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This paper is concerned with the interaction between price and inventory decisions in
retailing firms and its implications for the dynamics of markups and the existence of sales pro­
motions. We consider a model where a monopolistically competitive retailer decides price and
inventories, and assumes lump-sum costs when placing orders or changing nominal prices. Tn this
model, the existence of stockout probabilities and fixed ordering costs generate a cyclical price
behaviour characterized by long periods without nominal price changes and short periods with
very low prices (i.e. sales promotions). We estimate this model using a unique longitudinal dataset
with information about retail and wholesale prices, inventories, orders, and sales for several brands
in a supermarket chain. Based on the estimated model we perform several counterfactual experi­
ments that show the important role that inventories and fixed ordering costs play in the dynamics
of retail prices and the frequency of sales promotions in this dataset.

I. INTRODUCTION

Recent studies have presented empirical evidence supporting the existence of significant
price dispersion and staggering in price changes across individual stores (Lach and
Tsiddon (1992, 1996), Tommasi (1993)). The most common explanation for cross-sec­
tional price dispersion and staggering in price changes builds on the existence of nominal
price adjustment costs (e.g. menu costs) and not perfect correlation among the demand
shocks at different firms. Sheshinski and Weiss (1977, 1983) show that, under certain con­
ditions, an (5, s) rule is the optimal pricing rule for a monopolistically competitive firm
who faces lump-sum costs of adjusting nominal prices. 1 If firms' demand shocks are not
perfectly correlated, nominal price changes will not be synchronized across firms and,
consequently, there will be cross-sectional dispersion in nominal prices.

Although there is increasing evidence for the existence of significant infrequency in
nominal price changes (Cecchetti (1986), Lach and Tsiddon (1992, 1996), Kashyap (1995),
Slade (1994, 1996)), there is also important evidence against the hypothesis of retailing
firms following simple (5, s) pricing rules. The main evidence against the simple (5, s)
model seems to be the relatively high frequency of sales promotions in retail stores. Using
monthly price information from retail stores in Israel between 1978 and 1982, Lach and
Tsiddon (1992) report that S;;) of the observed nominal price changes were price
reductions. Since annual inflation rate during that period was between 60<% and 130<;;),
this evidence seems puzzling. Slade (1994, 1996) shows that the prices of several brands of
crackers in the supermarkets of a north american town tend to alternate between duration

1. Under an (5. s) pricing rule real price moves between an upper bound, 5, and a lower bound, s. The
nominal price is not changed when real price is above the lower threshold. but a nominal price increase occurs
when real price reaches that threshold. and the new real price becomes S.
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276 REVIEW OF ECONOMIC STUDIES

spells with a low nominal price and duration spells with a high price. Using also supermar­
ket price datasets, Warren and Barsky (1995) and Pesendorfer (1996) report that regular
retail prices (i.e. prices not under promotion) stay constant for relatively long periods (i.e.
several months) but, during these periods, sales promotions are very frequent.

What are the main factors explaining sales promotions in retailing firms? How is it
possible to explain the coexistence of long periods without nominal price changes and
very short periods where a price reduction is followed by a price increase? There are
different explanations for the existence and timing of sales promotions. In Varian (1980),
promotions are viewed as a mechanism to discriminate among customers with different
information or search costs. According to that model, sales must be costly to detect and
thus they should be randomly distributed over time and not correlated with variables that
are common knowledge for most customers (e.g. previous prices). Warren and Barsky
(1995) show that an important proportion of sales promotions occur during weekends
and holidays. They present empirical support for the hypothesis that these sales pro­
motions are the result of exogenous shocks in consumers shopping intensity. These shocks
make retailers' demands more elastic and, therefore, the optimal markup becomes smaller.
Slade (1994) and Pesendorfer (1996) present strong evidence against the hypothesis that
sales are randomly distributed over time. They show that sales promotions are state depen­
dent (they depend on the history of previous prices) and duration dependent (they depend
on the time duration since last promotion). In Slade, demand depends on a stock of
goodwill that accumulates (erodes) when the firm charges low (high) prices. The existence
of menu costs, together with the effect of the stock of goodwill on demand, can explain
the coexistence of price rigidity and sales promotions. Pesendorfer shows that an import­
ant number of stylized facts associated with sales promotions are consistent with the
hypothesis of intertemporal price discrimination of heterogeneous consumers (Sobel
(1984». This hypothesis is based on the existence of heterogeneous consumers and
infrequent purchases of durable goods. In these models a sales promotion becomes opti­
mal when a large enough number of low-willingness consumers (i.e. "shoppers") accumu­
lates in the market.

In all these previous models inventory decisions do not play any role in the expla­
nation for markdowns or sales promotions. However, there are important sources of inter­
action between price and inventory decisions that could contribute to explain markdowns.
In this paper we consider this interaction as an additional element to the understanding
of sales promotions in retailing firms. In particular, we show that the existence of stockout
probabilities (that create substitutability between price and inventories in the profit func­
tion) and fixed ordering costs (that generate (8, s) inventory behaviour) can explain the
puzzling coexistence of large periods without nominal price changes and short periods
with very low prices. Furthermore, this hypothesis can also explain the state dependence
and duration dependence of sales promotions. Our model has strong empirical predictions
on the joint dynamics of prices, sales, and inventories. We test these predictions and
estimate our structural model using a unique panel dataset that contains monthly infor­
mation on sales, stocks, retail prices, wholesale prices, and orders to suppliers for 534
brands sold by a supermarket chain between January 1990 and May 1992.

Section 2 presents the theoretical model. In this model a monopolistically competitive
retailer decides price and orders taking into account the existence of lump-sum costs of
placing orders and changing nominal prices. The model combines the classical (8, s) inven­
tory model (see Scarf (1959), Blinder (1981), among others) and the classical (8, s) pricing
model (see Sheshinski and Weiss (1977, 1983» to allow for joint price and inventory
decisions with lump-sum ordering costs and menu costs. We characterize the form of the
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AGUIRREGABIRIA MARKUPS AND INVENTORIES 277

optimal decision rule and analyse some of its empirical predictions. In particular, if fixed
ordering costs are large relative to menu costs, sizable price reductions tend to occur when
orders are placed, and the low price is maintained for a short period of time. After this
period, infrequent price increases will occur until the next positive order. We show also
that lump-sum ordering costs can generate cross-sectional price dispersion even when
menu costs are negligible or zero.

The main emphasis of this paper is empirical. Using our supermarket dataset we
obtain three sets of empirical evidence about our hypothesis. First, we present a descrip­
tive analysis of the dynamic behaviour of prices and inventories and statistical tests of the
predictions of our model in the context of reduced form estimations of the optimal
decision rules. In these reduced form estimations we control for several potential sources
of spurious state dependence (i.e. unobserved brand-heterogeneity and autocorrelation in
demand shocks). Second, based on our theoretical model we estimate a discrete choice
dynamic structural model. The structural parameters are estimated using a two-stage pro­
cedure similar to the sequential methods in Manski (1991, 1993), Hotz and Miller (1993),
Hotz et al. (1994), and Ahn (1995)2. We present specification tests and goodness-of-fit
tests of the model, and analyse the implications of our parameter estimates. Finally, based
on the estimated model, we obtain simulations of state and decision variables and perform
several counterfactual experiments in order to evaluate the effect of different parameters
on the dynamics of prices and markups.

Our main empirical results are the following. The preliminary analysis shows a very
significant and robust effect of inventories at the beginning of the month on current price.
The form of this state dependence is the one predicted by the theoretical model. We also
obtain that markups follow a cyclical behaviour that matches the cyclical behaviour of
inventories. Prices tend to be reduced when orders are placed, and they tend to increase
during the period until the next positive order. In the estimation of the structural model
we obtain a very significant and sizable estimate of the lump-sum ordering costs param­
eter, and a significant but much smaller estimate of menu costs parameters. Finally, our
counterfactual experiments show that fixed ordering costs playa very important role in
the dynamics of retail prices in this dataset. In particular, if there were not fixed ordering
costs, the monthly frequency of sales promotions would drop from 50·8% to 26·8%, and
the within-brand standard deviation of markups from 7·3l /t) to 3·8%.

The rest of the paper is organized as follows. Section 2 introduces the theoretical
model and characterizes the form of the optimal decision rule. Section 3 describes the
dataset as well as the characteristics of the supermarket chain and the market where it
operates. In Section 4 we present a descriptive analysis of the dynamic behaviour of inven­
tories and prices, and reduced form estimations of the decision rules. Section 5 describes
the econometric approach to estimate the structural model and presents estimates of the
structural parameters. Section 6 presents several counterfactual experiments based on the
estimated model. We summarize our results in Section 7.

2. A MODEL OF PRICE AND INVENTORY DECISIONS
WITH LUMP-SUM COSTS

In this section we present a discrete time dynamic programming model where a retailer
operating in a monopolistically competitive market decides retail price and orders to sup­
pliers. The retailer takes these decisions at the beginning of every period (e.g. week) before

2. See also Heckman (1976), who used a synthetic cohorts method in the context of a dynamic structural
model.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/66/2/275/1563377 by U

niversity of Toronto Library user on 29 D
ecem

ber 2021



278 REVIEW OF ECONOMIC STUDIES

a demand shock is known. Although this demand shock becomes observable during the
period, the retailer cannot change her price or place new orders until the beginning of
next period. Therefore, an excess demand (i.e. stockout) may occur during the period. In
addition, there are lump-sum costs associated with the decisions of placing orders and
changing nominal prices. The model combines the classical (8, s) inventory model (see
Scarf (1959), Blinder (1981), among others) and pricing models with menu costs (see
Sheshinski and Weiss (1977, 1983, 1992)).

2.1. Decision problem

Consider a risk neutral retailing firm who sells an homogeneous good. At every period t
the firm decides retail price and orders to wholesalers to maximize the expected and dis­
counted stream of current and future real profits. The expected one-period real profit is
equal to the real value of expected sales, minus ordering costs, storage costs, and price
adjustment cost.

(1)

where PI and PI are the logarithms of real and nominal retail prices at period t, respect­
ively; Y~ represents expected sales, in physical units; CI is the logarithm of real wholesale
price; ql represents orders during period t: s, is the stock at the beginning of period t: a
is the unit storage cost; TJ q and TJP are fixed ordering costs and fixed price adjustment
costs, respectively, measured in real monetary units; and I(·) is the indicator function.

Fixed ordering costs result from transportation costs that are not proportional to the
number of items in an order, and from other lump-sum costs associated with the classifi­
cation and organization of new deliveries. Nominal price adjustment costs are the combi­
nation of decision costs and costs of making new lists of prices, new labels, etc. We assume
that these costs do not depend on the magnitude of the nominal adjustment and, therefore,
they are lump-sum costs or menu cots.

Sales are equal to the minimum of inventories and demand

(2)

where YI and Y~ are sales and demand at period t, respectively. The firm is small relative
to the size of the market where it operates. This implies that our firm takes into account
the prices of its competitors when deciding its own price, but it does not consider the
effects of its decisions on the behaviour of other firms because these effects are negligible.
The demand for this firm depends on its own real price, on the average real price of
the competitors, and on a consumers' demand shock. We consider an isoelastic demand
function

(3)

where Pt is the logarithm of the average price at other firms, and at is a consumers' demand
shock. We can rewrite the demand function in the following way

(4)

where m.e p.-:c, is the markup in our firm, and to, is equal to Y2(Pt-·Ct). Assuming that
the wholesale price is the same for all the retailing firms in the market, Pt - c, represents
the average markup at the rest of the firms.
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AGUIRREGABIRIA MARKUPS AND INVENTORIES 279

Assumption 1. (Monopolistic competition in the product market). The average
markup of the competitors does not depend on our firm's current or previous decisions.
Therefore, W t follows an exogenous stochastic process. We assume that t», follows a
stationary first order Markov process with transition density function f~)(w'; w) ==
pdf(wt+ 1= w'l t», = w).

Assumption 2. (Price-taker in the wholesale market). The firm is a price-taker in its
relationship with suppliers. Therefore, real wholesale price does not depend on current or
previous firm's decisions, i.e. it follows an exogenous stochastic process. We assume that
c, follows a stationary first order Markov process with transition density function
fe(c'; c) == pdftc.; I = c'let = c).

Assumption 3. The consumers' demand shock at is independent of (St, c., to; Pt-d,
and it is independently and identically distributed over time, with a probability density
function fa(') that is continuous and twice differentiable.

