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This paper develops a new method for estimating the structural parameters of (discrete
choice) dynamic programming problems. The method reduces the computational burden of
estimating such models. We show the valuation functions characterizing the expected future
utility associated with the choices often can be represented as an easily computed function of the
state variables, structural parameters. and the probabilities of choosing alternative actions for
states which are feasible in the future. Under certain conditions. nonparametric estimators of
these probabilities can be formed from sample information on the relative frequencies of observed
choices using observations with the same (or similar) state variables. Substituting the estimators
for the true conditional choice probabilities in formulating optimal decision rules, we establish
the consistency and asymptotic normality of the resulting structural parameter estimators. To
illustrate our new method. we estimate a dynamic model of parental contraceptive choice and
fertility using data from the National Fertility Survey.

1. INTRODUCTION

Over the last several years there has been increasing interest in estimating structural
models of dynamic discrete choice. Empirical applications have been undertaken in the
areas of fertility (Wolpin (1984», job search (Kiefer and Newmann (1979, 1981), Flinn
and Heckman (1982), Lancaster and Chesher (1983), Wolpin (1987»,job matching (Miller
(1982, 1984», labour force participation (Eckstein and Wolpin (1989a), Gdniil (1989»,
Berkovec and Stem (1991)), patent renewal (Pakes (1986» and the replacement of bus
engines (Rust (1987»1. These studies derive the stochastic process generating an agent's
choice sequence from the solution to a dynamic optimization problem, which depends
upon structural parameters characterizing the agent's preferences and her constraints.
The estimation problem is to identify and consistently estimate the structural parameters
from data on choices and other observed variables. Such estimates enable one to examine
and forecast how exogenous changes in economic constraints affect choices.

In contrast to models with continuous choices which can be estimated from the first
order conditions, the optimal decision rules for dynamic discrete choice models are
characterized by inequality conditions. This has prompted researchers to (numerically)
solve the valuation function characterizing the optimal sequence of choices in order to

1. See Eckstein and Wolpin (1989b) for a recent survey of this fast growing field.
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498 REVIEW OF ECONOMIC STUDIES

estimate the structural parameters of such models. Indeed, most of the studies cited
above compute the valuation function using backwards recursion, not just once, but every
time the parameters are evaluated in the estimation routine. Although several recent
advances have been made that reduce these computational burdens (see Miller (1982,
1984), Wolpin (1984), Pakes (1986) and Rust (1987», backwards recursion solutions
remain extremely costly to implement. Such computational burdens have deterred
researchers from estimating all but the most parsimonious specifications of structural
models and from experimenting with alternative specifications. This limitation is poten
tially serious in light of findings, such as those of Flinn and Heckman (1982), which
indicate that estimates for job search models appear very sensitive to alternative
specifications of the model's underlying structure.

This paper presents a new estimator for such models, called the Conditional Choice
Probability (CCP) estimator. Our approach does not require econometricians to explicitly
solve the valuation functions used to characterize optimal decision rules via backwards
recursion methods. It is based on a new representation of the valuation function which
is expressed in terms of the utility payoffs, choice probabilities, and probability transitions
of choices and outcomes that remain feasible in future periods. Under conditions
presented below, this representation can be exploited to estimate the model's structural
parameters by employing non-parametric estimates of these future choice probabilities
and probability transitions in place of their true values. Coupling our representation of
valuation functions with the semiparametric estimation procedures we develop in this
paper, makes tractable empirical investigations of a wide class of dynamic discrete choice
models previously considered too (computationally) expensive to analyse.

The paper is organized as follows. The class of dynamic discrete choice models
investigated here is outlined in Section 2. Section 3 provides the representation theorem
for valuation functions that ultimately allows us to avoid backwards recursion in estima
tion. The implication of this theorem is illustrated for a simple optimal stopping model
in Section 4. Then, in Section 5, based on this new representation, we propose the CCP
estimator for the underlying structural parameters and establish that it is N 1

/
2-consistent

and asymptotically normal, where N denotes sample size. The last three sections of the
paper present an application of our approach by estimating a life cycle model of married
couple's optimal contraceptive choice behaviour. Section 6 presents a model of the links
between contraceptive choice and fertility, including the possibility of choosing (irrevers
ible) sterilization. Although quite simple, the model nevertheless is encumbered with a
large state space which would impose prohibitive computational costs if the maximum
likelihood (ML) strategy previously employed in this literature was attempted. The data,
described in Section 7, is for a sample of white married couples gathered in the National
Fertility Survey of 1975. Finally, Section 8 reports the parameter estimates for several
alternative specifications of the model, and examines some of their quantitative implica
tions.

2. THE FRAMEWORK

The framework we investigate includes a wide class of dynamic, discrete choice models.
Consider a typical agent making choices over time in an uncertain environment. She is
assumed to choose one action from a set, ~, which contains up to J alternatives at each
period, t, over a finite life of length T. (Without loss of generality, in this and the following
two sections, we assume that calendar time and age are synonymous.) Her objective is
to maximize the expected value of a sum of period-specific payoffs or utilities. Let dtj =1
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 499

(2.1)

indicate the agent chooses action i in t, and setting d,j= 0 means she does something
else. Then 9, = (dtl , ••• , d'.J -I)' describes her action in period t. Alternatively expressed:

d'j E {O, I} for all (t,i) E Tx~,

2.f=1 d'j = 1 for all t E T.

The action taken at period t typically affects the outcome, b,E ~, which arrives at
the end of the period. Let H, = (g~, b., ... , b,_I)' represent the agent's history as of the
beginning of period I; it includes a LxI vector of the agent's initial endowment of
characteristics, go E £10 , and the agent's entire history of outcomes from period 1 through
I -1.2 We assume that ~ is a finite set, but only that ~o is compact. The outcome, b., is
either fully determined by action 9" or generated according to the transition probabilities:

Fj(Ht+IIH,), (2.2)

where Ht+l = (H" b,)' .3 In the context of econometric analyses, such distribution func
tions, as well as the agent's payoff functions described below, may be specified in terms
of a vector of structural parameters. While this parameter vector is typically the focus
of estimation, we shall first investigate the general structure of the decision problem,
delaying the introduction of parametric representations until Section 5.

In each period I, there is a current utility or payoff, ufj, associated with each choice
j. Let u!(H,) == E(u'j IH,) denote the conditional expectation of ufj, given H,. It follows
that:

(2.3)

(2.4)

where the stochastic utility component, E,jt is, by construction, conditionally independent
of H,. Let JJ*(H,)=(u~(H,), ... ,u1(H,»' and §,=(EtI, ... ,Eu )', respectively, denote
J x 1 vectors of deterministic and stochastic utility components. We write the distribution
function of §, as:

G(§,/H,)

and assume it has a well-defined, joint probability density function, dG(§, IH,),
The agent sequentially chooses {g,},eT to maximize the objective function:

Eo(Li=oLf=1 dfj[u!(H,) + Efj])' (2.5)

Let g~= (d~It ... , d~.J-I)' denote the agent's optimal choice in period s. We define the
conditional valuation function associated with choosing i in period I as:

(2.6)

where u~ == u!(H,) is adopted for notational simplicity. Optimal decision making implies
that d?k =1, if and only if:

(2.7)

2. Many problems have a finite state space representation, obviating the need to write down the whole
history at each decision node. However the application we investigate in the latter parts of the paper does not
enjoy this property, which justifies why a more general formulation is provided here.

3. Since H, is a vector of length t, there is an argument for subscripting F (as well as many other mappings
we define in the text) by t. An alternative notational convention is to express H, as (t, H'f.)', where H'f..
(H" 0, ... ,0)', and define F(H,+ 1 1H,), for example, on T 2

)( ~~)( !l2T
• In this way we avoid the notationally

cumbersome subscripting.
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500 REVIEW OF ECONOMIC STUDIES

(3.2)

where V'j == vj(H,). Conditional on history H" the probability the agent chooses action
k is therefore:

Pk(H,) =·Pr {k = argmaxjE'€ [u~+ e,j+ V'j] IH,}. (2.8)

Let p(H,) == (pt(H,), ... , PJ-t(H,»' denote the (J -1) dimensional vector of conditional
choice probabilities associated with the first J - 1 actions in period t.

3. AN ALTERNATIVE REPRESENTATION OF
CONDITIONAL VALUATION FUNCTIONS

In general, the conditional valuation function, Vj( H,), does not have a closed form solution.
The standard practice is to exploit Bellman's (1957) equation and use backward recursion
methods to obtain one. This section provides an alternative representation of viH,)
which will prove convenient when estimating a parametric representation of such models.

To derive this representation, note that (2.3) and (2.8) imply that the conditional
probability of making choice 1, say, can be written as:

pt(H,) = E(d~t = 11 H,)

where Gj(y,1 H,) == £1G(y,1 H,)/£1u,j. Up to the normalization, pt(H,), the integrand in
the last line of (3.1) is the probability density function for e,t, given history H, and
[u~t+ Vn + e,d ~ [U~k+ V,k + e,k] for all k E ((g (or, in words, when the first choice is optimal).
(See McFadden (1981, p. 204) for example.) For each k E ((g, the expression corresponding
to (3.1) is a positive, real-valued, mapping from the differences in conditional valuation
functions associated with the optimal choice and the alternative actions. We now show
that these differences can be expressed as functions of conditional choice probabilities.

Let !' = (Vlt ... ,vJ-t)' be a (J -I)-dimensional vector. For each t E T and j E

{l, ... , J -l}, define the real-valued function, Qj(!', H,), as:

Qj(!', H,)

~Jq([e+ u:- u:1+ Vi - vtl,···, [e +u: - uti-I + Vi - Vi-I], e,

x [e + u~ - U~2j+1 + Vj - Vj+t], ~ •• , [e + u,'J- u,1+ Vj]IH,)de

and g(!', H,), a (J -1) dimensional vector function, as:

g(!', H,) = (Ql(!', H,), ... , QJ~I(!" H,»'.

