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Abstract

This article reviews recent developments in the study of firm and industry
dynamics,with a special emphasis on the econometric endogeneity ofmarket
structure. The endogeneity of market structure follows from the presence
of serially correlated unobservable shocks to the profitability of firms’
dynamic decisions, a feature common to many empirical settings. Methods
that ignore endogeneity can lead to misleading parameter estimates and
misleading counterfactual results. We pay particular attention to extensions
of standard two-step methods that leverage instrumental variables to
address endogeneity in both single-agent and oligopoly models. A first
step set-identifies dynamic policy functions together with serial correlation
parameters, and a second step quickly solves for profit function parameters
using an extension of existing forward-simulation methods. We discuss
how these new methods provide a general solution to initial-conditions
problems and how they can yield practical estimation strategies.
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1. INTRODUCTION

The field of industrial organization (IO) studies firms andmarkets in equilibrium.Many classic IO
models are static.This is not surprising, as it can be difficult enough tomodel interactions between
firms without modeling how firms and markets change over time. Yet, we know that industries and
firms evolve. IO models often speak of market structure, which is the broad category of market
primitives that are held fixed in a static model of oligopoly price or quantity. These primitives
include features like the number of firms, the cost and demand characteristics of those firms, and
so forth. While market structure might be held fixed in the short run, it is clearly an economic
outcome that is built up over time, in a dynamic setting.

We think that market structure is dynamic partly because we think that sunk costs may be
important. In the presence of sunk costs, we understand that markets may exhibit hysteresis, a
dependence on past market conditions, as in Dixit’s (1992) model. Furthermore, in the presence
of sunk costs, decisions about, for example, firm entry, investment, or product development depend
on firms’ forward-looking beliefs about future market conditions. All of this points the study of
market structure toward explicitly dynamic settings.

There are, however,many interesting static empirical models of market structure, such as those
reviewed by Berry&Reiss (2007) and Berry&Tamer (2007).Thesemodels may be an appropriate
approximation to reality in the case in which market fundamentals are (relatively) unchanging and
firms have settled into a clear best-response Nash equilibrium to rivals’ behavior. However, even
in a relatively unchanging market, a static model will not be able to distinguish sunk from fixed
costs, as the distinction is entirely dynamic. This matters because many counterfactual policies
may depend critically on the nature of sunk costs.

To state, even informally, the rough conditions for a credible use of static market structure
models is to make a case for dynamic models. A strong counterargument, though, is that dynamic
models of market structure face an extremely difficult set of challenges. In the end, we may worry
that the attempt to introduce dynamics creates so many compromises that the result is not better
than the static version.

This article reviews the difficulties and trade-offs that applied empirical researchers face in
estimating dynamic models of market structure. It covers a set of possible solutions, with an em-
phasis on competing approaches that differ in their computational tractability and their (relative)
realism. In particular, this review focuses on the econometric endogeneity of market structure
that follows from the presence of serially correlated unobservable shocks to the profitability of
firms’ dynamic decisions. It seems clearly preferable to allow for these serially correlated shocks,
but the history of the literature shows that this leads to challenges for both identification and
estimation/computation. Possible modeling solutions that allow for realistic serial correlation are
an active area of research and the primary subject of this review.

The topic of serial correlation in unobservables may sound technical, but it involves issues
of first-order importance to the modeling of industry dynamics. If market structure is built up
over time, then it depends on the past profitability of the industry. Because the data are unlikely
to capture all drivers of firm profitability, past profitability typically includes the effects of past
unobservables. But if unobservables are correlated over time, this implies that the current market
structure is correlated with current unobservables, creating an endogeneity problem.

This logic is famously emphasized, for example, byOlley&Pakes (1996).They consider capital
stock as an element of market structure, which is built up over time and which then shifts the
short-run marginal cost curves of oligopolistic firms. In the estimation of a production function,
they emphasize that the firm’s capital stock will be correlated with the current-period unobserved
productivity shock precisely because that shock is correlated with the past shocks that influenced
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Table 1 Market structure coefficients with and without fixed effects

Profit shifter
Fixed effects

No Yes
Own-store presence −0.31 −0.78

(0.02) (0.03)
Rival-store presence 0.02 −0.23

(0.01) (0.02)

The table shows ordered probit regressions of entry/exit. Standard errors are in parentheses, and a set of further controls
(population and income) are omitted from the table. Further details are available in the original paper by Igami & Yang
(2016); the original table includes a much longer set of estimated parameters, not included here. Table adapted from Igami
& Yang (2016) (CC BY-NC 3.0).

past investment decisions,which in turn led to the current capital stock.Thus, themarket structure
of the short-run fixed capital stock is econometrically endogenous in the production function
even if the capital stock is not directly determined by the current productivity shock. Importantly,
ignoring this endogeneity will lead to misleading economic conclusions about, for example, the
role of capital, labor, and unobserved productivity in explaining output changes over time.