Assumption 4. Aggregate inflation rate is constant over time. Therefore, Pt = Pt+ pt
and C, = c,+pi, where p is the aggregate inflation rate, and C is the logarithm of nominal
wholesale price at period t.

At the beginning of each period the retailer observes the level of inventories, whole­
sale price, nominal retail price at previous period, and average markup at other firms.
Therefore, under Assumptions 1 to 4, the set of state variables at period t is
{o», c., s., Pt - 1 }. Hereinafter, we will use as state variable b, == P, I - C, instead of the
nominal retail price P, - 1. The variable b, represents the markup at period t if the firm did
not make any nominal adjustment in its retail price during this period. Using this notation
the indicator for the existence of a nominal adjustment at period t becomes J(mtt:-bt ) , and
the vector of state variables is kr==(w,.cr,st,b,)'. Therefore, the firm's decision problem
IS

(5)

where {3E (0,1) is the manager's discount factor." and en == (Yl' Y2' a, TJ q
, TJP)'. The one­

period profit function n(' ) can be written as follows

- TJq/(q, >0) -1'1 P/ (mrt:- br).

The function y e ( . ) represents expected sales, and under Assumption 3

yl'(wt,m"ct,s,+qr)=- f.f min (yt;.\',+qt}fAdat)
.0

(6)

(7)- .*"( . H( sr+qt )- J Wt, mr- c.) . *e '
Y (w"mt,c I )

where y e* (WI' m., cl ) =exp {WI + YI m, + (Y I + Y2)CI} is the expected demand; and, for any
real value x, H(x) == E(min { e"r

; x} Ix). Under Assumption 3, .J;'"(: ) is increasing in s + q,

3. Since the one-period profit function represents real profits. the discount factor f3 does not include the
inflation rate.
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decreasing in m, strictly concave with respect to s + q and m, and markup and orders are
substitutes in the sales equation, i.e., i)2y e/i)mi)q =Ylfa(ln [s+q] -In [y *en < 0.4

To complete the model we should specify the transition rules for the endogenous
state variables. The transition for the stock is

s.; 1 =s,+ qt - Yt =max {O; s,+ qt - Y 7}.

And using the definition of b,

(8)

(9)

Since time horizon is infinite, there is additive time-separability in preferences, state
variables have first order Markov transition probabilities, and {3E (0, 1), Blackwell's
theorem applies and both the value function and the optimal decision rule are time
invariant mappings on the space of state variables. The Bellman's equation of this problem
IS

V(k) = max nik, m, q)
{m;q~O}

+f3 f V(~', c', m - p - [e' - e],s)fa(dd)j; (de';e)!m(dco'; co), (10)

where we have omitted time sub-indexes and used' to denote variables that are unknown
to the manager when taking her decision. Equation (10) shows which are the sources of
uncertainty in this decision problem. There is uncertainty about a component of current
demand, a', about future wholesale prices, c', and about future markups at other firms,
to'. Finally, the decision problem can be characterized by the set of primitives

(11)

where ef o ef w, and efa are the parameters characterizing the transitional densities of c, to,
and a, respectively.

2.2. Characterization of the optimal decision rules

In this subsection we obtain the form of the optimal decision rules for markup and orders.
For the sake of notational simplicity, we consider a version of the previous model where
exogenous state variables, i.e. c, and co., are constant over time. However, if fc(·) and
fw( .) are continuous and differentiable, it is straightforward to extend our results to the
general case.

We can rewrite the Bellman's equation using the following expression

V(b,s)= max {Q(m,z)-l1Q(z>s)-l1P1(m:;tb)}-(a-l)s, (12)
{m;z2:s}

where

Q(m, z) =exp {m}y'(m, z) - z+ f3 f V(m - p,max {O; z -exp [a+Ylm]})!a(da), (13)

4. For s + q/y*e larger than a certain value x, orders and markup are also substitutes in the profit function
(where x is implicitly defined by the equation

h(ln x) -1

1- Fa(lnx) YI

and Fa ( · ) is the cdf of a).
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AGUIRREGABIRIA MARKUPS AND INVENTORIES 281

and z == s + q. Equations (12) and (13) define implicitly the value function V(-) as the fixed
point of a contraction mapping that maps continuous functions into continuous functions.
This property guarantees the existence and continuity of the value function (see Stokey
and Lucas (1989), pages 49-55). However, the discontinuity of the one-period profit func­
tion implies that the value function is not concave and thus it is not possible to use the
usual theorems (e.g. Stokey and Lucas (1989), Theorem 4.8) to prove that the optimal
decision rule is a function and not a correspondence. To prove this property, as well as
to characterize the optimal decision rule, we follow an approach similar to Scarf (1959)
that exploits the properties of K - concave functions (see Appendix I). We start consider­
ing the problem without menu costs.

Lemma 1. Model without Menu Costs. Under Assumptions 1 to 4, {3E (0, 1),and l1 P =
0, the model defined by equations (12) and (13) has a unique optimal decision rule with the
following form:

and

{
""* -s

q*(s) = ~
if s < ZL

f > L
~ s=z ,

(14)

{
m* ifs « ZL

m* s - .( ) - -() f > Lms ~s=z,

(15)

where m* and z* are optimal markup and inventories, respectively, when there are not lump­
sum ordering costs and irreversibility restrictions (i.e. z~s); ZL is a constant lower than z*;
and m(') is a continuous and decreasing real function that represents the optimal markup
for a given value of inventories.

Proof See Appendix 1. II

Lemma 1 shows that the endogeneity of markup does not affect the optimality of an
(S, s) inventory rule. When CI and to, are not constant, z*, m*, ZL and m(-) depend on CI

and WI' and we have an (St, Sl) decision rule. This simple model has interesting impli­
cations on the dynamic behaviour of markup. Figure 1 presents the path of markup and
inventories when i», and c, are constant. The markup increases between two orders (when
the stock level decreases) and it drops down when new orders are placed (because
m(ZL) > m(z*) == m*). This markup behaviour results from two characteristics of the model:
(1) the existence of a positive probability of stockout (and the negative effect of this
probability on the price elasticity of sales), that creates substitutability between markup
and inventories in the profit function; and (2) the existence of lump-sum ordering costs,
that generates (S, s) inventory behaviour. When the level of inventories decreases between
two orders, the probability of stockout increases and expected sales become more inelastic
with respect to markup. Thus, the optimal markup increases between two orders, and
decreases when the elasticity of sales goes up as the result of positive orders. Figure 1
shows also that the largest markup increases occur just after a positive order, and the
increments tend to be smaller when we approach to the next positive order. The reason
for this behaviour is that the cyclical path of markups generates a cyclical behaviour in
sales. The largest sales and, consequently, the largest stock reductions and markup
increases, occur just after a positive order.
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FIGURE 1

Time series of markup and inventories (without menu costs)

In the context of a monopolistically competitive market, the markup behaviour in
our model can ganerate cross-sectional markup dispersion. The magnitude of this markup
dispersion will depend on: (1) the magnitude of lump-sum ordering costs (i.e. z* - ZL); (2)
the sensitivity of the price elasticity of sales to changes in the probability of stockout (i.e.
dm(s)jds); and (3) the degree of correlation between the demand shocks at individual
firms. The interesting result here is that there may be price (markup) cross-sectional dis­
persion when there are not menu costs.

However, this version of the model cannot explain infrequency in nominal price
changes. In Lemma 2 we consider the model with both menu costs and lump-sum ordering
costs.

Lemma 2. Model with Menu Costs. Under Assumptions 1 to 4, and /3e (0,1), the
model defined by equations (12) and (13) has a unique optimal decision rule with the following
form:

{

z* - s if (b, s)e i;

q*(b, s) = z(b) - s if (b, s) e T01

o if (b, s);= Toou T IO,

(16)

and

(17)
{

m* if (b, s)e r;
m*(b, s) = m(s) if (b, s)e TIO

b if(b,s)e ToouT0 1 '

where m* and z* are the optimal markup and inventories, respectively, when there are not
lump-sum costs and irreversibility restrictions (i.e. z~s); m(·) is a continuous and decreasing
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AGUIRREGABIRIA MARKUPS AND INVENTORIES 283

real function that represents the optimal markup for a given value of inventories; f(') is a
continuous and decreasing real function that represents the optimal inventories for a given
value of the markup; and Too, T lO , TOI ' and T l1 are four sets defining a partition of 9f.
These sets are associated with the four discrete alternatives: "no price change and zero
orders" (Too); "no price change and positive orders" (ToI ) ; "price change and zero orders"
(TlO) ; and "price change and positive orders" (Tll ) .

Proof See Appendix 1. II

This optimal decision rule has clear similarities with the one obtained by Sheshinski
and Weiss (1992) in the context of a menu costs pricing model with two goods. The
decision rule defines a partition of the space (b, s). Figure 2 presents this partition and the
functions m(s) and feb). The "inaction" region, Too, consists of the set of points (b,s) for
which the stock is relatively large and the vertical distance between markup at the begin­
ning of the period and m(s) is not too large. The vertical distance between m(s) and the
boundary of Too depends on the magnitude of TIP, and the horizontal distance between
feb) and the boundary of Too depends on Tl q

• The other three regions have also intuitive
interpretations. In Figure 2 we have considered the case with ordering costs larger than
menu costs. Figure 3 and points A to F in Figure 2 represent the dynamics of markup
and inventories when the inflation rate is zero. Again, the markup increases between two
orders and it drops down when orders are placed. But now there is also infrequency in
nominal price adjustments.

When the inflation rate is positive the lines connecting points A and B, C and D, and
E and F are not horizontal (i.e. B is below A, D below C, and F below E). In that case,
it is possible that a positive order does not imply a nominal price reduction ii.e. point F
might be below point A). The existence or not of nominal price reductions associated with
positive orders depends on: (1) the magnitude of the inflation rate; (2) the relative magni­
tude of lump-sum ordering costs and menu costs; and (3) the slope of m(s). However, for
any inflation rate, if ordering costs are large enough (i.e. the boundary of Too is enough
to the left) or if menu costs are small enough, there may be sizable nominal price

b

s

FIGURE 2

Optimal decision rule (model with menu costs)
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FIGURE 3

Time series of markup and inventories (with menu costs)

reductions when orders are placed. Notice that the larger the slope of niCs) (in absolute
value), the larger this price reduction. 5

This model provides a potential explanation for the coexistence of long periods with­
out nominal price adjustments (or infrequent price increases) and short periods with very
low prices and markups. It can also explain the existence of positive duration dependence
in sales promotions (see Pesendorfer (1996)). The model has strong empirical predictions
on the joint dynamics of prices, inventories, orders and sales. The rest of this paper rep­
resents empirical evidence regarding this model.

3. THE FIRM AND THE DATASET

Our empirical analysis is based on a dataset from the central store of a supermarket chain.
This section describes the characteristics of the company and the dataset.

3.1. The supermarket chain

Our company is a supermarket chain that operates in the Basque region of Spain. Between
January 1990 and May 1992 (our sample period) the supermarket industry in this region
has been characterized by the existence of a leader who captures more than 40% of the
market. Our firm's market-share has been between 3% and 4%, the sixth in the market.
During this period there have been no significant changes in the market shares of the top­
ten supermarket chains in the region. The Spanish monthly inflation rate during this
period was between 0·5% and 0·6% (Retail Price Index).

5. The slope of m(s) depends on the sensitivity of the price elasticity of sales with respect to the stockout
probability.
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AGUIRREGABIRIA MARKUPS AND INVENTORIES 285

The company has a central store (headquarters of the firm) and over 60 outlets. Most
of the company's decision making is centralized. The central store orders new deliveries
from suppliers, stores the goods, sends to the outlets the orders that they make, and
decides upon retail prices. The manager of an individual outlet sends her weekly orders
to the central store. Since 1989 most of the communication between outlets and central
store has taken place through a computer network. At the beginning of each week the
central store sends to every outlet a list with the available brands and their retail prices
(i.e. prices are decided weekly). Outlets place their orders to the central store through their
terminals and, if the brands are available. orders are delivered to the outlets within twenty­
four hours. The storage capacity in most of the outlets is small, and outlets usually place
orders every week (i.e. one order per week in most of the cases).

