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Abstract

We propose a simple method for studying the medium- and long-run dynamic effects of horizontal
mergers that builds on the two-step estimator of Bajari, Benkard, and Levin (2007). Policy functions
are estimated on historical pre-merger data, and then future industry outcomes are simulated both with
and without the proposed merger. We apply our method to two recent airline mergers as well as one
that was proposed but blocked. We find that low-cost carriers play a crucial role in creating offsetting
entry. In some cases (United-US Airways), the model predicts substantial scope for offsetting entry,
while in others (Delta-Northwest) it does not. Thus, the dynamic analysis is complementary to and
yields different conclusions than the static analyses.
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1 Introduction

Antitrust enforcement is tasked to protect and promote competition. Despite being a vital part of industry

dynamics, mergers—especially those between direct competitors—may present a consequential threat to

competition within the industry. The central question of merger review is whether the effect of a merger

“may be substantially to lessen competition.”1

The static effects of a horizontal merger are unambiguous. By definition, horizontal mergers between

firms leave the industry with fewer competitors and, therefore, less competition. Whether competition

is lessened substantially depends on the role that the merging firms play in the competitive process. A

merger between large firms producing close substitutes in a concentrated industry is more likely to lessen

competition that a merger between smaller firms that produce indirect substitutes in an industry with many

active competitors.

The simplest method to evaluate the static effects of a merger on competition is to compute pre- and

post-merger concentration measures assuming no post-merger changes in market shares. Large increases in

concentration are presumed to lessen competition substantially (Shapiro (1996), US Department of Justice

(2010)). More sophisticated methods (Berry and Pakes (1993), Berry, Levinsohn, and Pakes (1995), Nevo

(2000)) are available for analyzing mergers in markets with differentiated products, where competition be-

tween firms depends critically on the precise characteristics of each firm’s array of products. These methods

provide richer models of changes in post-merger prices and market shares, but still rely on a static model

that holds the set of incumbent firms and products fixed.

Antitrust enforcement, however, recognizes the fact that competition is inherently a dynamic process.

For that reason, a static analysis may not be able to capture the full effect of a merger on the competi-

tiveness of the industry. In general, the static models do not account for post-merger changes in firms’

behavior. By changing firms’ incentives, a merger might lead to different levels of entry, exit, investment,

and pricing than occurred pre-merger in both merging and non-merging firms (Berry and Pakes (1993),

Gowrisankaran (1999)). Lastly, several papers have shown that dynamics can weaken the link between

market structure and performance (Berry and Pakes (1993), Pakes and McGuire (1994), Ericson and Pakes

(1995), Gowrisankaran (1999), Fershtman and Pakes (2000), Benkard (2004)), making the pre-/post-merger

snapshot of market concentration and markups less relevant for understanding the medium- and long-run

effects of a merger on competition. A merger that looks “bad” in the short run may, nevertheless, fall short

of having a substantial negative impact on competition in the long run if it creates a profitable opportunity
1Section 7 of the Clayton Act of 1914.
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for new firms to enter the market and reduce market concentration.

When two airlines merge, the industry loses two smaller airlines and gains a new, bigger one. In the

short run, markets served by both of the merging airlines are directly affected by the merger as these mar-

kets immediately lose a direct competitor. Whether or not this loss attracts a new entrant is ultimately an

empirical question. Additionally, since the incentives of the merged airlines change, in the medium run

the merger may affect competition in markets without pre-merger overlap. For example, since the merged

airlines serve a larger network of markets, previously unprofitable routes may become more attractive for

entry. Once passengers are flown in to a hub, they can now reach more destinations without having to change

their carrier. At the same time, the combined network of the merged airlines is likely to contain redundant

routes. That could incentivize the merged airlines to decrease or even eliminate some duplicative routes

in the medium or long run. Again, whether or not these dynamic effects lessen competition substantially,

requires an empirical analysis.

The contribution of this paper is to develop a simple set of techniques for analyzing the potential dy-

namic effects of a merger and to apply these techniques to three recently proposed mergers in the U.S. airline

industry. Importantly, since our method does not require estimating the fundamental parameters of an un-

derlying structural model, or solving for a counterfactual equilibrium, it is a practical method for regulators

to use given the tight time-frame under which mergers are evaluated.

We start with the standard framework that most existing work on empirical dynamic oligopoly has

relied upon – that of Ericson and Pakes (1995) (hereafter EP).2 This framework models a dynamic industry

in Markov perfect equilibrium (MPE). Equilibria of this model cannot be found analytically, so they must

instead be computed numerically. In general, inserting mergers into this framework requires a detailed

model of how mergers occur (as in Gowrisankaran (1999)), resulting in a complex model that is difficult to

compute or apply to data.

To overcome this challenge, we extend the insight of Bajari, Benkard, and Levin (2007) (hereafter

BBL). Put in the broadest terms, the main insight of BBL is the following: the equilibrium to a complicated

dynamic game can, under certain assumptions, be directly observed in the data. Instead of repeatedly solving

the model for different values of unknown parameters trying to find an equilibrium that closely matches the

observed data, one can proceed it two steps. The first step is to estimate the equilibrium of the model, i.e. the

firms’ strategy functions, directly from the data. The second step is to plug these estimated strategies into

the equations defined by the equilibrium conditions of the model, which can typically allow one to solve for

the unknown parameters much faster.
2For an overview, see Ackerberg, Benkard, Berry, and Pakes (2007).

2



Building on BBL, this paper shows that it is possible to quantify the dynamic effects of a horizontal

merger in the EP/BBL framework by adding just one simplifying assumption: we assume that the equilib-

rium being played does not change after the merger, in the sense that firms’ strategy functions remain the

same. Under this assumption, we can use BBL’s forward-simulation procedure to simulate the distribution

of future industry outcomes both with and without the merger. We can then compute medium- and long-run

concentration measures to evaluate the differential impact of the merger on competition. This allows us to

incorporate the effects of offsetting entry into the (static) analysis of concentration commonly used as part

of antitrust evaluations.

The proposed assumption is both restrictive and testable. For example, this assumption would hold if

mergers are a standard occurrence in equilibrium. Alternatively, it might happen if mergers are very rare,

so that equilibrium play is not strongly affected by the likelihood of future mergers, whether or not the

merger in question happens. On the other hand, the assumption would not hold in the event that allowing

the proposed merger would represent a substantive change in antitrust policy. In that case, the fact that the

merger is allowed to go through might change firms’ unobserved beliefs about future play, changing their

strategy functions. This limits somewhat the applicability of our methods, but the benefit is that our methods

are vastly simpler than the alternative of computing a new post-merger equilibrium to the game, an option

that, while attractive, would be computationally infeasible in most cases.

Note that our methods are not intended to replace static antitrust analyses, described in Shapiro (1996)

and Nevo (2000), which seek to measure the short-run effects of a proposed merger on prices, market

shares, etc. When used in isolation, our methods generate predictions about the medium and long term

effects of a merger on industry structure, which can often be highly informative about the anti-competitive

effects of a merger. For example, our dynamic analysis can reveal whether or not off-setting entry is likely

to reduce short-run market competition in particular markets, which might determine whether a merger is

presumed to be anti-competitive in the long run. However, industry structure may only be a part of the story.

Occasionally, a horizontal merger may generate both pro- and anti-competitive effects. To balance them,

it may be necessary to quantify the welfare effects of these predictions, which would require an explicit,

short-run model of consumer demand and market supply. Thus, in our opinion, merger analyses should

include both of these tools.

We apply the proposed method to the U.S. airline industry, which has recently gone through a number of

large and somewhat controversial mergers. Our focus is narrow. We do not attempt to perform a full-scale

prospective merger analysis of the proposed mergers. Instead, we want to evaluate the differential impact

of each of the proposed mergers on the yearly entry/exit decisions of each airline at the level of individual
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non-stop routes between pairs of metropolitan areas.

Our estimates are based on data from 2003 to 2008. We chose 2003 as the starting period of the analysis

to avoid the immediate aftermath of the terrorist attacks on September 11, 2001. We chose 2008 as the end

period both because it was the last period prior to the recent wave of mergers, and because it avoids the

severe economic downturn experienced during the 2008 financial crisis.

We use this data to estimate the airlines’ strategy functions, which are maps from the current state of the

market competition game into a decision about which network of nonstop routes to serve in the following

year. The estimated strategy functions exhibit two important features. First, we estimate competition effects

that are quite large. For example, we find that, in a market with two incumbent carriers, for a potential

entrant indifferent between entering and not, the exit of one incumbent increases the probability of entry by

34% (from 50% to 84%). As a comparative benchmark, the exit of one incumbent competitor is estimated

to be roughly half as large as the incumbency effect of airline presence on a given route, an effect typically

thought to be large. Estimated competition effects are larger in markets with fewer incumbents, and smaller

in markets with more incumbents.

These large competition effects give the model the potential to generate offsetting entry after a merger.

However, whether or not there is offsetting entry on a given city pair also depends critically on the availabil-

ity of potential entrants whose nonstop route network rationalizes entry for that city pair. Similarly to Berry

(1992), we find that the size of an airline’s network at each end of the route (as measured by how many cities

it serves from each end) is an important determinant of entry. For a potential entrant indifferent between

entering a given route and not, we find that one additional city served from an endpoint city increases the

probability of entry on the route by about 10%.

In addition, competition at the end point cities matters. Airlines with higher market shares at end point

cities are more likely to enter a given city pair. Our model does not allow us to determine whether these

effects are driven by demand or cost factors. Airlines are also more likely to enter a city pair if an endpoint

is an own hub, and less likely to enter if an endpoint is a competitor hub. Airlines are also more likely to

enter nonstop routes when there is no convenient alternative one-stop itinerary in their current network.

To summarize, due to the large competition effects, the empirical model is likely to predict offsetting

entry after a merger on routes where there is at least one realistic potential entrant with a rich route network

in the vicinity of the route in question. However, the existence of realistic potential entrants is far from

guaranteed and varies widely in the U.S. airline network.

We consider three different recently proposed mergers: United-US Airways (UA-US), Delta-Northwest

(DL-NW), and United-Continental (UA-CO). The UA-US merger was proposed in 2000 and rejected by
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antitrust authorities. The DL-NW merger was approved in late 2008. The UA-CO merger was approved in

late 2010.

According to static measures of concentration, all three of these proposed mergers had great potential to

harm consumers. For example, DL-NW and UA-US created seven and six new monopoly non-stop routes

respectively. All three mergers also created large increases in concentration for at least a few cities when

viewed as a whole, often at existing hubs where concentration was already high. Absent offsetting entry or

large cost synergies, these effects point to a high likelihood of price increases and consumer harm.

We use our estimated strategy functions to simulate the 10-year effects of the three mergers. We find

that the UA-US merger would have had substantial potential for offsetting entry. From a static perspective,

United and US Airways had significant network overlap, particularly in the DC and Philadelphia areas, so

short-run reductions in competition would have been significant. However, because the airlines’ networks

overlapped in areas with heavy low cost carrier presence, our model suggests that the anticompetitive effects

likely would have been eliminated within a few years by low cost carrier entry, particularly by Southwest

and JetBlue. This merger was blocked based on a static analysis, but our results indicate that a dynamic

analysis would have led to a different conclusion.

Like UA-US, the DL-NW merger was predicted to have a strong short-run anticompetitive effect. Unlike

UA-US, our simulations show very little scope for offsetting entry in this case. Our model suggests that the

markets where the merger leads to reductions in competition are well insulated from entry. The UA-CO

merger appears somewhat more benign than the other two mergers in the short run, but our simulations

again suggest there was very little scope for offsetting entry. Ironically, it is these last two mergers that were

approved and executed.

The rest of the paper is organized as follows. Section 2 discusses the related literature and alternatives it

has proposed. We give a detailed description of our method in Section 3. Section 4 shows how to apply our

method to the U.S. airline industry. Section 5 describes our data and provides the conclusions of a simple

static merger analysis. In section 6, we show how to use econometric and machine-learning techniques to

estimate the airlines’ strategy functions. We look for but find no empirical evidence that would invalidate

the main simplifying assumption that this paper relies upon. In section 7, we evaluate the dynamic effects

of the proposed airline mergers. Section 8 concludes.
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2 Alternative Approaches and Related Literature

Academic literature and policymakers alike recognize the fact that a horizontal merger may not always

substantially lessen competition and that sometimes a static analysis may overestimate its negative effects.

Two recent papers – Li, Mazur, Park, Roberts, Sweeting, and Jun (2018) and Ciliberto, Murry, and Tamer

(2018) – seek to address economic questions that are similar to ours. They, however, build on a different

set of tools to perform their analysis. Specifically, they use a cross-section of airline markets to estimate a

complete information two-period entry/exit model. They use this model to evaluate the likelihood of post-

merger entry. A special emphasis is placed on the importance of the unobservable market characteristics

that may introduce selection in the airlines’ entry and exit decisions.

Both their and our approaches recognize the same challenge: airlines’ decisions to enter or exit may be

driven by multiple complicated factors. The solutions, however, are somewhat different. The two-period

entry/exit papers compress these complicated factors into a single unobservable variable. The distribution

of this unobservable then becomes the object of interest. Once this distribution is recovered, the model is

solved for a counterfactual industry structure in which the merger is exogenously executed. In contrast, our

approach recognizes the fact that panel data may provide superior information on what these underlying

unobservable factors may be. Specifically, we employ machine-learning techniques that allow us to make

the unobserved part of the entry/exit decisions as much observable as possible. A cross-section analysis, due

to data limitations, would not have allowed us to achieve this goal. Second, the two-period entry/exit papers

have to assume that the unobserved part would stay the same whether or not the merger goes through.

Depending on which factors contribute to this unobservable, this assumption may be problematic. For

example, if the main force behind the unobservable part is the overall size of the airline’s network, then

the merger will necessarily affect it. Our approach controls for these factors explicitly. Third, unlike the

two-period papers, our approach recognizes the fact that mergers may be endogenous (Nocke and Whinston

(2010)), i.e. a part of the equilibrium industry dynamics. Finally, despite being built on a more complicated

dynamic oligopoly model, our analysis is computationally simpler and faster. It is especially suited to data-

rich industries that exhibit rich variation in market structures such as the U.S. airline industry.