Igami & Yang (2016) provide another example, in which market structure is defined as
the number of firms in a market. Their data set consists of Canadian hamburger chain outlets
(“stores”), and they provide some simple descriptive evidence that points to the importance of
market structure endogeneity. In Table 1, which is adapted from their paper, we see that adding
fixed effects (for market and firm) greatly changes the coefficients in these descriptive regressions.
If we gave the coefficients a causal interpretation, the first-column results (without fixed effects)
would appear to indicate that, if anything, the presence of a rival firm increases the probability
that the own-firm will enter the market.1

The literature on empirical dynamic models is vast, and earlier reviews include those by
Ackerberg et al. (2007), Aguirregabiria &Mira (2010), and Arcidiacono & Ellickson (2011). Here,
we focus primarily on the issue of econometrically endogenous market structure. We first con-
sider single-agent problems in Section 2. Many methods for single-agent models extend easily
to multiple-agent settings and have the added benefit of simpler notation, so we use the single-
agent case to illustrate the different approaches. We start from the methods that rule out serial
correlation in the unobservables (Section 3) and then move on to those that do allow for serial
correlation and thus account for the econometric endogeneity of market structure (Section 4).We
emphasize two approaches to serial correlation and endogeneity. The first is a mixture model ap-
proach, following Kasahara & Shimotsu (2009), that models persistent unobserved heterogeneity
via a limited number of discrete types. The second is an instrumental variables (IV) approach, pre-
sented in a general context by Berry &Compiani (2020) and in a clever special case by Kalouptsidi
et al. (2020). In Section 5, we turn to oligopoly models, with a special emphasis on the unique chal-
lenges that are introduced there, notably the issue of multiple equilibria. However, many of the
ideas of the single-firm case carry over to the oligopoly setting, so that most of our work will be
done by that point.

Finally, it is worth noting that although we focus our discussion on examples of endogenous
market structure, the issue of serial correlation in dynamic models is much broader, and thus our
discussion could be applied to a much wider range of empirical settings.

1Indeed, this interpretation is offered by Toivanen & Waterson (2005) in their study of UK data.
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2. SINGLE-FIRM DYNAMICS

We start by considering single-firm settings.These models may be directly applicable to situations
on both extremes of competition: firms that are market takers and ignore the behavior of their
rivals on the one hand, and strict monopoly firms on the other.

We first introduce some general notation and explicitly state the identification problem. We
then consider a simple entry/exit example, which is helpful to illustrate the alternative approaches
described in Sections 3 and 4.We conclude this section with a discussion of the initial-conditions
problem in models with serially correlated errors.

2.1. Model Setup

Our model setup and notation closely follow our previous work (Berry & Compiani 2020). We
consider the identification of a model that generates data on a large set of markets indexed by i.
Since, in this section, there is a single firm per market, we will often use the expression “firm i” to
refer to “the firm in market i.” Within-sample time periods are denoted by t = 1, . . . , T. Firm i’s
current market structure is xit, and in period t firm i chooses an action ait out of the set of feasible
actions, denoted A(xit ). Examples of market structure xit include a continuous measure of capital
stock, an indicator of whether a firm is operating in a market, and the current quality level of a
firm’s product. Actions ait associated with those example states might be (respectively) investment,
entry/exit, and research and development (R&D) expenditure. The single-period profits of firm i
are given by

π (ait , xit ,wit , uit; θπ ), 1.

where wit is a vector of exogenous profit shifters that are observed by both the firm and the re-
searcher while uit is an exogenous profit shifter that is observed by the firm but not by the re-
searcher.

The law of motion for the unobservables is

�(uit+1|λit; θu ), 2.

with θu being a vector of parameters that govern the distribution of uit. Note that Equation 2
implicitly assumes that the unobservables follow a first-order Markov process. The full vector of
unknown parameters of the dynamic model is θ � (θπ , θu). The term λit includes various possi-
ble sources of serial correlation. One leading special case is a simple first-order autocorrelation
process, where we have

λit ≡ uit . 3.

A second important special case is time-invariant discrete heterogeneity. Due to time invariance,
we can drop the t subscript and write

λi ∈ (λ̄1, λ̄2, . . . , λ̄M ). 4.

In this notation, the λ̄k are the possible discrete values of the persistent heterogeneity. The pa-
rameters θu then include the λ̄ vector plus the probabilities of each of those discrete values.

The endogenous market structure evolves over time according to the transition probabilities

�(xit+1|ait , xit ,wit ). 5.

Our examples will focus on special cases involving deterministic transitions that are specified by
the model, but the framework allows for any transitions that can be directly estimated from the
data. The exogenous states wit are assumed to evolve according to the law of motion

ψ (wit+1|wit ). 6.
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As is typical in the literature, we assume that both Equations 5 and 6 are directly observed or
known by the researcher.

The firm’s dynamic problem is given by the Bellman equation,

V(xit ,wit , uit ) = max
ait∈A(xit )

(
π (ait , xit ,wit , uit; θπ ) + βE [V(xit+1,wit+1, uit+1)|ait , xit ,wit , uit; θu]

)
, 7.

where β denotes the discount factor and V the value function. Following much of the literature,
we assume throughout that the discount factor β is known.