In this paper we study the decision problem of the central store, that is, its decision
about retail prices and orders to suppliers. When taking these decisions, managers at the
central store do not have to know the demand functions for every brand at every specific
outlet, but only the total demand of every brand at all the outlets in the supermarket
chain. Indeed, we have seen how this is the information that these managers use to predict
future sales and to make decisions about prices and inventories. Therefore, we abstract
from the fact that the company sells through the outlets and we assume that its decision
problem is equivalent to the problem of a retailer who sells directly to consumers."

Every year (around June) the firm negotiates with each supplier an agreement that
determines the conditions that will be applied during the next twelve months. These con­
ditions include wholesale price, discounts, trade promotions, possibility of returns, and
form of payment. Although the final contract specifies a wholesale price, the supplier
maintains the right to change it during the year if there are variations in manufacturing
costs or in competition in the wholesale market. According to the purchasing managers
of the company, wholesale prices are generally the same for all the supermarket chains in
the region and, in most of the cases, payment is made 60 or 90 days after delivery. The
toughest part of the negotiation with suppliers is about the number of weeks during the
year that the brand will be under promotion, and about the percentage of the cost of sales
promotions that will be paid by the wholesaler (e.g. cost of posters, mailing, price Iabels)."

In our model the firm sells an individual good. However, the company in our dataset
sells thousands of brands. Price and inventory decisions of different brands may not be
separable. Although the synchronization/staggering of price and inventory decisions
among different brands in a multiproduct firm is an interesting issue, we have not
addressed this problem in this paper. Therefore, our econometric approach will be based
on the assumption of separability between the decisions of the different brands. We con­
sider the multiproduct case a topic for future research.

3.2. l'he dataset

The firm has maintained a database since January 1990. This database contains monthly
information on prices, sales, orders to suppliers and inventories, for every brand sold by

6. We are assuming that the price and inventory decisions in the central store have very small effects on
outlets' storage costs and on the costs of delivering items from central store to the outlets. Under these assump­
tions the relevant profit function that the central store tries to maximize includes sales, storage costs at the
central store, menu costs, and costs of orders to suppliers, but not outlets' storage and ordering costs.

7. In our specification of the structural model we take into account that, from the point of view of the
retailer, the menu costs associated with sales promotions can be smaller than the menu costs of changing the
regular price.
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the company." We use this information from January 1990 to May 1992 (29 months).
During this period 8742 brands were sold by the supermarket chain. The raw dataset
contains the following information for every brand and month: name and description,
total sales of the brand in all the company's outlets, sales under promotion, orders from
the central store to suppliers, stock in the central store at the beginning of the month,
wholesale price, retail price under sales promotion, and regular retail price (i.e. not under
sales promotion). All prices are measured in pesetas per item, and quantities are measured
in number of items.

3.2.1. The working sample. Our working sample is a balanced panel of 534 brands.
A brand has been included in our working sample if: (1) the central store keeps inventories
of the brand; and (2) the brand has been sold at every month between January 1990 and
May 1992. We discuss here the reasons why we use these two filters.

There are some brands for which the central store does not keep inventories. Some
of them are very perishable goods which are delivered daily from wholesalers to outlets
(e.g. fresh vegetables, fish, some types of bread, etc.) In other cases they are brands from
manufacturers with efficient distribution networks that allow them to deliver their brands
to individual outlets. From the point of view of the company's central store, there is not
any inventory problem associated with these brands. Since we are interested in the
relationship between price and inventory decisions we only consider those brands for
which the central store keeps inventories. For the whole set of 8742 brands, there are 4966
brands for which the central store maintains inventories.

Some brands have been sold by the supermarket chain for the whole sample period
(29 months), but most of them have been sold for shorter periods (even just one month).
Therefore, infrequency of positive orders for certain brands is not associated with an
inventory decision, but it is the result of the company's decision that the brand will not
be sold in the future. If we considered these brands in our working sample we would
introduce a spurious upward bias in the frequency of zero orders and thus an upward
bias in our estimate of lump-sum ordering costs. In order to avoid this problem we concen­
trate our analysis on the set of brands that were sold by the firm at every month between
January 1990 and May 1992. These are 534 brands of the 4966 brands for which the firm
maintains inventories, which account for 15,486 brand-month observations.

The firm uses a two-level criterion to classify brands in its dataset. Individual brands
are classified in groups that we call products, and these products are classified in seven
large groups. Table I presents this classification as well as the number of brands of each
product and of each large group in our working sample.

3.2.2. Price data. The two price variables in our dataset, regular retail price and
price under promotion, are monthly averages (i.e. nominal value of sales divided by sales
in physical units). In principle, the time average nature of this price information could lead
to identification problems in our empirical analysis. However, the high nominal rigidity
in regular retail prices implies that these monthly averages contain, indeed, very much
information about actual nominal prices and nominal price changes.

We use three retail price variables in our empirical analysis: (1) retail price during
the month, P, that we use to obtain the markup m; (2) retail price at the beginning of the
month, p[b1, that we use to obtain the state variable b; and (3) a categorical variable that
indicates the existence of "no change", "increase" or "reduction" in nominal retail price

8. A brand is an individual commodity with specific label, size, taste, colour, etc.
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TABLE 1

Classification of brands in products and groups ofproducts

Names of Number Names of Number Names of Number
product of products of products of

and groups brands and groups brands and groups brands

1. Health, beauty 48 5. Soft drinks 29 6. Food (cont.)
101. Eau cologne 2 501. Fruit juices 10 626. Pets food 15
102. Deodorant 2 502. Water 3 627. Salt 3
103. Soap, Shampoo 10 503. Carh. drinks 2L 5 628. Mayonnaise 9
104. Hair spray 6 504. Carh dks small 11 629. Vinegar 2
105. Beauty creams 9 6. Food 277 630. Eggs 3
106. Toothpaste 3 601. Sugar 4 631. Butter, margar. 6
107. Shaving creams 3 602. Coffee 12 632. Cheese 11
108. Shaving blades 8 603 Instant coffee 10 633. Milk 6
109. Bath sponges 5 604. Malt 6 634. Powder Milk 5
2. Cleaning 69 605 Tea 2 635. Sausages 3
201. Detergent 12 606. Olive oil 7 636. Foie-gras 2
202. Bleach 12 607. Sunflower oil 4 7. Alcohol. drinks 89
203. Softeners 7 608. Canned fish II 701. Cognac 10
204. Dishwashers 5 609. Dry cod 3 702. Whisky 4
205. Cleaning sprays 15 610. Canned veget. 8 703. Other spirits 12
206. Floor polish 7 61 I. Marmalade 9 704. Sherry 5
207. Scourers 4 612. Beans, Lentils 9 70S. Champagne 6
208. Dischcloths 2 613. Rice 4 706. Vermouth 4
209. Brooms 1 614. Olives 6 707. Sidra 3
210. Insecticides 3 615. Pickles 4 708. Beer 12
211. Kitchen paper 1 616. Biscuits 23 709. wine (regular) 15
3. Pharmacy 9 617. Cakes 5 710. Wine (quality) 18
301. Bandages 4 618. Candies 11
302. Sanit. napkins 2 619. Chocolate 30
303. Diapers 3 620. Toasted bread 6
Others, no food 13 621. Flour 2
401. Alumin. paper 6 622. Pasta 14
402. Plastic objects 2 623. Instant soups 11
403. Batteries 4 624. Instant rice 5
404. Stick gum 1 625. Dried fruits 6

during the month, I?". Below we explain how we have used monthly average prices to
construct these variables, and we make explicit certain assumptions.

Markups, mit =In (Pit) -In (Cl), have been obtained using the average retail price
during the month for Pit (i and t are the subindexes for brand and month, respectively).
To construct pf~] we assume that sales promotions occur at the middle of the month.
Therefore, at the beginning of the month the retail price is always equal to the regular
retail price. Regular retail prices stay constant during relatively long periods. For 41·5°;;)
of the observations the monthly change in average regular price is zero, i.e.
MRPit =ARPit - ARPu- , =0, where ARPit is the monthly average regular price. It is
clear that if I1ARPit = °the actual regular price has been constant during months t - I
and t and, therefore, we have that: p~h) I =p~7] =p~~)+ I =ARPit . Using this information
we identify the actual regular price at the beginning of the month for 67·TYo of the obser­
vations in our sample (for 42(),;) of the brands we observe the actual regular price for more
than 21 of the 28 months). For the remaining 32·3% of the observations, we consider
p~~] = ARPu- 1 •

To construct the categorical variable /t1P we use both ARP and the indicator for the
existence of sales promotions during a month. We start constructing a categorical variable
for the sign of the change in regular price, i.e. /~PRegE {-l, 0, 1}. It is clear that, without
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288 REVIEW OF ECONOMIC STUDIES

any assumption, I1ARPit =0 implies that ItPReg=Iti_Rtg=O. This accounts for 57·7% of
the observations in the sample. According to company's managers, regular retail prices
are rarely changed more than once during a month. This is consistent with the evidence
we have mentioned above (e.g. more than 300/0 of the regular price quotations last more
than two months). Therefore, we assume that regular retail prices change, at most, once
per month. Exploiting this assumption we can identify It{Re

g for an additional 26·0% of
the observations in the sample. For instance, if I1ARPit =0 we know that Iti_R2

eg=
sign (I1ARPi,t -}), and Iti+Rt

g=sign (~ARPi.t+}). Figure 4 presents an example where we
can identify p1PRe

g at every month except one (i.e. month number 4). For the remaining
16·3% of observations for which IL1PReg is not identified we consider that If,PReg=
sign (I1ARPit ) .

Actual price

Monthly average price

/
/

/
/

/

2 3 4 5 6 7 8 9
months

10

FIGURE 4

Actual price and monthly average price

We combine IL1PReg and the indicator of sales promotions during a month, IftP , to
obtain a categorical variable that represents the behaviour of the nominal retail price
within a month It{ E {-I, 0, I}. We consider that: IlJ.P =1 (price increase) if there is an
increase in the regular retail price (i.e. If,PReg=1); IlJ.P =0 if there is no change in regular
retail price and no sales promotions (i.e. ItPReg=0 and IfrP =0); and 1M =-1 (price
reduction) if there is a reduction in the regular retail prive or there is a sales promotion
but without a regular price increase (i.e. I~Reg =-1 or {I~PReg;t 1 and IfrP =1}).9

4. PRELIMINARY EVIDENCE

Figure 5 presents the time series for average regular retail price and average retail price
(left column) and orders and inventories (right column) for three brands in our sample.

9. For 6·1% of the observations both a sales promotion and an increase in regular price occur during the
same month. The criterion described before implies that we have considered [toP =1 for these observations.
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FIGURE 5

Time series for prices, inventories, and orders

This figure anticipates several results that will be discussed below using the whole sample.
First, changes in regular retail prices occur very infrequently. Most nominal price changes
are associated with sales promotions. Second, orders are infrequently placed and their
volume tends to be larger than sales during one month (or even several months). Third,
the largest reductions (and lowest levels) in average retail price tend to be associated with
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large orders (e.g. months 4, 8, 9, 11, 20 and 25 for brand 2769; months 12, 22, 23, and 24
for brand 3477; and months 4, 15, 16, 17 and 24 for brand 4886). Of course, this is not a
strong evidence in favour of the model presented in Section 2. The synchronization of
positive orders and low prices could be explained by low prices leading to large sales, large
stock reductions and, consequently, positive orders. In other words, there is a simultaneity
problem and for that reason our empirical analysis will not place emphasis on the corre­
lation between positive orders and price reductions. Instead, we will analyse how the state
variables (i.e. predetermined variables) affect price and inventory decisions, and whether
these effects are consistent with the predictions of our model.