There are several other related papers in the literature that we have not mentioned yet. Probably the

closest paper to ours is Collard-Wexler (2014), which uses a Bresnahan and Reiss-style empirical dynamic

model to evaluate the hysteresis effects of a merger from duopoly to monopoly in the ready-mix concrete in-

dustry. The paper finds that merger to monopoly would generate about 15 years of monopoly. The approach

in the paper is similar to ours, but is even simpler than ours as it assumes homogeneous firms.
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Three other recent papers (Jeziorski (2014a), Jeziorski (2014b), and Stahl (2009)) use dynamic models

similar in spirit to ours to consider recent merger waves in radio and broadcast television respectively.

However, the goals of these papers are quite different from ours. They use data on past mergers primarily

to evaluate the forces that drove the merger waves, but also to evaluate (ex post) the welfare effects of the

merger waves. Our paper instead focuses on the potential future dynamic effects of proposed mergers.

There are also several papers looking at past airline mergers. Most notably, Borenstein (1990) evaluates

(ex post) the anticompetitive effects of two airline mergers that occurred in the mid-1980s, each of which

led to substantially increased concentration at a major hub. He finds that there is evidence of both price

increases and capacity reductions at these hubs after the mergers. Kim and Singal (1993) does a broader

ex post evaluation of fourteen airline mergers in the 1980s. Overall they find that after a merger both the

merged and unmerged firms substantially increased fares. Peters (2006) also does an ex-post evaluation of

static merger simulations (as in Nevo (2000)) using five airline mergers from the mid-1980s. He finds that

the standard model does not do very well at predicting the price effects of these mergers, and appears to

omit some important supply-side factors (e.g., cost or conduct).

There are also some important results in the literature regarding airline network structure and airline

competition that are relevant to our work. Borenstein (1991) finds evidence that a carrier that has a dominant

market share of flights out of a given city has increased market power on routes out of that city, even on

individual routes where there may be substantial competition. Borenstein (1989) similarly shows that both

an airline’s market share on an individual route and its share at the endpoint cities influence its ability to

mark up price above cost. Our results echo these findings.

Berry (1992) estimates a static model of airline entry with heterogeneous firms and finds, similarly to

Borenstein (1989), that an airline’s market share of routes out of a given city is an important determinant of

entry into other routes from that city. Ciliberto and Tamer (2009) estimates a static entry model that allows

for multiple equilibria and for asymmetric strategies. Boguslaski, Ito, and Lee (2004) estimates a static entry

model for Southwest that fits the data extremely well and helped inspire some features of our model, such

as the way we define entry and exit. Using the rapid expansion of Southwest to generate variation in the

level of threat of route-level entry, Goolsbee and Syverson (2008) shows that even the threat of entry causes

incumbent airlines to drop their fares significantly. Other relevant static airline entry papers include Sinclair

(1995) and Reiss and Spiller (1989).

Another recent paper (Aguirregabiria and Ho (2012)) estimates a structural dynamic oligopoly model

of airline entry that is similar to our model, and computes equilibrium entry strategies for airlines. Our

approach is simpler and less ambitious. However, an advantage of taking a simple approach is that we can

7



include a richer set of airline network state variables in our model, potentially allowing for more robust

network-wide route optimization on the part of firms, rather than focusing on one route at a time in isolation

from the broader network. In addition, we can avoid some of the simplifications (e.g., the use of inclusive

values, the assumption that route entry is determined by route-specific profits) that is required to make the

estimation the model of Aguirregabiria and Ho (2012) tractable.

3 Notation and Methodology

We start with a brief characterization of our general approach. Our hope is that the approach is simple

enough to be used in a wide variety of settings by practitioners and academics. We apply the approach to

airlines in the sections that follow.

3.1 The General Model

The general model closely follows BBL and is a generalization of the EP model. The defining feature of

the model is that actions taken in a given period may affect both current profits and, by influencing a set

of commonly observed state variables, future strategic interaction. In this way, the model can permit many

aspects of dynamic competition, such as entry and exit decisions, mergers, learning, product entry and exit,

investment, dynamic pricing, bidding, etc.

There are N firms, denoted i = 1, ..., N , that make decisions at times t = 1, 2, ...,∞. Conditions at

time t are summarized by a commonly observed vector of state variables st ∈ S ⊂ RL. Depending on

the application, relevant state variables might include the firms’ production capacities, their technological

progress up to time t, the current market shares, stocks of consumer loyalty, or simply the set of incumbent

firms.

Given the state st, firms choose actions simultaneously. These actions might include decisions about

whether to enter or exit the market, investment or advertising levels, or choices about prices and quantities.

Let ait ∈ Ai denote firm i’s action at time t, and at = (a1t, . . . , aNt) ∈ A the vector of time t actions. For

notational simplicity, we denote ait as a scalar. However, there is no reason that it cannot be vector valued.

We will assume that both actions at and states st are observed by the researcher.

We assume that before choosing its action, each firm i receives a private shock νit, drawn independently

across agents and over time from a distribution Gi(·|st) with support Vi ⊂ RM . The private shock might

derive from variability in marginal costs of production, profits, or sunk costs of entry or exit. We denote the

vector of private shocks across firms as νt = (ν1t, ..., νNt). Again, we have denoted νit as a scalar, but there
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is no reason that it cannot be vector valued. We assume that νit is not known to the researcher.

The assumption of iid private shocks is extremely troublesome in this context. In many empirical

applications there would be serial correlation in these shocks. An example would be a serially correlated

unobserved demand shifter. In the empirical work we will address this issue by both testing for serial

correlation and also using some simple approaches to account for it. There is also ongoing research in this

area aimed at generalizing these approaches.3

To complete the model, BBL and EP outline primitives of the dynamic oligopoly model that determine

period profits and the evolution of states. We assume that the state at date t + 1, denoted st+1, is drawn

from a probability distribution Q(st+1|at, st). The dependence of Q(·|at, st) on the firms’ actions at means

that time t behavior may affect the future strategic environment. This would be the case, for example, for

entry/exit decisions or long-term investments. In some applications, some details of the state transition

function, such as the investment technology, might also be assumed to have a specific structure. Other

aspects of transitions, such as the Markov process determining aggregate demand, might be exogenous and

specified quite freely. Others may even be deterministic, as in the case of firm age.

BBL and EP also specify in detail a period profit function, investment process, and entry and exit pro-

cesses. While these are important fundamentals of the model, we will omit them here for brevity and be-

cause, as we will see, in our approach it is possible to proceed without assuming any particular specification.

This aspect also makes the approach more general.

To analyze equilibrium behavior, we focus on pure strategy Markov perfect equilibria (MPE). In an

MPE, each firm’s behavior depends only on the current state and its current private shock. Formally, a

Markov strategy for firm i is a function σi : S × Vi → Ai . A profile of Markov strategies is a vector,

σ = (σ1, ..., σn), where σ : S × V1 × ... × VN → A. Here, we simply assume that an MPE exists, noting

that there could be many such equilibria.4

For each agent i the equilibrium generates a distribution over actions ait conditional on states given by

the measure of the set of νit such that action ait is chosen under equilibrium strategy σi

(3.1) Pi(a|st) =

∫
{νit|σi(st, νit) = a}dGi(νit|st)

BBL shows that the full model above can be estimated in two steps. In the first step, agents’ strategy

functions, σ, and the state transition probability distribution,Q(st+1|at, st), are estimated from observations

3See for example Arcidiacono and Miller (2011), Kasahara and Shimotsu (2009), Lazarev (2019).
4Doraszelski and Satterthwaite (2010) Doraszelski and Satterthwaite (2010) provide conditions for equilibrium existence in a

closely related model.
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on actions and states. In a second step, remaining profit function parameters are estimated.

3.2 The General Method

Our approach is much simpler than BBL in several respects. Primarily, we will not attempt to estimate the

profit function parameters or any of the other dynamic parameters of the model such as entry costs, exit

values, or any other investment costs parameters. Releasing ourselves from this burden has the benefit of

allowing us to estimate a simpler and more general first stage.

Consider the “reduced form” equilibrium distribution of actions given states, Pi(ait|st), given by (3.1).

Since actions and states are observed, it is straightforward to recover these distributions from the data for

every agent i. Similarly, we can also recover the transition probability distributions Q(st+1|at, st). Under

the assumptions of the model, these two sets of distributions completely determine the joint distribution of

all future actions and states conditional on any starting state of the world s0.

(3.2) Pr(a0, (a1, s1), ..., (at, st)|s0) = P (at|st)Q(st|at−1, st−1) . . . P (a1|s1)Q(s1|a0, s0)P (a0|s0)

How can we use these distributions to evaluate the long-run effects of a merger? Assuming that the

equilibrium strategy profile is the same both before and after the merger, an assumption we discuss in detail

below, a merger is simply a change in the initial state of the industry, s0. For example, in an industry with

three symmetric firms with equal capacities, after a merger the industry has two firms, one with twice the

capacity as the other. After a merger between two airlines, we replace the two merging airlines with a single

larger airline whose network is the union of the networks of the two merging carriers.

Using equation (3.2), it is straightforward to determine the future distribution of industry outcomes both

with and without the merger. In practice, once the first step estimates have been obtained, we use the BBL

forward simulation procedure to simulate the distribution of future market outcomes both with and without

the merger. These two distributions can then be directly compared. We can even compare industry structures

at different times in the future: 5 years, 10 years, or whatever is the period of interest.

3.3 Relation to BBL

The biggest advantage of the approach of this paper is that it makes much weaker assumptions on the

underlying economic model than the BBL estimator does. To estimate the second stage parameters, in the

first stage BBL (and similarly all two step approaches in the spirit of Hotz and Miller (1993)) must recover

the actual equilibrium strategy functions, σi, from the dynamic game. In order to estimate them, the strategy
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functions must be identified, which places substantial restrictions on the underlying model. For example,

identification would typically require the private shock νi be single dimensional. This would restrict the

researcher to modeling either a single dimensional cost shock or a single dimensional demand shock, but not

both. In contrast, in our model the private shocks can be multidimensional, allowing the underlying model

to contain many dimensions of both cost and demand shocks (such as cost and demand shocks for each city,

city-pair, airline, etc). Identification of the strategy functions would also typically require strong functional

form assumptions, including that the private shocks enter the profit function additively. In contrast, our

approach places no restrictions on the functional form of the structural model. The private shocks can also

enter the underlying model in any way. The reason our approach is so general is that the distribution of

actions conditional on states is always identified. It is simply observed directly.

Of course, there are also costs that come with generalizing the model in this fashion. One is that,

under our assumptions, we can not compute counterfactuals that would occur if the equilibrium regime

changes. Computing such counterfactuals would be desirable, but in the context of industry dynamics it

typically comes at great cost, both in modeling assumptions and computational burden. For airline mergers,

we believe these requirements would be particularly onerous. Instead, we impose the policy invariance

assumption, which is not required in more structural analyses such as BBL. We now discuss this assumption

in more detail.

3.4 The Policy Invariance Assumption

Our approach makes the important assumption that the equilibrium strategy profiles remain the same both

before and after the potential merger. In any model where the merger is part of equilibrium play this as-

sumption would hold. We are therefore implicitly maintaining an assumption that the policy environment

is constant in the past data and in the future period of interest, whether or not the merger takes place. If

something about the policy environment were to change, either at the point of the merger or any other time,

then equilibrium behavior might change, and the past estimates or the future simulations may be invalid.

In the context of mergers, we might particularly worry about evaluating a “game-changing” merger, i.e.,

one that would never have been approved under the past policy regime. If such a merger were to go through,

we might expect that firms would update their beliefs about the future policy regime, and new equilibrium

strategies would result. Our method will instead evaluate what would have happened in the industry had the

merger taken place with the original equilibrium strategies remaining in place. The only way that we know

of to fully evaluate a game changing policy change would be to compute a new MPE strategy profile under

the new policy, a much more difficult undertaking than the one we propose. Certainly such an approach
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would be intractable in the airline model we outline below.

3.5 Estimating Welfare Effects

The procedure described above generates the joint probability distribution of actions and states (3.2) at every

point in time for both the merger and no merger cases. In many cases, knowing these distributions may

already be enough to shed light on the medium and long-run competitive effects of a merger. For example,

in the application to airline mergers, we use the estimates of these distributions to compute measures of

market concentration over time and determine when/if off-setting entry is likely to eliminate the short-run

increase in market concentration caused by a merger.

A more precise estimate of the welfare implications of a merger would require, in addition, a static model

of demand and supply that maps the distribution of observed states st to equilibrium prices, quantities, and

consumer welfare. For example, in many markets the model of Berry, Levinsohn, and Pakes (1995) (BLP)

would be appropriate for this purpose (though likely not for airlines – see below), and it is straightforward

to join a BLP model with the dynamic model above, proving that such an approach would be broadly

applicable.

This additionally shows that the dynamic and static approaches are complementary. The dynamic ap-

proach alone provides only the future distribution of states st (and dynamic actions). This distribution can be

used to compute rudimentary measures of concentration, such as HHIs, but does not yield precise measure

of welfare. The static approach alone provides only a mapping from states to welfare. The static approach

provides precise measures of welfare, but requires an assumption about what happens to the distribution of

states (and typically researchers and policy makers just assume that nothing happens besides the merger).

We believe that, put together, the two methods can be made more powerful.

The airline industry has rich data on airline presence and a relatively simple product space, so is well

suited to the dynamic analysis. On the other hand, due to dynamic pricing and price discrimination and

data limitations (it is not possible to observe consumers’ choice sets at the time of purchase), we believe that

providing a credible static welfare analysis for airlines would be a highly complex and ambitious undertaking

that deserves a separate paper.