The expected value function on the right-hand side of this expression is determined by the
laws of motion of the different variables, i.e.,

E [V(xit+1,wit+1, uit+1)|ait , xit ,wit , uit; θu]

=
∫ ∫ ∫

V(xit+1,wit+1, uit+1)d�(xit+1|ait , xit ,wit )dψ (wit+1|wit )d�(uit+1|λit; θu ).
8.

Note that the expectation of the future value function in Equations 7 and 8 depends on θu be-
cause that parameter governs the serial correlation of the unobservables, which influences future
expected profits conditional on uit.

Associated with the true Bellman equation is then the policy function that gives the optimal
action for each state,

ait = σ (xit ,wit , uit ). 9.

It is important to distinguish the true policy function, generated by the Bellman equation eval-
uated at the true value of the parameter, from the policy function that would result from the
Bellman equation evaluated at arbitrary guesses for the parameter θ . We denote the policy func-
tion consistent with an arbitrary parameter θ as σ̂ (xit ,wit , uit; θ ). Obviously, if the true parameter
is θ0, then we have

σ (xit ,wit , uit ) = σ̂ (xit ,wit , uit; θ0). 10.

2.2. The Identification Problem

For purposes of identification, we assume that we observe the true data-generating process for the
observable variables (ai, xi, wi), but not for u. The underlying parameters to be identified are θ =
(θπ , θu).2 In many applications, it will also be useful to think separately about the identification of
the policy function, σ (xit, wit, uit).

2.3. Single-Firm Entry/Exit Example

We now introduce a simple single-firm entry/exit example which will be helpful to illustrate dif-
ferent approaches in Sections 3 and 4. Consider a monopolist entry/exit example in which the
endogenous state xit � {0, 1} indicates whether the firm was active in the market in the prior pe-
riod, and ait � {0, 1} is the decision to operate in the current period. The single-period profit from

2Because u enters the single-period profit function, there is a somewhat arbitrary distinction between the
parameters of the single-period profit function, θπ , and the parameters of the distribution of unobservables,
θu. However, in many cases it is clear how to define θu so that it contains the parameters that govern serial
correlation.
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being active in the market is

π (x,w, u) = π̄ (x,w) − u, 11.

where π̄ (x,w) is the variable profit of operations and the scalar u is a random fixed cost. The
exogenous profit shifters are discrete, taking on one of Kw possible values. The sunk cost of entry,
π̄ (1,w) − π̄ (0,w), is here allowed to depend on the exogenous profit shifters w. In every period
in which it is inactive, the firm earns a single-period profit of zero. However, the firm retains the
ability to reenter the market. The value function is then

V(x,w, u) = max
(
π̄ (x,w) − u+ βEw′ ,u′ [V(1,w′, u′ )|w, u; θu],βEw′ ,u′ [V(0,w′, u′ )|w, u; θu]

)
. 12.

Under well-understood conditions,3 the value function is strictly decreasing in u, and so the policy
function σ (x, w, u) involves a cut-off rule whereby the firm enters if and only if

u < δ(x,w), 13.

where δ(x, w) is the value of u that sets the expected dynamic return of being in the market to be
equal to the value of being out. From Equation 12, this is defined implicitly by

δ(x,w) = π̄ (x,w) + βEw′ ,u′
[
V(1,w′, u′ ) − V(0,w′, u′ )|w, u = δ(x,w); θu

]
. 14.

We denote the true cutoffs in the data as δ(x, w) and the cutoffs that result from computation
of the firm’s fixed point at an arbitrary parameter vector θ as δ̂(x,w, θ ). In this special example
and related cases with cutoff rules, δ(x, w) is the most general description of the policy function.
Moreover, when x and w are discrete (as in our example), this involves a finite parametrization.

In the most general case, the unknown profit parameters, θπ , are the 2Kw variable profit terms
π̄ (x,w). We assume that the normalized marginal density of u, φ0(u), is known and that the un-
known parameter θu controls the serial correlation of u.

2.4. The Initial-Conditions Problem

When the data tracks each firm or market from the beginning of its potential life, the distribution
of the first-period unobservables,ui1, can be considered an additional primitive of themodel.How-
ever, if we first observe firms in the middle of their existence, serially correlated unobservables will
likely be selected by past history. Specifically, the distribution of ui1 will not be equal to the uncon-
ditional marginal distribution of the unobservables. This creates a well-known initial-conditions
problem, as discussed in many classic papers, including those by Heckman (1981), Chamberlain
(1985), Blundell & Bond (1998), and Wooldridge (2005). These papers emphasize that structural
parameters may not be identified without placing restrictive assumptions on the distribution of
initial conditions.

Honoré & Tamer (2006) note that an alternative is to look for estimators that allow for un-
specified initial conditions. In the context of dynamic panel data models, they show that leaving
initial conditions unspecified may result in set-identified parameters. They also show that in many
cases the identified set is quite small and thus useful for economic analysis. As discussed below,
Berry & Compiani (2020) take a similar approach to initial conditions in the context of dynamic
models of endogenous market structure.