If !' comprises the differences in conditional valuation functions, namely,

!' = (vn - VtJ, .•• , V',J-l - vtJ)' == !,(H,),

(3.3)

(3.4)

then p(H,) = Q(!'(H,), H,). The cornerstone of our estimation strategy is to express !,(H,)
as a function-of p(H,). This requires Q(!', H,) to be invertible in!'. By the following
proposition, proved in Appendix A, its -inverse exists.
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 501

Proposition 1. For each H, the mapping g(f, H,) is invertible in f·

Proposition 1 enables one to express vj(H,) in terms of the choice probabilities,
transition probabilities and expected (per period) payoffs associated with future histories.
To demonstrate this, we proceed in several steps. First, the expected optimal payoff in
period t, conditional on history H" is:

E(Lf=1 d~[uj(Hr)+Etj]1 H,) =Lf=>1 P'j [uj(H,)+ E(.Etj IH" d~ = 1)], (3.5)

where ptj==pj(H,). To express E(EtjIH"d~=1) as a function of conditional choice
probabilities, Proposition 1 implies that the (unnormalized) conditional density function,
appearing in (3.1), can be written as:

Gi[E + u~ - U~I + Vj - v.], . . . , [E + ut - Ut-I + Vi - Vj_.], E,

x [E + ut - utj+t + Vj - vj + t ] , ••• , [E +ut - u1'J+ vj]IH,)

= Gj([E + ut - uft + Q~I- Q~l], ... , [E +ut - uti-l + Qljl_ QZJ-l], E,

x [E + ut - uti+1 + Qljl_ QZ]+I],'" ~ [E +ut - u1'J+ Qljl]IH,) (3.6)

where Vj == viiH,), Qljl E Q;I(p" H,), and p, == (Ptl, . . " P,,J-I)'. Therefore, the expecta
tion of E'j, when j is the optimal action for history H" is:

~(p" H,)

== E(Etj IH" d~ = 1)

-f G ([ + *- *+ Q-I - Q-t] [+ * * Q-I Q-I ]- E j E U'j U t1 ,j , 1 , .•• , E U'j - U ',j-I + tj - t.] -I ,E,

X (e + ut - utj+1 + Qljl- QZ]+1],"" [E + u~ - u1'J + Qljl] IH,)/pj(H,)dE. (3.7)

Using (3.5) and (3.7), it follows that the agent's expected utility (or payoff) in period
t, conditional on H" is:

(3.8)

To complete the representation of viH,), we characterize the sequences of choices
and state variables which would be feasible for the agent in future periods if she was to
choose actionj in period t. Let ds(H,) denote the set of histories which remain feasible
for some age s following t, given history H,:

(3.9)

Denote the conditional choice probabilities associated with this finite set of possible
histories by the vector set, p(H,):

(3.10)

Then the agent's conditional valuation function for d,j = 1 is given by the sum (over the
periods s E {t+ 1, ... , T} and over histories which might eventuate, H, E ds(H,» of the
associated expected payoffs, Us == U(PH Hs), times the probability of each H, occurring.
The probability of H, occurring, conditional on H, and dtj = 1, is, in turn, given by the
product of the relevant conditional choice and state transition probabilities:

(3.11)
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502 REVIEW OF ECONOMIC STUDIES

where HsEds(Hr ) for each 1E{t+l, ... ,s-1}. Adopting the abbreviated notation
Frk == Fk (Hr + It H r ) , we have thus established that one can represent any conditional
valuation function as a real valued mapping of the current history and future conditional
choice probabilities; denoting this new representation by ~(H" p(H,», it is defined as:

~(H" p(H,» =L;=r+l LH.Ed.(H,) {Us[Flj n~:~+1 (L~=I PrkFrk»)}. (3.12)

It immediately follows that ~(H" p(H,» = vj(H,).
Representation (3.12) can be further simplified in some circumstances. Consider

histories where there exists at least one action, which, if taken next period, eliminates
the differential impact of any subsequent choices on outcomes. Such histories are said
to be terminal histories. More precisely, a history H, is said to be terminal if and only
if there exists at least one action, say J E C€, (called a terminating action) which, if chosen
in t+ 1, must be picked for all periods S E {t+ 2, ... , T}.4 A search model where agents
cannot change jobs exemplifies dynamic discrete choice models with this terminal history
property. Suppose the r action is a terminating action associated with some history
H,. Then the indirect utility associated with this action at all H,+, E dr+,(H,) simplifies to:

VAHr+I) = L;=r+2 LH.E.llI.(Ht+I) E(uu IHs)[n~:~+1 FJ(Hr+11 Hr)1n, E ds(Hr )] (3.13)

and it follows from Proposition 1 that the conditional valuation functions at time
associated with the remaining choices may be expressed as:

~(H" p(H,»

= LH,+IE.llIt+l(H,) {Ur+1 + VJ(H,+I) +L~:~ Pr+I,kllr+I,k}Fj(Hr+11 H,)

=LH,+IEd,+I(H,){ Ur+1 + VAHr+I) + (L~:I, P'+I,kQ;I(p'+I' Hr+I»}Fj(Hr+,1 H,). (3.14)

Equation (3.14) shows that if H, is a terminal history, then ~(H"p(H,» is a function
of the values taken on by e(Hr+,) and VAHr+l) as Hr+, ranges over the elements in the
set dr+I(H,). Note that (3.13) implies that the conditional probabilities, associated with
future choices beyond t + 1, do not enter the expressions for valuations of period t choices.
Consequently, the existence of terminal states greatly reduces the number of future choice
probabilities required to calculate conditional valuation functions,"

The new representation of conditional valuation functions has two uses: one in
forming orthogonality conditions for estimation purposes and the other for interpreting
the comparative dynamics associated with changes in the state variables. We conclude
this section with a brief discussion of the latter. ~rom the definition of Q(f, H,) and
(3.12), it follows that: ..

e(H,) =g(f(H" p(H,», H,) (3.15)

Differentiating with respect a continuous component in Po, say bol , yields a taxonomy
of the various contributing pieces:

ae(H,) ag (af, I aft ap(H,») ag, I (3.16)
a;;;;-= aft abol d!, ...O+ap(H,) a;;;;- +abol dl'-O

The last term in (3.16) captures changes in e(H,) due to the impact of bOI on current
utility, holding constant the conditional valuation function. This effect is through two

4. All states associated with terminating actions are absorbing states.
s. The existence of a terminating action is a sufficient, but hardly necessary, condition for realizing the

simplifications in the representations of conditional valuation funaion described in the text. Such gains accrue
whenever one can readily obtain the valuation func:tion usociated with one or more of the-choices.
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 503

channels: one through the effects of bOI on ~*(Ht), the deterministic components of
current utility and the other through those on G(§t IHi), the probability distribution
function of ft. The other way in which bOI affects p(H,) is through its impact on expected
future utility, namely ft. Again, this overall effect (the first term in (3.16» consists of
the influence of bOI through several channels: one through its effect on E" holding p(Ht )

constant and, the other, through its effecton future choice probabilities p(H,), characteriz
ing U(Pt, H,) and, ultimately, \)(H" p(H,». The latter effects reflect the changes in the
probabilities of reaching future nodes and adjustments to the dynamic selection correction
terms in future periods.

As our application below demonstrates, all these terms can be estimated without
computing the valuation function. Similar approximations can be derived to gauge the
effects of discrete valued state variables. However, comparative dynamics which change
the model's structure (the mappings for u~, F'j and 0,) cannot always be handled this
way. In predicting how an agent would react to a regime change, the critical question is
whether a second agent now exists whose observed behaviour, in a distributional sense,
mimics what the first would do under the new regime. If not, it seems necessary to
compute the optimal decision rule under the new regime.

4. AN EXAMPLE: OPTIMAL STOPPING

Before discussing the CCP estimator in detail, we consider the form of \)(H" p(H,» for
a simple optimal stopping model to illustrate the content of Proposition 1. We preface
the empirical investigations contained in the second half of the paper, by supposing a
couple must decide when, over the course of their lifetime, to permanently sterilize and
no longer be at risk to bear children. Prior to sterilizing, births occur according to (an
exogenous) stochastic process. Each period, the couple receives a level of utility which
depends on the number of their offspring; this payoff reflects the balance between the
satisfaction derived from and the costs associated with rearing these children. The example
ignores other forms of heterogeneity across couples; hence, 000 can be ignored in this
illustration.

In terms of the notation developed above, let d., = 1 if the couple does not sterilize
in period t and d'2= 1 if it sterilizes. Because J =2, d'2= 1- d,l. Since sterilization is
assumed irreversible and available at any t, every history H, is terminal; thus d., = 0
implies ds 1 = 0 for all S E {t, ... , T}. The period of the couple's lifetime in which steriliz
ation takes place, T, is called the stopping time (for childbearing).

The outcomes in this model are births. We let bs = 1 if a child is born in period s,
and let b, =0 otherwise. For simplicity, we assume a birth occurs at the end of period t
to unsterilized women with probability Q E (0, 1]. That is:

Ft«H" l)/ H,) = Q.

Sterilized women cannot bear children, so:

F2«H" l) J H,) =o.

(4.1)

(4.2)

We assume that the nonstochastic component of the woman's utility in any period
t depends only on the number of existing children. Consequently, this problem has a
finite state space; the couple only has to keep track of periods since their marriage and
current family size in making contraception decisions. Let H, denote family size at t. In
terms of the couple's birth history H, = H~t" where ", denotes a t x 1 vector of ones, or
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'"' ,
H,==Ls=1 b,-s. (4.3)

For the sake of illustration, let the couple's current utility be quadratic in H,:
* * , '"' '"'2u1(H ,) = u2(H ,) = /3 (81H,+82H,) (4.4)

where f3 E (0, 1) is the discount factor. The choice specific idiosyncratic component
associated with each action, Etj, is assumed to be identically and independently distributed
across (t,j) as a Type I Extreme Value random variable with location parameter 0. The
couple's decision problem, then, is to sequentially choose {ds};=o (or, equivalently the
optimal stopping time T) which maximizes:

Eon::i=o/3 S(8

1Hs+82H;+ dsEsl+(1- ds)Es2)]' (4.5)

To characterize the optimal decision rule for this model, we need the conditional
valuation functions of each action j E {I, 2}. Because sterilization is a terminating action,
the value of setting d, = °is just the expected discounted utility derived from the stock
of existing children, H,. The above assumptions imply this value is:

viH,) = /3'(1+ 81H,+ 82H;)/(1-/3 T-,), (4.6)

where 1 is Euler's constant (::= 0· 577). The discounted value of not sterilizing in period
t, and remaining fertile at least one more peiod is:

T s '"' '"'2
vl(H,)=max{d'}~_'+1 E[Ls='+1 /3 (81Hs+82Hs+dsEsl+(1-ds)Es2)IH,]. (4.7)

Aside from En and E,2, the only difference in expected future utility from the two actions
the parents can take is due to the value of births. Therefore, the optimal decision rule is:

d,={O, ~fEn-E'2~/3=:vl(H,)-/3=:V2(H,) (4.8)
1, IfE,I-E12</3 vl(H,)-/3 v2(H,)

where /3-'v/H,) is the current (undiscounted) conditional valuation function for history
H, and action j. This implies the conditional probability of choosing not to sterilize in
period tis:

(4.9)

Because sterilization can be undertaken at any time, all histories are terminal; hence,
the representations of vl(H,) and v2(H,) that we seek take the form of (3.14) and (3.13),
respectively. Since the right-hand side of (4.6) already corresponds to the form of ~2 in
(3.13), we only need to derive the expression for Vl (H" p(H,». To proceed, note that
dr+l(H,) = {(H" 1), (H" O)} and the associated set of conditional choice probabilities is:

p(H,) = {Pl(H" 0), Pl(H" I)}. (4.10)

Using (4.9), it follows from Proposition 1 that Q-l(Pl(Hr+l), H,+1) is:

Q-l(Pl(H,+I), H'+I) = /3r+l ln [Pl(H,+I)/P2(Hr+l)]' (4.11)

To complete the expression for Vl (H" p(H,», we need to characterize the form of the
Wr+l,j functions associated with Ur+l in (3.8). Given the assumed distributions for En

and E,2, these functions take the form:

~(L'r+l' H'+I) == E(Er+l,j IHr+l, d~+I,j=1)

= E(E,+I,j IHr+l, /3,+1 E'+I,j _/3r+l e., l,k> V/Hr+l) - vk(Hr+l»