3.6 Identification

Under the iid assumption and given that actions and states are observed, theoretical identification is straight

forward. However, in practice there could be an issue in the empirical implementation of the approach if

there were not enough past data to identify all of the areas of the choice distributions P (at|st) of interest.
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For example, it would be difficult to estimate the dynamic effects of a merger to monopoly for an industry

that had always had at least two firms in the past data. There simply would be no data that would tell

us the likelihood of entry when there is a monopolist. We will see below that in our airlines example the

data are sufficiently rich that this issue will not arise. Nevertheless, it is something to watch out for in

other applications. A separate identification issue, that we discuss further below, is the failure of the iid

assumption.

4 Application: A Model of the U.S. Airline Industry

We now outline a model of the US airline industry. In the interest of keeping the model as simple as

possible, we will model only airline route presence. It would be possible, computationally tractable even,

to also model the extent of entry (e.g., number of seats or flights per day) on each route, but we believe that

the marginal benefit of doing so may not be worth the additional complexity. Our hope is that the current

approach is both easy to understand and also provides the main insights to be gleaned from the dynamic

analysis.

Consider an air transportation network connecting a finite number,K, of cities. A nonstop flight between

any pair of cities is called a segment. We index segments by j ∈ {1, ..., J} and note that J = K ∗(K−1)/2,

though of course not all possible segments may be serviced at any given time.

There are a fixed number, A, of airlines. As entry of new airline carriers is very rare, it would not

be possible to estimate the likelihood of new entry occurring using past data, so we will rule it out in the

analysis. Each airline i has a network of segments defined by a J dimensional vector, ni. The jth element

of ni equals one if airline i currently flies segment j and is zero otherwise. Let the J × A matrix N be the

matrix obtained by setting the network variables for each airline next to each other. We call N the route

network.

In order to travel between two cities, consumers are not required to take a nonstop flight, but might

instead travel via one or more other cities along the way. Thus, we define the market for travel between

two cities broadly to include any itinerary connecting the two cities. Below we will argue that itineraries

involving more than one stop are rarely flown in practice, and will restrict the relevant market to include

only nonstop and one-stop flights. Markets are indexed by m ∈ {1, ..., J}.

Airline j maximizes the total profit from all markets it serves. Profits depend on city pair characteristics,

zm, as well as the strength of competition in the market as described by the airline route network, Nt. We

will not model demand in detail, but we imagine that there are likely to be unobserved profit shifters at the
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city pair and perhaps airline levels.

We will assume that decisions are made in discrete time at yearly intervals. Each year, t, an airline can

make entry and exit decisions at the route segment level that will be reflected in the network the next year,

Nt+1. Changing the firm’s network may also involve costs. Though we will not model them explicitly, we

imagine there are three potential sources of costs, in order from largest to smallest: (a) costs of opening or

closing a new airline, (b) costs of opening or closing operations at a given airport, (c) costs of opening or

closing operations on a given route segment (in which both endpoints already have service). Below we will

find that (a) and (b) are large enough to make these events rare in practice.

Each period, each airline chooses its next period’s network so as to maximize the expected discounted

value of profits. Let Zt be a vector consisting of the profit shifters zm for all markets m in period t, and

assume that Zt is Markov. Note that the notation allows Zt to contain aggregate variables that are relevant

to all markets. A Markov perfect equilibrium in this model is characterized by a set of strategy functions of

the form:

nt+1
i (Nt, Zt, νit),

where νit represents the vector of all of the unobserved profit and cost shifters for airline i in all markets.

Assuming symmetry, these functions would have the property that permuting the order of airlines in Nt

(and correctly updating the index i) would not change the value of the function. However, while symmetry

is commonly assumed in many applications of dynamic games, here complete symmetry may not be a good

assumption as there are at least two kinds of airlines: hub-and-spoke and point-to-point (or “low cost”)

carriers. This is something that we will explore empirically.

The model above results in a set of behavioral probability distributions for each airline:

(4.1) Pr(nt+1
i |Nt, Zt)

that correspond to the equilibrium distribution of actions conditional on states in the general model above.

If we knew the underlying primitives of the model, these probabilities could be obtained by computing an

equilibrium. However, in our context computing an equilibrium is out of the question, and furthermore there

are almost surely going to be many equilbria (with associated strategy functions and behavioral probability

distributions). Alternatively, we will follow the general method described above and begin by attempting to

recover these distributions empirically.
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4.1 Abstractions

In trying to keep the model simple, we have necessarily omitted some important features of the airline

industry. Most notably, in modeling the airline network and entry and exit, we have modeled presence only

and have not accounted for the extent of entry (e.g., the number and size of flights). As mentioned above,

there is plenty of available data so it would be possible to model the extent of entry. However, it would

make the model and estimation more complex, surely beyond what would be desirable in a typical merger

analysis by antitrust authorities. Additionally, it is not obvious to us that the benefit justifies the cost of such

an analysis, which would primarily be a slightly more precise measure of post-merger concentration.

Finally, we will not explicitly allow for hub formation and destruction. Our set of city characteristics

variables, Zt, will include whether or not a city is a hub for a given airline, but this will be treated as

exogenous and fixed. Airlines can grow and shrink their networks in each city (hubs and non-hubs), but

they cannot form new hubs or dissolve old ones. While it would be relatively straightforward to relax this

assumption in theory, forming new hubs or dissolving old hubs is also quite rare in the data, making it

difficult to model empirically.5

4.2 Policy Invariance

We now discuss some potential scenarios for which the policy invariance assumption (Section 3.4) might

fail. First, one might worry that the scale of the newly merged airlines are “out of sample.” However, entry

decisions are made at the route level in our empirical model, and the incentives driving decisions are network

and competition features that are local to the route and the city-pair. Therefore, while the post-merger airline

may be larger than any existing airlines, the incentives faced on each route are of a similar scale to those

faced by the airlines in our sample.

Second, perhaps cost efficiencies unique to the merged airline might make a new entry strategy optimal.

The costs typically cited by merging airlines are either fixed costs (e.g., integrating information systems)

or more efficient usage of city-specific capital (e.g., hangar space). The former are irrelevant for entry

decisions, and the latter are captured by our city service and concentration measures.

Finally, de-hubbing and slot constraints might alter the incentives of the post-merger airline. As dis-

cussed in Section 7, we do see some mild de-hubbing of the post-merger airline, but the effects are not

strong. Alleviating slot constraints is often cited as a pro-competitive, merger-specific efficiency, and many

recent merger have been approved only after the merging airlines agreed to transfer some of their slots to
5The only hubbing or dehubbing event in the period covered by our data is Delta dissolving their Dallas-Fort Worth hub in 2005.
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their competitors. It is outside the scope of this paper to determine to what extent these divestitures helped.

However, the fact that only 3 out of 60 cities in our data had a slot constrained airport makes us believe that

the impact of slot constraints is unlikely to be a first-order issue in our analysis.

5 Data

The principle data source is the Bureau of Transportation Statistics (BTS) T-100 Domestic Segment Data set

for the years 2003-2008. More historical data is readily available. However, due to the large impact of the

events of 9/11 on the airline industry, we view 2001 and 2002 as not representative of the current industry, so

we dropped those from our sample. We did not use data from years prior either because our model requires

us to use a period where airlines’ entry/exit strategy functions are relatively stationary, and we felt that this

was not likely to be true over longer time horizons due to changes in policy, technology, etc. However, we

note that we have tried extending all of our estimations back all the way to 1993 and achieved very similar

results.

The T-100 segment data set presents quarterly data on enplaned passengers for each segment flown by

each airline in the U.S. The data defines a segment to be an airport to airport flight by an airline. A one-stop

passenger ticket would therefore involve two flight segments. We use data for the segments connecting the

75 largest airports, where size is defined by enplaned passenger traffic. The data was then aggregated to

the Composite Statistical Area (CSA) where possible and to the metropolitan statistical area when this was

not possible. The end result was segment data connecting 60 demographic areas (CSAs). Note that this

means we are treating multiple airports at the same city as one. We feel that this is more appropriate for our

purposes than treating them as separate destinations. Appendix A contains the list of airports included in

each demographic area.

Although the airline strategy function is defined over the route segment entry decisions, we also allow

airlines to carry passengers between a pair of CSAs using one-stop itineraries. The combination of non-stop

and one-stop service between two CSAs is denoted the “market” between the CSAs. Using the data on

itineraries actually travelled as a guide (DB1B), we define an airline as present in a market if either (1) the

airline provides service on the route segment connecting the two CSAs OR (2) the airline provides service

on two route segments that connect the CSAs and the flight distance of the two segments is less than or equal

to 1.6 times the geodesic distance between the CSAs. Itineraries that use two or more stops are extremely

rare in the airline ticket database so we exclude this possibility entirely. Note that in certain places we

supplement the T100S data with data from the T100M “market” database, the DB1B ticket database, and
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the Household Transportation Survey (tourism data).

There are many flights that show up in our data as flown by regional carriers (e.g., Mesa Air) that are

in fact flown under contract with a major carrier. On these flights, the major carrier sells the tickets and,

typically, the plane would have the major carrier’s name on the outside and would generally appear to

passengers to be owned by the major carrier (though in many cases it is not). Major carriers can contract

with different regional airlines in different parts of the country and contracts change over time in terms of

what routes are covered. Regional carriers may also fly some routes under their own name, selling tickets

themselves. Flights flown by regional carriers represent about 25-30% of the flights in the major carrier’s

networks in our data (see Appendix A.3), so ignoring them could potentially be very problematic. In our

analysis, we attribute flights flown by regional carriers to the major carrier that they are contracted to. That

is, if Mesa flies a plane under contract for Delta, we will call that a Delta flight for the purposes of the

analysis and treat it identically to a flight that Delta flies itself.

The T100 data set we use to describe the route networks of the airlines contains numerous flights that

are not regularly scheduled, such as charter flights, and even flights diverted due to weather or equipment

problems. As a result, if we were to define airline market presence by the existence of a small number of

flights on a given market, we would pick up a very large number of phantom entries that did not represent

regularly scheduled service. Our goal is to describe stable features of the airline networks rather than

idiosyncratic flights flown. We therefore define an airline as having “entered” a segment if at least 9000

passengers are carried on a segment, roughly coinciding with a single daily nonstop flight, in each of four

consecutive quarters. Symmetrically, an airline has “exited” a segment if it has not carried 9000 passengers

on a segment in each of four consecutive quarters. Our entry definition is explained more thoroughly in

Appendix A.

5.1 Data Summary

Table 1 lists summary statistics for segment and market presence by airline. Southwest has the most nonstop

routes, followed by the three major carriers: American, United, and Delta. Because the majors have hub-

and-spoke networks, as compared with Southwest’s point-to-point network, they are present in as many or

more one-stop markets as Southwest despite flying fewer nonstop routes. A striking feature of the data is

the rapid expansion of Southwest and JetBlue. The other major airlines are growing much more slowly.6 On

average airlines enter and exit between five and ten percent of their routes per year.

Table 2 lists summary statistics for the airline’s networks, concentrating on the variables that we will use
6Growth in US Airways’ network is largely due to the merger with America West.
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in the estimations. An observation in the data is an airline-year-city pair; there are ten airlines (not counting

America West before it was merged into US Airways) and 1770 city pairs.

5.1.1 City Pair Characteristics

In the past literature, the most commonly used measure of the underlying demand for air travel between two

cities is the interaction of the populations of the cities. This population variable is intended to measure the

total possible number of visits between residents of the two cities, but it also has the disadvantage that it

ignores many other important features of demand such as city proximity, availability of alternative methods

of transport, industrial activity, etc. We instead use the variable “Log(2002 Passenger Density),” which

measures the log actual passenger density (enplanements) for each market in the year 2002. The density

variable helps capture many of the unobservable aspects of market demand that are peculiar to a given city

pair. Boguslaski, Ito, and Lee (2004) have shown that passenger density does a very good job in predicting

Southwest’s entry behavior. Note that in cases such as unserved markets, where the density variable equals

zero (over 25% of cases – see Table 2), we set Log(Density) equal to zero. A potential problem with

using the density variable is that, because density depends somewhat on the airline networks, it would be

endogenous. To mitigate this issue, rather than measuring density lagged one period, which would be valid

under the iid assumption but invalid otherwise, we measure density in the period just prior to our estimation

sample. As a robustness check we have also tried using density lagged one period, with similar results.

To capture underlying demand in unserved markets, where passenger density is zero, we also include

the product of the population at the route’s endpoint cities, interacted with a dummy for whether the route

is unserved.

We also construct a second density measure that we call “Log(Passenger Density in New Markets)”

that reflects a particular route segment’s importance in each airline’s overall network of markets (nonstop

and one-stop flights). Specifically, this variable equals the log difference in total passenger density on the

network (in 2002) on the nonstop and one-stop markets served with and without the route segment un-

der consideration. It is meant to capture total potential revenue gain/loss across the entire network from

adding/subtracting each route segment individually. This variable was inspired by anecdotal evidence sug-

gesting that American Airlines uses a similar measure in making its entry decisions.7 Note that this variable

is zero more than 50% of the time, reflecting both the presence of unserved markets as above, and also

the fact that some routes in an airline’s network are extraneous, in the sense that they do not add any new

markets to the network but merely duplicate existing service in a more convenient way.
7This anecdote has been relayed by Steve Berry in several talks but not, to our knowledge, in print.
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A fourth demand variable, “percent tourist,” measures the percentage of passengers travelling in each

market who reported that their travel was for the purpose of tourism in the Household Transportation Survey.

We found that other city characteristics such as household income had no explanatory power in our data so

we excluded them from the analysis.

5.1.2 Competition Variables

In our estimations we use a large number of variables that attempt to characterize competition on each route

segment. First we divide competitors into non-stop and one-stop to help pick up consumers’ preference for

non-stop travel, as well as any cost considerations. The average city-pair has slightly less than one non-stop

competitor and 3.5 one-stop competitors. Of course both of these variables have very skewed distributions

with many zeros and a few city-pairs that have many carriers. We also measure the number of code-share

agreements that each airline has on each route segment.8 Code shares are fairly rare.

