vessel i is going fishing, while 0 means vessel i is not. The social planner seeks 
a path of vectors of allocated vessels ( I t ) to maximize the total profit for all vessels 
( Π t ), given that he knows the stock dynamics and the profit structure.

In order to maximize the total profits, the social planner needs to dispatch the 
most profitable vessels to fish every day. Since the profit structure (Table 3) has been 

09_A20100188_10412.indd   4093 11/11/14   2:50 PM



4094 THE AMERICAN ECONOMIC REVIEW DECEMbER 2014

revealed for each individual vessel, we can rank the vessels by their daily profitabil-
ity and then choose the most profitable vessels to go fishing. Then we only need to 
find the daily fishing vessel numbers  ∑     

  ( I t ) for t = 1, 2, … 365 for all six years in 
order to maximize the total benefits.

In summary, the social planner can use the following backwards induction proce-
dure to find the optimal path for daily permitted vessel numbers.

Step 1:  Starting from the last day of the year T, for each discretized stock index, 
compute the corresponding daily expected profits and sort them by their 
expected profits.

Step 2:  Based on the ordered profits, derive a mapping matrix between each dis-
cretized stock size and the optimal number of permitted vessels  ∑     

  ( I t ).
Step 3:  On the penultimate day T − 1, compute the expected profit for each dis-

cretized value of the stock index. At this point, the profit is a summation 
of day T − 1 and day T expected profits. The day T profit can be read from 
the existing mapping matrix for time T from step 2 given known stock 
dynamics.

Step 4:  Derive a mapping matrix between each discretized stock size and the opti-
mal number of permitted vessels for T − 1 according to the comparison 
of the profits.

Step 5: Repeat the procedure to derive the mapping matrices for all time periods.

With knowledge of the initial stock size (Table 2), the social planner can derive 
the optimal path of permitted vessel numbers  ∑     

  ( I t  ) ∗  using these mapping matrices. 
Here, the precision of the stock discretization is set so that the fishermen’s actions 
can affect the stock index. For example, the maximum stock for year 2005 is 50 and 
we divide it into 2,000 uniform units. With such high precision, the computation 
time is long. In order to substantially reduce the computational cost, we examine  
 ∑     

  ( I t ) for every five vessels and every 20 days over one year, i.e., the number is 
constrained as multiples of five and the same for every 20 days.

Figure 4 depicts optimal vessel numbers versus the predicted vessel numbers using 
the method described above. The lines represent the optimal numbers of fishing ves-
sels less predicted ones, which are derived from the simulation of the structural 
model. Averaging over thousands of stock paths, we obtain the predicted fishing 
vessel number. Correspondingly, the horizontal lines are simply zeros for points of 
reference. For almost all years, we find that the optimal numbers of fishing vessels 
are lower than the predicted ones in the early season. While in the season peak, the 
optimal numbers are greater than the predicted ones except in 2005. The pattern is 
more pronounced when a year’s stock size is larger. For 2005, since the stock is very 
low (in fact the lowest among six years), the industry is better off decreasing the 
number of vessels fishing throughout the year.

We plot harvest and stock paths in Figure 5. The second and fourth column panels 
depict the stock path. The bottom lines are stock dynamics net of predicted harvest 
(harvest is based on actual behavior but excluding daily shocks to illustrate the sea-
sonal patterns), the lines in the middle are the stocks with optimal harvests, while 
the top lines are the stocks without harvest. The stock grows larger in the optimal 
scenario compared to the actual. The other panels show the pattern of optimal less 
predicted harvest. As usual, the lines indicate the differences, and the horizontal 
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lines are zeros for reference. In the early seasons, the optimal harvest should be 
lower than the predicted harvest. In the peak season, the harvest should be increased 
except for 2005, since at this time, the stock is high and the marginal fishing cost is 
lower. Again, 2005 is special in that the harvest needs to be lowered to reduce fishing 
costs since the stock is the lowest.

Figures 4 and 5 illustrate the sources of efficiency loss in our common-pool 
resource application. First, there are too many vessels fishing in the early seasons, an 
artifact of strategic interactions that trigger the race to fish. During these periods, the 
stock is not high and the productivity of fishing vessels is fairly low. Thus the fish-
ing effort exerted in these periods is excessive and should be reduced. Second, the 
excess fishing effort in the early season causes lower stock in the peak season. This 
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lower stock reduces the harvest on the one hand, and increases the fishing cost on the 
other hand. Third, the most profitable vessels are not necessarily the ones fishing. 
If we combine all the sources of efficiency loss together, we find that $1.90 million 
dollars per year are lost due to the inefficient exploitation scale and timing. This 
result and yearly efficiency losses are reported in Table 5. The table also reports 
the efficiency loss is 20 percent of the observed average annual revenue. We also 
 estimate the status quo profit and find that the efficiency gain is about 49  percent of 
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Figure 5. Daily Predicted Harvest and Stock Compared to Daily Optimal Harvest and Stock

Note: For reference, the top stock line is the stock with no fishing and stock here refers to the deterministic part of 
stock index.
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the rent without deducting the capital costs. If we included capital costs, this per-
centage would be substantially higher. Among the six years, 2002 has the highest 
efficiency loss in absolute value of $5.98 million dollars and also has the highest 
percentage loss relative to the observed revenue.