= E(Er+l,j IHr+l, Er+l,j> Er+l,k + In {Pj(Ht+l)/[I- piHr+l)]})

= 1 ...,.In [Pj(Hr+l)], (4.12)
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 505

for j =1,29 where 'Y is Euler's constant. Substituting (4.4), (4.6), (4.11) and (4.12) into
(3.14) yields:

Vt(p(H,), H,) = {j'a{ 6t(H,+ 1)+ 62(H,+ 1)2+ f.t.t pj(H" 1)( 'Y -In [p}(H" 1)])

+ {j[ 'Y + 61(H,+ 1)+ 62(H,+ 1)2]/(1- {j T-,-t)

+Pl(H" 1)(ln [p.(H" 1)/piH,. O])}
, - -2 2+{j (1- a ){61H, +62H, +Lj=t pj(H" 0)( 'Y -In [pj(H" 0)])

+ JJ['Y + 6t H,+ 62H;l/ (1 - ~T-,-t)

+P2(H" O)(ln [Pl(H" 0)/P2(H" O)])}. (4.13)

This function consists of two expressions in braces: the one in first three lines gives the
expected lifetime utility from period t + Ion if a child is born in period t and Ht+l = (H" 1),
weighted by the probability that such a birth will occur; the second, in the final three
lines, gives the probability-weighted utility associated with the birth not occurring and
Ht+l= (H" 0). Each of these expressions, in tum, consists of the sum of: (a) the expected
payoff in period t + 1, Vt+l; (b) the value of sterilizing at t + 1, V2 ; and (c) a term which
adjusts for the fact that sterilization may not be optimal in t + 1.6

Using Vt(p(H,), H,) in place of V1(H,) and the expression in (4.6) for ViH,), one
can represent the conditional probability of choosing either action as a function of the
couple's history, H, and the one period ahead choice probabilities p(H,). Consequently
p( H t ) and V2( H t ) are sufficient to summarize the expected future value of an action in
period t. Provided we can obtain consistent estimates of the future choice probabilities
cheaply, the representation developed here can be used to formulate estimators for a, {3,
61 and 62 , the structural parameters of interest. We turn to the issue of estimation in the
next section.

5. LARGE SAMPLE PROPERTIES OF THE CCP ESTIMATOR

This section addresses the issue of estimating structural parameters for the class of models
described in Section 2 which exploit the representation of valuation functions developed
in Section 3. We suppose that y*(Ht), G(Et IHt ) and Fj(Ht+ 1 1 Ht ) are parameterized by
a vector of structural parameters, Do E e, and propose a strategy for its estimation. The
CCP estimator is obtained in two stages: we first formulate nonparametric estimators of
future choice and transition probabilities and then use these incidental parameter estimates
in a set of estimating equations which are solved for D. We establish that the estimator
is consistent, converges at a rate of N 1

/
2

, and has a normal asymptotic distribution.
Suppose the model developed in Section 2 characterizes the behaviour ofa population

of agents from which we draw a random sample of size N at some point in calendar
time, t say.' We utilize an n subscript throughout to denote the variables and functions
for the nth agent in the sample and define Ant to be the age of agent n at calendar time
t (which implies her planning horizon is T - Ant periods). In developing the properties
of estimators, we make the following additional assumptions:

Assumption 1. Do is a Q x 1 vector belonging to the interior of a compact set e.
Assumption 2. y*(Hn" D), Fj(Hn,t+ll n.; D) and dG(ent In.; D) are differentiable

in D,
6. In (4.13), the (a) components for (H" 1) and (.fI" 0) are given in the first and third lines of (4.13),

respectively, and the sum of corresponding (b) and (c) components are given in the other lines.
7. Samples of longitudinal data could also be treated in a similar manner; no new conceptual issues arise

in that case.
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506 REVIEW OF ECONOMIC STUDIES

Assumption 3. bns takes on one of K possible values when t - An,< s ~ t + T - Art,.

Assumption 4. The elements in Hn, and d~" the choices made at age An" are
observed without error for each agent, but §n' is unobserved.

Assumption 5. The population lives in a stationary environment; consequently
~(H".t+11n.; Do), the transition probability generating bnt and G(§n, In.; Do), the proba
bility distribution governing the unobservables, are invariant across calendar time periods.

Assumption 6. Conditional on Hn" the distribution §n' is independently distributed
across agents.

Assumptions 1 and 2 are regularity conditions on the functions and parameter space
which enable the use of standard results when establishing consistency and asymptotic
distributions. Assumption 3 restricts the feasible outcomes for b.; to a finite set and
Assumptions 4 through 6 allow us to (synthetically) form cohorts from cross-sectional
data on agents (of different ages) which we use to estimate the future choice and transition
probabilities.

To motivate the definition of the CCP estimator and help fix ideas, we begin by
considering the (somewhat unrealistic) situation where the conditional choice and transi
tional probabilities entering the estimation equations are known. In this case Do could
be estimated by a Generalized Methods of Moments (GMM) strategy, using the rep
resentation of the conditional valuation functions developed in Section 3. Accordingly,
we augment p(Hn, ) to include the future (feasible) transition probabilities. Let this set
be denoted by p(Hn, ) and defined as:

p(Hnr) == p(Hn/)u {Ft(Hn.s+11 Hns),".' FJ(Hn.s+11 Hns): Hns E ds(Hn,) for s = t, ... , T}.
(5.1)

Also, let ~(Hn" p(Hn,), Do) == ~(Hn" p(Hn,». Defining the corresponding representation
of conditional choice probabilities as:

Pk(Hnr, p(Hn,), D)= Pr {k = argmaXjE'€ [uj(Hn" D)+ Enrj+ ~(Hn" p(Hnr),D)]IHn,}, (5.2)

it follows immediately that:

(5.3)

Let 1m denote an R x 1 vector of instruments, with (J -1)R ~ Q, and let aN be a
Qx (J -l)R random matrix which converges in N to the constant matrix ao. Define the
Q x 1 vector of orthogonality conditions as:

1!tn(D, p(Hn,»== aN (1n,Q9[9n, - f(Hn" p(Hn,), D)]). (5.4)

where f(Hn" p(Hn,), D)== (Pt(Hn" p(Hnr),D),···, PJ-1(Hn" p(Hn,), D»'· The instru
ments Zn, are chosen so that Do uniquely satisfies

(5.5)

Under the assumption that p(Hn,) is known, a GMM estimator for Do, denoted D~N>, can
be obtained by constructing sample analogues of (5.4) and averaging them over n E

{I, ... , N}.
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 507

Typically p(Hnt ) is unknown and must be estimated. We consider two cases, depend
ing on the nature of the initial conditions, bno. First, consider the case where [jIo is a
finite set with L elements. Recall that the set of feasible outcomes, fI, is also assumed
to be finite (Assumption 3); thus £10 x !I T, the set of possible histories for Hn" is itself
finite. Consequently, there are only a finite number of transition probabilities to consider
too, each of which has discrete support. In particular, M == L(K T +I-l)(K _1)-1 such
histories exist, generically denoted Hm e flo x !I T for m = {I, ... ,M}. Accordingly, let
em == (P:"I, f:".,··· f:"")', where em == pm(Hm ) denotes the (J -I)-dimensional vector of
associated choice probabilities and f mj == 1)((Hm , b) IHIft) is the (K - 1)-dimensional
vector of probabilities for the respective outcomes, conditional on history Hm and choice
j E {I, ... , J}. Then one can use sample frequencies of the choices and subsequent
outcomes from observations for each of the M possible histories to form estimates of
p = (p~, .•. , p~)'. More formally, define the indicator function, I I(H"" Hnt), for any two
histories H m "'and H n" as:

1 (H H )={1 if Hnt=Hm

1 m, nt 0 otherwise. (5.6)

(5.7)

(5.8)

(5.9)

Let p(N) denote the M(JK -1) dimensional vector ofestimators (p~N), ... , p<:!)')'. Noting
p(Hnt) S; {Pm}~=1 for all n E{I, 2, ... , N}, an estimator of Do may be constructed using
elements of p(N) instead of p(Hnt} in forming the sample average of (5.4) and setting it
to O. ...

The large sample properties of this estimator, which we call the CCP estimator and
denote by D~N>, follow from the fact that p(N) is itself a GMM estimator. Define the
M (JK - 1}-dimensional vector: ...

1T'2n(e) = (1T'2n(e1)', '!!'2n(e2)', . . . , '!!'2n(eM )')'.

Where the (JK -1) dimensional vector, 1T'2n(em), is defined as:

[

(9nt - pm) 1
)

(Unt - fml)dntl
1T'2n(em =. : I I(Hm , H nt),

(Ont - fmJ)dntJ

for m = {I, ... ,M}. Then (e(N)" D~N)') is a GMM estimator solving:

N- t '" N_ [Uln(D, P(Hnt»]=0
L"n-t 1T'2n(e) .

From Theorems 2.1 and 3.1 in Hansen (1982, p. 1035 and p. 1042), the consistency and
asymptotic normality of D~N) follows immediately. Defining:

fit =E(iJ1!in/aD)

f 22 =E(a1!2n/ae),

(5.10)
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for ie{1,2} and jE{1,2}, it follows (from Newey (1984), for example) that ~h the
asymptotic covariance matrix for g~N), is

~l = r~NOll + r 21(022+ 021 +012)r~1)r~l'. (5.11)

There are two computational drawbacks associated with the estimator defined in
(5.9). First, the cell estimators in (5.7) are infeasible if flo is a closed interval which
supports a well defined probability density function for UnO' because the probability of
sampling two identical histories is o. Second, even when flo is finite, a strictly positive
probability exists that not all cells are visited for any fixed sample size N. As a practical
matter, this is manifested by empty or sparse cells which may render the estimator defined
above non-operational.

To overcome these two limitations, nonparametric procedures can be used to estimate
the incidental parameters, p{Hn t ) , and, ultimately, go. Accordingly, define the kernel
function, J(Hnt ) , by a real-valued, bounded, symmetric differentiable function which
integrates to 1 on the set of all possible histories. Also let h» E IR+ denote the band-width
associated with the kernel estimator for samples of size N. For each H<';'> E d(Hnt ) , the
kernel estimators for fnr == p(H<';'» and fnjr == Fj((H<';') , b) IH<';'» are given by:

e~':) = [L~~I.m¢. !!m,J(Hm';NH~)][ L~~l.m¢. J( Hm';NH~I) ]-' (5.12)

f~) = [ L~~ l.m¢. !!mob."(Hm,;NH~) ][I:;: .I.m #. !!m,J(Hm';NH~))r
Theorems 1 and 3 of Bierens (1983, p. 701-702) establish the conditions, including that
hN ~ 0 and Nl/2h~~ 00 as N ~ 00, under which p~r:) == (p~r:), f~":; ,... , f<,/j/) is uniformly
consistent for each (n, r).8 ,.,,.,

Substituting p~r:) for the corresponding components of p(Hnt ) in (5.4), another
variant on the CCP estimator of go, denoted g(N), is obtained by, once again, forming
the sample analogue of (5.4). Appendix B establishes that g(N) is consistent, and that
N 1

/
2(U(N) - B[U(N)]) is asymptotically normal but is not centred on O. This asymptotic

bias is due to the local averaging in the kernel estimator for the incidental parameters
(p~~l) used to construct g(N). However, Appendix B also shows how to form a linear
combination of estimators of this form for go to obtain a new estimator, g~N), which is
N 1

/
2 consistent, asymptotically normal and unbiased. Proposition 2 summarizes the

results of this section and Appendix B.