We have also computed a large number of concentration measures for each market. The variable “HHI

Among Others (Market)” directly measures the concentration among rival carriers on the city pair in ques-

tion, including both non-stop and one-stop competitors. The HHI among competitors averages about 5000

in our sample (where HHI ranges from 0 to 10,000).

There is also substantial evidence (Borenstein (1989), Borenstein (1990), Borenstein (1991), Berry

(1992)) that the size of a carrier’s operations at the endpoint cities influences a carrier’s market power

on travel between those cities independently of concentration on the market itself. Thus, we also include

variables measuring a carrier’s market share at each endpoint city (“Own Share (City) Large/Small”). The

use of “Large” and “Small” refer to the largest and smallest value out of the city-pair connected by the route

segment. For similar reasons we also include measures of concentration at each endpoint city (“HHI Among

Others (City) Large/Small”). Note that these variables might also influence entry for cost reasons.

If we measured the market share and HHI variables in the natural way, using the number of enplaned

passengers, then it would not be possible to simulate future values of the competition variables under a

merger without also estimating a demand system that predicted enplaned passengers at future dates. Thus,

we instead measure all of the HHI variables using the number of routes served out of each city. It turns out

that this yields essentially identical estimates empirically.

Our final measure of competition is whether or not a competitor has a hub on the route. Own hubs are

treated separately below.
8This variable is compiled from data that is separately measured for each airline pair-route segment using the ticket data.
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5.1.3 Network Characteristics

For each city-pair route segment we also have a large number of measures of local network characteristics.

We measure segment (non-stop) presence and market (feasible one-stop) presence separately, as well as

endpoint presence (“Present at Both Airports (not Market)”). These variables are non-nested in the sense

that an airline can either serve a route segment or be “Present at Both Airports (not Market)”, but not both.

All of these should have large effects on market presence through the cost side.

We measure how many endpoint cities are a hub for each airline. We also measure how convenient the

most convenient hub is to the route segment by taking the non-stop distance and dividing by the one-stop

distance for the closest hub. If a hub is very convenient, nearly on a straight line between the two cities,

one might expect that the airline could very easily serve the route via one-stop travel. We also measure

the distance to the nearest hub for each end, ranked (Large/Small), which is meant to be a measure of how

central to the network the two endpoints are.

Finally, we measure the size of each airlines’ network at the endpoint cities using the number of non-

stop destinations served at each endpoint city, ranked (Large/Small). This variable could influence market

presence through both the demand and the supply sides. Note that it is different than the share variables

above because it measures network size rather than network share.

5.2 A Simple Static Merger Analysis

With the notable exception of Southwest, U.S. airlines have hub-and-spoke networks. As a consequence, out

of 1770 possible city pairs in our data, the typical major airline flies only 150-220 nonstop routes (in 2008),

while still covering 1100-1500 city pairs with reasonable one-stop connections. For comparison, Southwest

flies 323 nonstop routes and covers only 1042 markets. (See the first column of both panels of Table 3.) In

this section, we perform an analysis of the immediate effects of mergers on market concentration, which we

contrast with the medium- and long-run effects in later sections.

Table 3 summarizes the level of competition faced by each airline across its nonstop routes (panel A)

and feasible one-stop markets (panel B). Southwest, Delta and Northwest are the airlines most isolated from

competition in the sense that they have the most monopoly and duopoly nonstop routes. As a result, the

overnight effect of a DL-NW merger is to create an airline with 108 monopoly nonstops, far and away the

most of any airline. The story is slightly less stark when we include feasible one-stops. However, even then,

DL-NW has 31 monopoly one-stop markets and an additional 97 duopoly one-stop markets. The other two

potential mergers we consider, UA-US, and UA-CO, create airlines with only about 35 monopoly nonstops,
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and only 13 monopoly one-stop markets.

Table 3 also shows the extent to which the data cover many different market structures. Almost every

airline flies multiple routes with all combinations of 0 to 6 nonstop competitors and 0 to 10 one stop com-

petitors. We also observe many different pairs and triplets of airlines across markets. This rich variation in

competition is what allows us to empirically identify the relationship between competition and route entry.

To measure the short-run anticompetitive effects of each merger, we compute HHIs before and after the

merger, in terms of 2008 passengers enplaned.

Table 4 shows the ten worst affected nonstop routes (city-pairs) for the three mergers in terms of increase

in the HHI. For DL-NW, there are seven nonstop routes – out of Cincinnati, Minneapolis, Salt Lake City, and

Memphis, all hubs – where the merger essentially creates a monopoly carrier. Three other routes between

Atlanta (also a hub) and these cities move essentially to duopoly. The HHI changes range from 1500-5000

points. All of these markets violate the merger guidelines by a very large margin. Absent offsetting entry,

prices would be expected to rise substantially on these routes after the merger. For UA-US, we see almost

the same pattern, with six monopoly routes created, mostly out of DC, Philadelphia, and Charlotte. For UA-

CO, the story is not quite as bad – there is only one monopoly route created – but the patterns still would

violate the merger guidelines by a large margin.

There is also substantial evidence (Borenstein (1989), Berry (1992)) that, due to frequent flyer programs,

market concentration out of a city as a whole is also an important determinant of market power. Table 5

shows the five worst affected cities in terms of HHI increase across all flights from the city. Again, we

see large HHI increases in markets that were already very concentrated, clearly in violation of the merger

guidelines. The merger that looks worst by this measure is again DL-NW, while UA-CO appears the least

bad. For UA-US, the worst case cities are Charlotte, Philadelphia, and DC. Concentration at these cities was

cited as the main reason that the merger was blocked.

The HHI results provide a short-run snapshot of the increase in concentration that would result from

the three proposed mergers. By these short-run measures, all the mergers look pretty bad, in the sense

of increasing concentration and leading to upward price pressure. Of course, arguments can still be made

in favor of the mergers. Large cost savings could offset the harm from decreased competition. However,

cost savings would have to be large and system wide to justify the increases in concentration seen in many

markets. We will not explore this avenue in this paper. Alternatively, it may be that entry costs are low and

that the cities discussed above are likely to experience offsetting entry in a short period of time. Below, we

use our dynamic model to explore this possibility by simulating medium and longer term market outcomes.
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6 Empirical Implementation

6.1 Overview

The primary difficulty with estimating the airline model is that, in their general form, the choice probabilities

in (4.1) are high dimensional and would be identified only by variation in the data over time. Variation

across airlines could also be used if we were to assume some symmetry across carriers. However, given

that there are at least, in principle, two types of carriers, hub-and-spoke carriers and low cost carriers, we

do not necessarily want to impose symmetry across all carriers. At the very least we should explore this

empirically. Furthermore, given that we have only ten carriers and six years of data, that still only leaves 60

observations to determine a very high dimensional set of probabilities.

Therefore, to estimate these probabilities we will require some simplifications. Most notably, we will

need to use at least some of the variation in the data within an airline’s network (across city pairs) to identify

the strategy functions. In principle, all segments in the whole system are chosen jointly, and we would like

the model to reflect that. However, it also seems unlikely that the entry decisions are very closely related for

segments that are geographically distant and not connected in the network. Thus, our empirical approach

will be to start with a fairly simple model, and then add complexity until we exhaust the information in the

data. As a robustness check, we will test for any remaining complementarity of entry decisions.

The simplest model we can think of would allow the entry decisions across segments to be correlated

only through observable features of the market, so this will be our base model. In the base model, we assume

that there are only nonstop segment level shocks and that these shocks are independent across nonstop

segments. We model segment presence (entry/stay in=1, exit/stay out=0) using a probit model.

Tables 6 and 7 show the baseline probit estimates for route presence using data pooled for all airlines.

Table 6 includes year dummies, city dummies, and all of the route demand variables, while Table 7 adds

route fixed effects and drops all variables that have no variation at the route level. To help interpret the coef-

ficient magnitudes, the third column of each table reports the marginal effects of the estimated coefficients

for an airline that is indifferent (in expectation) between entering/staying in and exiting/staying out, while

the fourth column reports the marginal effects of a one SD change in each variable.

6.2 Serially Correlated Unobserved Shocks

Before discussing the estimates, we first consider the important issue of serially correlated unobserved

shocks. Recall that the primary effect of serially correlated market level demand or cost shocks would be to

bias the competition coefficients upward (more positive/less negative). This is because a higher value of the
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shock would also lead to persistently more entry and less exit, and make it appear as if competition was less

unfavorable than it really was. The first specification (Table 6) controls for unobserved shocks using city

fixed effects and detailed demand variables. The idea is to make demand shocks as observable as possible,

leaving little unexplained. The second specification uses more detailed route fixed effects (Table 7).

While we found that the demand variables did help remove some of the bias in the competition coeffi-

cients, it is clear from the estimates in Table 6 that this strategy has not entirely worked. The coefficient on

nonstop competitors is very small (-0.14). Most importantly, it is 23 times smaller than the coefficient on

route presence (3.25), suggesting that it would take 23 additional nonstop competitors to offset the effect of

being present on a route. To add another point of comparison, the estimated coefficient on nonstop competi-

tors is of similar magnitude to the coefficient for adding a single connecting flight out of the largest endpoint

city on the route. The estimated competition effects in this model seem implausibly small.

Moving to the estimates from the model with route fixed effects in Table 7, we can see that the estimated

competition coefficients are now an order of magnitude larger. According to these estimates, it takes only

two competitors (-2.93) to fully offset the effect of route presence (2.48). This magnitude seems much more

plausible.

To further investigate this issue, we also implement a statistical test. Lazarev (2019) suggests testing

the Markov property of the observed distribution of actions given states against a general alternative. In our

setting the enormous size of the state space would make such a test impractical. Furthermore, with such a

large state space, that test is likely to have very low power, and thus failure to reject it would not be very

convincing.

Instead, to achieve a balance between power and generality of the alternative, to test for a violation of

the Markov property we re-estimated the same models including the variable “presence two periods ago.”

Under the null hypothesis that the observed distribution of actions given states is Markov, the coefficient

on this variable should be zero, i.e., presence two periods ago should not have any remaining explanatory

power in the probit model. On the other hand, if there is a serially correlated demand or cost shock, then

presence two periods ago would be a function of this shock and its coefficient should be nonzero.

For the model with the demand variables and city fixed effects only, we strongly reject the null hypothesis

(p=0.004). This finding supports our conclusion that the magnitude of the competition effects in the model

with city fixed effects is implausibly low. For the model with route fixed effects, we fail to reject the null

(p=0.883). Moreover, the coefficient on “presence two periods ago” is estimated to be very close to zero

(0.015), suggesting that the impact of any remaining unobserved heterogeneity on the coefficient estimates

is likely to be minimal. We therefore proceed by using the specification in Table 7 as our base model.
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6.3 Base Model Estimates

We now discuss the base model estimates in Table 7. First, consider the competition variables. The effect

of nonstop competitors is estimated to be strong and nonlinear. The marginal effect of going from zero to

one nonstop competitor (-1.93) is strongly negative, almost as large in magnitude as the effect of market

presence (2.48). These are the two largest coefficients. Adding a second, third, or fourth competitor also

has strong negative effects, starting about half the size of the first competitor and trending smaller. Adding

competitors above four was not estimated to have a further effect, perhaps in part because there are a limited

number of routes with more than four nonstop competitors so these effects are estimated with less precision.

The effect of one-stop competition was consistently found to be small and insignificant so that variable is

omitted from our base model.

We also found that the market structure at the two endpoint cities plays a significant role, particularly the

larger endpoint city. For an airline indifferent to market presence, a ten percent increase in market share at the

larger endpoint city leads to a 11.7% increase in the probability of entry/presence. For the smaller endpoint

city this effect is 7.2%. Similarly, the more concentrated competition is at the larger endpoint city, the more

likely that an airline enters the route. Finally, if a competitor has hub at one endpoint, entry/presence is

significantly less likely—the marginal effect for an indifferent airline is -23%. These findings are consistent

with prior literature that finds that market power at the endpoint cities increases market power on all the

routes out of those cities. Note that concentration at the smaller endpoint is estimated to have a negative

effect, though that coefficient is insignificant.

The other important factor determining entry/presence is the thickness of the airline’s route network in

the vicinity of the endpoint cities. As mentioned above, prior route presence is the single most important

variable. This represents the “stickiness” in airline entry decisions and is likely induced by the effect of

any sunk costs of entry such as the costs of setting up operations at an airport and of advertising the new

route. Other than prior route presence, the most important network variables are the number of nonstop

cities served at each endpoint. Adding a single nonstop route out of the larger endpoint city increases

the probability of entry/presence by 11%, while adding a single nonstop route out of the smaller endpoint

increases the probability of entry/presence by 9%. Note that these variables vary widely in the data, so this

means that they have a large amount of explanatory power in the model. They are therefore among the most

important variables in the model (along with the competition variables) because they play a large role in

determining what airlines are potential entrants for a particular route.

We also found that endpoint hubs have a large significant positive effect on entry/presence, and hub
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convenience has a negative effect, presumably because the route is easily served by stopping at the hub

instead. Distance to nearest hub does not add much once the units are accounted for.

6.4 Model Fit

To evaluate in sample fit, Table 8 computes psuedo R-squared statistics for different subsets of the data. The

first two columns of the table compute a psuedo R-squared by airline, for routes where the airlines stays in,

and routes where it stays out. These are, of course, the easiest routes to predict, as airline route presence is

static for most routes from one year to the next. Looking first at the stayers, we can see that routes where

an airline stays out have psuedo R-squareds that are typically greater than 0.99, so the model is matching

these routes almost perfectly. Routes where airlines stay in are also matched very closely, with the possible

exception of JetBlue, which is a young, rapidly expanding airline in our data period.

Columns three and four compute psuedo R-squareds only for routes with new entry and exit. These

psuedo R-squareds are much lower, averaging around 0.2, with exit predicted slightly better than entry. This

is a very strict test of the model as it asks whether the model is capable of predicting exactly which new

routes each airline enters/exits each year. We therefore view these psuedo R-squareds as actually quite high.