TABLE 2

Descriptive statistics: Distribution ofbrand-specific averages 534 brands. January 1990-May 1992 (29 months)

Pcti1e. Pcti1e. Pctile. Pctile.
Mean 10 25 Median 75 90

Orders (1) Frequency q> 0 (%) 76·60 48·28 65·52 79·31 89·66 96·55
(2) Duration (in months) 1·38 1·04 1·08 1·22 1-44 2·00

Markups (3) Regular retail price (%) 20·50 9-46 15·69 19·95 24·77 30·31
(4) Price under promotion (%) 5·10 -0·31 1·82 4·36 7·65 11-43
(5) Retail price (%) 16·68 5·70 12·12 16·65 21·76 27·14

Regular Retail (6) Freq. price changes (%) 46·60 17·86 28·57 46-43 60·71 78·57
Price (7) Duration (in months) 2·18 1·18 1-44 1·80 2·56 3·60

Wholesale (8) Freq. price changes (%) 34·63 10·71 21-43 34·14 42·86 50·00
Price (9) Duration (in months) 3-46 1·82 2·10 2·86 3-80 6·00

Sales (10) Freq. prom. > 0 (%) 42·85 6·90 17·24 37·93 68·97 86·21
Promotions (11) Ratio prom./tota1 sales (%) 21·90 1·59 7-43 18·36 33·57 47-40

Retail Price (12) Freq. price changes (%) 68·95 35·71 53·57 71-43 85·71 96-43
(13) Duration (in months) 1·58 1·04 1·12 1·35 1·71 2·27

a All the statistics in this table have been obtained using the 534 brand-specific means of the variables. Therefore,
these statistics refer to the between-brands distribution of the variables.
"Row 2 presents the average duration between two positive orders.
"Rows 7, 9, and 13 present the average durations between two nominal price changes.
d In order to avoid right-censoring bias due to incomplete duration spells, the average durations have been
obtained without including those spells starting during the last 5 months.
e The ratio in row 11 is equal to "sales under promotions (in phys. units)/tota1 sales (in phys. units)".

Table 2 presents descriptive statistics for the decision variables. Rows 1 and 2 show
the distributions of the ordering frequency and the duration between two orders, respect­
ively. On average orders are placed every 1·38 months (5·5 weeks). Rows 3 to 5 refer to
markups. Markups under promotions tend to be very small, and there is a sizable differen­
tial between these markups and the ones associated with regular retail price. In rows 6
and 7 we present the frequency of changes in regular retail prices and the average duration
of a regular price quotation. Regular prices present important stickiness. For 50% of the
brands the average duration of a price quotation is larger than 1·80 months (7·5 weeks).
However, the stickiness of regular retail prices is significantly smaller than the one of
wholesale prices (rows 8 and 9). Rows 10 and 11 present the frequency of sales promotions
and the ratio between sales under promotion and total sales (in physical units). Sales
promotions are very frequent and they account for 22% of total sales." The high fre­
quency of sales promotions implies that the nominal rigidity of retail prices (rows 12 and
13) is significantly smaller than the one of regular retail prices.

10. Notice that the proportion of sales under promotion is lower than half the proportion of months with
a promotion. This is consistent with the fact that, according to company's managers, a brand is maintained
under promotion for no more than seven consecutive days and usually no more than once per month.
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AGUIRREGABIRIA MARKUPS AND INVENTORIES 291

Our econometric approach to estimate the structural model requires the stationarity
of the observable state variables, i.e. stock and markup at the beginning of the month,
and real wholesale price. We have obtained Dickey-Fuller tests of stationarity for each
of these variables and for every individual brand. These tests show that non-stationarity
seems not to be a problem in this dataset. Stationarity is very clearly accepted (not
rejected) for markups, inventories and orders of all the 534 brands in the sample. How­
ever, for 61 brands we have found evidence of non-stationarity in real wholesale prices.
For these brands we have considered two alternative measures of real wholesale prices:
the actual real wholesale price, and the deviation of real wholesale price with respect to
its brand-specific time trend. All the estimations in this paper have been performed using
both measures of real wholesale prices, obtaining negligible and statistically not significant
differences between them.

TABLE 3

Fixed-Effects Probit Models for Discrete Choices (Standard errors in parentheses)

(I)

Orders
q>O

Regular retail price Sales promotions
jM'KCg=_1 /I1PReg = +1 I SP =I

(2) (3) (4) (5) (6) (7) (8)

-0·911
(0·020)

-0·059
(0·243)

-0·183
(0·228)

In (s) - 0·927 0·026 0·018 - 0·044 - 0·044 0·109 0·088
(0·020) (0·009) (0·009) (0008) (0,008) (0·009) (0'009)

0·028 10585 10·725 -11·728 --11723 2·309 2·839
(0·244) (0275) (0·276) (0·269) (0·270) (0·213) (0·219)

~ 0·059 0·668 0·840 - 0·942 - 0·934 O· 390 G- 377
(0·232) (0206) (0·208) (0·199) (0·201) (0·206) (0·212)

0·084 O' 117 0·006 O' 384
(0'024) (0'022) (0,021 ) (0'021)

Log-lik. - 4,993 - 4,985 - 6,46.\ - 6,448 -7,336 - 7,336 - 6,668 - 6,498
Pseudo R2 a 0·366 0·367 0·232 0234 0·229 0·229 0·303 0·321
Number obs.b 14,056 14,056 14,868 14,868 14,952 14,952 13,888 13,888

a Pseudo- R 2 = I - RSS/TSS, where RSS = I;v= I I; I (Di l - bi l )2; TSS = I;v~ I I:~ I tD; - 15)2; D; is the dummy
dependent variable; and ViI is the predicted index, between 0 and 1.
bIn these estimations we have not used those brands without enough variability in the dependent variable, i.e.
with histories of the dependent variable that contain only I zero or only lone. This explains the different
number of observations for each of the estimations.

c

b

Iny(t -1)

Table 3 presents reduced form estimations of the discrete decisions for orders and
prices. The explanatory variables in these models are the logarithms of the observable
state variables; In (s), c, and b. All the estimations include brand-specific fixed-effects to
control for spurious state dependence due to unobserved individual heterogeneity. We
have also included monthly dummies to control for "aggregate" shocks ii.e. that have the
same effect on the decisions of all the brands in this company). Since the number of
observations per brand is relatively large ii.e. 28), we expect the well-known bias of the
fixed-effects estimator in dynamic panel data models to be small. For each binary choice
we have estimated two probit models, depending on whether we include or not the log­
arithm of sales at previous month, In ( YiJ- 1), as explanatory variable. This variable has
been included to control for potential spurious state dependence due to forms of autocor­
relation in unobservables not captured by brand fixed-effects (e.g. autocorrelation in
unobservable demand shocks at and ni.), as well as to test whether this autocorrelation is
significant.

Columns I and 2 are consistent with an (Sr, sr) inventory rule where changes in the
thresholds are mainly associated with changes in expected demand. The stock at the begin­
ning of the month is clearly the variable with the largest and most significant effect. Real

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/66/2/275/1563377 by U

niversity of Toronto Library user on 29 D
ecem

ber 2021



292 REVIEW OF ECONOMIC STUDIES

wholesale price has the expected negative effect on the probability of positive orders, but
the effect is not significant. The effect of the markup at the beginning of the month is also
not significant. The positive and significant effect of previous month sales (column 2) is
consistent with positive autocorrelation in demand shocks. Nevertheless, including
In (Yt - d does not produce significant changes in the rest of the estimates, and the
improvement in the goodness-of-fit of the model is negligible.

Columns 3 to 6 present the estimation of probit models for nominal adjustments in
regular retail price. The markup at the beginning of the month is the state variable with
larger explanatory power and it has the expected effect, i.e. the larger the markup the
lower (higher) the probability of a positive (negative) price adjustment. The stock level
has a significant effect on the probability of both types of nominal price adjustments. This
effect is consistent with the predictions of our model. When the stock is large the firm
tends to reduce the nominal retail price, but when the stock starts to decrease price
increases become more likely. The signs of the estimates in the probits for sales pro­
motions (columns 7 and 8) are the same as the ones in the probits for reduction in regular
retail price. However, inventories have a much stronger effect on the probability of
promotions." Therefore, it seems that the type of retail price dynamics that result from
inventory cycles is mainly associated with sales promotions. When we include In (y t - d
the estimate of the coefficient associated with inventories decreases, both in the probit for
promotions and in the probit for regular price reductions. However, the change in the
parameter estimates is small and the qualitative results remain unchanged.

Given the markup at the beginning of the month, real wholesale price has a positive
effect on the probabilities of promotions and regular price reductions, and a negative
effect on the probability of regular price increases. However, notice that taking into
account that bit=pi,t -1 - Cit, the estimates in Table 3 show that real wholesale price has a
positive (negative) effect on the probability of price increases (reductions).

Table 4 presents evidence about the behaviour of markups between two orders. For
each brand we define an "ordering spell" as the set of observations between two positive
orders. Let r(i) be the r-th ordering spell for brand i, and let 1'r(i) denote the duration (in
months) of spell rei). The subindex) denotes the )-th month in a certain spell, where) = 0
is the initial month (when the initial order was placed) and) =1'r(/) is the last month (when
a new order was placed). Let mr(l),j be the markup at the )-th month in the r-th ordering
spell of brand i, and define

(18)

That is, !3'C,j is the average difference between the markup) periods after an order and the
markup when that order was placed, given that the duration spell is 1'. According to our
model, if lump-sum ordering costs are large enough, we expect that for any value of 1':

(1) !3 'C,I < !3 'C,2 < ... < !3 'C, 'C - I, because the markup increases between two orders; and (2)
(!3'C,2 - !3'C,I) > (!3'C,3 - !3'C,2) > ... > (!3'C,'C -I - !3'C,'C -2), because the increments in markup tend
to be smaller when we approach to the next order.

Table 4 presents OLS estimates of these average markup differentials. The predictions
of our model are clearly supported by these estimates. One month after an order has been
placed (and if there has not been a new order) the markup is around 3 percentage points

11. The ratio between the parameter estimate associated to In (s) and the parameter estimate associated
to b is 0·002 (s.e. =0-004) in the probit for regular price reductions, and 0·052 (s.e. =0-004) in the probit for
promotions.
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TABLE 4

293

Markup behaviour between two orders

Estimate of {3r.j
(in (j/o points) s.e.

r=l
After 1 month (j = 1)

r= 2
After 1 month (j = J)

After 2 months (j =2)

r=3
After 1 month (j = 1)
After 2 months (j =2)
After 3 months (j =3)

r= 4
After 1 month (j = 1)
After 2 months (j =2)
After 3 months (j =3)
After 4 months (j =4)

- 0·150

3-209
0,781

2-437
3·304
0,313

3,604
4,576
4-467
1,561

0·100

0·268
0·268

0-497
0-497
0-497

0·782
0·782
0,782
0,782

larger than in the previous month. The increases at the following months are less import­
ant but also significant. For r = 4, the average differential after 3 months is 4-47 percentage
points (s.e. =0·78).

How important are these markup differentials in terms of the within-brand variability
of markups? The average within-brand standard deviation of markups is 5·61 percentage
points (the median is 6-49 percentage points). Therefore, the variability of markups
between two orders represent a very important proportion of the within-brand variability
in markups.

In this section we have presented preliminary evidence about some of the predictions
of our model. We have estimated significant effects of inventories on price decisions. These
effects are particularly important for the decision about sales promotions. We have also
shown that markups tend to have a cyclical path that matches the (5, s) behaviour of
inventories, decreasing when orders are placed and increasing between two orders. Fur­
thermore, this source of markup variability could account for a significant proportion of
the time variability of markups. Our next step is to estimate the structural model and use
the estimated model to analyse the contribution of several parameters to the variability
of prices and markups and to the frequency of sales promotions.

5. ESTIMATION OF THE STRUCTURAL MODEL

The decision problem can be characterized in terms of three sets of parameters: (l) the
vector of demand elasticities y; (2) the parameters in the transition probabilities of the
state variables, 8l ; and (3) storage costs and lump-sum costs, i.e. lX, 11 q and 11 P

• The first
two sets of parameters can be estimated from the sales equation and the transition rules,
respectively. However, the identification of storage costs and lump-sum adjustment costs
requires one to exploit the optimal decision rule.

The decision rule in equations (16) and (17) is the combination of marginal conditions
of optimality and optimal discrete choices. In this paper we obtain estimates of the struc­
tural parameters which exploit moment conditions associated with the optimal discrete
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choice, but not moment conditions associated with the marginal conditions of optimality
(i.e. Euler equations)."

It is also important to notice that lump-sum adjustment costs do not appear explicitly
in the Euler equations. The identification of these parameters requires one to exploit
moment conditions associated with the optimal discrete choice.

5.1. Optimal discrete choice

Consider the characterization of the optimal decision rule in equations (16) and (17). We
can distinguish four regimes which result from combining the two discrete alternatives for
orders and the two alternatives for nominal price change. When menu costs are asymmet­
ric the number of regimes or discrete alternatives is six, i.e. the combination of two alterna­
tives for orders and three alternatives for price change. Let de {I, 2, ... ,6} be the index
for this discrete choice. We can represent the optimal decision rule in equations (16) and
(17) using the following compact expression

{m*(k; e), q*(k; e)} =L~= 1 I(d*[k; e] =d){md(k; e), ijd(k; e)}, (19)

where d*[k; e] is the optimal discrete choice, that is implicitly defined by a partition of
the state space, such as the Tsets in expressions (16) and (17); and {md(k; e), ijd(k; e)} is
the optimal decision for markup and orders conditional on the vector of state variables
being in the sub-space associated with discrete alternative d.