Proposition 2. If filJo is finite, U~N), given by (5.9), is consistent and Nl/2(U~N) -Uo)
converges in distribution to a normal random variable with mean 0 and covariance matrix,
~1, defined in (5.11). If filJo is compact (but not finite), then there exists a consistent estimator,
uiN), defined in (B.27), such that N 1

/
2(UiN) -go)) converges in distribution to a normal

random variable with mean g and covariance matrix, I 2 , given in (B.21) of Appendix B.

The assumptions invoked to establish the asymptotic properties of the CCP estimator
limit its applicability to certain dynamic discrete choice contexts. First, consider the
situation where some of the state variables are not observed. Although Assumption 4
rules out the existence of such unobserved state variables, it is quite natural for such

8. As noted above, one may wish to use the kernel estimators in (5.12), even in the .case where all of the
elements of H nr finite-valued random variables. While the large sample properties of these choice and transition
probability estimators still holds. We have not investigated their small sample properties. (See Hotz, Miller,
Sanders and Smith (1991) for an investigation of the small sample properties of a closely related estimator.)
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 509

variables to play an essential role in models of interest. For example, in the job matching
model estimated by Miller (1982, 1984), the beliefs an agent holds about the quality of
his match are unobserved. Determined by nature and past choices, they are used to
evaluate future prospects. In this model, the estimated choice probabilities cannot be
conditioned on all the variables that help determine the agent's future decisions and their
conditional valuation functions. One could, following Miller, solve the dynamic program
ming problem explicitly, derive the optimal decision rule to generate the stochastic process
that characterizes the unobservables, and ultimately undertake ML estimation.

Assumptions 5 and 6 imply there are no common shocks which would produce, over
time, correlated responses within the population ofagents. Consequently many interesting
questions about secular change, technological progress, and business cycles fall outside
the scope of the CCP estimator as proposed herein. However, Altug and Miller (1991)
recently have adapted our approach to a competitive economy where aggregate fluctu
ations are transmitted through prices which affect labour supply decisions and human
capital accumulation. In principle, one could allow for such forms of aggregate variation
by explicitly modeling the processes generating such aggregate processes and then estimat
ing the resulting model with ML techniques. This approach has not been taken due to
the substantial computational costs its implementation would entail.

Finally, the CCP estimator requires samples to be drawn from the population of all
possible histories, H n" in order to (nonparametrically ) estimate the choice and transition
probabilities in p(Hn t ) . (More formally, random sampling of agents at a point in calendar
time coupled with Assumptions 5 and 6, ensure that all feasible histories have a positive
probability of being included in any particular sample.) This requirement is yet another
way in which the CCP estimator is, in principle, less versatile than ML. Because the
latter method computes the optimal decision rule, it may be theoretically possible to
parametrically identify dynamic models with data sets that only track the first few periods
of the decision maker's problem. As with unobserved heterogeneity, the usefulness of
pursuing ML in these estimation environments depends on the confidence one can place
in specifying the structure of unobserved phenomena, in this case choices and outcomes
occurring near the end of the decision tree never seen in the data set.

6. AN EMPIRICAL MODEL OF CONTRACEPTIVE CHOICE AND
VOLUNTARY STERILIZATION

The remainder of the paper applies the preceding results to a dynamic model of contracep
tive choice for a sample of white married couples surveyed in the National Fertility Survey
of 1975 (NFS). The model explicitly deals with the option of voluntary sterilization,
generalizing the one in Section 4. In recent years voluntary sterilization has become the
most common method of family planning within the U.S.A. For example, among married
women between the ages of 25 to 34 in the U.S., Potts (1988) reports that 40 percent rely
on sterilization as their contraceptive method, which is twice as many as use the next
most common contraceptive method, the pill.

While the model outlined in Section 4 captures the optimal stopping aspects of family
formation, it lacks several features of the contraceptive choice decisions of married
couples. First, it does not allow for any contraceptive control apart from sterilization.
Yet temporary methods of contraceptive control are important as our data clearly show.
Second, it does not explicitly characterize the structure of the payoffs parents derive from
their children. For example, previous economic models of life choice fertility distinguish
between the utility parents derive from the presence of children as well as the (economic)
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510 REVIEW OF ECONOMIC STUDIES

(6.1)

if the nth couple sterilizes at age t

otherwise.

d... ={~

d.,,=g
dm3={~

costs parents face in rearing them. Moreover, while the model in Section 4 specified the
parental utility depended only on the existing number of offspring, empirical evidence
suggests that the utility parents receive from their children (see Hotz and Miller (1988»
and the costs associated with rearing them (see Espenshade (1980) and Lazear and
Michael (1988» depend on their ages as well as their total number.

The empirical application presented here allows for these features within a dynamic
structural model of contraceptive choice. We estimate a model in which parents value
the direct utility received from their children and from their own consumption. Their
consumption of these two goods is constrained by their (limited and uncertain) income,
the costs of rearing their own children, and their inability to control perfectly the extent
and timing of childbearing. These features of the choice problem facing parents, as well
as the possibility that utility from offspring and their costs vary with the number and age
distribution of their children, would suggest that parents adapt their choice of contracep
tive methods to the outcomes they have realized in previous periods and in anticipation
of the future consequences of current actions.

In the model we estimate, the nth couple can choose one of the following three
contraceptive actions: voluntary sterilization, temporary contraception (such as the pill),
and no contraception. That is:

if the nth couple does not contracept at age t

otherwise,

if the nth couple contracepts at age t

otherwise,

Contraceptive methods 1 and 2 only imperfectly control births. For these two choices,
the (transition) probabilities characterizing the occurrence of a birth are assumed to
depend on the mother's education, denoted Bin, her age, A l nh and the contraceptive
method used. That is, for j E {I, 2}:

Fj{H n,t+11 H nt) = Fj{Hn,t+I IBin, A l nt), (6.2)

where, as in Section 4, Hn.,t+1 = (Hnh bnt ) and bnt E {O, l} is an indicator variable for births
to the nth when the mother is A l nt years old. We continue to maintain the assumption
that sterilization is fully effective and terminating."

Each period the couple receives a level of utility depending on their stock of children,
their own consumption, and which contraceptive method they used. Let ant denote the
service flow couple n receives from their children when the mother is A l nt years old, and
let Cnt denote parental consumption. We assume this payoff at age A l nt is a linear
function of each of these goods, plus an additive component measuring the utility
specifically associated using contraceptive method j. These choice specific costs are
assumed to depend upon a quadratic function of the mother's age, A l n h and her education,
Bin, as well as an independent {across (n, t,i» random disturbance, Emj, drawn from a
Type I Extreme Value distribution with a zero mean. That is:

Untj = 13'[ant + Cn, - t/ll a~, -1/J2C~, + JLjo+ AlntJLjl + JLj2+ E l nJLj 3+ Emj], (6.3)

9. Thus F3(Hn,l+11 E ln, A ln,) = F3(Hn,t+21 Eln> Aln.t+l) '" =0 if dnt3= 1. See Altug and Miller (1991) and
Hotz, Miller, Sanders and Smith (1991) for structural applications of estimation strategies that avoid backwards
induction by exploiting Proposition 1 but do not rely on terminal states.
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 511

where f3 is the subjective discount factor, (t/Jl , t/J2) are curvature parameters characterizing
parental preferences for consumption and service flows from children, and ILj =
(lLjo, ... ,lLj3), are parameters characterizing the couple's preferences over the specific
contraceptive methods for j E {I, 2}; without loss of generality, we normalize 1L3 to Q. We
further assume that the service flow from children, an" is a linear function ofpast births:

(6.4)

where the parameter, n., is the service flow a child of age s yields. (We assume that the
service flows from children aged 21 years and older are the same.)

We assume the couple faces a per period budget constraint, in which they must
allocate their income in period t, Yn" between their own consumption and the costs of
rearing their children. The budget constraint is:

(6.5)

where ent denotes total expenditures on children in period t. Expenditures on children
are assumed to depend on family structure in the following way:

e.; = I;~o wsbn. t - st (6.6)

where W s is the (exogenously-determined) level of expenditures required for a child of
age s. (We assume that parents only make these expenditures for children who are less
than 21 years of age.)

Parental income is assumed to be exogenously determined but stochastic. We suppose
that Ynt is a function of the husband's age and education, denoted by A 2nt and E2n,
respectively, and a conditionally independent stochastic component, gnl' More precisely,
we use the following specification:

Ynt = 'Yo + A 2nt'Yl + A~t'Y2+ E2n'Y3 + E2nA2n1'Y4 + E2nA~nI'Ys + gnt' (6.7)
where 'Y =: ('Yo, ... , 'Ys)' is a parameter vector to be estimated, and gnt is a zero mean and
is uncorrelated over (n, t).10 In our empirical analysis, we use husband's income to
measure Ynt.

11

Substituting results from (6.4) through (6.7) into (5.3), we obtain:

Untj = I3 t{I :=o'TJ;bn. t-; + ~~nt2'+ gnt - I~~o wjbn,t-;+ "'l(I~~o 'TJibn.t_;)2

- t/Ji~~nt2' + gnt - I~~o w;bn,t_;)2+~;nt!h + Entj}, (6,8)

where the vectors, ~l nt and ~2n" are:

~Int = (1, Ant' A~t, E'n)'

~2n1 = (1, A 2nt, A~nt, E2n, E2nA2nt, E2nA~nI)" (6.9)

10. The failure to allow for serial correlation in ~n, conditional on Hn" is clearly a limitation of the model.
Nevertheless, the estimation strategy we have developed in this paper can deal with certain types of serial
correlation in the specification of (6.7). If, for example, one were to adopt an AR (1) process to allow for serial
correlation in the earnings process disturbances, two modifications would need to be made to the model
presented in the text. First, because Hn, would contain lagged values of Ynl' the conditional expectations of
the payoffs in future periods, E (u'Uj IH"s) for s> t, would be now a function of Yn,,· I' Second, because Y",
would depend on Y" ,_I (as well as a set of exogenous forcing variables), one would need to (non-parametrically)
estimate a transition' probability function for earnings, F(Yn,1 Y",,_I , ~2"')' in addition to the transition functions
for birth occurrences given in (6.2). Lacking adequate data on lagged earnings in the National Fertility Survey,
we could not pursue the estimation of such a specification.