3Readers are referred to Stokey et al. (1989) and, for examples close to the present context, Bajari et al. (2007).
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3. APPROACHES WITH NO SERIAL CORRELATION IN u

This section discusses approaches to recovering the primitives of dynamic models under the as-
sumption that the unobservables are not serially correlated. Although, as discussed above, this
restriction effectively amounts to assuming away the econometric endogeneity of market struc-
ture, it greatly simplifies the analysis and is thus maintained in much of the empirical literature
to date. Lessons from this literature prove to be very useful once serial correlation is introduced,
and we refer back to these lessons below.

Although our focus throughout is primarily on model identification, we do discuss selected
important computation and estimation issues that can influence the choice of methods.

3.1. Full-Solution Maximum Likelihood Estimation

Dating back at least to Rust’s (1987) work, one popular approach to dynamic models uses the
structure of the Bellman equation to write the likelihood of the data as a function of the structural
parameters.We illustrate this case with the simple entry/exit model of Section 2.3, which provides
a useful starting point for discussion.

The cutoff rule in Equation 13 defines a set of intervals in R
T that give the set of (ui1, . . . , uiT)

values that are consistent with the data. For example, if firm i chooses ait = 1 in period t, then we
know that uit < δ(xit, wit); if it chooses ait = 0, then we know that uit > δ(xit, wit). Without serial
correlation, the two-period likelihood when the firm is not active in the first period but is active
in the second period is

Li(θ ) =
∫ ∞

δ̂(xi1,wi1,θ )

∫ δ̂(xi2,wi2,θ )

−∞
φ0(u2)φ0(u1)du2du1. 15.

Critically, it is possible to use the unconditional density φ0 for the first-period unobservable u1
in Equation 15 only under the assumption of no serial correlation in the unobservables, unless we
observe the firm or market from the beginning of its existence.

A full-computation maximum likelihood estimation (MLE) method proceeds by evaluating
the likelihood function in Equation 15 at trial values of the parameter θ , which in the general
case requires computational techniques (such as value-function iteration) to solve for the value
function and the policy cutoffs δ̂(x,w, θ ). Rust (1987, 1994) refers to this method as a nested
fixed-point algorithm, since the Bellman equation must be solved for each trial value of θ . Rust
and later authors find computational shortcuts that apply to special cases, whereas Dubé et al.
(2012) develop a different computational approach based on more modern advances.

3.2. Two-Step Methods

Motivated by a desire to avoid the computational burden inherent in full-solution methods, Hotz
& Miller (1993) propose a two-step alternative that does not require solving the model for each
candidate parameter value.4 In the first step, the policy function is recovered from the data. For
example, when actions are discrete, the policy function is identified from observed conditional
choice probabilities (CCP). In the second step, the policies are combined with restrictions from
the Bellman equation to recover the structural profit parameters.

When specialized to the entry/exit model of Section 2.3, the first step involves estimating the
probabilities of entry for each value of (x, w), p(x, w). This works because when u is not serially

4The broad idea of the two-step method is reviewed in many places, including the survey of Aguirregabiria &
Mira (2010).
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correlated, (x, w) are econometrically exogenous in the policy function in Equation 9, and thus
p(x, w) capture the true causal effect of (x, w). Specifically, we have

p(x,w) ≡ Pr(u < δ(x,w)) = �0(δ(x,w)), 16.

where �0 is the cumulative distribution function of u. Assuming that �0 is strictly increasing,
δ(x, w) is then recovered as

δ(x,w) = �−1
0 (p(x,w)). 17.

Thus, in the example, knowing p(x, w) is equivalent to knowing the entry cutoffs δ(x, w). This
first-step identification of δ(x,w) depends entirely on the observed data, the assumed distribution
for u, and the existence of a cutoff rule. It makes no use of the Bellman equation (Equation 7).
While our example involves a binary action, the original paper by Hotz & Miller (1993) derives a
vector equivalent of δ(x, w) by inverting the action probabilities in a multinomial discrete choice
problem.The idea is the same. Further, the Hotz–Miller insight of uncovering the policy function
in a first step can be extended to many other cases lacking serial correlation, including the wide
range of discrete choice problems considered by Berry (1994) and Berry et al. (2013).

Bajari et al. (2007) consider a case with continuous actions in which the policy function takes
the form

a = σ (x,w, u), 18.

with a and u continuously distributed. Under appropriate assumptions, the methods of Stokey
et al. (1989) can be used to establish the strict monotonicity of σ in u, so that the equation can be
inverted to obtain

u = σ−1(x,w, a). 19.

This is a nonseparable regression of the form proposed by Matzkin (2003) and can be identified
from the inverse distribution function of a conditional on (x,w). As in Hotz &Miller’s (1993) first
step, this then gives us the policy function directly from the data, without reference to the dynamic
model.More complicated versions with amix of discrete and continuous variables are also possible.
In each of these extended CCP examples, the policy function is point-identified in the first step
without reference to the Bellman equation. This first step identifies the data-generating process
without recovering the underlying structural parameters that are necessary for many interesting
counterfactuals.