In order to see more clearly which aspects of the data the model is fitting well, the final two columns of

the table show the fit of the model in 2008, when it is simulated for the entire data period 2003-2008 using

2002 as a starting point (and never updated using the actual outcomes). Again we consider only routes with

new entry and exit over that period. These psuedo R-squareds are extremely high, averaging around 0.65,

with exit fitting better than entry.

Overall, we conclude that the model fits new entry and new exit very well by airline-route, but is less

good at predicting the exact year of new entry/exit. In other words, the model predicts the marginal routes

very well but is not as good at predicting the timing of new entry/exit on these routes. The fact that the

model does not capture timing well is perhaps not surprising as our data do not have good measures of year

to year demand or cost variation at the route level. (The main source of yearly demand/cost variation is the

year dummies.)

6.5 Robustness/Model Selection

In this section we describe several attempts at generalizing the base model that all failed. A recurring theme

is that the generalizations improve the in-sample fit of the model, but fail tests of overfitting using cross

validation.
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6.5.1 Nonparametric Estimation

Since the primary use for the base model is to predict airline entry behavior with and without mergers, it

seems potentially fruitful to consider machine learning approaches developed for prediction models. More-

over, in our context, since the functional form of the strategy functions is unknown, BBL suggests estimating

them nonparametrically. In this section we explore these possibilities by reestimating the base model using

an artificial neural network (ANN) of varying dimensions.

The ANN has the ability to match arbitrary nonlinearities, including interactions between variables. The

implementation of the ANN used here had a linear input layer and logit middle layers, and was estimated

using maximum likelihood with a normal error. This makes it a nonlinear probit and a direct generalization

of the linear probit model above. The ANN is computationally intensive to estimate, so it was estimated

on the version of the base model above without fixed effects. The ANN was estimated with 10-fold cross

validation.

Table 9 lists the value of the cross-validation likelihood for the linear probit, as well as the ANN with

successively higher dimension. As we make the ANN richer, the in-sample fit improves substantially (not

reported), but the cross-validation results show that this improvement is due to overfitting. Cross validation

picks the linear probit as the preferred model, rejecting all of the nonparametric models.

We believe this result is primarily caused by the fact that the linear probit model is already explaining

much of the variation in the data (see discussion of table 8 above), leaving little room for nonlinearities to

improve the fit of the model. Additionally, many of the explanatory variables in the model take on only a

small number of values, so nonlinearities are not important for these variables.

6.5.2 LASSO and Fixed Effect Selection

An important issue with prediction models is overfitting from including too many variables in the model,

which produces unbiased but noisy predictions. We found above that the route fixed effects were effective

at controlling for unobserved serially correlated shocks, but the drawback of having so many (1770) of them

is that there is the potential for many of them to be poorly estimated, resulting in overfitting.

To address this issue, we attempted to use LASSO to reduce the set of fixed effects and reduce out of

sample prediction error, as measured by cross validation likelihood. Unfortunately we were unsuccessful

in this endeavor. When LASSO was applied to the full base model, it did significantly improve the cross

validation likelihood. However, the resulting model estimates were similar to those above for the base model

without fixed effects: the competition coefficients were unrealistically small and the estimated model failed
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the test for serially correlated unobserved errors. We also made a second attempt at using LASSO, where

we only applied LASSO to the fixed effects coefficients, holding the rest of the coefficients fixed at their

values estimated in the base model with all the fixed effects included. Perhaps not surprisingly, this process

yielded best estimates that included almost all of the fixed effects. It did slightly reduce the cross validation

likelihood, but this improvement was achieved not by reducing the number of fixed effects, but by shrinking

all of the fixed effect estimates toward zero. We therefore proceed below with the base model including all

the fixed effects.

6.5.3 Asymmetric Strategy Functions

Another generalization we explored was to allow the probit entry functions to differ across airlines. The

most obvious approach here is to group carriers into two groups: traditional “hub-based” carriers and point-

to-point “low cost” carriers. We also explored estimating different strategy functions for each airline. Note

that such an approach is somewhat complicated by the fact that the airlines’ networks are not entirely over-

lapping.

In each case, we found similar results to those above: allowing for separate probit entry functions

increased the in-sample fit. However, the coefficient estimates were in general less precise, and more fre-

quently showed unrealistic signs or magnitudes than the base model estimates above, giving us less confi-

dence in them. Moreover, cross validation again rejected the asymmetric strategy functions in favor of the

symmetric base model above.

In addition, we explored adding airline dummies to the base model. For the model without route fixed

effects, the only airline dummy that showed up as mattering at all in terms of magnitude and statistical

significance was JetBlue, which is included in the model in table 6. For the model with route fixed effects,

all of the airline dummies were insignificant and close to zero, so they were omitted.

6.5.4 City Specific Shocks

The final generalization we explored was to generalize the variance structure of the probit model. The idea

here is to try to capture the fact that there might be city specific cost and demand shocks that affect entry

decisions for all routes out of a given city. Anecdotally, it often seems that airlines expand and contract

their networks on a city wide basis rather than route by route, and city-specific shocks may help explain this

behavior. The base model assumes that shocks are independent across routes.

Let nt+1
ij indicate presence for airline i on route j in period t + 1, and let xij,t represent all of the

explanatory variables in the base model above. Then in this new version of the model, airline i is present on
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route j, (nt+1
ij = 1), if

(6.1) x′ij,tβ + γntij + ξj1,t+1 + ξj2,t+1 + εij,t+1 > 0

where ξj1,t+1 and ξj2,t+1 are drawn from a N(0, τ2) and are city specific shocks for cities j1 and j2, the

endpoint cities for route j; εij,t+1 are i.i.d. market shocks drawn from aN(0, σ2); and γ is an entry threshold.

Note that this formulation simply adds ξj1,t+1 and ξj2,t+1 to the base probit model above.

The city specific shocks generate a correlation structure in the route presence variables such that the

shocks for the route between CSA k and l and the route between CSA m and n have a normal distribution

with means given by the left hand side of (6.1) and variance matrix Σ where

Σkl,mn=


2τ2 + σ2, if k = m and l = n,

τ2, if k = m or l = n but not both,

0, otherwise.

.

Estimating this model is similar to estimating a 1770-dimensional probit model. It is quite computationally

intensive, and was only made feasible using a Gibbs sampling routine that takes full advantage of the special

structure of the covariance matrix.9 To reduce computational burden, it was again necessary to use the base

model without fixed effects for this exercise.

We found no support for this model in the data. In the Gibbs sampler, the estimate of τ , the variance of

the city shocks, collapses to zero. The Gibbs sampling distributions become degenerate when this happens,

which invalidates the approach, so we do not report the estimates here.

7 Results: Simulating the Long-Run Effects of Airline Mergers

Tables 10-14 show simulation results for the hub/low cost pooled model above over the 10 years following

our data set (i.e., 2009 – 2018). We run four simulations: no mergers, DL-NW only, UA-US only, and

UA-CO only.

The estimations include year dummies that absorb aggregate shocks to the industry. For the simulations,

we have to choose forecast values for these shocks. Since we are not so much interested in forecasting

aggregate demand, and are instead mainly interested in the differences between the no merger and merger

cases, how we set them does not seem too important to the results as long as they are set to be reasonably
9Details of the procedure are available from the authors upon request.
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stable. In order to mimic what a pre-merger antitrust analysis might entail, in the simulations below we

chose to set them such that the total number of routes served by all airlines was roughly constant over the

simulation period for the base (no merger) case.

7.1 Effects on Overall Airline Networks

We first assess the effect of the mergers on the total (national) size of the airlines’ networks of routes and

markets. Looking at Tables 10 and 11, we see that the model predicts that the DL-NW and UA-CO mergers

reduce the total number of routes served by competitor airlines (relative to no merger), while the denied

UA-US merger modestly increases the number of routes served by competitors. That is, at the national level

there is more offsetting entry in the latter merger. The effect on competitor low cost airlines is generally

larger than the effect on competitor hub-and-spoke carriers.

Looking more closely, the DL-NW merger causes a modest decrease in the number of routes served by

American, United, Continental, and JetBlue ten years after the merger. The largest negative effect of the

merger is imposed on Southwest, whose network is 10% smaller ten years after the merger than it would have

been without the merger. This effect is reflected in slower network growth rather than network shrinkage.

Surprisingly, US Airways’s network is 10% larger ten years after the merger, although this is the result of a

slower rate of shrinkage. The net effect is that competing airlines serve 33 fewer routes in total if the merger

occurs. By this aggregate measure, the dynamic effect of the merger is actually worse than the static one.

The UA-CO merger has similar effects to the DL-NW merger. American serves modestly fewer routes

under the merger, but Southwest is greatly affected with a 10% smaller network as a result of the merger.

US Airways, which was predicted to shrink by almost 10% in the absence of a merger, instead retains the

same route network size. Delta, Northwest, JetBlue, and Alaska are almost completely unaffected at this

aggregate level. The net effect is that competitors serve 4 fewer routes if the merger occurs.

The UA-US merger has almost no effect on the total number of routes served by the hub-and-spoke

carriers. The primary effects are that Southwest serves 18 fewer routes than would be the case without

the merger, but this is offset by a 21 route increase in the size of JetBlue’s network. The net effect is that

competitor airlines serve 7 more routes if the merger occurs.

For most of the airlines, qualitatively similar effects are seen in the one-stop markets served by the

airlines (right hand panel of Table 11). But, there are some exceptions. For example, American and United

see their network of markets grow slightly despite serving fewer nonstop routes. In contrast the network of

US Airways markets grows by less than 2% despite experiencing a 10% growth in its nonstop route network.

The merger simulations also make predictions about the time required for these network changes to
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occur (Table 11). The merged airline aggressively enters routes in the year following the merger because the

radically changed network of the merged airline provides strong incentives for expansion in certain markets.

Meanwhile, for the airlines that are not part of the merger, the changes in the network occur more gradually

over time.

7.2 Effects on Competition within cities (CSAs)

Next we assess the effects of the three mergers on the worst affected cities (Table 12). The main question we

are interested in is to what extent the large static anti-competitive effects shown earlier (Table 5) are relieved

by entry over the ten year simulation horizon.10

We find that the dynamic effects on airline competition at the city level are different for each of the

three mergers. According to the simulations, in the case of DL-NW, there is essentially no offsetting entry

in the worst affected cities. In fact, there are some markets (MEM, BDL) where we see the opposite. In

these cities the merger stifles entry, typically by Southwest, and also leads to increased entry by the merged

carrier, increasing its overall market share. These effects strongly suggest that prices would rise in these

markets, at least in the absence of very large cost synergies. However, we also note that there is a small

potential offsetting effect that consumers may also benefit from the convenience from being able to fly one

carrier to more destinations.

In the other two mergers, the simulations do generate offsetting entry in the worse affected cities. As a

result, in both cases the concentrating effects of the merger are reduced over time. For UA-US, most of this

offsetting entry typically comes from JetBlue. For UA-CO, there is also offsetting entry by Southwest. For

UA-CO, after 10 years new entry has offset a large fraction of the initial rise in concentration.

7.3 Effects on Competition on Routes

We now look at the simulated effects of the three mergers on individual routes (Tables 13 and 14). Starting

again with DL-NW, we see that the immediate effect of the merger is to move six routes and three markets

from duopoly to monopoly. After ten years, the simulations suggest that this number will increase such

that there will be 14 more monopoly routes than if there were no merger. The number of monopoly routes

increases over time for two reasons. First, there is little scope for offsetting entry on the monopolized routes.

On these existing routes, the merger seems likely to cause permanent price increases. However, in addition,

the merged carrier enters new routes that were previously unserved, and these routes become monopolies.
10Here we compute HHIs by # of routes served rather than passengers enplaned, since that is what we model. Computing

predicted HHI by passengers enplaned would require a model of passenger demand.
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The reason DL-NW enters these markets is that it has increased levels of service at the endpoints, which

causes these markets to become economically viable. (Our model cannot distinguish whether this is for

demand or cost reasons.) This new entry effect seems very likely to be welfare enhancing, potentially

offsetting some of the harm caused by the merger from higher prices.

The UA-US merger has the greatest immediate effect on individual routes, with nine routes and three

markets moving from duopoly to monopoly. However, in this merger there is substantial offsetting entry.

This merger also leads to substantial new entry on previously unserved routes. Thus, at the end of the ten

year simulation period, there are twelve routes with new service, and yet a net of only three additional

monopoly routes. In fact, in the simulations, after ten years, competition at the route level does not seem to

be substantially reduced from what it would have been without the merger, while there is more service. It

seems plausible that this merger increased welfare after ten years. Ironically, it was the only merger of the

three to be blocked.

Of the three mergers, the UA-CO merger has the smallest immediate impact on competition at the route

level, with only one additional monopoly route and actually two fewer monopoly markets (because the

merger immediately creates viable one-stop service where it did not previously exist). After ten years there

is a net effect of five additional monopoly routes, but there is new service on nine routes. Thus, after ten

years this merger also seems to have fairly benign overall effects at the route level.

8 Conclusions

We draw two sets of conclusions from this research. The first is that our method provides a simple yet

effective way to provide some empirical insight and rigor to questions of how a particular merger will affect

the evolution of an industry over time. While we have applied the method to airlines, it could equally well

be applied to many industries, so long as there is rich enough past data available. A great advantage of the

method is that it requires minimal econometric tools and computational power.

A primary weakness in the approach is that it assumes that merger policy is held constant. An ideal

method of evaluating merger policy might involve computing new equilibria to the model under alternative

policies. However, such an approach would be theoretically complex and, in many cases, computationally

infeasible. Clearly computing an equilibrium for the complex U.S. airline network entry game would be far

beyond what is currently possible.