11. Restricting family income to the husband's earnings was done for several reasons. First, because of
data limitations in the NFS, we only had measures of the earnings of the husband and wife; respondents were
not asked about other sources of income, Second, we did not include the earnings of the wife's income in our
measures of the couple's income, because of our concern that it is endogenously determined and intimately
related to the childbearing decisions of the couple. In an earlier version of this paper, we presented results for
a more elaborate structural model in which the wife's labour supply and labour earnings, were explicitly modeled
along with the couple's contraceptive choices. These are available from the authors upon request.
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512 REVIEW OF ECONOMIC STUDIES

From the description of this model, it is straightforward to see that Hn, =
(b~~h bd , • • • , bn_,-I) where bno= (r - A ln" t - A2n" E In , E2,, )' and the vector of structural
parameters we seek to estimate is given by:

(6.10)

The couple choose a sequence of contraceptive actions to maximize the expected
value of the sum of the per period payoffs, calculated using (6.8). To formulate estimating
equations, note that the period t conditional choice probabilities for this model, expressed
as functions of period t +1 choice probabilities and the couple's history, take the following
form:

PdHn" p(Hn, ) , Do}

=exp [~~n'~k + /3-'VdHn" p(Hn, } , Do}]

x {L;=I exp [~~n,~j + f3-'l-j(Hnt , p(Hnt } , Do}]}-" (6.11)

for k E {I, 2}. Moreover, utilizing the expressions in (4.11) and (4.12), the difference in
the conditional valuation function for k E {l, 2} and its counterpart for the terminating
action (sterilization) takes the form:

where the parameter vector, ~ = (Ao, AI, ... , A26)' is a non-linear function of go, the
structural parameters, defined:

f321
Ao= L;~o f3S[(as - t/Jla;) - (t/J2 es + t/J3e;)+ ('Yo+ 'Y~ + 'Y;2)(2t/J3es)] + 1- f3 (a21 - t/Jla~l)'

f321
Ai = - L~~~i f3s [2"'1asas+1+ 2t/J3 eses+1] - L;~21-i /3S(2t/Jlasa21) - 1- /3 (2t/Jla~1)'

for i E {l, ... ,21},

A22= L;~l f3S-1( 'Yl + 'Y~ + 'Y~2)(2t/J3es-I}'

A23=L;~l f3s-l( 'Y2+2'Y~)(2t/J3es-l)'

A24= L;~l /3S-1'Y3(2t/J3es_I),

A2s = L;~l f3S-1( 'Y4 + 2'Y;)(2t/J3es-l),

A26= L;~l f3 S-1'YS(2t/J3 es-l)' (6.13)

Given values for the transition probabilities, the right-hand side of (6.12) is linear
in the lagged birth indicators and the household characteristics. This feature lends itself
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(6.14)

to the foUowing four-stage strategy for estimating of '0: (l)obtain (nonparametric)
estimates of the probability transitions and the conditional choice probabilities; (2) using
these estimates to form (6.11) and, in turn, the choice probabilities in (6.12), estimate
(~, JA-I ,1.1.2)' and their standard errors, with the methods developed in Section 5; (3) use
(6.7) to'"estimate 'Y, the parameter's characterizing the parent's income process; and (4)
use the estimates from stages (2) and (3) to estimate the remaining structural parameters
in 10 by minimum distance methods. We adopted this strategy because it is relatively
cheap to compute.

While the procedures for undertaking Steps 2 through 4 are either well known or
previously discussed, a few details about Step 1 are in order. For each observation
n E {I, ... ,N} estimates of conditional choice probabilities were obtained for two
hypothetical histories, namely (Hnlt 0) and (Hnlt 1), which characterize the couple's
position in period (t+ 1) in the event of a birth or not, respectively. For convenience
and without loss of generality, we recast the state space in terms of the educational
attainment of both parents, their ages, and the successive ages of their progeny by birth
parity in place of the original H nt space. That is, we expressed the kernel function in
terms of H~t = (H~~), ... , H~~», where H~~) = EIn , H~~) = E2 n , H<;,> = A 1nlt H~~) =
A 2nt , H~~) is the age of the oldest child, ... , and H~~) is the age of the (1 _4)th oldest,
with (1 - 4) being the largest number of children belonging to anyone family at t in the
sample. The kernel function we used in our empirical analysis was of the form:

J( ~~') = n:~1 ~(:'IJ.
where cP ( •) is the standard normal density function, a, is the sample standard deviation
of H~i,> and hN is the bandwidth. The bandwidth actually used in our analysis was b» = 1.
Preliminary analyses conducted with alternative bandwidths did not reveal a great deal
of sensitivity in the estimates of go to this choice.

7. THE DATA

The data, taken from the National Fertility Survey (NFS), is a sample of white couples
who were married over the period 1970 through 1975 inclusive. They were interviewed
twice, in 1970 and at the beginning of 1976, and information was gathered on the births
of their offspring, other demographic characteristics, as well as information on the
husband's annual labour market earnings for the years 1970 and 1975. They were also
asked to provide monthly records of their contraceptive utilization over the six year
period. We aggregated this data to form annualized measures of the contraceptive choices,
classifying each couples according to one of the three contraceptive actions described in
the previous section.f Of a total of 2374 couples interviewed in both 1970 and 1976, we
used data on 2088. The sample loss is due to missing data on demographic characteristics,
husband's income, fertility, or contraceptive histories. We then formed couple-year
observations from those at risk to bear children (that is, couples who had not yet sterilized).

12. The couple's contraceptive choice in each calendar year was constructed as follows. If either partner
reported sterlizing in any month during a calendar year I, we recorded their contraceptive choice as sterilization.
If sterilization did not occur in year I and the couple recorded a birth in year 1+ 1, we used their contraceptive
strategy in the month prior to the wife becoming pregnant (that is whether they were contracepting or not) as
their year t contraceptive choice. Couples who did not sterilize and did not have a birth in year t + 1, were
further categorized; if no birth occurred in year I, we assigned the contraceptive strategy they followed in the
majority of the months in year I; alternatively, if a birth occurred in year I, we assigned their year I contraceptive
choice as contracepting, on the grounds that women are infertile during the post-partum period.
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514 REVIEW OF ECONOMIC STUDIES

A total of 796 couples voluntarily sterilized at some time over the period 1970 through
1975, resulting in a total of 10,257 couple-years for use in our analysis. Descriptive
statistics on this sample are provided in Table I. With respect to their contraceptive
practices, in any given year, approximately 18% of those couples at risk used no form of
contraception, 74% used temporary contraceptive methods and 8% chose to sterilize,

The relationship between contraceptive choices and the characteristics of fecund
couples is suggested by cross-tabulations provided in Table II. The left-hand panel shows
approximately 25% of wives under the age of 21 use no form of contraception, this
percentage falling to around 17 for wives in their thirties, and then rising. The percentage
who contracept is highest among those women in the 21-25 age bracket, while the
proportion of couples who sterilize rises from 1·5% for the youngest age group, peaking
at 12% for couples with wives aged 36-40.

The middle panel displays the distribution of contraceptive choice by educational
attainment of the wife. Couples with wives who did not attain a high school degree have
the highest proportions of either using no contraceptive methods or choosing to sterilize,
relative to the other educational groups. The high incidence of sterilization among women
with less education partly reflects the fact that women with lower levels of educational
attainment started their childbearing earlier. Also note that a relatively high proportion
of college graduates do not contracept; perhaps these women delayed childbearing until
after completing their education.

Because the model suggests that family size affects contraceptive choice, the relation
ship between these two variables is illustrated in the third panel of Table II. As might
be expected, the incidence of the use of both temporary contraceptive methods and

TABLE I

Descriptive statistics

(Standard deviations in parentheses)

Year
Variable 1970 1971 1972 1973 1974 1975

Wife's age 28·257 28·777 29·461 30·416 31·368 32·234
(5,880) (5'799) (6'517) (5'814) (5'898) (5,904)

Wife's education 12·559 12·583 12·623 12·627 12·649 12·673
(2'018) (1'997) (1,983) (1'995) (2·005) (2,010)

Husband's age 30·307 31·302 31·936 32·914 33·872 33·740
(6,614) (6'547) (6'517) (6'573) (6'668) (6'712)

Husband's education 13·057 13·091 13·090 13·099 13·109 13·147
(2'613) (2'562) (2'543) (2'554) (2,564) (2'557)

No contraception 0·213 0·177 0·187 0·180 0·175 0·159
(0'409) (0,381) (0,390) (0'385) (0'389) (0,366)

Contraception 0·696 0·737 0·755 0·744 0·745 0·770
(0'460) (0'440) (0·430) (0'436) (0·436) (0'421)

Sterilization 0·091 0·086 0·057 0·075 0·080 0·071
(0'288) (0'280) (0,232) (0'264) (0·271) (0'257)

Current births 0·148 0·148 0·119 0·121 0·101 0·087
(0'359) (0'361) (0·328) (0'328) (0·303) (0'287)

Number of children 2·162 2·203 2·065 2·280 2·321 2·367
in family (1'536) (1'495) (1,414) (1'395) (2'321) (1,367)

Husband's income 8108·16 10517·88
(3106,71) (5133'47)

Number of 191 163 99 123 121 99
sterilizations

Number of 2088 1897 1734 1635 1512 1391
observations
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TABLE II

Contraceptive choices and demographic characteristics of couples"

Wife's Age

Contraception
choice <21 21-25 26-30 31-35 36-40 >40

No contaception 80 494 558 384 259 110
24·8 20·4 17·7 16·5 17·1 20·7

Contraception 238 1860 2342 1673 1073 390
73·7 76·9 74·5 72·1 70·7 73·3

Sterilization 5 65 244 264 186 32
1·6 2·7 7·8 11·3 12·2 6·0

Total 323 2419 3144 2321 1518 532

Wife's Education

Contraception Less than High school College More than
choice high school graduate Some college graduate college

No Contraception 351 946 289 237 62
23·5 17·6 15·7 20·1 17·7

Contraception 988 4030 1411 882 265
66·2 74·8 76·4 74·6 75·7

Sterilization 153 411 146 63 23
10·2 7·6 7·9 5·3 6'6

Total 1492 5387 1846 1182 350

Number of Children

Contraception
choice 0 2 3 4 ~5

No contraception 374 651 471 210 92 87
41·2 29·9 13·6 10·1 10·1 12·0

Contraception 526 1492 2741 1606 677 534
58·0 68·4 79'1 77·5 74·2 74·0

Sterilization 7 37 252 256 143 101
0·8 1·7 7·3 12·4 15·7 14·0

Total 907 2180 3464 2072 912 722

*The top entry in each cell gives the number of observations, while the bottom one gives the column percentage.
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516 REVIEW OF ECONOMIC. STUDIES

sterilization are positively correlated with the total number of children, while the decision
to use no contraceptive method is negatively correlated. These data also suggest contracep
tive methods vary with the number and age distribution of the couple's existing stock of
children. In results not reported here, couples with young children and those with older
children were found much more likely to either contracept or sterilize than couples with
either no children or with children between the ages of 4 and 16.