Table 5 indicates that 2001, 2004, and 2005 have lower efficiency gains for abso-
lute values. This is not surprising in light of the confluence of multiple exogenous 
factors eroding shrimp profitability in these years. From Table 1, we see that these 
years had relatively lower real shrimp price and lower trip harvest. Moreover, from 
Table 2, these years had much lower exogenous shrimp recruitment in the sample.

We also compute all the results for annual discount rates of 18 percent and 0 per-
cent, which are reported in the online Appendix. We find that the results are similar 
in magnitude and very close in percentage terms because the discount rate assump-
tions also change the baseline rents. The total efficiency gains are $1.76 million per 
year for 18 percent discount rate, and $2.01 million for 0 percent.

B. Program Evaluation of the Current Season Closure Policy

Using our structural model, we can also evaluate the existing season closure policy 
in North Carolina. It is important to recognize that the efficiency gains from a daily 
vessel allocation policy described above would be additional. The season  closure 
policy closes some fishing areas from April to May, depending on the estimated 
abundance and growth of shrimp. To find results, we simulate the dynamic game 

Table 5—Efficiency Gains in the North Carolina Shrimp Fishery  
with an Annual Discount Rate of 7 Percent

Year

Observed 
revenue* 
(OR)(106)

Status quo 
rent without 

deducting the 
cost of capital 
(SQR)(106)

  SQR
 _ OR   

(percent)

Efficiency 
gains due to 
the allocated 
entry system 
(E1)(106)

  E1 _ OR   
(percent)

  E1 _ SQR   
(percent)

Efficiency 
gains if 

removing 
congestion 
(E2)(106)

  E2 _ OR   
(percent)

Panel A
2000 18.19 6.83 38 2.24 12 33 −0.78 −4 
2001 8.91 2.68 30 0.27  3 10 0.20 2 
2002 13.68 7.33 54 5.98 44 82 −1.73 −13 
2003 8.26 3.92 48 2.13 26 54 −0.53 −6 
2004 6.63 1.69 25 0.35  5 21 −0.01 −0 
2005 2.48 0.67 27 0.42 17 62 −0.01 −0 

Average 9.69 3.86 40 1.90 20 49 −0.48 −5 

Year

Efficiency 
gains due to 

season closure 
policy  

(E3)(106)
  E3 _ OR   

(percent)

Efficiency 
gains due to 
strict season 

closure policy 
(E4)(106)

  E4 _ OR   
(percent)

Panel B
2000 0.55 3 0.49 3 
2001 0.01 0 0.06 1 
2002 0.29 2 0.65 5 
2003 0.12 1 0.09 1 
2004 0.02 0 0.00 0 
2005 −0.02 −1 0.01 0 

Average 0.16 2 0.22 2 

* For active vessels only.
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using the structural model and setting the season closure coefficient to zero. Unlike 
the counterfactual experiments above, here we have no social planner. We find that 
if the current season closure policy is canceled, the efficiency loss will be about 
$0.16 million per year. The related findings are summarized in Table 5. We denote 
the efficiency gain due to the season closure policy as E  3. Among the six years, 
2000 has the highest efficiency gain, which amounts to $0.55 million. However, we 
find these efficiency gains (E  3) are relatively small as compared to the efficiency 
gains from the vessel allocation policy (E1). On average, the current season closure 
policy only produces efficiency gains of 2 percent of the observed revenue OR. 
Another way to view this result is that the existing policy produces efficiency gains 
relative to open access that are just a small fraction of what our counterfactual daily 
allocation policy would produce relative to the status quo.

The season closure policy could also be expanded. Only some fishing areas are 
closed, and we observe substantial harvest during this closure period. To fully under-
stand the season closure policy, we can experiment with a strictly implemented pol-
icy that would shut the fishery down entirely during the closure period. Again, we 
do not use a social planner but assume no fishing during the closure period, simulate 
the resulting stock dynamics, and evaluate the resulting behavior that comes out of 
the structural model. The column denoted as E4 in Table 5 reports the results of this 
experiment. The efficiency gains improve on the status quo but not by much. This 
result suggests that a more stringent season closure policy for the North Carolina 
shrimp fishery could constitute some small improvement on the existing second 
best policies. The current season closure policy already captures 75 percent of the 
efficiency loss if the policy would be fully implemented. Whether a strict season 
closure policy would be more politically feasible than the much more valuable daily 
vessel allocation policy is an open question.