Our analysis of the two completed (DL-NW and UA-CO) mergers and one contested (UA-US) merger

suggest that the contested merger would have had less of an anticompetitive effect than the two approved
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ones. While this is somewhat ironic, it is rather easy to explain. From a static perspective, the high degree

of overlap in the UA-US merger makes it appear that on many routes two direct competitors will be merged.

However, from a dynamic perspective, the network overlap for United and US Airways was primarily in

areas where JetBlue and Southwest were expanding, and the decrease in competition would increase the

incentives for these low-cost carriers to enter the less competitive routes dominated by the merged firm.

On the other hand, the two approved mergers reduced the incentives for the low-cost carriers to expand,

which helped perpetuate the anticompetitive effects of the mergers. The larger hub-and-spoke airlines appear

to have an at best weak incentive to enter routes even after a merger reduces competition, and part of the

blame for this lack of potential entrants is the strong influence of hubs on the network expansion strategies

of these airlines.

Finally, an interesting and unforeseen finding in our analysis is the scope for new service on marginal

routes. The effect of having a richer network in the merged carrier both increases the potential demand for

each additional nonstop route, and also potentially decreases the cost of serving such routes. According to

our model, some combination of these effects can lead to nontrivial new service as a direct result of the

merger, potentially offsetting some of the harm from higher prices on routes with reduced competition.

Our methodology is meant to assess whether or not the medium- and long-run evolution of the industry

will be substantially similar with and without the proposed merger, not make precise predictions about future

outcomes. Importantly, the antitrust case law has recognized this nuance explicitly. In Brown Shoe, the

Supreme Court noted: “Congress used the words ‘may be substantially to lessen competition’ to indicate that

its concern was with probabilities, not certainties.”11 Comparing our simulations with the realized outcome

is complicated by a range of factors including the impact of the great recession, the three airline mergers

that occurred in the 2008-2014 time-frame, and the choice by some airlines to effectively de-hub from some

cities following the respective mergers. We can use our model to simulate the outcome of the successive

mergers, and we do not find general trends in the differences between our simulations and reality.12 For the

five worst affected cities of the 2008 DL-NW and 2010 UA-CO mergers (see Table 11), we find that our

predictions of whether off-setting entry ameliorated the static increase in market concentration by 2013 are

correct in 7 of the 10 cases despite the relatively short simulation horizon.13

11Brown Shoe v. United States, 370 U.S. 294, 321-22 (1962). See also, US Department of Justice (2010): “Most merger analysis
is necessarily predictive, requiring an assessment of what will likely happen if a merger proceeds as compared to what will likely
happen if it does not.”

12In order to help make the simulations match the large economic shocks from the financial crisis, we set aggregate year dummies
so that they give the best match between the simulations and the actual data, but these dummies do not help in matching city- or
airline-specific shocks due to the financial crisis.

13Recall that our analysis suggests the model is effective at identifying marginal routes that are targets for entry, but the model is
less accurate at predicting precise years of entry than longer-term entry patterns.

32



References

Ackerberg, D., C. L. Benkard, S. Berry, and A. Pakes (2007). Econometric tools for analyzing market

outcomes. Handbook of econometrics 6, 4171–4276.

Aguirregabiria, V. and C. Ho (2012). A dynamic oligopoly game of the us airline industry: Estimation

and policy experiments. Journal of Econometrics 168, 156–173.

Arcidiacono, P. and R. Miller (2011). Conditional choice probability estimation of dynamic discrete

choice models with unobserved heterogeneity. Econometrica 79(6), 1823–1867.

Bajari, P., C. L. Benkard, and J. Levin (2007). Estimating dynamic models of imperfect competition.

Econometrica 75(5), 1331 – 1370.

Benkard, C. L. (2004). A dynamic analysis of the market for wide-bodied commercial aircraft. Review

of Economic Studies 71(3), 581 – 611.

Berry, S. (1992). Estimation of a model of entry in the airline industry. Econometrica 60(4), 889–917.

Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile prices in market equilibrium. Econometrica 60,

889–917.

Berry, S. and A. Pakes (1993). Some applications and limitations of recent advances in empirical indus-

trial organization: Merger analysis. American Economic Review 83(2), 247 – 252.

Boguslaski, C., H. Ito, and D. Lee (2004). Entry patterns in the southwest airlines route system. Review

of Industrial Organization 25, 317–350.

Borenstein, S. (1989). Hubs and high fares: Dominance and market power in the us airline industry.

RAND Journal of Economics 20(3), 344–365.

Borenstein, S. (1990). Airline mergers, airport dominance, and market power. American Economics

Review 80(2), 400–404.

Borenstein, S. (1991). The dominant-firm advantage in multiproduct industries: Evidence from the us

airlines. Quarterly Journal of Economics 106(4), 1237–66.

Ciliberto, F., C. Murry, and E. Tamer (2018). Market structure and competition in airline markets.

Ciliberto, F. and E. Tamer (2009). Market structure and multiple equilibria in airline markets.

Econometrica 77(6), 1791–1828.

Collard-Wexler, A. (2014). Mergers and sunk costs: An application to the ready-mix concrete industry.

American Economic Journal: Microeconomics 6(4), 407–47.

33



Doraszelski, U. and M. Satterthwaite (2010). Computable markov-perfect industry dynamics. RAND

Journal of Economics 41(2), 215–243.

Ericson, R. and A. Pakes (1995). Markov-perfect industry dynamics: A framework for empirical work.

Review of Economic Studies 62(1), 53 – 82.

Fershtman, C. and A. Pakes (2000). A dynamic oligopoly with collusion and price wars. RAND Journal

of Economics 31(2), 207 – 236.

Goolsbee, A. and C. Syverson (2008). How do incumbents respond to the threat of entry? evidence from

the major airlines. The Quarterly Journal of Economics 123(4), 1611–1633.

Gowrisankaran, G. (1999). A dynamic model of endogenous horizontal mergers. RAND Journal of

Economics 30(1), 56 – 83.

Hotz, V. J. and R. A. Miller (1993). Conditional choice probabilities and the estimation of dynamic

models. The Review of Economic Studies 60(3), 497–529.

Jeziorski, P. (2014a). Effects of mergers in two-sided markets: The u.s. radio industry. American

Economic Journal: Microeconomics 6(4), 35–73.

Jeziorski, P. (2014b). Estimation of cost synergies from mergers: Application to the u.s. radio. RAND

Journal of Economics 45(4), 816–846.

Kasahara, H. and K. Shimotsu (2009). Nonparametric identification of finite mixture models of dynamic

discrete choices. Econometrica 77(1), 135 – 175.

Kim, E. and V. Singal (1993). Mergers and market power: Evidence from the airline industry. American

Economic Review 83(3), 549–569.

Lazarev, J. (2019). The identification power of the markov assumption in dynamic discrete choice models.

Working paper, New York University.

Li, S., J. Mazur, Y. Park, J. Roberts, A. Sweeting, and J. Jun (2018). Repositioning and market power

after airline mergers. Mimeo, University of Maryland.

Nevo, A. (2000). Mergers with differentiated products: The case of the ready-to-eat cereal industry. Rand

Journal of Economics 31(3), 395–421.

Nocke, V. and M. D. Whinston (2010). Dynamic merger review. Journal of Political Economy 118(6),

1200–1251.

34



Pakes, A. and P. McGuire (1994). Computing Markov-perfect Nash equilibria: Numerical implications

of a dynamic differentiated product model. RAND Journal of Economics 25(4), 555 – 589.

Peters, C. (2006). Evaluating the performance of merger simulation: Evidence from the u.s. airline in-

dustry. Journal of Law and Economics 44, 627–649.

Reiss, P. and P. Spiller (1989). Competition and entry in small airline markets. Journal of Law and

Economics 32, 179–202.

Shapiro, C. (1996). Mergers with differentiated products. Antitrust 10, 23–30.

Sinclair, R. (1995). An empirical model of entry and exit in airline markets. Review of Industrial

Organization 10, 541–557.

Stahl, J. (2009). A dynamic analysis of consolidation in the broadcast television industry. Working Paper,

Board of Governors of the Federal Reserve System.

US Department of Justice (2010). Horizontal Merger Guidelines. U.S. Department of Justice.

35



A Data Appendix

As an example of the CSA aggregation, the CSA containing San Francisco contains the Oakland Interna-

tional Airport (OAK), the San Francisco International Airport (SFO), and the Mineta San Jose International

Airport (SJC). Once the data was aggregated, passengers from all three airports in the San Francisco Bay

Area CSA were treated as originating from the CSA as opposed to the individual airports within the CSA.

This aggregation captures the fact that these airports are substitutes both for passenger traffic and for airline

entry decisions.

The portion of the T100 data set that we use contains quarterly data on passenger enplanements for each

airline on segments connecting between the 60 demographic areas of interest for our study. The segment

data is in principle so accurate that if a NY-LA flight is diverted to San Diego due to weather, then it shows

up in the data as having flown to San Diego. This leads to there being a fair amount of “phantom” entry

occurrences in the raw data. To weed out these one-off flights, an airline is defined to have entered a segment

that it had not previously served if it sends 9000 or more enplaned passengers on the segment per quarter

for four successive quarters. The level chosen is roughly equivalent to running one daily nonstop flight on

the segment, a very low level of service for a regularly scheduled flight. For example, if airline X sends

at least 9000 passengers per quarter along segment Y from the third quarter of 2005 through the second

quarter of 2006 (inclusively), then it is defined to have entered segment Y in the third quarter of 2005.

If an airline entered a segment in any quarter of a given year, then it is said to have entered during that

year. Once an airline has entered a segment, it is considered present on that segment until an exit even has

occurred. We define exit event symmetrically with our entry definition. If an airline is defined to be “In”

on a segment, four successive quarters with fewer than 9000 passengers enplaned on the segment defines

an exit event. Therefore, if airline X had been in on segment Y in quarter 2 of 2005, but from quarter 3 of

2005 through quarter 2 of 2006 the airline had fewer than 9000 enplanned passengers, the airline is noted

as having exited segment Y in quarter 3 of 2005. Once an airline has entered a segment, it is defined as

present on that segment until an exit even occurs for that airline on that segment. Similarly, once an airline

has exited a segment, it is defined as not present on the segment until an entry event occurs. The data on

segment presence is initialized by defining an airline as present if it had 9000 or more enplaned passengers

on a segment in quarter 1 of 2003 and not present otherwise.
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A.1 Hub Definitions by CSA

American: Los Angeles, CA; Ft. Lauderdale, FL; Chicago, IL; St. Louis, MS; New York, NY; Dallas, TX

United: Los Angeles, CA; San Francisco, CA; Denver, CO; Washington, D.C.; Chicago, IL

Southwest: Phoenix, AZ; Los Angeles, CA; Oakland, CA; Denver, CO; Chicago, IL; Baltimore, MD;

Las Vegas, NV

Delta: Atlanta, GA; New York, NY; Cincinnati, OH; Salt Lake City, UT

Continental: New York, NY; Cleveland, OH; Houston, TX

Northwest: Detroit, MI; Minneapolis/St. Paul, MN; Memphis, TN

US Airways: Washington, D.C.; Charlotte, NC; Philadelphia, PA

JetBlue: Long Beach, CA; Fort Lauderdale, FL; New York, NY

American West: Phoenix, AZ; Las Vegas, NV

Alaska: Anchorage, AK; Los Angeles, CA; Portland, OR; Seattle, WA
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A.2 CSA Airport Correspondences

CSA code CSA Airports Pop 2000 Median Inc. # pass (mark, 2000) # deps 2000
12 BUR, LAX, ONT, SNA 16373645 52069 63366291 651974
32 MDW, ORD 9312255 54421 62343200 699212
22 EWR, JFK, LGA 21361797 56978 58882013 689529
4 ATL 4548344 52957 55337406 499976
37 OAK, SFO, SJC 7092596 66657 51131131 503844
18 DAL, DFW 5346119 49146 49770836 580463
13 BWI, DCA, IAD 7538385 67752 42311686 514799
45 PHX 3251876 48124 33102813 367510
26 HOU, IAH 4815122 46480 31547559 388080
19 DEN 2449054 55149 31311309 300264
29 LAS 1408250 49171 31081307 299968
10 BOS, MHT, PVD 1582997 51310 29349066 360982
23 FLL, MIA 5007564 43091 29309146 275868
57 STL 2698687 48361 25674940 303880
31 MCO 1697906 43952 25459140 236478
20 DTW 5357538 50471 25396816 280110
35 MSP 3271888 58459 25124724 267797
53 SEA 3604165 53900 22497342 238320
44 PHL 5833585 53266 18812458 241778
55 SLC 1454259 50357 16205369 148173
15 CLT 1897034 44402 16052317 198542
17 CVG 2050175 48022 15283486 197718
50 SAN 2813833 56335 15118565 163921
58 TPA 2395997 41852 14373207 144221
46 PIT 2525730 41648 13979823 182791
43 PDX 1927881 49227 12134527 150319
30 MCI 1901070 50179 11320857 151568
14 CLE 2945831 44049 10842047 192681
25 HNL 876156 60485 10320878 71179
36 MSY 1360436 39479 9497691 108138
47 RDU 1314589 49449 9221253 137888
33 MEM 1205204 41065 8651773 118131
8 BNA 1381287 45194 8552027 120258
56 SMF 1930149 54071 7728952 80867
54 SJU 2509007 19403 7067099 51241
6 BDL 1257709 59912 6963738 84986
5 AUS 1249763 50484 6950039 82864
27 IND 1843588 48399 6885666 93134
51 SAT 1711703 43263 6624018 77632
16 CMH 1835189 47075 6163317 89701
1 ABQ 729649 43070 5871686 71116
34 MKE 1689572 47799 5445851 90630
42 PBI 5007564 43091 5376385 51452
48 RNO 342885 48974 5294211 61475
28 JAX 1122750 47323 4955361 60860
38 OGG 128094 57573 4840509 49519
49 RSW 2395997 41852 4629297 42883
11 BUF 1170111 41947 3770970 54207
52 SDF 1292482 42943 3702821 57119
40 OMA 803201 48826 3585827 49920
60 TUS 843746 41521 3500323 39440
39 OKC 1160942 39743 3367555 53260
59 TUL 908528 40512 3253687 53582
21 ELP 679622 30968 3142143 47032
24 GEG 417939 41667 2933340 42947
7 BHM 1129721 43290 2884829 43839
9 BOI 464840 46960 2667242 41537
41 ORF 234403 31815 2577507 39326
2 ALB 825875 50828 2438339 37108
3 ANC 319605 60180 2293263 21837

A.3 Regional Carriers

To account for flights operated by regional carriers, we performed the following steps. First, using a publicly
available representative sample of all airline tickets sold in the United States (”DB1B”), we identified routes
operated by regional carriers. For each route and regional carrier, we identified how many tickets each
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mainline carrier sold on each regional partner within a given quarter and the corresponding shares. We then
took these shares, multiplied by the total traffic of the regional carrier and added it directly to total traffic
of the corresponding mainland carrier. We used this combined traffic to determine whether or not a given
mainline airline is currently operating in a given route.