Let Vd(k; e) be the value function conditional on the hypothetical choice of discrete
alternative d. By definition, V(k; e) =max{d} {Vd(k; e)}, and therefore

V
d(k; e) =nik; md[k; el, qd[k; 9]; e.) +13£C'::~X.6) {Vj tk';en Ik, d; e). (20)

Using the previous definitions the optimal discrete choice can be represented using the
following expression

d*(k; e) =d <=> d =arg max {VJ(k; e)}.
JE {l,2, ... ,6}

(21)

Let x be our vector of observable state variables, i.e. x =(c, s, bY. We do not observe ill,

that is, we do not have certain information about demand shocks that is available to the
firm when taking its decision. Given equations (20) and (21) and an assumption about the
probability distribution of ill conditional on x, the econometric model will be completely
defined.

Let End(x; e) be the function that represents the expected value of the one-period
profit conditional on x and on the hypothetical choice of discrete alternative d.

Using this definition we can write

ntk, md[k; e], ijd[k; e]; en)=End(x; en)+ e",

(22)

(23)

12. Our estimation of the Euler equations (see Aguirregabiria (1995)) provided imprecise estimates of
some of the structural parameters. there are two simple reasons for this result. First, since corner solutions (i.e.
zero price change or zero orders) are very frequent in our dataset, the subsample of observations that can be
used to estimate the Euler equations is relatively small. Second, most of the within-brand variability in the
decision variables is captured by the discrete choice. When we estimate the Euler equations in differences (and
using the subsample of interior solutions) the variability of the transformed variables entering in these equations
is very small, what results into imprecise parameter estimates.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/66/2/275/1563377 by U

niversity of Toronto Library user on 29 D
ecem

ber 2021
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where, by construction, the unobservable c" is orthogonal to x. Given our specification
of the one-period profit function we have that

(24)

where nd(x)=(E[exp{m+c}y-exPlc}qlx,d], r S, -/(m<b), -I(m>b), -/(q>O))';
/l(8n;} =(1, U, T]P(-), 71 P( + ) , T]q)', and 17 P( ) and 71 P( +) are the menu costs associated with
price reductions and price increases, respectively.

The unobservables {s"} represent the uncertainty of the researcher about the actual
expected profit that is observable to the firm. By construction they are mean independent
of x, and their joint distribution depends on the distribution of (0 conditional on x. We
consider the following assumption about the joint distribution of x and £ = (s I, ... , £6),.

Assumption 5. Conditional Independence Assumption (Rust (1987):

pdjtx', £'Ix, e. d) =pdf(£'! x')pdf(x' [x, d),

where x' and e' are next period values of x and e.

(25)

In the context of our model, the conditional independence assumption implies that:
(1) the dependence of the demand shock (0,+ I with respect to (0, is captured by s.; I, b., 1,

and c, + 1; and (2) conditional on the discrete choice and on (SI' b" c.), next period whole­
sale price, inventories and markup do not depend on to.. These two assumptions do not
result from Assumptions I to 4 in Section 2. In particular, part of the dependence of to, + I

with respect to to, could not be captured by XI + I. However, without Assumption 5 the
estimation of this decision problem would be computationally very demanding due to the
existence of autocorrelated unobservables. We have tested the conditional independence
assumption using a test proposed by Rust (1994a). In the context of our model this test
consists on including previous period sales in the conditional choice profit functions and
testing whether the parameters associated with this variable are significant.

Assumption 5 has some useful implications on the form of the discrete choice model
in equations (20) and (21). Let EV"(k: fJ) be the second component of Vd(k; fJ) in equa­
tion (20), i.e. the conditional choice expectation of next period value function. Under
Assumption 5, EVd(k;.fJ) does not depend on the vector of unobservables E

EVd(k; e)=EC ~~xo: {Vi(k'; e)lIk, d; e) = EVd(x; e).

Taking into account equations (22) to (26), the optimal discrete choice becomes

(26)

d*(k; 8) = d¢:::} d = arg. ~~x ,[ni(x)'/l(fJn ) + e' + fJEVi(x; 8)}. (27)
IE ,J ._ •...• 6,

Another implication of the conditional independence assumption is that the probability
of the history of discrete choices, conditional on observable state variables, is equal to the
product of the conditional choice probabilites at each period

P (d d I . fJ) - 0 7 n6 pd( . fJ)I(di1=d)r iI , ... , iT Xi, . - 1 ~ J ,,= J Xii, ,

where pd(X it ; 8) is the conditional choice probability Pr (d*(ki l ; fJ) =dixit; fJ).

(28)
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296 REVIEW OF ECONOMIC STUDIES

Given a parametric specification for pdf(elx), the econometric model in equations
(20) and (27) can be estimated using a nested solution-estimation algorithm." However,
the dimension of the state space and the decision space in our model makes this approach
computationally very demanding. Instead, we will use an estimation method that does not
require an explicit solution of the model at each iteration in the search for the parameter
estimates. This method exploits a representation of the conditional choice value functions
in terms of the structural parameters and conditional expectations of future paths of state
and decision variables. Under Assumption 5, these conditional expectations depend only
on observable variables. This property can be exploited to estimate the structural param­
eters using a sequential procedure. In a first stage the conditional expectations that enter
in the value functions are estimated. In a second stage these estimates are solved in the
expression of the conditional choice value functions, and estimates of the structural
parameters are obtained exploiting moment conditions from the discrete choice model
in equation (27). Different versions of this method have been previously proposed and
implemented by Manski (1991, 1993), Hotz and Miller (1993), Hotz et al. (1994), and Ahn
(1995). Our approach is closely related to Hotz-Miller method.

Lemma 3. Under Assumption 5 and the multiplicative separability between 8 and x in
End(x; 8), the optimal discrete choice can be represented using the following expression

d*(k it ; 8) =d ¢=? d =arg max {rrJ (xit)'.u(81lJ+ W{;A(8n ) + e{t}, (29)
JE {1,2, ... ,6}

where A(On) = CU[On]', 1)', and

(30)

where W d
( .) is a known closed-form function; P is the set of conditional probabilities

{pd(x): d =1, ... ,6; XE X}, where pd(x) == Pr (d*(k; 8*) = dlx; 8*); and 8* == (8%,81) is
the "true" vector of structural parameters in the population.

Proof See Appendix 2. II

The vector Wft has a straightforward interpretation. In our model this vector has six
components. Each of these components is associated with one of the six components of
the one-period profit function. For instance, the first component of W d represents the
expected and discounted stream of future sales minus variable ordering costs conditional
on current value of x and on the hypothetical choice of discrete alternative d. The fifth
component of W d is the expected and discounted stream of the number of times that a
positive order will be placed in the future (conditional on x and d). The last component
of W d is the expected and discounted stream of future e's conditional on x and d.14

It is important to notice that, in expression (29), lump-sum costs parameters are not
only associated with the constant terms of the choice specificintertemporal profits. Lump­
sum costs are also associated with some components of Wft. Since these components
present significant sample variation, this characteristic is crucial for the identification of
these parameters.

13. This approach has been successfully applied in the estimation of different dynamic discrete choice
structural models. For excellent surveys of these methods see Eckstein and Wolpin (1989) and Rust
(1994a, 1994b).

14. Notice that the expected stream of future s's is not zero because the firm will tend to choose those
alternatives with relatively large values of e.
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5.2. Sequential estimation method

Based on Lemma 3 we can obtain a root-a-consistent estimator of en; using the following
sequential procedure.

Stage I: Nonparametric kernel estimation of pd(X); estimation of IIf(x) =
E(exp {m + c}y - exp {c}ql x, d); and estimation of the transition probabilities of the state
variables.

Stage 2: Using the previous estimates, construct the values W~ = Wd(Xit, P, 8f ) , and
estimate en; using a GMM that exploits the following moment conditions:

(31)

(32)

where Zit is a vector of instrumental variables (i.e., current and previous values of Xit);
and, given an extreme value distribution for E':

(d) A. _ exp {II~'.u(Bn;) + W~'A(Bn;)}
p (nit, Wit, Bn;) - ~6 {II!' (CI) wA j, ':l(CI )}.

L, j = I exp It.u Un; + II Jl, Un;

Hotz and Miller (1993) prove the consistency and asymptotic normality of a general
class of estimators that includes this one. They also obtain the expression of the asymp­
totic covariance matrix of this estimator, that accounts for its sequential nature (Hotz and
Miller (1993), equation 5.11).

5.3. Estimation results

We describe in Appendix 3 the details about the different estimations in the first stage of
our procedure. We use a Gaussian kernel method for the estimation of the conditional
choice probabilities and the transition probabilities. Here we discuss briefly some aspects
related to the estimation of the first component of the vectors nd(x) for d = I, ... ,6.

nf(xit) =exp {Cit }E(exp {midYit - qitlXit, d). (33)

This term represents expected (from the point of the econometrician) current profits gross
of storage and lump-sum costs. Obviously, the form of these conditional expectations has
an important effect on our estimates of the structural parameters a, l1 PH , l1 P(+ ) , and l1 Q

•

The main econometric problem associated with the estimation of nf(Xit) is the existence
of sample selection bias. Since both "exp {mit }Yit - qit" and the actual choice, dit, depend
on the unobservable shock Wit, a simple estimation of nf(xit) using the subsample of
observations with d., = d provides biased estimates due to the existence of a sample selec­
tion problem. In other words, we want to estimate expectations conditional on hypotheti­
cal choices, which are different to the expectations conditional on actual choices. This
econometric problem is equivalent to the one in a model of occupational choice, where
one should estimate the expected wages of an individual under the different hypothetical
occupations before estimating the rest of parameters of the model.

Our theoretical model implies certain exclusion restrictions that allow us to control
for this selection bias. In particular, the optimal decision rules in equations (16) and (17)
imply that the discrete choice depends on all the observable state variables, but the optimal
continuous decisions do not depend on all the observable state variables." We exploit

14. Notice that the expected stream of future e's is not zero because the firm will tend to choose those
alternatives with relatively large values of e.
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TABLE 5

Structural parameters estimates GMM Estimation ofdiscrete choice model 534 brands.
January 1990-May 1992 (29 months)

Symmetric menu costs
(1) (2)

Estimate (s.e.) Estimate (s.e.)

Asymmetric menu costs
(3) (4)

Estimate (s.e.) Estimate (s.e.)

0·145 (0·017) 0·110 (0·020)

O' 303 (0·064)
- 0·067 (0·027)

O' 398 (0'162)
0·024 (0'089)

- 0·033 (0'047)

2·54 (0-469)
64·13 (0·213) 53·87 (0'365)

18,091 (0·196) 18,078 (0·201)
13,350 13,350

24·09 (6·59)
278·11 (21-40)

36·99 (6·23)
282·26 (21·94)

49·72 (19·87)
138·94 (18·05)

0·105 (0·016)

51-46(19-42)
138·67 (18'71)

0·097 (0'011)

0·261 (0·087)
- 0·055 (0'024)

O·242 (0'089)
0·052 (0'084)

- 0·021 (0'056)

3-13(0·535) .
54·86 (0-480) 49·09 (0·510)

17,973 (0'388) 17,970 (0·394)
13,350 13,350

21·06 (6·69)
311·73 (24·97)
72·62 (26·24)

33-44(6'39)
319·25 (24·76)
68·55 (25·05)

a
Tl

q

TIP
Tl P

( - )

Tl P (+)
(J£

InYi,I-I(d= 1)
InYi,t-l(d= 3)
InYi.I-1(d =4)
InYi,t-l(d=5)
In Yi,t-l (d =6)

D-H-W test (p-value)
Hansen test (p-value)

Goodness of fit (p-value)
Observations

a Instrumental variables: {Ci,t-j,ln Si,t-jl bi,t-j: for j =0, 1,2,3}
b The number of moment conditions is 60, i.e. 12 instruments times 5 equations.
"Goodness-of-fit test: X2=NTI::=I I~= [fid(xm)-pd(xm

, 8)]2jfid(xm
) , where M == 3584 (the number of cells in

the discretized state space), fide?) and pJ(xm
, e) are the kernel estimate and the structural estimate, respectively,

of the conditional choice probabilities. Under the Ho,x2 is a X2 with 5M-K degrees of freedom, where K is the
dimension of e.

these exclusion restrictions to estimate nf (Xit) controlling for selection bias in a nonpara­
metric form. We also test these restrictions under a parametric specification (see Appendix
3, Section A.3.3).15

The rest of this section concentrates on the estimation of the structural parameters.
Table 5 presents these estimates. The discount factor {3 has not been estimated, and has
been fixed at 0·985. However, we have estimated the model with other values for {3,
obtaining that the estimates of the rest of parameters do not change significantly for
values of {3 between 0·950 and 0·999. The aggregate inflation rate, p, has been also fixed
at o·55% (Spanish average monthly inflation rate during the period). All the parameters
are measured in 1990 US dollars. We have considered four different specifications: with
and without asymmetric menu costs, and including or not In (Yi,t- 1) (to test for the exist­
ence of spurious effects due to autocorrelation in demand shocks). All the estimations are
two-stage GMM based on a White's estimator of the covariance matrix that allows for
conditional heteroscedasticity. We have considered the same set of instrumental variables
in the four specifications: current and lagged state variables up to lag 3.