The second step of a CCP-style method conditions on the policy function from the first step
and imposes the Bellman equation to recover the single-period profit parameters. There are sev-
eral alternative approaches to this step. In this review, we focus on the forward-simulation method
of Hotz et al. (1994). This method is broadly applicable to the class of models considered in the
CCP literature, and Bajari et al. (2007) also emphasize forward simulation. The approach is useful
for our purposes because Berry&Compiani (2020) extend the idea to the case of serially correlated
unobservables. We discuss that extension in Section 4.8.

To review the forward-simulation procedure as applied to the entry/exit model, recall the cutoff
defined in Equation 14. Without serial correlation, we drop the conditioning on u, which gives

δ(x,w) = π̄ (x,w) + βEw′ ,u′
[
V(1,w′, u′ ) − V(0,w′, u′ )|w]

. 20.

Hotz et al. (1994) show how to use first-step policy functions, together with a guess of the profit pa-
rameters, to forward-simulate the value functions in Equation 20. Intuitively, starting from a state
(x,w), draw u from its assumed distribution, use the known policy function to obtain the action a=
σ (x, w, u), and then assign the profit π (a, x, w, u) to that action. The known state transitions then
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predict new states (x′, w′), which are used to obtain the next period’s profits via the same steps,
and so forth. The sum of discounted profits computed in this way can be used to construct an
unbiased estimate of the value function, and the average of many such simulations will provide a
more precise estimate. Denote such a simulated value function by Ṽ (x,w, u; σ , θ ).

Furthermore,Hotz et al. (1994) note that if the single-period profit function is linear in a set of
parameters, then the forward-simulated version of the expected value function will also be linear
in those parameters. This yields a system of linear-in-parameter equations of the form given in
Equation 20, which we write as

δ(x,w) = h0(x,w; σ ) + h1(x,w; σ )θπ . 21.

The δ on the left-hand side of this equation is known from the first CCP step, and the h0, h1
functions on the right-hand side are known from the forward simulation, given the σ uncovered
in the first step. We then have a set of linear equations [one for each (x, w)] in the unknown θπ .
The parameter is point-identified if the equations have a unique solution in θπ , which is easy to
check. Hotz et al.’s (1994) argument is applied to multinomial choice, as opposed to this binary
example, but the logic is exactly the same.

Bajari et al. (2007) note that Hotz et al. (1994) only consider the dynamic discrete-choice
example. Bajari and colleagues propose a more general strategy of forward-simulating the value
function under alternative policies, σ ′(x,w, u). Since the true policy maximizes the value function,
at the true θπ we must have, for all possible policies σ ′(x, w, u),

Ṽ (x,w, u; σ , θπ ) ≥ Ṽ (x,w, u; σ ′, θπ ). 22.

This yields very many inequality constraints. A finite set of such constraints may not point-identify
θπ , so Bajari et al. (2007) consider set identification of θπ , even when σ is point-identified in the
first step.

Berry & Compiani (2020) propose two alternatives to Bajari et al.’s (2007) inequalities. Each
generalizes to the case of serially correlated unobservables.The first,more general, approach relies
on a single policy-function iteration of the Bellman equation. The second approach, applicable in
a very wide range of cases, generalizes Hotz et al.’s (1994) model to a broader class of problems
while retaining computational simplicity. In this second case, we note that Hotz et al. (1994) are
implicitly using an indifference condition that applies to a much broader class of models.We now
review each of the two approaches.

As a first alternative to Bajari et al.’s (2007) inequalities, Berry & Compiani (2020) propose that
a guess θπ is rejected if a single policy iteration on the forward-simulated Bellman equation does
not return the first-step σ (x, w, u). In the entry/exit example this is written as

σ̃ (x,w, u; σ , θπ ) ≡ 1
{
π̄ (x,w) − u+ βEw′ ,u′ [Ṽ (1,w′, u′; σ , θπ ) − Ṽ (0,w′, u′; σ , θπ )|w] > 0

}
, 23.

where 1{·} is the indicator function. We then exclude a candidate θπ from the identified set if

σ̃ (x,w, u; σ , θ ) �= σ (x,w, u) 24.

for any value of (x, w, u). This amounts to checking whether the firm’s static best response to
its future self playing σ is to also play σ . This is one iteration on the policy-function fixed point
implied by the Bellman equation. Beyond the entry/exit example, the general method is to reject
a given θπ if it does not solve the policy-function problem in one iteration, an idea common to
any problem in which the Bellman equation generates a unique policy function.

However, the policy-function iteration still requires some computational effort, since it in-
volves searching over candidate values of θπ . As a second alternative to Bajari et al.’s (2007) in-
equalities, Berry & Compiani (2020) show that Hotz et al.’s (1994) approach implicitly uses a set
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of indifference conditions in the unobservables. To see this in the simple entry/exit example, note
that the expected discounted values of taking action a, denoted by v(a, x, w, u), are

v(0, x,w, u)=βEw′ ,u′
[
V(0,w′, u′ )|w]

and

v(1, x,w, u)= π̄ (x,w) − u+ βEw′ ,u′
[
V(1,w′, u′ )|w]

.

At u = δ(x, w), these two equations imply Equation 20. That is, setting u = δ(x, w) equates the
values of being in and out of the market, and this results in Hotz et al.’s (1994) condition in
Equation 20. A similar indifference condition, across the action-specific values of all the choices,
holds in the multinomial analysis of Hotz and colleagues.