8. EMPIRICAL RESULTS

This section reports results from the estimation of the contraceptive choice model of
Section 6, using the data described in Section 7. Beginning with the birth transition
probabilities, or contraceptive failure rates, Table III presents estimates of the probability
a birth occurs when a couple does not contracept, Fn tl , and the probability associated
with using a temporary method, Fn t2 • These were estimated for each of 28 alternative

TABLE III

Failure by wife's age and education

(Standard errors in parentheses)

No contraceptive Method Used

Wife's education

Wife's age < High school High school Some college College > College Marginal

<20 0·619 0·733 0·692 0·692
(0'106) (0,114) (0,266)

20-24 0·390 0·651 0·821 0·714 0·750 0·630
(0,055) (0·031) (0,051) (0·085) (0'216)

25-29 0·259 0·492 0·511 0·607 0·583 0·482
(0·049) (0,032) (0,052) (0,053) (0,101)

30-34 0·184 0·193 0·222 0·345 0·500 0·227
(0·044) (0,031) (0'062) (0'064) (0,158)

35-39 0·106 0·082 0·122 0·036 0·222 0·093
(0'045) (0'024) (0,051) (0,035) (0'138)

~40 0·009 0·009 0·009 0·083 0·009 0·009
(0,010) (0,010) (0'010) (0,080) (0'010)

Marginal 0·251 0·390 0·435 0·444 0·453 0·378

Temporary Contraceptive Methods Used

Wife's education

Wife's age < High school High school Some college College > College Marginal

<20 0·210 0·149 0·173 0·173
(0,054) (0,052) (0'154)

20-24 0·039 0·084 0·103 0·089 0·081 0·081
(0,013) (0·010) (0'018) (0·025) (0,073)

25-29 0·512 0·055 0·067 0·076 0·063 0·060
(0,014) (0,007) (0,013) (0'016) (0,031)

30-34 0·026 0·031 0·035 0·023 0·012 0·030
(0'011) (0,006) (0,011) (0,011) (0,012)

35-39 0·028 0·019 0·017 0·009 0·023 0·019
(0,016) (0·006) (0'011) (0'011) (0,011)

~40 0·002 0·002 0·002 0·017 0·002 0·002
(0'003) (0,003) (0·003) (0'016) (0·003)

Marginal 0·048 0·049 0·056 0·052 0·026 0·050
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cross-classifications of the wife's education and age. As might be expected, the failure
rates for each contraceptive method fall with age. Overall, the estimated failure rates for
couples who use no contraceptionrise with the wife's educational attainment, while, for
those using temporary methods, failure rates rise and then decline. The non-monotonicity
in the relationship between the latter failure rates and the wife's education seems to
contradict one conclusion of Rosenzweig and Schultz (1989), namely that higher levels
of a woman's educational attainment are associated with more efficacioususe of contracep
tive methods. Only for the 35-39 age group does this association between education and
contraceptive failures appear to be negative (as their hypothesis would predict).

Estimates of the contraceptive failure rates and the conditional choice probabilities
were used to obtain the estimates of ~, ILl' and IL2 for the reduced form representation
characterized in (6.11) and (6.12); these estimates are displayed in Table IV. (The
estimated standard errors appropriately account for the prior estimation of the incidental
parameters, as described in Section 5 and Appendix B. The effect of this correction on
these estimates was negligible.) Note that almost all of the parameters are statistically
significant at conventional significance levels. Based on a X2 test of the joint significance
of (AI, ... ,A26 ) , (ILll' IL12' IL13) and (IL21 , IL22' IL23), we find that the set of conditioning
variables included in the contraceptive choice decision rules do help explain the observed
choices; the test statistic is 220 which, with 33 degrees of freedom, implies the null
hypothesis that these coefficients are all zero is strongly rejected. The significance of the
individual coefficients on lagged births indicates the age distribution of children, in
addition to their total numbers, has an important impact on parental decisions about

TABLE IV

Reduced form

(Asymptotic standard errors in parentheses)

Parameter Variable Estimate Parameter Variable Estimate Parameter Variable Estimate

Ao 43·776 A l2 nn,t-ll -2,427 A24 A~nt 0·041
(10·892) (0'598) (0,011)

Al b nt -5,445 A 13 b n,t-12 -2·706 A25 E 2nA2nt 0·229
(0'324) (0'678) (0,056)

A2 b n•t- l -1,690 A l 4 b n,t-13 -3,412 A26 E2nA~nt -0,003
(0'192) (0,823) (0,0009)

A3 b n,t-2 -1,238 A l 5 b n,t-14 -2·786 J.LIO 8·893
(0'200) (0·914) (1,735)

A4 b n,t-3 -1,314 A l 6 b n,t-15 -2·810 J.Lll A l n t -0,568
(0'216) (1·097) (0,106)

A5 b n,t-4 -1,708 A 17 b n,t-16 -3,173 J.L12 A7nt 0·008
(0,237) (1'386) (0·002)

A6 b n,t-5 -0,990 A l 8 bn.t-17 -3·308 J.L13 e., -0,034
(0·259) (1'828) (0'627)

A7 bn. t-6 -2,288 A l 9 b n,t-18 -0'033 J.L20 9·131
(0'283) (2·416) (1,302)

A8 b n,t-7 -1,981 A20 bn, t - 19 -6'697 J.L21 A l nt -5,599
(0,302) (3·674) (0'081)

A9 b n,t-8 -2,234 A21 b n,t-20+ -11,308 J.L22 A7nt 0·009
(0'363) (4·789) (0'001)

A lO b n,t-9 -1,605 A22 E 2 n -3,725 J.L23 E l n 0·074
(0,399) (0·852) (0'019)

All bn,t-IO -2,562 A23 A2n -2,582
(0,479) (0·709)
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518 REVIEW OF ECONOMIC STUDIES

(8.1)

contraceptive use. This importance of the age distribution of children was found in our
-earlier study (Hotz and Miller (1988», which estimated an index model under the
assumption that the unobserved disturbances were normally distributed (instead of Type
I Extreme Value), ignored the effects of future conditional choice probabilities on parental
decision rules (explicitly treated in this paper), and exploited a different data set (the
Panel Study of Income Dynamics), over a longer period (1970 through 1979), and on a
smaller sample (350 married couples).

Many implications of the underlying structural model emerge from an examination
of its reduced form. Comparative dynamic exercises were conducted to analyze changes
in contracept behaviour in response to changes in the values of the variables in Hn, .

Consider, for example, the effects of differences in the wife's level of education, E I " . In
particular, it follows from (3.16) and (6.11) that in this case:

aPntk (~2 [ , -r t ]]-2[ -r t a'll"tk apn,]--=Pntk 1+ L.,j= I exp X l n,/-Lj + /3 'IInlj /-Lk4+~ ---E
aE l n ... apnt a In

Expression (8.l) consists of two components. The first, involving /-Lk4, measures the
(direct) effect of changes in the wife's education on choice probabilities through its effect
on the per period payoffs. The second, which involves the partial of 'IIn1k with respect to
Pnh captures the (indirect) effect of her education on future choice probabilities and
failure rates. It can be calculated from (6.12); nonparametric estimation procedures were
used to obtain consistent estimates of the derivative of p(Hn, ) .

The effect of changes in the wife's education on parental contraceptive choice, holding
all else in H nt constant, is qualitatively similar to the gross association presented in Table
II. Holding other characteristics of a couple constant at their sample means, our model
predicts that couples with wives who have an additional year of education are 16·5% less
likely to not contracept, 5% less likely to sterilize, but 15% more likely to use temporary
methods. We also find that the direct and indirect effects of increases in E l n are in the
same direction; thus, they reinforce each other to produce this overall effect.

With respect to the impact of the wife's age on the couple's contraceptive choices,
our model predicts that as the wife grows older by one year the couple is 9·8% more
likely to not contracept, 1·6% less likely to use contraceptive methods and 3% more likely
to sterilize. In contrast to the results for changes in her education, the direct effects of
the wife's ageing are qualitatively different than the indirect effects; holding other charac
teristics and p(Hnt) constant, couples are 0·4% more likely to sterilize as the wife ages
by one year.

The discrepancy between the (estimated) direct and indirect effects of the wife's age
on contraceptive choice calls attention to an important feature of our model of parental
decision making. The wife's age (as well as her education) affects parental choices
through two distinct avenues. One is through the effect of the wife's age on the payoffs
parents receive from specific choices (as measured by the parameters /-Lkl and /-Lk2). Our
estimates of the direct effects of the wife's age suggest that, as women get older, couples
choose contraceptive actions which reduce the risks of a pregnancy. Such findings are
consistent with a view that the direct effect of wife's age characterizes the impact of
changes in the opportunity cost of the wife's time on contraceptive choice.

But, the wife's age also affects the failure rates of alternative contraceptive methods.
Recall from Table III that the failure rates for both the no contraception and temporary
method choices decline with the wife's age. Moreover, based on the reduced form
estimates, a temporary and unexpected increase in the failure rate of a given contraception
method leads parents to substitute away from that method." For example, in response

13. This is found by substituting our estimates of the reduced form and incidental parameters into (6.12),
and then recalculating (6.11).
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HOTZ & MILLER ESTIMATION OF DYNAMIC MODELS 519

to a 1% increase in the fecundity for those not contracepting, the probability that couples
choose this method would decline by 0·91% while the probability of their taking either
of the other choices would each increase by 0·11 'Yo. As the failure rates of temporary
contraceptive methods increase, the substitution away is weaker; in response to a 1%
increase in its failure rate, there is a 0·03% reduction in its use and a corresponding
increase of 0·11 % in either the use of no contraceptive method or sterilization. Given
our estimates of #1-2, as wives age, holding the payoffs constant, couples would respond
to the relative decline in the fecundity by contracepting less. The latter (indirect) effect,
because of its magnitude, dominates the effects of the wife's ageing on payoffs and leads
to the conclusion that, as wives age, couples more frequently chose not to contracept.

Based on the estimates in Table IV, couples with more educated or older husbands
are more likely to use temporary methods and sterilization than other households, although
the magnitude of these effects is much smaller than was found with respect to wives'.
Couples whose husband has one additional year of education are 5% less likely to not
contracept, 0·4% more likely to use temporary methods and 0·1 % more likely to sterilize,
while those with husbands who are one year older are 2·7% more likely to not contracept
and 4% less likely to use either temporary methods or sterilization.

Turning to family composition and contraceptive choice behaviour, we considered
how these choices vary with existing numbers of offspring and the spacing of previous
births, by examining several offspring configurations. For couples with only 1 child, the
predicted probability of not contracepting immediately after the birth is 3%, with 85%
using a temporary contraceptive method and 12% choosing sterilization. As the child
ages, the estimates imply that parents will increasingly choose to not contracept. By the
time the child is 5 years old, the incidence of not contracepting more than doubles to
8% while the use of temporary methods and sterilization declines to 82% and 10%,
respectively; at age 10, the corresponding probabilities are, 0'07, 0·82 and 0·11, respec
tively. To examine how contraceptive choice behaviour changes with family size, consider
the case of a household with 2 children, where the first child is 5 years older than the
second. The probability of not contracepting immediately after the birth of the second
child, relative to the single child family, is lower (by 33%), while the probability of using
either temporary methods is slightly lower (by 1%) and that for sterilization is slightly
higher (by 12%). When the youngest child reaches 5 years of age, the probability of not
contracepting rises to 5%, (that is less than in the single child household), and the
probabilities of using temporary methods and sterilization would be predicted to increase
to 82% and 13%, respectively. By the time the youngest child is 10, the choice probabilities
are 0·04, 0·83 and 0·44%, respectively. Overall, the contraceptive choice decision rules
derived from the Table IV estimates imply, holding all else constant, the more children
a couple has had, especially past two, the more likely they are to use more effective
methods of contraceptive control and that parents do alter their contraceptive strategies
to space births and to diminish their chances of pregnancy at later stages of their life
cycles as their children grow older.