We present three specification tests. The first is a Durbin-Hausman-Wu (DHW) test
of the null hypothesis "no change in parameter estimates when In (Yi,t- 1) is included".
The estimates of the parameters associated with In (Yi,t- 1)are always significantly different
from zero. However, the changes in the estimates of the structural parameters when
including this variable are negligible and not significant, except for the unit storage costs
a. The DHW test presents strong evidence in favour of the hypothesis of no change in

15. For instance, when q*(b, s, c, (1)) > 0 and m*(b, s, c, (1)):t b, the model predicts that q*(b, s, c, (1)) + sand
m*(b, s, c, (1)) do not depend on band s.
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the parameter estimates. The second specification test is a Sargan-Hansen test of overid­
entifying restrictions. For all the estimations the p-value of this test is larger than 0.2, but
it increases when we include In (Yi,1 d and, specially, when we allow for asymmetric menu
costs. Our third specification test is a Chi-square goodness-of-fit test (see Gourieroux and
Monfort (1995) Vol. 2, pages 109114). Including InCViJ-d leads to small improvements
in the goodness-of-fit of the model, but the fit of the model increases very importantly
when we allow for asymmetric menu costs. In general terms, the specification tests provide
evidence in favour of the model with asymmetric menu costs. Furthermore, although
the assumption of no autocorrelation in demand shocks is rejected, the effect of this
misspecification on our parameter estimates appears to be negligible.

The parameter estimates are very precise in all the specifications. The least precise
estimate is the one for unit storage costs, a. Since this parameter is associated with the
ratio s., /Si (where s, is the average stock level for brand i), our estimates imply that if this
ratio goes from 50% to 150<Ytl ii.e. an increase of 100 percentage points) monthly storage
costs associated with an individual brand would increase between $11 and $37 (i.e. 95%
confidence interval using estimates in column 4). Lump-sum ordering costs are significant
and quantitatively very important. In column 4 the 95°;;1 confidence interval for nq is
[$235, $321] that represents between 4<~/1l and 6% of average monthly sales of an individual
brand in the sample. This estimate is very robust to the consideration of symmetric/
asymmetric menu costs and to including or not In (Yu- 1).

Columns 3 and 4 present a significant difference between menu costs associated with
nominal price increases and those for price reductions. Menu costs associated with a price
reduction are approximately one third of the menu costs of a price increase. Since our
estimation of rr1 (XiI) in the first stage does not impose symmetry in the response of sales
to price changes, it is unlikely that the difference in our estimates of n P

(+ ) and nP(-l is
spuriously capturing this type of misspecification in the sales equation. Although, up to a
certain extent, menu cost parameters in our model are "black boxes", the significant and
sizable difference between nl'(+) and l1 Pl

-
l is a relevant empirical result. Based on our

conversations with company's managers we consider that the contractual relationship
between retailers and wholesalers can be particularly important to explain the relatively
small costs of sales promotions for retailers. The contract between a wholesaler and the
supermarket chain specifies the proportion of certain costs associated with sales pro­
motions that will be supported by the wholesaler. These costs include menu costs as well
as marketing costs (c.g., mailing). According to these managers, the percentage of the cost
supported by the wholesaler is generally larger than 50%. Menu costs might be symmetric,
but the part of menu costs supported by the retailer is asymmetric"

However, we will show in next section that asymmetric menu costs are not the only
factor, and in fact not the most important, to explain sales promotions in our dataset.
Fixed ordering costs and (5, s) inventory dynamics contribute to explain a very important
proportion of these promotions.

In Table 6 we present some statistics related to our estimates of fixed ordering costs
and menu costs, and compare them with those obtained in previous studies. Total fixed
ordering costs represent 3·15lYtI of the total value of sales in the supermarket chain, and
3·35% of total variable ordering costs. For each item sold by the chain, almost 4 cents are
spent in fixed ordering costs. Before we discuss the statistics associated with menu costs,

16. In principle. an alternative approach would be to exploit our specification of the demand equation
and estimate I1~ (XiI) jointly with the rest of parameters of the model. However. this approach is not feasible in
our case. Even if we exploit a parametric specification of the demand. we still have to estimate the expected
values of mil and qi' conditional on .v and d in order to obtain m' (Xi')'
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TABLE 6

Menu costs and fixed ordering costs

Fixed ordering costs

Fixed OC Fixed OC/ Fixed OC/ Fixed OC/
per order sales items sold variable OC

$278·11 3·15% $0·0365 3·35%

Menu costs

MC
per price change

and per store MC/sales MC/items sold

Total 0·70% $0·0081
Our study i1P>O $2·23 0·31% $0·0035

M<O $0·83 0·39% $0·0046

Levy et al. (a) $0·52 0·70% $0·0119
(b) $1·33 0·72% $0·0123

Slade $2·70

a Supermarket chains where price tags are placed on the shelves but not on each individual item.
b Supermarket chains where a separate price tag is placed on each item (in addition to the shelf price tag).

it is important to take into account the following consideration. In the studies by Slade
(1994) and Levy et al. (1997) menu costs are measured at the level of individual stores,
but our estimates represent menu costs for the whole supermarket chain. In order to
obtain an estimate of menu costs per price change and per store we have divided our
estimate by the number of stores in our supermarket chain. i.e. 62. This measure relies on
the assumption that there are not economies of scale in menu costs with respect to the
number of stores in a supermarket chain. This assumption is strongly supported by the
results in Levy et ai. These authors show that almost 100% of the menu costs considered
in their study (that exclude managers' decision costs) are at the level of individual stores.
Notice that only our estimate of menu costs per price change and per store relies on this
assumption. The rest of statistics in Table 6 do not depend on this assumption.

In general terms the statistics in Table 6 show that the magnitude of our estimates is
very similar to the magnitude of menu costs estimated in previous studies. Our estimate
of menu costs per price change (and per store) is closer to the one in Slade than to the
estimates in Levy et al." This could be explained by the fact that both our estimates of
menu costs and the one by Slade include managers' decision costs, but the measures in
Levy et al. do not include this type of menu costs. Our estimate of the ratio of total menu
costs over total value of sales is very close to the one reported by Levy et al. (0·70%). Our
estimate of the ratio of menu costs over number of items sold is approximately 33%
smaller than the one in Levy et ai.

6. COUNTERFACTUAL EXPERIMENTS

In this section we use the previous estimates to analyse the contribution of several struc­
tural parameters to the frequency of sales promotions and to the variability of markups.

17. The contract specifies the minimum number of weeks that the supermarket chain will have a certain
brand under promotion during the year, and the amount of money per sales promotion that the wholesaler will
pay to the supermarket if the conditions of the contract have been fulflled.
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We have solved numerically the model and generated simulations under four different
scenarios. We start describing several features which are common to all the scenarios.

First, real wholesale prices are constant over time. This assumption has been made
to reduce the computational cost of solving the model (3 state variables instead of 4). The
results of our experiments should be robust to this simplifying assumption. The discretiz­
ation grids for the state variables ib, s) and for the decision variables (m, q) are the same
as in the estimation of the model (see Appendix 3). We have discretized W, in five values
{-2aw , -aw , 0, a w , 2a\\} where CJ"\\ is the standard deviation of WI'

We assume that WI follows a stationary AR(1) process, WI = <PwWI-l + ~I' where ~t is
tid N(O, a~). We also assume that a.r-iid N(O, (J~). Unit storage costs have been fixed at
24-09 (i.e. point estimate in column 4 of Table 5), and aggregate monthly inflation rate at
0·55% (i.e., average monthly inflation rate during the sample period). The estimations in
Table 5 have been obtained using a semi-reduced-form estimation of expected sales. How­
ever, we cannot use these estimates of expected sales when performing our simulations
because the experiments would be subject to the Lucas critique. For that reason we have
obtained parametric estimates of the demand parameters {y 1, Y:2, (J~ + a~, <Pw} in Appen­
dix 3, and used these estimates in the simulations presented below. These estimates are:
y1 = -7·806 (0'648), Y:2 = 2·519 (OA14), ~\\' = 0·082 (0'018), and ~ o-~ + o-~ = OA47. It is clear
that we cannot identify separately CJ"a and as' and thus we should make an assumption
on the decomposition of the variance of the error term in the sales equation in the variance
of the shock that is observable to the firm when taking its decisions (CJ"~) and the variance
of the shock that is unobservable to the firm, a~. the larger the ratio r: == (J~/( a;; + a~), the
larger firm's uncertainty about current demand and the larger stockout probabilities. Our
simulations in scenarios I to 3 are based on r; = 0·10, that implies o; = 0·141 and as =
0·306.

Scenario 1 is our benchmark model. It corresponds to the model estimated in column
4 of Table 5, and aa =0·141, (Js =0·306. In the other three scenarios we have considered
three experiments: zero lump-sum ordering costs (scenario 2); symmetric menu costs (scen­
ario 3); and constant markups of competitors, i.e. (Js =0,00, (scenario 4).

TABLE 7

Counter/actual experiments

Frequency of positive orders (°1<1)
Frequency of negative /1P C%)
Frequency of positive /1P (%)
Std. dev. of markup (';';0)

Scenario 1
1]'1= 27R-\

W'( 1= 51·5
as =0-306

70 I
50·8
29·6
V!"

Scenario 2
1]q= 0·0

rJI>(-) =51·5
a.; =0·306

100·0
26-8
10-9
3·8

Scenario 3
1]q=278·1

1]1'()= \38·7
as =0·306

642
48·5
19-4
5-6

Scenario 4
T)q=278·1

W(-) =51·5
as =0·0

69·7
44-4
14·2
4·1

Table 7 presents several statistics obtained using 1000 replications of the variables.
The comparison of scenarios 1 and 2 shows that if there were not fixed ordering costs the
proportion of periods with nominal price reductions would drop down from 50-8% to
26·8%, and the standard deviation of markups would decrease in 3·5 percentage points.
The effects of having symmetric menu costs (scenario 3) are much smaller than the ones
of removing fixed ordering costs. Finally, when markups of competitors are constant, the
reductions in the variability of mark ups and in the proportion of sales promotions are
very significant, with a similar magnitude to those associated with removing fixed ordering
costs.
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According to these experiments almost 50% of the sales promotions and 50% of the
variability of markups are associated with the dynamic of inventories in the presence of
lump-sum ordering costs. Of course, it is not the only important factor, and exogenous
demand shocks have also an important contribution to sales promotions and markups
variability.

7. CONCLUSIONS

This paper presents empirical support for the hypothesis that (S,s) dynamics of inven­
tories can explain an important proportion of sales promotions and of the time variability
of markups in the supermarket chain. We use a unique panel dataset that contains
monthly information on sales, stocks, retail prices, wholesale prices, and orders to sup­
pliers for 534 brands sold by a supermarket chain between January 1990 and May 1992.
Reduced form estimations of the optimal pricing rules show significant effects of inven­
tories on price decisions, specially for the decision about sales promotions. We have also
presented descriptive evidence on markups following a cyclical path that matches the (S, s)
behaviour of inventories, decreasing when orders are placed and increasing between two
orders. Finally, simulations based on the estimated structural model show that the exist­
ence of fixed ordering costs explain around half of the time variability of markups and
half of the sales promotions in our dataset. It would be unwise to draw general conclusions
from a single case study. However, the two characteristics of our model that explain the
important role of inventories in price dynamics, i.e. stockout probabilities and lump-sum
ordering costs, are not specific of our supermarket.