The table below illustrates why accounting for regional carriers may make a significant difference in
our network analysis. In particular, it shows that failing to account for regional carriers will systematically
distort the full scope of all mainline carriers’ networks. Any model that tries to rationalize such distorted data
will inevitably struggle, especially given the fact that mainline carriers regularly change the set of regional
carriers they contract with and do sometimes alternate between regional service with mainline service based
on both demand and cost factors.

Table A.1: Fraction of Routes Served Without Regional Affiliates
Fraction of Routes Served Without Regional Affiliates

Year 2002 2003 2004 2005 2006 2007
American 0.832 0.816 0.767 0.742 0.698 0.700
United 0.783 0.681 0.642 0.662 0.670 0.660
Southwest 1.000 0.993 0.942 0.948 0.966 0.991
Delta 0.795 0.714 0.685 0.63 0.620 0.596
Continental 0.923 0.877 0.892 0.888 0.640 0.630
Northwest 0.893 0.879 0.804 0.793 0.814 0.796
US Airways 0.849 0.758 0.885 0.889 0.859 0.873
JetBlue 1.000 0.941 0.654 0.813 0.608 0.880
AmericaWest 0.970 0.910 0.880 N/A N/A N/A
Alaska 0.595 0.692 0.775 0.756 0.767 0.721
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B Tables and Figures

Table 1: Airline Route and Market Statistics, 2003-2008
Nonstop Routes Markets

Carrier Avg Min Max Entry/yr Exit/yr Avg Min Max
American 224 219 232 7 8 1260 1237 1296
United 182 166 193 6 2 1331 1237 1372
Delta 230 220 241 14 14 1453 1400 1504
Continental 121 103 147 10 2 920 772 1126
Northwest 155 136 169 6 2 1173 1145 1215
US Airways 158 146 190 14 6 730 665 982
Southwest 298 269 323 15 4 937 824 1042
JetBlue 32 16 51 8 1 128 61 226
Alaska 41 37 43 2 1 115 94 123
DL + NW 373 349 386 18 14 1566 1550 1579
UA + US 309 292 341 16 7 1455 1379 1494
UA + CO 286 254 321 15 3 1485 1396 1523
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Table 2: Airline Route and Market Statistics, 2003-2008
Regressor Avg SD Min 25% 50% 75% Max
City Pair Characteristics:
Log(2002 Pass Dens) 7.6 5.6 0 0 11 13 16
Pop1*Pop2(*1e-12)*Dens=0 0.82 3.2 0 0 0 0.34 82
Log(Pass. Den. New Markets) 2.7 4.6 0 0 0 5.5 16
% Tourist 0.37 0.35 0 0 0.33 0.67 1
Competition Variables:
Number Non-Stop Comps. 0.76 0.99 0 0 0 1 6
Number One-Stop Comps. 3.5 2 0 2 4 5 9
Number CS Agreements 0.051 0.23 0 0 0 0 3
HHI Among Others (Market) 0.49 0.44 0 0 0.51 1 1
HHI Among Others Large (City) 0.32 0.15 0.012 0.2 0.28 0.42 0.72
HHI Among Others Small (City) 0.17 0.079 0.0054 0.13 0.16 0.2 0.68
Own Share Large (City) 0.16 0.16 0 0.051 0.11 0.21 0.85
Own Share Small (City) 0.056 0.068 0 0 0.042 0.074 0.77
Competitor Hub on Route 0.68 0.47 0 0 1 1 1
Network Characteristics:
Present in Segment 0.09 0.29 0 0 0 0 1
Present in Market (not Seg) 0.41 0.49 0 0 0 1 1
Present Both Apts (not Market) 0.18 0.38 0 0 0 0 1
Number of Hubs 0.15 0.37 0 0 0 0 2
Hub Conv (NS dist/OS dist) 0.76 0.28 0.011 0.57 0.89 0.99 1
Dist Nearest Hub Large (100s) 12 9.3 0 5 8.6 18 48
Dist Nearest Hub Small (100s) 4.4 4.9 0 1.2 2.9 5.5 47
# Nonstops Large (City) 8.4 12 0 2 4 8 56
# Nonstops Small (City) 2.3 3.1 0 0 2 3 53
Distance Variables:
Distance > 250 0.95 0.21 0 1 1 1 1
Distance > 500 0.84 0.37 0 1 1 1 1
Distance > 1000 0.58 0.49 0 0 1 1 1
Distance > 1500 0.37 0.48 0 0 0 1 1
Distance > 2000 0.22 0.42 0 0 0 0 1
Distance > 2500 0.11 0.32 0 0 0 0 1
Distance > 3000 0.075 0.26 0 0 0 0 1
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Table 3: U.S. Airline Route Network Competition
This table lists the total number of segments/markets flown by each airline, followed by the number of
segments/markets where they are the only carrier, where there is one additional carrier, etc.

with number of competitors equal to
2008: segments Total 0 1 2 3 4 5 6 7 8 9 10 Avg
American (AA) 223 21 49 66 41 31 11 4 0 0 0 0 2.27
United (UA) 190 4 31 71 49 22 9 4 0 0 0 0 2.51
Southwest (WN) 323 51 94 92 64 14 7 1 0 0 0 0 1.76
Delta (DL) 220 64 66 35 17 21 13 4 0 0 0 0 1.64
Continental (CO) 146 30 45 28 13 18 9 3 0 0 0 0 1.88
Northwest (NW) 157 42 60 33 15 5 1 1 0 0 0 0 1.29
US Airways (US) 190 30 46 54 38 13 8 1 0 0 0 0 1.93
JetBlue (B6) 50 0 4 8 10 14 11 3 0 0 0 0 3.58
Alaska (AS) 43 6 17 11 3 3 3 0 0 0 0 0 1.74
DL + NW 366 108 125 63 33 21 13 3 0 0 0 0 1.41
UA + US 341 35 85 121 61 28 8 3 0 0 0 0 1.99
UA + CO 320 34 78 99 57 38 13 1 0 0 0 0 2.09

with number of competitors equal to
2008: markets Total 0 1 2 3 4 5 6 7 8 9 10 Avg
American (AA) 1272 13 29 58 105 174 237 261 219 120 43 13 5.44
United (UA) 1366 6 21 87 113 209 271 265 218 120 43 13 5.36
Southwest (WN) 1042 11 49 64 83 136 169 197 168 114 38 13 5.33
Delta (DL) 1489 13 50 99 143 238 274 276 220 120 43 13 5.15
Continental (CO) 1125 7 14 33 67 152 217 242 217 120 43 13 5.71
Northwest (NW) 1145 15 19 59 80 153 204 234 205 120 43 13 5.52
US Airways (US) 982 5 21 42 55 107 152 221 203 120 43 13 5.79
JetBlue (B6) 226 0 0 1 3 7 21 29 50 59 43 13 7.33
Alaska (AS) 123 2 11 12 12 17 14 14 1 13 14 13 5.37
DL + NW 1580 31 97 150 249 303 312 247 135 43 13 0 4.31
UA + US 1483 13 57 121 204 286 342 265 139 43 13 0 4.58
UA + CO 1526 13 38 144 250 329 311 260 125 43 13 0 4.48

Note: the 13 markets that are served by ALL 11 carriers are as follows:
Boston - Los Angeles, Boston - Las Vegas, Boston - San Francisco, Boston - Phoenix, Boston - San Diego,
Los Angeles - Washington, Los Angeles - Miami, Los Angeles - Orlando, Washington - Las Vegas, Wash-
ington - San Francisco, Washington - San Diego, Miami - San Francisco, Orlando - San Francisco
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Table 4: Top 10 Nonstop Routes by HHI Increase, Passengers Enplaned, 2008
DL-NW

HHI Passengers
CSA1 CSA2 Pre Post Chng
CVG MSP 5056 9982 4926
CVG DTW 4954 9875 4921
BHM MSP 5156 10000 4844
MSP SLC 5237 9902 4665
DTW SLC 5263 9885 4622
ATL DTW 3606 6622 3016
ATL MSP 3494 5812 2318
MEM SAN 7678 9468 1790
BDL MEM 7632 9255 1623
ATL MEM 4016 5512 1496

UA-US
HHI Passengers

CSA1 CSA2 Pre Post Chng
OAK, SFO, SJC PHL 5467 9981 4514
CLT DEN 5931 10000 4069
CLT MDW, ORD 4342 8064 3722
BUR, LAX, ONT, SNA PHL 6442 9978 3536
OAK, SFO, SJC PIT 6845 9975 3130
BWI, DCA, IAD MSY 3622 6720 3098
BWI, DCA, IAD PHL 6616 9487 2871
CLT OAK, SFO, SJC 7235 10000 2765
DEN PHL 2785 4894 2109
BWI, DCA, IAD PIT 3337 5255 1918

UA-CO
HHI Passengers

CSA1 CSA2 Pre Post Chng
CLE DEN 5276 9804 4528
DEN HOU, IAH 3227 5451 2224
DEN EWR, JFK, LGA 3385 5174 1789
BWI, DCA, IAD CLE 3808 5185 1377
HOU, IAH MDW, ORD 3031 4305 1274
CLE MDW, ORD 2892 3901 1009
BWI, DCA, IAD HOU, IAH 5896 6847 951
HOU, IAH OAK, SFO, SJC 6963 7906 943
EWR, JFK, LGA OAK, SFO, SJC 1783 2629 846
EWR, JFK, LGA MDW, ORD 2989 3790 801

43



Table 5: Top 5 Cities by HHI Increase, Passengers Enplaned, 2008
DL-NW

HHI Passengers
CSA Pre Post Chng
MEM 5284 6591 1307
MSP 5372 6013 641
CVG 7558 8131 573
DTW 4912 5458 546
BDL 1679 2106 427

UA-US
HHI Passengers

CSA Pre Post Chng
CLT 6533 7477 944
PHL 3357 4104 747
BWI, DCA, IAD 1559 2288 729
PIT 1772 2442 670
ALB 2154 2712 558

UA-CO
HHI Passengers

CSA Pre Post Chng
CLE 4108 4778 670
EWR, JFK, LGA 1631 1943 312
OMA 1501 1787 286
HOU, IAH 4738 4988 250
MSY 1626 1869 243
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Table 6: Probit for Entry/Exit/Stay, All Carriers
Units/ 1SD

Variable Range Beta SE Marg Eff Marg Eff
Demand Vars:
Log(2002 Pass Dens) [0,16] 0.043 0.012 0.02 0.10
Pop1*Pop2(*1e-12)*Dens=0 [0,82] 0.014 0.010 0.01 0.02
Log Pass. Den. New Markets [0,0.02] 11.8 4.4 4.7 0.02
% Tourist [0,1] 0.14 0.07 0.06 0.02
Competition Vars:
Number NonStop Comps. {0,...,6} -0.14 0.03 -0.06 -0.06
Number One-Stop Comps. {0,...,9} -0.01 0.02 -0.00 -0.01
Number CS Agreements {0,...,3} 0.22 0.06 0.09 0.02
Competitor Hub on Route {0,1} -0.17 0.07 -0.07 -0.03
HHI Among Others (Market) [0,1] -0.37 0.06 -0.15 -0.06
HHI Among Others Large (City) [0,1] 2.08 0.41 0.83 0.12
HHI Among Others Small (City) [0,1] 1.19 0.74 0.48 0.04
Own Share Large (City) [0,1] 3.81 0.46 1.52 0.25
Own Share Small (City) [0,1] 2.53 0.55 1.01 0.07
Network Vars:
Present in Route {0,1} 3.25 0.09 1.30 0.38
Present in Market (not Route) {0,1} 0.34 0.08 0.13 0.07
Present Both Apts (not Market) {0,1} 0.26 0.08 0.10 0.04
Number of Hubs {0,1,2} 0.58 0.07 0.23 0.09
Hub Conv (NS dist/OS dist) [0,1] -0.36 0.15 -0.15 -0.04
Dist Nearest Hub Large (100s) 1000mi 0.06 0.06 0.03 0.02
Dist Nearest Hub Small (100s) 1000mi -0.20 0.11 -0.08 -0.04
# Nonstops Large (City) {0,...,57} 0.11 0.03 0.04 0.05
# Nonstops Small (City) {0,...,54} -0.07 0.10 -0.03 -0.01
Distance > 250 {0,1} 0.24 0.09 0.10 0.02
Distance > 500 {0,1} -0.19 0.07 -0.08 -0.03
Distance > 1000 {0,1} -0.24 0.07 -0.10 -0.05
Distance > 1500 {0,1} -0.18 0.08 -0.07 -0.03
Distance > 2000 {0,1} -0.03 0.09 -0.01 -0.01
Distance > 2500 {0,1} -0.14 0.13 -0.06 -0.02
Distance > 3000 {0,1} -0.80 0.27 -0.32 -0.08
JetBlue dummy {0,1} 0.58 0.09 0.23 0.07
N 79650
Likelihood -2639
Fixed Effects Year, City
Test for Markov unobservables: Coeff SE p-value