Berry & Compiani (2020) go further and show formally that policy functions in problems with
discrete actions are generally defined by indifference conditions, as long as payoffs are continuous
in the unobservables. Under mild conditions, for every pair of actions a and a′ there is an unob-
servable ũ(a, a′, x,w) such that the firm is indifferent between actions a and a′ when the firm is
at the state (x,w, ũ(a, a′, x,w)). That is, letting ṽ (a, x,w, ũ(a, a′, x,w); σ , θπ ) denote the forward-
simulated version of the action-specific value functions, we have

ṽ (a, x,w, ũ(a, a′, x,w); σ , θπ ) = ṽ (a′, x,w, ũ(a, a′, x,w); σ , θπ ). 25.

If, as in the CCP literature, the first step of the identification procedure uniquely identifies σ ,
then we can treat σ as known when we get to the second step. The values ṽ(a,w, u; σ , θπ ) can
be forward-simulated and they are linear in θπ when the single-period profit function is linear
in θπ . In that case, then, for a given (a, a′, x, w), Equation 25 defines one linear equation in θπ .5

Berry & Compiani (2020) note that there will typically be at least one equation of the form of
Equation 25 for each combination of (a, a′, x, w). In many discrete examples, this is a sufficient
number of equations to potentially identify a θπ of length equal to the number of distinct com-
binations of (a, x, w). In our entry/exit model, in which a, x, and w each take on discrete values,
this implies that we could consider the identification of a model with the most flexible (“natural”)
profit parameterization—that is, one that treats the value of π̄ at each combination of (x, w) as
a separate parameter. Whether the implied equations actually invert is directly verifiable from a
given data-generating process.6

We can also consider continuous actions, or amix of continuous and discrete actions.With con-
tinuous actions, the analog of the indifference conditions may be found in first-order conditions.
Stokey et al. (1989) provide sufficient conditions for the differentiability of the value function,
under which the optimal continuous actions satisfy

∂ ṽ(a, x,w, u; σ , θπ )
∂a

= 0. 26.

Note that the derivative ∂ ṽ/∂a can often be forward-simulated and, again, will typically be linear
in θπ if the single-period profits are linear in θπ . The first-order conditions then provide a large
number (likely a continuum) of equations that restrict the values of θπ . Again, the point identi-
fication of θπ via these conditions is verifiable. Berry & Compiani (2020) provide a particularly
easy differentiable example based on a stochastic accumulation model.

5Note that we do not require that ũ(a, a′, x,w) be unique. Indeed, the original indifference conditions in Hotz
et al.’s (1994) model use a vector u at which the values of all actions, including the outside choice, are equal.
There are other planes in the u space that equate the value of two actions (Ichimura & Thompson 1998).
However, these are not necessary for identification in this example.
6Berry & Haile (2018) formally define “verifiable” as the identification of the binary truth or falsehood of the
hypothesis that the given condition holds.
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In summary, then, our review of second-step CCP-style methods is weighted toward ideas that
extend to the case of serially correlated errors.The Berry–Compiani explication/extension ofHotz
et al.’s (1994) model implies that the second step can be quite easy and that the inequality approach
of Bajari et al. (2007) may be unnecessary in most cases, including examples with continuous ac-
tions. However, we do find that Bajari et al. (2007)’s suggested use of forward simulation is quite
helpful and will extend nicely to the case of serial correlation.

4. APPROACHES WITH SERIAL CORRELATION IN u

After briefly covering two established approaches that allow for serial correlation—full-solution
MLE and methods based on mixture models—we focus on the more recent generalized instru-
mental variable (GIV) approach by Berry & Compiani (2020).

4.1. Full-Solution Maximum Likelihood Estimation

It is possible to adapt the full-solution MLE approach described in Section 3.1 to the case with
serial correlation in the unobservables. Again, unless one observes firms from the beginning of
their existence, this requires modeling the dependence of the distribution of the first-period ui1
on (xi1, wi1). This conditional distribution then replaces the unconditional φ0(u1) in Equation 15,
and the distribution of u2 is conditioned on u1 and parameterized by θu. One approach to initial
conditions is to flexibly parameterize the distribution of u0 as a function of (xi1,wi1); another is to
assume that such distribution is equal to the stationary distribution generated by the model (see,
e.g., Collard-Wexler 2014).

To our knowledge, the identification properties of the fixed-point MLE method are not well
explored in the general case with serial correlation. Consider, for instance, our entry/exit exam-
ple, where the policy cutoffs δ, which enter the likelihood, depend on a limited amount of data.
Specifically, the model implies that past data are excluded from these cutoffs. As a consequence, if
the degree of hysteresis in the data cannot be entirely explained by the cutoffs, the MLE method
may find evidence of serial correlation. The methods below further clarify the role of exclusion
restrictions and make this intuition more precise.