Since our dataset comes from only one supermarket chain, we are not able to measure
how much of the cross-sectional variability of markups in a certain market can be
explained by (S,s) inventory behaviour. We consider this issue an interesting topic for
further research.

To the best of our knowledge our estimate of fixed ordering costs is the first in the
literature. Our estimate of these costs is sizable and significantly larger than our estimate
of menu costs. According to these estimates annual fixed ordering costs and annual menu
costs account for 3·2% and 0·7%, respectively, of the annual sales in this supermarket
chain. The magnitude of our estimates of menu costs is similar to the one obtained in
previous studies, though they are closer to the ones obtained in studies that include man­
agers' decision costs in the definition of menu costs (Slade (1994)). We find significant
asymmetry in menu costs: menu costs associated with price reductions are approximately
one third of those associated with price increases. The contractual relationship between
retailers and wholesalers could explain the relatively small costs of sales promotions for
retailers. In particular, a significant proportion of the menu costs of sales promotions in
supermarkets is supported by wholesalers.

APPENDIX

1. Proofs of Lemmas 1 and 2.

The proofs of Lemmas 1 and 2 build on the properties of K-concave functions. We start presenting the definition
and some properties of these functions (see Scarf (1959) and Bertsekas (1976)).

Definition. Let f(x) be a real function on X, where X~9\N, and let K be a positive integer. We say that
f(x) is K-concave if for any Xo and Xl in X, and any AE (0,1):

Af(xo) + (1 - A)f(Xi) ~(1 - A)K +f(Axo + [1 - A]Xi)'
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By definition concavity is equivalent to 0 - concavitv. It is also clear that ifj(x) is K-concave it is also M-concave

for any M~K. We will use the following properties of K ~ concave functions,

(i) If f(·) is K-concave and increasing and g-(' ) is concave then: h =g»] is K-concave.

(ii) Iff(-) is K-concave, g() is M-concave, and al.a2 are two positive scalars then: aJ/+a2g is
[ajK + a2M] - concave.

(iii) If f(X1, X2) is Kvconcave, and XI[XI]== arg max(X21:J(Xj, X2) l then: g(xl) ==f(.Yj. xI[xd) is K-concave.
(iv) lff(x) is strictly K-concave it has a unique global maximum, x".
(v) Iff(x) is strictly K-concave. X<:;;:;9\. and x* is the global maximum, then: the equationj(x) =f(x*) - K

has only two solutions. x' and y" where Xl < x H
) . Furthermore, f(x) >((x*) - K if and only if XE

(x',xH
) .

(a) Proof of Lemma I. We proceed in two stages. first, we prove that if V(s) is strictly TJ q- concave the

optimal decision rules for markup and orders are the real functions in equations (14) and (15). Second, we prove
that V(s) is TJq - concave. We define the following mappings

z(m) =arg sup Qim, c);
Jl

(m*, .:*) =arg sup, Qim, z).
(l1L:)E':E

tn(.:) =arg sup Q(m,':);
fnE9\

Given these definitions and the assumption '11' =0, the optimal decision for inventories and markup can be
written as

.:*(s) =arg sup {Q(m[.:] . .:) - TJ "lt: > s)};
;;;:s

m*(s) =m(.:*[s)).

(a.l) If V(s) is strictly Tjif - concave, properties (i) and (ii) guarantee that Q(m,':) is strictly Tjif - concave.
Therefore, m* and z* are unique (i.e. property [iv)), m(s) is a real function (i.e. property [iv)), and Q(m[z]' z) is
strictly Tjq - concave. Let ZL be the smaller of the two solutions to the equation Q(m[z], z) =Q(m*, z*) - Tj". Using
property (v) and the definition for z*(s) above, it is simple to verify that ':*(.1) = I(s < .:').:* + l(s~zL)s. Therefore,
q*(s) =I(s < ZL) (z* - s), and m*(s) =I(s < .:L )m*· lts ~ z': )m(s).

(a.2) It remains to prove that V(s) is strictly TJ 'I ~ concave. We exploit the fact that

sup sup Imy"(m. .:)-.: - TJ </1(.: > s)!(cons tan I < 'x:
,\2() :::2.,,: me 9\

This property guarantees (see Puterman (1994). page 151) that for any value of s

~ '(.I') = lim vr(s)
r---) -'

where VT(S) is the value function for the finite-horizon problem with time-horizon equal to T. Our proof is
inductive. For T =] we have that QI (m,':) =myim.ci -::- is strictly concave. Therefore, using our result in (a.l ),
the optimal decision for this one-period prohlem has the form in equations (14) and (15), where now:

(mf, zt) =arg max(m.~)E9\2 Q, (Z, m); m,(::-) =arg max.s; Jl Ql (::-, m), and ::-; is the smaller of the two solutions to

the equation Q, (mllz]' z) = Qj(m t,::-f) - TJ'I. The value function of this one period problem is:

Vj(s) = I(s <.:; HQI (III i,.:t) - TJ'/: + I(s~.:;· )QI (ml [':],.:)

And it is simple to verify that this function is strictly TJ'I - concave. Assume that, for any T~], VT(S) is strictly
Tjq - concave. Again, by properties (i), (ii) and (iii), QT+ I(Iii r 1[::-)'':) is also strictly TJ" - concave, and the optimal
decision has the form in equations (14) and (15). The value function of this finite-horizon problem is:

that is also a strictly TJ q - concave function. Therefore, V(s) = lim- VT(S) is strictly TJ" - concave.

(b) Proof of Lemma 2. We follow the same strategy that in the proof of Lemma I. First, we prove that
if Vtb,s) is strictly (Tj q + TJ P)- concave the optimal decision rules for markup and orders are the real functions
in equations (16) and (17). Second, we prove that V(h, .1') is strictly (TJ" + TJP) - concave. The values m* and z",
and the functions m(.:) and f(m) have the same definitions that in the proof of Lemma I.

Notice that, by definition: (I) conditional on changing price and placing orders the optimal decision is
(m*, z"]; (2) conditional on changing price but not placing orders the optimal decision is (m(s), v); and (3)
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conditional on placing orders but not changing price the optimal decison is (b, z(b)). Therefore, we can define
implicitly the regions in 9\2 associated with the four possible discrete choices using Q('), m*, z*, m(s), and z(b).
For instance, the region Til (i.e. price change and positive orders) is

The sets Too, T IO , and To] can be defined in a similar way.

(b.l) If V(b,s) is strictly (17q+17P)-concave, properties (i) and (ii) guarantee that Q(m,z) is strictly
(17 q+ 17P) - concave. Therefore, m* and z* are unique, m(s) and z(b) are real functions, and Q(m[z],z) and
Q(m,z[mD are (17 q+ 17P) - concave. Using these results, property (v) and the definitions of the four T - sets, it is
possible to verify that z*(b, s) and m*(b, s) are the real functions presented in equations (16) and (17) (see
Aguirregabiria (1995) for details about this part of the proof).

(b.2) The proof of the (17 q+ 17P) - concavity of V(b,s) is equivalent to the one in (a.2).

2. Proof ofLemma 3.

By Bellman's principle we can define implicitly the conditional choice value functions as follows

where x' and E/' represent next period values of x and EJ, respectively. Under Assumption 5 this expression can
be written as

EVd(x; e) =f n::~= 1 pJ(x'; e)(II J(x')',u(e",)+ eJ(x'; e) + f3EVJ(x'; e))}p(x'lx, d; ej),

where {pd(X'; e)} are the conditional choice probabilities, and ed(x; e) == E(Edlx , d*[k, e] =d). Under general
conditions (see Hotz and Miller, Proposition I) the function ed(x; e) can be written in terms of the vector of
conditional choice probabilities, P(x; e)== {pl(X; e), ... , p6(X; e)}. Therefore, we define ed(p[x; OD==ed(x; e).
For instance, if the unobservables Ed are iid with a double exponential distribution, ed(p[x; eD = Euler
cons. -In (pd[X; eD.

Let G(x; B) be the Social Surplus function (defined by McFadden [1974]). By definition

G(x; 0) == E[ max {IIJ(x)',u(e",) + e! + f3EVJ(x; e)} [x; 0].
JE {1.2, ... ,6}

Taking into account the previous expressions, it is straightforward that

EVd(x; 0) =fG[x'; O]p(x'lx, d; ef),

and

G(x; 0) =L~= 1 pJ(x; e)[II J(x')',u(O",) + ed(p[x; en + f3 fG(x'; O)p(x'lx,j; OJ)].

This expression defines G(- ; 0) as the fixed point of a contraction mapping.
Now, consider the numerical solution of this contraction mapping for a particular value of O. Let

{x', x2
, ••• , xM

} be a discretization grid in the space of observable state variables. Using this discretization, we
can write the previous contraction mapping in matrix form as follows

G(O) =L~=] pd(e) * [IId,u(O",) + ed(P[OD + f3Fd(Oj)G(e)],

where G(e), pd(e) and ed(P[OD are Mx I vectors; "*" is the Hadamard product (element-by-element); II d is
an M x 5 matrix; and Fd (ef ) is the M x M matrix of transition probabilities conditional on discrete choice d. It
is simple to verify that the solution to this contraction mapping is

G(e) = (IM - f3F(0)r 1{L~=] pd(O) * (IId,u(e",) + ed(p[O]))},

where F(O) = L~=] pd(O) *Fd(ej) is the matrix of unconditional transition probabilities.
Let 0* be the true vector of structural parameters in the population, and define r" == pd(8*),

Fd"==Fd(O}) and F*==F(O*). Therefore, for any odose enough to e* we have that

G(O)z(IM - f3F*r 1{L~=] r" * (IId,u(e",) + ed(p*))},
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where A(81t ) = {J1(81t ) , I}' and:

Wd=F"-UM - f3F*r\L~/= I r" *rr', L.~= I r" * ed(p*))

Since n"'s are known and we can obtain nonparametric consistent estimates of F*, r" and P* (without esti­
mating the structural model), we can obtain consistent estimates of WeI.

3. First stage estimations

A.3.l. Discretization oj the state variables. We should discretize the space of observable state variables to
obtain estimates of Wd. Since the range of variation of Cit and In (Sit) is very different for the different brands,
we have considered the variables bit, Cil' and lSil> where Cit and lSit are the logarithms of real wholesale price and
stock, respectively, in deviations with respect to their brand-means. We have used uniform grids to discretize
each of these variables. The following table presents the details of this discretization.

TABLE A.3.1.

Discretization of the state variables

Minimum value (percentile)

Maximum value (percentile)

Step (cell size)

Number of cells

Correlation between first differences
of actual and discretized variables

b

- 0·03 (2)

0·36 (98)

0·03

14

0·94

-0·27 (2)

0·18 (98)

0·03

16

0·93

Is

-5·50 (2)

2·00 (98)

0·50

16

0·98

The total number of cells in the discretized space of observable state variables is 3584. It is important to
notice the very large correlation coefficients between the first time differences of the discretized and the actual
variables. This discretization is capturing most of the within-brand variability of these variables.

A.3.2. Nonparametric estimation of the conditional choice probabilities. The conditional choice probabilities that
we use to compute Wd (i.e. vectors r", have been estimated using Gaussian kernel estimators. We have used
the actual variables, not the discretized ones, and estimates have been evaluated at each of the 3584 grid points
in the discretization of the state variables. The matrix of bandwidths is hS 1

/
2

, where S is the sample covariance
matrix of the conditioning variables, (bil> e", lSit). The smoothing parameter, h, has been chosen using Silverman's
rule of thumb.

The estimates are very precise at most of the grid points. The existence of thick tails in the empirical
distribution of markups, and a very thick left tail in the distribution of the stock, make possible to estimate with
relative accuracy the conditional choice probabilities at small values of the stock and small and large values of
the markup. The larger standard errors are obtained for the estimates at those cells associated with large values
of the stock.

A.3.3. Estimation ojn'{(x)=exp(c)E(exp{m}y-qlx,d). We estimate separately E(exp{mit}Yitlxi/,d) and
E(qitlxit, d). Here we illustrate our econometric approach for the case of E(qitlxil' d). Notice that for those
discrete alternatives with q = 0 this function is trivially equal to zero. According to our model

where uft is, by construction, orthogonal to X". However, {uftldit=d} is not orthogonal to x., due to the existence
of selection bias (i.e. d, depends also on wiI ) . Therefore, a regression of q.. on x« using the subs ample of
observations with d., =d will provide biased estimates of E(qitlx't, d).