0.239 0.083 0.004
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Table 7: Probit for Entry/Exit/Stay, All Carriers, Route Fixed Effects
Units/ 1SD

Variable Range Beta SE Marg Eff Marg Eff
Demand Vars:
Log Pass Dens New Mkts [0,0.02] 10.12 5.73 4.04 0.02
Direct Competitors:
1 Nonstop Comp {0,1} -1.93 0.13 -0.77 -0.35
2 Nonstop Comps {0,1} -2.93 0.17 -1.17 -0.39
3 Nonstop Comps {0,1} -3.79 0.20 -1.51 -0.32
4 Nonstop Comps {0,1} -4.79 0.27 -1.91 -0.24
>4 Nonstop Comps {0,1} -5.27 0.32 -2.10 -0.15
Other Comp Vars:
Number CS Agreements {0,...,3} 0.21 0.08 0.08 0.02
Competitor Hub on Route {0,1} -0.57 0.16 -0.23 -0.11
HHI Among Others Large (City) [0,1] 1.98 0.58 0.79 0.12
HHI Among Others Small (City) [0,1] -1.18 1.13 -0.47 -0.04
Own Share Large (City) [0,1] 2.93 0.62 1.17 0.19
Own Share Small (City) [0,1] 1.79 0.77 0.72 0.05
Network Vars:
Present in Route {0,1} 2.48 0.08 0.99 0.29
Present in Mkt (not Route) {0,1} 0.18 0.08 0.07 0.04
Number of Hubs {0,...,2} 0.51 0.09 0.21 0.08
Hub Conv (NS dist/OS dist) [0,1] -0.42 0.21 -0.17 -0.05
Dist Nearest Hub Large (100s) 1000mi 0.12 0.08 0.05 0.04
Dist Nearest Hub Small (100s) 1000mi -0.27 0.15 -0.11 -0.05
# Nonstops Large (City) {0,...,57} 0.27 0.05 0.11 0.13
# Nonstops Small (City) {0,...,54} 0.24 0.14 0.09 0.03
N 79650
Likelihood -2114
Fixed Effects Year, Route
Test for Markov unobservables: Coeff SE p-value

0.015 0.099 0.883
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Table 8: Measures of Fit by Airline: All Airlines Pooled, Route FE’s
Actual Last Period Status Full Sample Simulated

Stay Stay New New New New
Airline In Out Entry Exit Entry Exit

American (25,27) 0.979 0.995 0.177 0.174 0.523 0.578
United (24,17) 0.978 0.996 0.211 0.263 0.653 0.748

Southwest (66,12) 0.973 0.989 0.234 0.173 0.658 0.604
Delta (31,52) 0.972 0.995 0.191 0.237 0.569 0.845

Continental (39,7) 0.978 0.996 0.248 0.169 0.703 0.791
Northwest (19,11) 0.985 0.998 0.085 0.215 0.523 0.784

US Airways (86,29) 0.973 0.996 0.671 0.231 0.757 0.687
JetBlue (33,0) 0.926 0.996 0.125 0.396 0.446 NaN

Alaska (5,1) 0.971 0.999 0.138 0.417 0.490 1.000
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Table 9: Model Selection: Probit and ANN dimension
Model CV Likelihood
Probit -618

ANN (dim=0) -630
ANN (dim=1) -641
ANN (dim=2) -686
ANN (dim=3) -697
ANN (dim=4) -730
ANN (dim=5) -757
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Table 10: 10 year simulations, Median Nonstop Routes Served
Median number of routes served, by year

Year 0 1 2 3 4 5 6 7 8 9 10
No merger

American 227 225 224 223 223 222 221 221 220 218 217
United 198 199 199 199 198 198 197 196 196 195 194
Southwest 325 332 337 343 349 354 360 365 370 375 379
Delta 220 215 211 207 203 199 196 193 190 187 184
Continental 146 145 145 145 144 144 143 143 142 142 141
Northwest 157 157 156 155 154 153 151 150 149 148 147
USAirways 227 224 220 217 214 211 209 206 203 201 198
JetBlue 50 53 57 61 65 69 74 79 83 88 93
Alaska 43 42 42 42 42 42 42 42 42 41 41

DL-NW merger
American 227 225 223 222 220 219 217 216 214 213 211
United 198 199 198 198 197 196 195 194 193 192 191
Southwest 325 330 333 336 338 340 342 344 345 346 348
DL + NW 366 371 373 375 376 377 378 379 380 381 381
Continental 146 146 145 144 143 141 140 139 138 137 136
-merged- 0 0 0 0 0 0 0 0 0 0 0
USAirways 227 227 226 225 224 223 222 221 221 220 219
JetBlue 50 54 58 61 64 67 71 74 78 81 85
Alaska 43 43 43 43 42 42 42 42 42 42 42

UA-US merger
American 227 229 228 227 226 225 223 222 220 219 217
UA + US 358 366 370 374 378 381 384 387 389 391 393
Southwest 325 337 343 347 351 354 356 358 359 361 361
Delta 220 219 216 212 207 203 199 195 192 189 186
Continental 146 147 147 146 145 144 143 142 141 141 140
Northwest 157 160 159 158 157 156 154 153 151 150 149
-merged- 0 0 0 0 0 0 0 0 0 0 0
JetBlue 50 59 65 71 77 83 89 95 101 108 114
Alaska 43 44 44 44 44 44 44 44 44 44 44

UA-CO merger
American 227 226 224 223 221 220 219 217 216 215 213
UA + CO 326 331 335 337 340 342 343 345 346 347 348
Southwest 325 331 334 338 341 343 346 348 349 351 352
Delta 220 216 211 207 202 198 194 191 188 185 183
-merged- 0 0 0 0 0 0 0 0 0 0 0
Northwest 157 158 157 155 154 152 151 150 148 147 146
USAirways 227 228 228 228 228 228 228 228 228 228 228
JetBlue 50 54 58 62 66 71 75 80 84 89 93
Alaska 43 43 43 43 43 43 43 43 43 43 43
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Table 11: Nonstop Routes Served: Simulated Distribution in Year 10

Number of Nonstop Routes Served Number of Markets Served
Carrier base mean std min max q0.25 med q0.75 base mean std min max q0.25 med q0.75

No merger
American 227 217 8 189 254 212 217 223 1284 1290 30 1195 1421 1268 1286 1312
United 198 193 8 165 221 188 194 199 1370 1364 34 1209 1459 1343 1367 1388
Southwest 325 379 12 336 420 372 379 387 1074 1459 48 1254 1611 1428 1462 1493
Delta 220 185 8 158 221 179 184 190 1489 1414 28 1300 1498 1396 1417 1435
Continental 146 141 4 121 158 138 141 144 1125 1133 26 1031 1201 1112 1134 1155
Northwest 157 147 4 132 165 144 147 150 1145 1136 11 1059 1195 1131 1135 1141
USAirways 227 198 9 165 235 192 198 204 1235 1116 50 913 1252 1084 1120 1153
JetBlue 50 93 10 57 134 87 93 100 226 430 55 195 625 393 430 468
Alaska 43 41 4 24 57 38 41 44 123 167 23 82 246 152 168 183

DL-NW merger
American 227 211 7 186 242 206 211 216 1284 1292 31 1181 1424 1268 1290 1314
United 198 190 7 166 218 185 191 195 1370 1377 31 1244 1452 1357 1379 1399
Southwest 325 348 12 299 389 339 348 356 1074 1358 55 1140 1517 1321 1360 1397
DL + NW 366 381 11 345 426 374 381 389 1580 1585 10 1521 1619 1579 1586 1591
Continental 146 136 5 116 149 133 136 139 1125 1123 26 1028 1189 1102 1124 1145
-merged- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
USAirways 227 219 8 187 251 214 219 225 1235 1136 47 920 1287 1107 1141 1170
JetBlue 50 85 10 48 121 78 85 91 226 427 55 220 645 388 426 464
Alaska 43 42 4 27 58 39 42 45 123 161 25 74 240 144 162 180

UA-US merger
American 227 217 8 193 249 212 217 222 1284 1297 29 1173 1415 1275 1292 1316
UA + US 358 393 9 358 428 387 393 399 1512 1540 13 1466 1580 1532 1541 1550
Southwest 325 361 12 320 405 354 361 369 1074 1417 46 1222 1555 1386 1419 1450
Delta 220 186 8 160 214 181 186 191 1489 1460 17 1371 1512 1450 1461 1472
Continental 146 140 5 120 159 137 140 143 1125 1130 26 1030 1195 1110 1133 1151
Northwest 157 149 5 133 170 145 149 152 1145 1146 15 1089 1222 1136 1144 1154
-merged- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JetBlue 50 114 11 77 174 106 114 122 226 503 56 297 721 466 503 540
Alaska 43 44 4 29 61 41 44 47 123 169 23 75 253 154 170 185

UA-CO merger
American 227 213 7 188 244 208 213 218 1284 1289 29 1168 1421 1267 1285 1311
UA + CO 326 348 9 316 385 342 348 354 1530 1565 13 1497 1602 1557 1566 1574
Southwest 325 352 12 309 399 344 352 360 1074 1362 54 1140 1539 1326 1363 1400
Delta 220 183 6 158 207 179 183 187 1489 1457 17 1378 1504 1447 1458 1469
-merged- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Northwest 157 146 4 132 165 143 146 149 1145 1144 15 1073 1220 1134 1141 1151
USAirways 227 228 8 196 258 222 228 233 1235 1142 47 925 1277 1112 1146 1176
JetBlue 50 94 10 62 131 87 93 100 226 444 54 266 666 406 443 480
Alaska 43 43 4 28 59 41 43 46 123 169 23 79 239 154 170 186
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Table 12: Top 5 Cities, Static vs Simulated Dynamic Effect
DL-NW
Static Dynamic

CSA # Carriers (Pre) Pre Post (Yr 0) No Merger (Yr 10) Merger (Yr 10)
MEM 6 5904 6451 5679 6571
MSP 6 5861 6379 5676 6215
CVG 6 5977 6358 6130 6332
DTW 7 4374 4918 4460 4898
BDL 7 1787 2202 1559 2272

UA-US
Static Dynamic

CSA # Carriers (Pre) Pre Post (Yr 0) No Merger (Yr 10) Merger (Yr 10)
CLT 7 4452 5592 4482 4512
PHL 7 3363 3954 2966 3146
BWI, DCA, IAD 9 2098 2726 2313 2542
PIT 8 2580 2996 1898 3272
ALB 7 1882 2188 1655 1882

UA-CO
Static Dynamic

CSA # Carriers (Pre) Pre Post (Yr 0) No Merger (Yr 10) Merger (Yr 10)
CLE 7 4271 4683 4206 4355
EWR, JFK, LGA 9 1946 2119 1961 2078
OMA 7 1524 1745 1524 1745
HOU, IAH 8 3921 4261 3866 4160
MSY 8 1678 1886 1706 1853

Note: HHIs in this table are by # routes served and therefore differ from those in Table 5.
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Table 13: Simulated Nonstop Route-Level Market Structures in Year 10
Year 0 Year 10

Number of ... mean std min max q0.25 med q0.75
No merger

markets with 0 carriers 846 846 4 832 869 843 846 849
markets with 1 carrier 511 512 7 488 538 507 512 517
markets with 2 carriers 250 243 7 214 271 238 243 248
markets with 3 carriers 98 102 6 80 125 98 102 106
markets with >=4 carriers 65 66 4 51 82 64 66 69

DL-NW merger
markets with 0 carriers 846 834 4 820 848 831 833 836
markets with 1 carrier 517 526 7 501 552 522 526 531
markets with 2 carriers 244 240 8 210 265 235 240 245
markets with 3 carriers 100 101 6 77 127 97 101 105
markets with >=4 carriers 63 69 4 55 86 67 69 72

UA-US merger
markets with 0 carriers 846 834 4 820 852 831 834 836
markets with 1 carrier 520 515 7 487 540 511 515 520
markets with 2 carriers 265 256 8 227 285 250 256 261
markets with 3 carriers 98 106 6 84 130 102 106 110
markets with >=4 carriers 41 59 4 44 77 57 59 62

UA-CO merger
markets with 0 carriers 846 837 4 822 852 834 837 839
markets with 1 carrier 512 517 7 491 543 512 517 521
markets with 2 carriers 254 247 8 220 276 242 247 252
markets with 3 carriers 95 104 6 81 129 100 104 108
markets with >=4 carriers 63 66 4 50 81 63 66 68
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Table 14: Simulated Market-Level Market Structures in Year 10
Year 0 Year 10

Number of ... mean std min max q0.25 med q0.75
No merger

markets with 0 carriers 25 19 2 12 28 17 19 20
markets with 1 carrier 77 67 5 52 93 64 67 70
markets with 2 carriers 113 115 8 91 153 109 115 120
markets with 3 carriers 179 161 12 121 227 152 160 169
markets with >=4 carriers 1376 1408 16 1331 1453 1398 1409 1419

DL-NW merger
markets with 0 carriers 25 17 2 11 26 16 17 19
markets with 1 carrier 80 69 5 55 90 66 69 72
markets with 2 carriers 140 135 8 103 187 129 134 139
markets with 3 carriers 207 187 18 136 263 173 185 198
markets with >=4 carriers 1318 1362 22 1262 1426 1348 1364 1378

UA-US merger
markets with 0 carriers 25 17 2 11 27 16 17 19
markets with 1 carrier 80 67 4 54 85 64 67 70
markets with 2 carriers 149 119 9 90 161 113 119 125
markets with 3 carriers 248 207 13 163 257 197 206 215
markets with >=4 carriers 1268 1360 18 1289 1412 1348 1361 1373

UA-CO merger
markets with 0 carriers 25 17 2 10 27 16 17 19
markets with 1 carrier 75 67 4 53 86 64 66 69
markets with 2 carriers 118 113 7 90 148 108 112 117
markets with 3 carriers 203 179 12 139 231 171 178 186
markets with >=4 carriers 1349 1395 14 1317 1435 1386 1396 1405
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