4.2. Mixture Models

The problem of serially correlated unobservables can be reframed as a problem of unobserved
heterogeneity. The challenge involves controlling for the persistent aspects of firms or markets
that we do not see.One suggestion is to posit discrete unobserved heterogeneity, such as the time-
invariant discrete heterogeneity in Equation 4.

In labor economics, beginning at least with Heckman & Singer’s (1984) work, discrete hetero-
geneity has been a popular approach to disentangling persistent heterogeneity from state depen-
dence. In our context, state dependence would follow, for example, from sunk costs that make a
firm more likely to be active in a market if it was active in the prior period. Dynamic labor supply
models often employ low-dimensional time-persistent discrete unobserved heterogeneity, as in
Wolpin & Keane’s (1994) model and a large related literature.

In an important contribution, Kasahara & Shimotsu (2009) discuss the identification of finite
mixture models in the context of two-step methods. In our entry/exit example, we could specify
the single-period profits from entry as

π (x,w, u) = π̄ (x,w, λ) − ε, 27.

www.annualreviews.org • Industry Dynamics with Endogenous Market Structure 319

A
nn

u.
 R

ev
. E

co
n.

 2
02

1.
13

:3
09

-3
34

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

T
or

on
to

 L
ib

ra
ry

 o
n 

12
/2

9/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



where the unobservables are now u= (λ, ϵ). In the simplest case, λ would take two possible values,
λ� {0, 1}, that are time-invariant. The spirit of Kasahara & Shimotsu’s (2009) contribution is that
all of the time-persistent heterogeneity is in λ, so ϵ is assumed independent over time.

Whereas Magnac & Thesmar (2002) obtain negative results for mixture approaches with two
periods of data, Kasahara & Shimotsu (2009) consider the advantages of longer periods of data.
One reason for the longer time series is to deal with the initial-conditions problem.With discrete
heterogeneity, fully flexible initial conditions add only a finite number of extra parameters. The
additional restrictions coming from more periods of data can then achieve point identification.

Suppose we see the joint distribution of three periods of discrete data, Pr(a3, x3, a2, x2, a1, x1),
where we suppressed the notation for w. According to a first-order Markov model, we should be
able to predict this distribution exactly via the Markov representation. Say that p̃(at , xt |at−1, xt−1)
is the first-order Markov transition function, which is constant across time. If correct, this model
should fit the data for every two-period transition.One can also test longer and shorter sequences,
constrained only by the length of the data. For example, for every observed data sequence we
should have

Pr(a3, x3, a2, x2, a1, x1) = p̃(a3, x3|a2, x2) p̃(a2, x2|a1, x1)p∗(a1, x1), 28.

where p∗(a1, x1) is an initial condition. If the restrictions are rejected, there are two possible con-
clusions. First, the underlying data process may not actually be first-order Markov. Second, the
apparent long dependence in the data might be explained by persistent hidden states. If these
states are indexed by m, then there are hidden probabilities p̃m(at , xt |at−1, xt−1) and hidden initial
conditions p∗ ,m(a1, x1) for types m = (1, . . . ,M).

Kasahara & Shimotsu (2009) consider all the possible sequences and subsequences of the data
and form all the possible restrictions. Variation in x and w helps greatly with identification. If d
is the number of covariates and T the number of time periods, then Kasahara & Shimotsu (2009)
show that there are on the order of dT restrictions. With sufficiently long time series (T ≥ 3) and
sufficiently rich variation of the data, they show that it is possible to use the restrictions to identify
a limited number of different hidden types—and,with even larger T, to identify more types and/or
types that can change over time. The identification problem is, as usual, made more complicated
by the initial-conditions problem. As mentioned above, the discrete heterogeneity literature deals
with this, first, by restricting the heterogeneity to depend on a small number of types, and second,
by using longer periods of data.

That the number of types is limited by the time periods and variability of the data is not surpris-
ing. A great advantage of the method, however, is that once the type probabilities are identified, all
of the classic first- and second-step CCP approaches come into play. In terms of the first step, once
we known the action (choice) probabilities conditional on λ, we can use them to identify the λ-
specific policy functions. Because ϵ in Equation 27 is independent over time, all of the classic CCP
second-step methods work as well. This includes not only Hotz et al.’s (1994) forward-simulation
methods, but also the original second-step method of Hotz & Miller (1993) as well as the finite
dependence approaches that are well summarized by Arcidiacono & Ellickson (2011).

To the degree that the empirical curse of dimensionality (i.e., the statistical problem of esti-
mating many choice probabilities) is a problem for the original CCP models, it is an even larger
problem for the multiple-type mixture model, as this requires identifying a larger number of prob-
abilities and cutting the data into smaller bins to do so. To gain possible efficiencies, Arcidiacono
& Miller (2011) develop an MLE approach.

We can see some similarities between the IV and the mixture model approaches. In mix-
ture models, the exclusion of sufficiently past history from the causal policy function is critical.
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Furthermore, there has to be sufficient variation in this excluded history. Finally, once we con-
dition on the discrete heterogeneity, past history is exogenous in the sense that it is independent
of the current unobservables. This combination of exclusion, variation, and exogeneity is familar
from IV methods. The next subsection will push this idea further.