Our theoretical model implies certain restrictions on the functions ijd(Xil> Wit) (i.e. exclusion restrictions)
that allow us to control for this selection bias in a nonparametric form. In particular, the optimal decision rule
in equations (16) and (17) implies that: (a) if {qi,>O and ~Pit:;tO} then qit+ s., does not depend on bit and Sil;
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and (b) if {qit>O and ~Pit==O} then q«+Sit does not depend on Sit. The decision rule implies also exclusion
restrictions that can be exploited in the estimation of E(exp {mit}Yitlxit,d).

Using these exclusion restrictions and a linear specification of In(qit + Sit) in terms of Xit, we estimate
E(qitlxit, d) controlling for sample selection bias through the nonparametric method in Ahn and Powell (1993).
We also estimate this equation a la Heckman in order to test the exclusion restrictions. The following table
presents the estimation results for E(qitlxit, d). Not very surprisingly, there is strong evidence for the existence
of selection bias. Furthermore, the exclusion restrictions are not rejected in any of the cases.

TABLE A.3.3

Estimation of E(qlx, d) Dependent variable: In (q +s) (within-brand estimations)

q> 0 and L1P < 0 q > 0 and L1P =0 q>O and L1P>O
(1) (2) (3) (4) (5) (6) (7) (8) (9)

No control Heckman Ahn-Powell No control Heckman Ahn-Powell No control Heckman Ahn-Powell

In(Sit) 0·053 -1·767 0·031 0·135 0·039 -0·180

(s.e.) (0·005) (1·330) (0·004) (0·154) (0·006) (0·289)

bit 0-466 -11·778 -0·217 0·733 -0·033 -0·431 -2·235

(s.e.) (0·115) (10·213) (0·169) (0·307) (0·167) (0·139) (1·947)

Cit -1·780 - 3·578 -1·548 -0·890 0·282 -1·022 -1·555 -1·204 -0·998

(s.e.) (0·111) (0·877) (0·096) (0·107) (0·333) (0·106) (0·130) (0·131) (0·129)

LM testa 6·70 364-48 22·26 153·28 28·60 56·80
(p-value) (0·00) (0·00) (0·00) (0·00) (0·00) (0·00)

LM test" 3·09 0·76 1·85
(p-value) (0·21) (0'38) (0·40)

Number
Observ. 6185 6185 6185 3428 3428 3428 1848 1848 1848

a Langrange Multipliers test of the null hypothesis "Selection terms == 0".
b Langrange Multipliers test of the exclusion restrictions.

A.3.4. Transition probabilities. Nominal wholesale prices (Cit) are very lumpy (the frequency of no changes is
66%). The specification of the stochastic process for real wholesale prices (Cit == Cit- pt) should take into account
this characteristic. We consider the following specification for the transitional probability

{
P ~ (Cit ) if cu+1 == Cit - P

!c(Ci,t+ I; Cit) == 1 . •
fc(Ci,t + I; Cit) lf otherwise,

where P~(Cit) is the conditional probability function for the event "no change in nominal wholesale price", and
f~(Ci,t+ 1, Cit) is a transitional density for the case in which we have nominal changes in wholesale price. We have
estimated these two functions using Gaussian kernel estimators. Again, we use Silverman's rule of thumb to fix
the smoothing parameter. The resulting estimates show that Cit has a very significant and strong monotonic
effect on the probability P~(-), that goes from zero to one over the discretized range of variation of Cit. The
effect of Cit on the conditional density of Ci,t+ 1 is much smaller and almost not significant.

A.3.5. Parametric estimation of the demand. According to our specification, at those periods in which there are
not stockouts

There are three econometric issues to take into account in the estimation of this equation: (1) the existence
of brand fixed-effects; (2) endogeneity of retail prices; and (3) possible autocorrelation in Wit. We consider two
different specifications for the stochastic process of Wit, iid and AR(1). For the iid case we estimate the equation
in first differences using as instrumental variables the lags of prices, stock, and sales at t - 2 and t - 3. For the
AR(1) case we estimate the equation

~lnYit == tPru~ InYi,t-l + YI~Pit + (-tPruYl)~Pi,t-1 + Yz~Cit+ (-tPruYZ)~Ci,t-l + ~Uit,

where tPru is the autoregressive parameter in the AR(1) process of Wit; and ~Uit == Sa; + ~~it, where ;it is the iid
shock in the AR(l) process. We estimate {tPru, Yl,Yz} in two stages. First, we estimate by IV the parameters in
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the previous equation without imposing the nonlinear restrictions among them. Second we impose these restric­
tions using a Minimum Distance estimator.

The following table contains our estimation results. The Sargan test rejects the overidentifying restrictions
for the specification with iid Wit. Furthermore the sign of y2 in that estimation is negative. In the specification
with Wit AR(l), the overidentifying restrictions are not rejected and the parameters have the expected signs. We
use these estimates in our simulations of the model in Section 6.

TABLE A.3.6

Estimated demand parameters

Parameter

G>w
YI
Y2

p-value Sargan test

Within groups
iid

- 5·509 (0·079)
3116 (0·092)

Within groups
AR(I)

o183 (0-080)
- 6889 (0·085)

2144 (0·094)

IV in Fist dif.
iid

- 2·219 (0·220)
- 1·109 (0·164)

0·000

IV in Fist dif.
AR(I)

0·082 (0·018)
-7·806 (0'648)

2·519 (OAI4)
0·366

Acknowledgements. This paper is a revised version of chapter 3 of my Ph.D. dissertation. I would like to
thank Namkee Ahn, Cesar Alonso, Tim Bresnahan, Emilio Cerda, Andreas Hornstein, Angelo Melino, Albert
Marcet, Costas Meghir, Robert Miller, Alfonso Novales and John Rust, as well as two anonymous referees, for
helpful comments. I am specially grateful to my thesis advisor Manuel Arellano for his help and support. I also
want to acknowledge the firm Sebastian de la Fuente S.A. for providing the dataset used in this study.

REFERENCES

AGUIRREGABIRIA, V. (1995), "Estimation of Sequential Decision Models with Limited Dependent
Variables: An Application to a Model of Price and Inventory Decisions" (Ph.D Thesis, Universidad Com­
plutense de Madrid).

AHN, H. (1995), "Nonparametric Two Stage Estimation of Conditional Choice Probabilities in a Binary Choice
Model under Uncertainty", Journal of Econometrics, 67, 337-78.

AHN, H. and POWELL J. L (1993), "Semiparametric estimation of censored selection models with a non­
parametric selection mechanism", Journal 0( Econometrics, 58, 3-30.

BERTSEKAS, D. (1976), "Dynamic programming and stochastic control" (New York: Academic Press).
BLINDER, A. (1981), "Retail Inventory Investment and Business Fluctuations", Brookings Papers on Economic

Activity, 2, 443-505.
CECCHETTI, S. G. (1986), "The Frquency of Price Adjustment: A Study of Newstand Prices of Magazines",

Journal of Econometrics, 31, 255274.
ECKSTEIN, Z. and WOLPIN, K. I. (1989), "The Specification and Estimation of Dynamic Stochastic Discrete

Choice Models: A Survey", Journal 0( Human Resources, 24, 562 598.
GOURIEROUX, C and MONFORT, A. (1995), "Statistics and Econometric Models" (Cambridge: Cambridge

University Press).
HECKMAN, J. (1976), "A Life Cycle Model of Earnings, Learning and Consumption". Journal of Political

Economy, 84, 11--44.
HOTZ, J. and MILLER, R. A. (1993), "Conditional Choice Probabilities and the Estimation of Dynamic

Models", Review 0/ Economic Studies, 60, 497-529.
HOTZ, J., MILLER, R. A, SANDERS, S. and SMITH, J. (1994), "A Simulation Estimator for Dynamic

Models of Discrete Choice", Review or Economic Studies, 61, 265~ 289.
KASHYAP, A. (1995), "Sticky Prices: New Evidence from Retail Catalogs", Quarterly Journal or Economics,

110, 245-274.
LACH, S. and TSIDDON, D. (1992), "The Behavior of Prices and Inflation: An Empirical Analysis of Disaggre­

gated Price Data", Journal 0/ Political Economy, 100, 349-389.
LACH, S. and TSIDDON, D. (1996) "Staggering and Synchronization in Price-Setting: Evidence from Multi­

product Firms", American Economic Review, 86, 1175-1196.
LEVY, D., BERGEN, M., DUTTA, S. and VENABLE, R. (1997), "The Magnitude of Menu Costs: Direct

Evidence From Large U.S. Supermarket Chains", Quarterly Journal of Economics, 113, 791-825.
MANSKI, C (1991), "Nonparametric Estimation of Expectations in the Analysis of Discrete Choice Under

Uncertainty", in W. Barnett, J. Powell. and G. Tauchen. (eds.), Nonparametric and Semiparametric
Methods in Econometrics and Statistics, (Cambridge: Cambridge University Press).

MANSKI, C (1993), "Dynamic Choice in Social Settings: Learning from the Experience of others", Journal of
Econometrics, 58, 121-36.

McFADDEN, D. (1974). "Conditional Logit Analysis and Qualitative Choice Behaviour", in P. Zaremka (ed.),
Frontiers in Econometrics (New York: Academic Press).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/66/2/275/1563377 by U

niversity of Toronto Library user on 29 D
ecem

ber 2021



308 REVIEW OF ECONOMIC STUDIES

PESENDORFER, M. (1996), "Retail Prices. A Study of Price Behaviour in Supermarkets" (Mimeo, Yale
University).

PUTERMAN, M. (1994) Markov Decision Processes (New York: Wiley).
RUST, J. (1987), "Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher", Econo­

metrica, 55, 999-1033.
RUST, 1. (1994a) "Estimation of Dynamic Structural Models, Problems and Prospects: Discrete Decision Pro­

cesses", in J. J. Laffont and C. Sims (eds.), Advances in Econometrics: Sixth World Congress, Vol. II,
(Cambridge: Cambridge University Press).

RUST, 1. (1994b) "Structural Estimation of Markov Decision Process", in R. E. Engle and D. L. McFadden
(eds.), Handbook of Econometrics, Vol. 4, (Amsterdam: North-Holland).

SCARF, H. (1959), "The Optimality of (S,s) Policies in the Dynamic Inventory Problem", in K. Arrow, S.
Karlin, and P. Suppes (eds.), Mathematical Methodsfor the Social Sciences, (Stanford: Stanford University
Press), 196-202.

SHESHINSKI, E. and WEISS, Y. (1977), "Inflation and Costs of Price Adjustment", Review of Economic
Studies, 44, 287-303.

SHESHINSKI, E. and WEISS, Y. (1983), "Optimum Pricing Policy Under Stochastic Inflation", Review of
Economic Studies, 50, 513-529.

SHESHINSKI, E. and WEISS, Y. (1992) "Staggered and Synchronized Price Policies under Inflation: The
Multiproduct Monopoly Case", Review of Economic Studies, 59, 331-359.

SLADE, M. (1994), "Optimal Pricing with Costly Adjustment and Persistent Effects: Empirical Evidence"
(Mimeo, University of British Columbia).

SLADE, M. (1996), "Sticky Prices in a Dynamic Oligopoly: An Empirical Investigation of Fixed and Variable
Adjustment Costs" (Mimeo, University of British Columbia).

SOBEL, 1. (1984), "The Timing of Sales", Review of Economic Studies, 51, 353-368.
STOKEY, N. and LUCAS, R. E. (1989) Recursive Methods in Economic Dynamics (Cambridge: Harvard Univer­

sity Press).
TOMMASI, M. (1993), "Inflation and Relative prices: Evidence from Argentina", in E. Sheshinski and Y. Weiss

(eds.), Optimal Pricing, Inflation and Cost of Price Adjustment (Cambridge: MIT Press).
VARIAN, H. (1980), "A Model of Sales", American Economic Review, 70, 651-659.
WARREN, E. and BARSKY, R. (1995), "The Timing and Magnitude of Retail Store Markdowns: Evidence

from Weekends and Holidays", Quarterly Journal of Economics, 110, 321-352.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/66/2/275/1563377 by U

niversity of Toronto Library user on 29 D
ecem

ber 2021