C. Congestion Effects

The efficiency gains under both the daily vessel allocation policy and the sea-
son closure policy consist of the gains from reducing players’ strategic interactions 
and the impacts of the stock externality. Congestion is another externality involved 
in the harvest. In the process of estimating the stock index, we find a congestion 
effect in fishermen’s harvest, indicated by the negative coefficient on Tvessel in the 
IV regression (Table 2). This effect is instantaneous in the production function. To 
measure the congestion effect dynamically, we set the coefficient for Tvessel to zero 
and re-simulate the system. Table 5 reports our finding of the gains of congestion 
effects. Counterintuitively, the congestion effect leads to a net gain of $0.48 million 
per year, i.e., the congestion externality is positive on average. The reason is that 
congestion itself has two effects on profits. First, it reduces fishing revenues (and 
hence profits) instantaneously due to its negative sign. Second, fishermen reduce 
their fishing effort in response to this negative congestion effect, which increases 
the stock size dynamically. The higher stock reduces fishing costs and increases 
revenues later in the season. Thus, whether congestion is a net positive or negative 
externality is empirically determined by these two opposing effects.

In contrast to other years, 2001 shows a net loss from congestion. Figure 4 offers 
possible explanations. In other years, excess fishing effort worsens as the fishery 
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approaches the peak (around day 200). In 2001, excess effort peaks much earlier, 
suggesting that the required reduction near its peak season is more modest and the 
largest instantaneous losses from congestion occur earlier in the season (and accord-
ingly would be less discounted). The amount of reduction required to achieve the 
optimum, the timing of reduction, and its duration all suggest that there is less to 
gain by mitigating the stock effect in 2001 than in other years. The instantaneous 
losses from congestion thus outweigh the long-run gains. Nevertheless, on average 
we find that, in the North Carolina shrimp fishery, congestion has a positive effect 
on profits, which is about 5 percent of the mean annual revenues.

VI. Conclusion

In this paper, we estimate a dynamic discrete choice model of a shrimp fishery and 
measure the costs of open access. The fishermen are modeled as playing a dynamic 
game in which each fisherman’s action is influenced by other fishermen’s actions 
through the stock externality. Because the shrimp fishery is an annual industry, we 
model the dynamic programming problem with a finite horizon. The two-stage 
simulation-based Conditional Choice Probability and pseudo maximum likelihood 
(PML) routines are employed to estimate the structural parameters. Our results have 
several important implications.

First and foremost, to promote the efficient use of the commons, policy instru-
ments need to address the strategic and dynamic interactions of individuals. Our 
results strongly support the notion that the tragedy of the commons unfolds at the 
individual level and within each season. While this result alone may not be surpris-
ing in light of the voluminous theoretical literature on the commons as well as theo-
retical predictions specific to fisheries (Boyce 1992; Valcu and Weninger 2013), we 
are unaware of any previous empirical study demonstrating that individual strategic 
and dynamic behavior is the mechanism that drives inefficient use of the commons. 
In fisheries, the catch phrase to describe this strategic dynamic interaction is the race 
to fish, and the conventional wisdom among fisheries economists is that an individu-
ally transferable quota (ITQ) solves the commons problem. Under an ITQ, vessels 
are allocated a tradable share of a biologically sustainable cap each season, and the 
most efficient vessels fish by exploiting gains from trade. However, if the timing of 
exploitation within a season is an important source of inefficiency, it is unclear how 
an ITQ will solve the racing problem. Some fisheries undergoing rationalization 
have spontaneously formed cooperatives, e.g., the Alaskan crab fisheries. Whether it 
is possible for these cooperatives to dispatch effort as if they are following our theo-
retical daily vessel allocation policy is a question for future research. Anecdotally, it 
appears that there are de facto dispatchers in the recently rationalized New England 
groundfish fisheries. Here, the fisheries have organized into cooperatives called sec-
tors in which a sector manager facilitates which vessels fish and which vessels stay 
in port (Scheld, Anderson, and Uchida 2012).