To identify the structural parameters, estimates of equation (6.8), the husband's
earnings equation, were first obtained; these estimates are found in Table V.14 The
predicted life-cycle earnings profile displays the typical concave shape. Evaluated at the
mean educational level, the husband's earnings rise early in the life cycle (at age 30,
husband's earnings increase at an annual rate of 3·2%), peak at age 46, and decline
thereafter. (For example, at age 60, earnings are declining at an annual rate of 2·9
percent.) Husbands with higher levels of education earn more; the rate of return to

14. The specification of the husband's earnings equation we estimated also included a dummy variable
for the year 1970, denoted D". We included this dummy because the questions in the 1970 and 1975 NSF
interviews were worded slightly differently.
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education, evaluated at their respective sample means, is 6· 2%. Our results also imply

higher levels of education are associated with faster growth rates in earnings. Evaluated
at the mean age, husbands with a ninth-grade education experience an annual growth
rate of 0·2%, compared to 2·0% for those with 12 years of schooling, and 4·4% for those
with 16 years of education.

TABLE V

Husband's earnings equation

(Asymptotic standard errors in parentheses)

Parameter Variable Estimate Parameter Variable Estimate

'Yo 31,971'20 'Y4 E2nA2n, 169·87
(2,578'97) (l0'66)

'YI A 2nt -1,485'60 'Y5 E2nA~n, -1·88
(l42·20) (0'14)

'Y2 A~n, 16·58 'Y6 Dn 1713·90
(l'92) (50·44)

'Y3 E2n -2,944'96 uE 3715·81
(l94'17) (l4·94)

Nested within the model developed in Section 6 are many structural specifications,
which differ in the restrictions they impose on the parental utility function and the costs
of raising children. Here we report the results from estimating three such specifications.
Of the three, Model A is the most restrictive; it assumes service flows and child care
expenditures are independent of the child's age:

"7s = "70 for all S E {I, ... , 21)

ws=wo for all s e I l, ... ,20}.

Model B relaxes the restrictions on expenditures by replacing (8.2) with:

(8.2)

(8.3)

(8.4)

The least restrictive specification we report on, Model C, assumes expenditures on children
follow the pattern indicated by (8.4) but relaxes (8.2) as follows:

"72= "73 "710=·' . = "714

"74 = ..• = "76 "715 = ... = "717

"77 = ... = "79· (8.5)

The estimates for these models are found in Table VI.
The overidentifying restrictions, associated with the reduced form mappings which

(6.13) and (8.2) through (8.5) define for the respective specifications, form the basis for
a X2 test. All three are strongly rejected; the significance level of the test statistic for
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Model A is 0·182 X 10- 16
, for Model 80·703 x 10- 14 and 0·0034 for Model C. Confronted

with these test statistics, we did explore several other configurations of structural
coefficients that are not nested by Model C but failed to identify a specification that was
not rejected. This failure can be attributed to non-Iinearities in the reduced-form mapping
which hindered our search to recover an exactly identified structural specification.

Despite their poor fits, as compared with the reduced form in Table IV, it is worthwhile
to briefly compare our findings of the three structural specifications with each other, and
with previously published work. Both sets of restrictions (8.1) and (8.2) are, individually
and jointly, rejected against the relaxations (8.3) and (8.4), at the 0·01 level. These
rejections underscore one advantage of our estimator, namely it enables one to investigate
a richer set ofstructural specifications. The only other existing dynamic structural analyses
of fertility, by Wolpin (1984) and Montgomery (1987), maintain the assumption of
age-invariant service flows and expenditures on children in order to make their respective
maximum likelihood estimators computationally feasible. On the other hand, many of
the coefficients reported in Table VI are insignificant. Moreover the estimated annual
expenditure per child (measured in 1975 SUS) are implausibly low. (For example,
considerably higher estimates are obtained in the cost-of-children literature by Espenshade
(1980) and Lazear and Michael (1988).)

Viewed as an application of techniques developed in the first five sections of this
paper, several noteworthy points emerge. The existence of a reduced form which is no
more difficult to estimate than a multinomial logit greatly simplifies the computation of
dynamic, discrete-choice models. We argued the resulting estimates are helpful in explain
ing various behaviours across different household types, and conducted some limited
comparative dynamic exercises with it. Moreover, adjustments to the estimated standard
errors, arising from the prior estimation of the conditional choice and transition prob
abilities, were small. As we noted above, the estimated reduced form captures some of
the systematic variation in the data. Indeed, the reduced form is so precisely estimated
that it strongly rejects specifications which are sufficiently parsimonious for ML estimation.
On the other hand, the non-linear mapping between the reduced-form and the structural
parameters proved intractable; consequently, we failed to recover a specification which
was not rejected. So, while the new representation of conditional valuation functions
and the associated estimation techniques are not directly responsible for this shortcoming,
the ease with which the reduced form of the model could be estimated and used to reject
parsimoniously parameterized structural specifications, may be a harbinger.

APPENDIX A

ProofofProposition 1. From (3.3) in the text, g(!', H,) is the (J -1) dimensional vector function:

g(!', H,) = (QI(!', H,), .. . , QJ-I(!'. H,)" (A.I)

with components j e {I, ... , J -l} defined as:

Q/!', H,) = fG)(E + II) - "I'···, E+ "i IH,)dE. (A.2)

For each (t, H,) and We .:1J
-

I
, we now define the correspondence g-I(~ H,) as:

(A.3)

The proposition asserts that, for all pe.:1 J
-
1 the set {!'eW-I: Q,(!', H,)=p} is either empty or consists of a

singleton. - -
First we show the Inverse Function Theorem applies here. For any t < T, fixH~ at any value in Box B'-I.

By assumption G(f, IH~) is equipped with a well-defined probability density function. Therefore the cross
partial of G(§, IH~) with respect to I, exists for all (i,j)e {I, ... , J -1}2 with i ~ j, and is non-negative; denote
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it by O'j(")' From (A.2), Q(l', Ht) is differential with respect to r, and has a square (J -I)-dimensional
derivative matrix function which is denoted by D(r). We now show that the matrix D(r*) is invertible at any
v* e RJ

-
I
. For all (i,i) e [I, ... ,J -I}2 with i #-j, define h'j as:

hij = fGij(s + vr -"t,··., s + v!>ds. (A.4)

Observe hi)> 0 since g,)> O. By difterentiating g,(r. HJ with respect to r at (1'*, Ht), one can verify:

DtJ!'*) = {r~-I'''''' "", ~f~=j: (AS)
-h,) tf. #-J.

Define the matrices D I and D2 as

o
.,],

DI,J_ICl:'*)]
D 2,J -I (r*)

°

(A.6)

Because D I is diagonal it can be inverted. Also by construction

D(r*) = D 1 - D z= [I - D2D1
I]D

1 •

Let hi) denote element (i,}) of D2D11
• From (A.4) and (A.5)

- {O Wi=j,
hi)= hij lIb j hkj if i ~ j.

Since hi» 0:

(A.7)

(A.8)

(A.9)

It folJows from Hadley (1973, p. 118) that the inverse of[I - D2D11
] exists. Therefore D11[I - D2D1

1r 1 is
the inverse of DC!'·). Therefore D(!,*) has a non-zero determinant.

Appealing to the Inverse Function Theorem, there exists an open neighbourhood V* c RJ - 1 containing
r* and an open set W*C tAJ

-
1 containing O(r*, Ht) such that Q: V -+ W has a differentiable inverse

Q-l(., H,): W*-+ V*; see Theorem 2-11 in SpiVak (1965, p. 35) for example.
- The proof is completed by extending this local result to the whole space, using the Mean Value Theorem.
Suppose that, contrary to the proposition there exist two (or more) points r*, and E** satisfying the equation
Q(r*..Ht) = Q(r**, H). Therefore 01(r*, Ht) = Ql(r**, Ht)· Since Ql(r, Ht) is differentiable in t. by the
Mean Value Theorem, found in Williamson, Cromwell and Trotter (1972, p. 275) for example, there exists
some point r*** such that Dlj(r*·*) = 0 for allj E {I, ... ,J -t}. Hence the determinant of D(r***) is 0, which
contradicts a statement we proved above. Hence no such r* and r** exist. II

APPENDIX B

Proof of Proposition 2. The first half of Proposition 2 is proved in the text. Accordingly, consider the case
where ~o is compact but not finite. Kernel estimators are used to estimate p(Hns ) , the incidental parameter
conditional choice probabilities associated with d(H",), the set of histories- which remain feasible after the
occurrence of Hm at subsequent ages {t+ 1, ... , t+ T- An,}' We now write JIt(Hnr ) as {H~l), , H~;;)}, and
denote the vector set of associated conditional choice probabilities by the, p(H",) = Pn == {P"l' ' Pn;;}, where
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(B.1)

(B.2)

Pnr = p(Hl,;J) for each re {I, ...., ri}. To construct a kernel estimator for Pnr, the indicator function 1;(Hmu Hnt)
is defined as •

)_{I if Ant = A mt and (bml,···, bm,t-l) = (bnl,···, b...t- t )
12(Hmu H nt - 0 th .o erwise.

Notice 12(Hmu Hnt) partitions observations into sets of histories, where all the elements belonging to each set
only differ by their initial conditions. Finally, let hN , a positive real number, denote the bandwidth associated
with the kernel estimator of Pnr, and let l(') be a bounded symmetric differentiable function such that
Jl(~)t4 = I, for ~ e RL (where L is the dimension of Dno), A kernel estimator of fnr is given by:

(N)=[~N d 1 (H(r) H )l(Dmo-Dno)][~N 1 (H(r) H )l(bmo-Pno)]-l
fnr ""n=t.m"n .ml 2 n, mt h

N
""m=l.m"n 2 n, ml h

N

The transitional probabilities are estimated in a similar manner. Given Hnu for each H<,:)e SIt(Hnt ) and
j e {I, ... , l}, denote the (K -I dimensional vector) probabilitytransitionFj(b IH<,:» by fnrj' It can be estimated
by:

(B.3)

Writing F; = {fnt ..... ' fnll>"" f~;;.. ···, f~tiJ}, and F~N) for its corresponding estimator, we thus construct
estimators P<,;') - {p~N) , F~N)} of the incidental parameter sets Pn' .

For each n e {I, ... , N}. Substituting p~N) for p(Hnt) in 111 n(0, p(Hnt»in (5.4), an estimator of 10'
denoted g(N), is obtained by forming sample analogues of (5.5).

To prove ,(N) is consistent, we start by noting that for all n e {I, 2, ...} and N e {2, 3, ...}, both Pn and
p~N) belong to a compact space Y. Since 11tn(l, Pn) is continuous, 11tn(l, Pn) is uniformly continuous in Pn
for each ge 8. By Theorem I of Bierens (1982, p. 701), P<,:') converges uniformly to Pn in probability. For
each lee, therefore:

(B.4)

Hence ,(N) converges to l<j"i) in probability. By Theorem 2.1 of Hansen (1982, p. 1035), IbN) converges almost
surely to go, so ,(N) converges to 10 in probability as claimed.