In contrast to ITQs, our daily vessel allocation policy steers individuals toward 
a more efficient outcome on a finer time scale. As more fisheries around the world 
begin to rationalize, there will be many new empirical opportunities to analyze 
whether ITQs truly undo the race to fish and to explore more spatially and tempo-
rally refined policy instruments to address inefficiencies in common-pool resource 
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use. The US National Oceanic and Atmospheric Administration recently released 
its catch shares policy (NOAA 2010) promoting rights-based management of fish-
eries. The policy provides guidance to regional fishery management councils on 
how to design rationalization programs. However, the policy does not mention the 
within-season timing of exploitation as a design factor, and there are currently no 
ITQ fisheries that temporally delineate ITQs in this way. Will fine-scale externali-
ties fix themselves under an annual ITQ? Given our empirical context, it is worth 
considering the experience of the Australian northern prawn fishery, which has an 
annual effort ITQ. In support of the notion that fine-scale problems fix themselves, 
96 percent of rights holders have formed a corporation that makes daily manage-
ment decisions. But weighing against this notion, shutting down the fishery even for 
short periods is still considered politically infeasible (Dichmont et al. 2010).

A related point is the efficiency gains from rationalizing North Carolina’s shrimp 
fishery, though sizable, may actually be smaller than one would find in a typical 
fishery. When rationalized by a daily allocation system, the total efficiency gain 
is around $1.90 million per year, which is 20 percent of the annual shrimp rev-
enue in North Carolina. However, shrimp are atypical compared to most major 
commercial fisheries in that there is a weak stock-recruitment relationship; that is, 
what returns next season has little to do with how much is left this season because 
shrimp are highly fecund and recruitment depends largely on environmental condi-
tions. This feature of shrimp biology obviates the need for a cap on total allowable 
catch and is the basis for economists promoting limited entry to manage shrimp 
(Johnson and Libecap 1982). Most fisheries, in contrast, present the possibility 
of both recruitment overfishing (across seasons) and growth overfishing (within 
season). Rationalizing a typical fishery may thus generate larger efficiency gains 
by imposing a cap on total harvest for the season and by controlling the timing of 
exploitation within the season.

Less intuitively, we find that congestion on average has a net positive effect on 
resource rents, suggesting a cautionary tale about static models of congestion. As 
expected, the instantaneous effect is negative because congestion lowers productiv-
ity. This finding is sensible in our case, as shrimp trawlers require a wide berth, 
there are many shallow areas of the Abermarle-Pamlico estuarine system that limit 
the areas in which trawling is possible, and trawling is known to disperse aggrega-
tions of shrimp. However, the resulting lower productivity leads to an instantaneous 
reduction in fishing effort and thus mitigates some of the dynamic stock externality 
in all but one year. This finding questions studies in recreation demand in which 
negative congestion externalities are examined statically and thus are assumed to be 
welfare reducing. A positive net effect may or may not arise in other natural resource 
settings. It may be important to consider the possibility that welfare losses attributed 
to congestion actually would produce welfare gains dynamically if policy makers 
were unable to exclude resource users effectively.

Despite substantial gains from our daily allocation policy, solving the commons 
problem does not guarantee resource industry profitability. In 2005, the total rents 
with the optimal policy are still lower than the total status quo rents in any other year 
in the sample. This weak performance is due to low shrimp prices, high fuel costs, 
and low shrimp recruitment. These factors respectively reflect global seafood mar-
kets, global oil markets, and local environmental conditions, all of which are beyond 
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the control of fishery managers and individual fishermen. Ameliorating strategic 
interactions in the commons does not address these challenges. Nevertheless, failure 
to solve commons problems means that the industry is ill positioned to withstand a 
bad year in which multiple exogenous shocks compound.

An interesting extension of this present study would be to include entry and exit 
as endogenous decisions. Since in the present data, there is no information to iden-
tify whether a vessel is a new investment or has exited the industry permanently, 
we assume there is a fixed number of vessels every year. But if the investment or 
sale of the vessels is modeled, we might be able to explain whether overcapitaliza-
tion persists in the fishery. Since the potential exitors have paid a high entry fixed 
cost and sunk cost, there exists “hysteresis” in exiting (Dixit 1989). In other words, 
the entry-exit problem is asymmetric: it is easy to enter but harder to exit. With 
some extensions of the current work, it is possible to test whether the asymmetric 
 entry-exit problem causes overcapitalization.

Lastly, our application illustrates how new methodological developments in indus-
trial organization and microeconometrics may find fishery datasets useful. There are 
notable complications relative to other applications in industrial organization, such 
as the importance of the fish stock, the inability to observe the stock directly, and the 
nonlinearity of its growth. And one naturally wants to exercise caution in general-
izing from a single industry with some idiosyncratic features. Nevertheless, fisheries 
can be sources of high-quality data that document repeated choices of individual 
players over time. The heterogeneity of global seafood production also means that 
the number of players in a fishery can range widely from less than ten to more than 
1,000. These extensions, along with other interesting applications about the dynam-
ics of the common-pool resource exploitation, are left for future research.
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