We now show N 1/ 2(g(N)-10) is asymptotically distributed as a normal random variable. (Also see Newey
(1991) and Pakes and Olley (1991) for some recent work in this area.) To establish this claim some extra
notation is required. We first define the Qx Q matrices r nand r N, and also the Q x (lK -1) matrices r r(n), as

r n = (a1T~~(go, Pn)'/ag, ... ,a1T~~>Cuo,Pn)'/ aD)

rN=N-IL~=lrn

r r(n) = (a1T~~(go, Pn)'/ apr(n), ... , a1T~~)(f'o, Pn)'/ apr(n»'

(B.5)

(B.6)

(B.7)

Second, let qtntj denote the joint mixed probability density function for (Hnu dnj), and q2n, the joint
mixed probability density function for Hnt. That is:

qln,j =aPr[Hn" dn,j = 1]/abntO

q2nr =aPr[H~,]/abn,o'

The Kernel estimator for qln,j and q2ntj are respectively defined as:

(N)_( )-I~N h-kl(bmo-bno) ( )dqlntj - N -1 ""m=l.m"n N h
N

12 Hmu Hn, mj

(
b -b )(N)=(N_I)-I~N h-kl .mO .nO I(H H)

q2nt ""m=l.m"n N h
N

2 m" n"

Notice that qlntj =q2nrPn,j and q~~tJ = q~~/p~~). Similarly we define:

(B.8)

(B.9)

(B.IO)

(B.11)

(B.12)
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Third, for each r(n) E {I, ... , n}, define the (JK -1) dimensional vector d~") by:

F r(n)l,K-l(bmr,K-lq3,!(n)l,K-l - q"j}(n)l)Iz(Hml> Hnr)dmrt

Fr(n)zl(bmrtq3rl(n)Zl-ql,!(n)z)Iz(H;"" Hnr)dmrz

We shall presently use the following result:

iJPr(n)j (. (N) _ ) iJPr(n)j ( (N). _ )
iJ qlr(n)j qlr(n)j +iJ qZr(n)j qZr(n)j

ql r(n)j qZr(n)j

(
b -b )=(N_l)-l~N h-kl .mO .nO dr(,:,)

~m=l,m"'n N h
N

mJ ' (B.13)

where d~;) is the j-th component of d~n). An analogous result for the transition probabilities also holds.
Fourth, define pc:..), the (IK -1) x 1 symmetric kernel (vector), as

We observe:

P (N) = h- kl(bmo - bno) [ (~ ;; r dr(n»+(~';; r dr(m»]
nm N h

N
~r(n)=l r(n) m ~r(m)=1 r(m) n .

= o(N).

(B.14)

(B.15)

The bottom line in (B.15) follows from our requirement that Nl/zh';v ... 00 (which implies N-I/zh;/ ... 0 and
therefore N-Ih,./ ... O); the second line uses a change of variables, while the 0(1) term, a symmetric J x J
matrix; is just:

(B.16)

Lemma 3.1 in Powell, Stock and Stoker (1989), along with (B.15), gives us the following projection result:

N-l(N _1)-1 Ir::l
l I~=n+l p~~,> = N-I

Ir:=1 E(p~~)ldnr,H nr ) - E(p~~)/2)+ Op(N-I/Z).

Fifth, define the parameter vector D~N) as the solution to the equations:

(B.17)

( (N) ) -1 ~N [( )~;; r (N 1)-lh-kl(bmo- bPlo) ~N dr(n)]r N D3 -Do = N ~n=l '"In Do,Pn +~r(n)=l r(n) - N h
N

~m=l,m"'n m •

(BI8)

The asymptotic normality of NI/Z(D(N) - Do) is established by first, showing NI/Z(D~N) - Do) is asymptoti
cally normal and second, proving D~N) - D(N)= Op(N-I/Z). The claim then follows from (x)(d) in Rao (1973,
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p. 122). Expanding the definition of D~N) given in (B.18) yields:

r N(D~N) - Do)

-I ~N [( )~,; r (N .)-Ih- k J(Umo-lrltO) ~N 4,(n)]= N "-n=1 17'ln 10' Pn +"-r(n)=I" r(") -1 N h
N

"-m=l.m..n m

(B.19)

The second equality in (8.19) rearranges the terms; then we substitute P~Z.) defined in (B.14) and appeal to
the projection result (B.17). By assumption, the square matrix I' is invertible. Consequently the inverse of I'N
exists for sufficiently large N with arbitrarily high probability. Multiplying (B.19) on the left by N I /2r-;.l thus
establishes NI/2(I~N) - 10) converges to the same distribution as:

(B.W)

(By (x)(d) on p. 123 of Rao (1973) the tJp (1) tenn can be ignored.) Applying the Lindeberg-Feller theorem,
(B.20) converges to a normal random variable with mean -f-IE(p~Z.)/2) and covariance, f-I~2f-l, where

(B.21)

(See, for example, p. 123 and 138of Rao (1973).)
We now show the difference between D(N) and D~N) is op(N-I/2), thus establishing the asymptotic normality

of D(N) as well Expanding the sample moments to the orthogonality conditions we obtain:

A (N»_ -I~N [(8 )~,; f' (N_l)h-kJ(Umo-U"o)~N d r(")] (B.22)FN(lo-1 - N "-n=1 17'n _0' p" +"-r(")=1 r(") N h
N

"-m=I,m"" m

where f' Nand f'r(n) are in (uniformly) close neighbourhoods of r Nand f r("), respectively. Subtracting (B.18)
from (B.22), it now followsthat:

f' N(Do- D(N» - f N(Do- I~N»

= (f' N-rN)(Dg- D~N»+f'N(D~N)-tN»

-N-I(N-l)-I~N~'; [(fA -f )h-kJ(UmO-UItO)~N d r("}] (B.23)- "-"=1 "-r(")=1 r(") r(n) N h
N

"-m=l.m"" m ..

Since rN is a consistent estimator of I'N, it follows that:

(f' N - I'N )(Do- I~N» = op(l)Op(N-1
/

2
) .

Also, since f'r(") converges to I'r(") uniformly in probability,

N - I( N l)~N~'; [(fA r )h-kJ(Umg-U"o)~N dr(m)}- "-"=1 "-r(")=1 r(")- r(") N h
N

"-m=l.m"" r

= (1)[N-I(N -1)-1 ~N~,; h-kJ(Umo-U"o) ~N dr(m)]
Op "-"=1"-r(")=1 N h

N
"-m=l.m"" r

= op(1)Op(N- I/ 2
) .

(B.24)

(B.25)

(The bottom line of (B.25) can be deduced from a similar argument to the one applied to the double summation
over P~Z.). See (B.14) through (B.17) and the surrounding discussion.) Noting op(l)Op(N-I/ 2

) = op(N-I/2
) it

follows from (B.22) through (B.25) that:

op(N- I/ 2) = f'N(D~N) - D(N» = (fN + op(t»(D~N) _ D(N».

Since I'N is invertible

(B.26)
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(The second equality of (B.26) is established by showing the contrary hypothesis is false.)
There is no reason to expect E[p~~)] = O. To eliminate any asymptotic bias, we form a linear combination

of estimators which take the form of D~N) , defining D~N) as:

p~N) = (p(N) _ L~':ll Cgp~N»/(1- L~=-ll cg ) , (B.27)

where:

(i) 0=2k+l;
(ii) p~N) for g = I, ... , 0 -1, is an estimator formed in the manner described above, where the bandwidth

used in the kernel function is hNg = I/IghN , where 1/11'" . , 1/10-1 are distinct but otherwise arbitrary
positive constants and p<:,;g) is defined analogously for p<,:',,); and

(iii) C1, ••• , CO-1 are a set of weights given by:

(B.28)

By inspection D~N) is a consistent estimator of Po and, adapting the proof strategy of Powell, Stock and
Stoker (1989) it can be shown that Nl/2(p~N) - Do) has a limiting multivariate distribution with mean Q, and
covariance matrix ~~N), defined:

~~N) = r-l(4E{E[p~~)1 9"" H",]E[p~)1 9nt, Hnt]'})r- 1
, (8.29)

where e~~) is of the form given in (B.14), using the higher-order kernel function,

J(b b h )=[J(b"o-bmo)_~O-t (./, )-kJ(b,,0-!?mO)][1_~0-1 ]-1 (B.30)_,,0, _mO, N h 4"g=l Cg 'I'g ./, h 4"g=l Cg ,
N 'I'g N

in place of J([!?"o - !?mO]/ hN). More specifically, observe from (B.27) that

Nl/2(p~N) - Po)= (1- L~':" cg)-I[N
1/2(p(N)- Do) - L~=-" CgNl/2(D~N) - Do»). (B.31)

Since N 1/2(D(N) - Po) and Nl/2(p~N) - Do) are asymptotically normal, Nl/2(p~N) - Po) converges in distribution
to a normal random variable with mean:

-r-1E[p~~) - L~=-" Cgp~~g)]/(1- L~=-" c.),

For notational convenience, define the Qx 1 vector function, IN)(!?,,O,!?mO), as:

!(N)(!?"O,!?mO) = E[L~=l r r(")d~(")lb,,o, !?mO]'

Also define the real valued vector function, $( h, N), as

§(h, N) = f J(~)lN)(!?"o. !?"o+ ~)F(!?no+ ~)d!Jno~,

(B.32)

(B.33)

(8.34)

where F(!?"o) is the density function for !?nO' We assume that ~(h, N) is differentiable (0+1) times in h at
the point h = 0, and denote by §(i) (0, N) the value of the i th derivative. Hence

E[p~~g)] = (I/IghN)-k f J( !?n;~:mo)IN)(!?,,O, !?mO) F(!?no) F(!?mo) d!?"odbm°

=fJ(~)lN)(!?"O' !?nO+ I/Ighm)F(b"o+ I/Ighm)d!?"od~
=§(I/IghN, N)

= L~ll I/I~h~ti)(O, N) + O(h~). (B.35)

Substituting (B.35) into (8.32), the asymptotic mean of Nl/2(D~N)- Po) is therefore

{L~ll (1- L~':" I/I~h~Cg)~(i)(O,N) + O(h~)}/[2(1- L~=-" cg)], (B.36)

which is O(h~), because L~=-lt I/I~h~cg = 1 for each i e {1, . . . ,0 -1}, by (B.28). Recall that hN is chosen such
that N1/Th~ -HX>, and Nh~ ... 00 as N -+ 00. However, we are free to set hN such that Nh~+1 -+ 0 as N -+ 00.

Since 0 =2k+ 1, it follows immediately that Nl/20(h~) is 0(1). Therefore, D~N) is asymptotically unbiased
as claimed.

To derive ~2' the asymptotic covariance matrix for p~N) , observe:

r N(Do- D~N» - N- 1L~=1 1T... (Do , p,,)+ op(N- I
/
2)

= N- 1L~=l E[p~~g)-L~':" cgp<:,;g)lg"H Hn,]/(l-L~=-lt cg )

== N-
1
L~=1 E[p~~)14"" Hnt ]· (B.37)
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The first equality follows from (8.19), applied also to each g e {I, ... , G -I}, and uses the fact that Nl/2(D~N>
·D~N» is Op(N-1

/
2

) and Nl/2(D~N>-Do) is asymptotically unbiased. Thus:

(Do - D~N» = ri.] N-1 I:=l {1T n(Do, Pn)+ E[p~~',>ldn" Hn,]} +op(N- 1
/

2
)

from which formula (B.21) comes since p<:,,> converges pointwise to the same limit as p<:,,>.

(B.38)
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