4.3. Introduction to Instrumental Variable Methods in the Single-Firm Case

We now turn to formal IV methods, introduced in this context by Berry & Compiani (2020) and,
in an interesting special case, by Kalouptsidi et al. (2020). We next discuss a modified two-step
method that follows Berry & Compiani’s (2020). In the first step, identification of the policy func-
tions is modified to use GIV methods, as discussed by Chesher & Rosen (2017) and others.7 The
GIV approach can handle both the initial-conditions problem and endogenous market structure
by leveraging IVs and the structure of the model. The approach may result in point identifica-
tion of the policy functions, but it also allows for set identification. In either case, the second-step
forward-simulation approach of Section 3.2 carries over easily. When the policy function is set-
identified, the second step is applied to each policy in the identified set.This results in an identified
set for the single-period profit parameters θπ .

4.4. An Instrumental Variable Special Case

Kalouptsidi et al. (2020) discuss the problem of endogenous states and propose an IV approach for
a special case. They call their method the Euler conditional choice probability (ECCP) approach.
In their model, there are many firms within each market, and oligopoly behavior is assumed away.
Serially correlated shocks are modeled at the market level, and the form of the serial correlation
can be quite general, in contrast to the mixture model approach. At the individual-firm level,
additive time-independent shocks allow for techniques to be adapted from the CCP literature,
including from the finite dependence literature that was initiated by Hotz & Miller (1993) and
extended by Arcidiacono & Miller (2011) and others.

The model treats market-level terms as fixed effects that can be differenced out across firms
within the market, and finite dependence creates a kind of multi-period indifference condition
related to that described in Section 3.2. The result is an equation that is linear in the parameters
and is amenable to IV approaches. The authors also provide a nice set of empirical examples with
endogenous states (durable goods, land use, technology adoption, and labor supply).

The ECCP method point-identifies firm-specific profit parameters, but not parameters on
market-level effects. The authors note the potential complementarity between ECCP and GIV
methods. Under the appropriate conditions, the ECCP approach could be used to identify some
parameters, with the remaining parameters identified (possibly, set-identified) by GIV methods.
We turn to those methods next.

7Chesher & Rosen (2017) consider a broad class of models with nonseparable error structures, develop an
approach explicitly based on the IV logic, and provide a sharp characterization of the identified set. The
results build on the work of Galichon & Henry (2011) and Beresteanu et al. (2011), while the broad approach
to set identification is informed by a vast literature that includes the works of Manski & Tamer (2002), Tamer
(2003),Manski (2003), Chernozhukov et al. (2007), Berry &Tamer (2007), Ciliberto &Tamer (2009), Chesher
(2010), Beresteanu et al. (2011), Galichon & Henry (2011), and Andrews & Shi (2013).
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Table 2 Examples of possible instruments from Berry & Compiani (2020)

State Example instruments
Capital Past investment cost
In/out of market Past market population, past regulation
Number of stores Distance from headquarters, interacted with time
Quality Past R&D shocks, age of firm

Abbreviation: R&D, research and development.

4.5. A Generalized Instrumental Variable First Step

The idea of theGIV first step is to set-identify policy functions from the data, using some structure
from the model together with IVs. An appealing feature of the GIV approach is that it accom-
modates features relevant to dynamic settings—notably, discreteness of states and outcomes, set
identification, and incompleteness of the model—as discussed, for example, by Tamer (2003). In
dynamic settings, incompleteness will often arise in the case of an unknown initial condition. In
the absence of incompleteness, the GIV approach will often be equivalent to MLE.

To be useful, potential IVs should be correlated with current-period endogenous states and yet
excluded from the current-period policy function and independent of u. One class of potential IVs
in our model consists of past values of the exogenous w. In many specifications, past values of w

do not enter the current-period policy function and so are excluded exogenous variables, available
as instruments as long as they shift current states (which is typically guaranteed by the dynamic
nature of themodel).Exogenous variables from the pre-sample periodmay be particularly useful in
dealing with the initial-conditions problem if they are correlated with the initial state. An example
of such variables might be past demand shifters, such as market size, that are correlated with
current market structure (conditional on current market size). Some of these variables may be
available from the pre-sample period even though the full set of variables is not.

More formally, the potential instruments are

zi = (ri,wi ), 29.

where the vector ri consists of information prior to the sample period.Tomotivate the econometric
use of these instruments, we assume independence of the instrument and the unobservables8

zi ⊥ ui.

Table 2, taken directly from Berry & Compiani (2020), gives some ideas of possible instruments
in different contexts. As in all applied situations, the independence assumption may be better
motivated in some examples than in others, and as with all IV methods, this discussion will be a
key component of applied work. One advantage of GIV methods is that they bring this discussion
to the forefront of the identification approach.

Given these IVs, we now sketch the use of GIVmethods to set-identify the policy function. Set
ai ≡ [ai1, . . . , aiT ], and similarly for xi,wi, and ui. If the sequence (ai, xi,wi ) occurs, then ui must be
in the inverse image set

U (ai, xi,wi, σ ) = {ui : σ (xit ,wit , uit ) = ait ,∀t}.

8While we focus on this restriction throughout the paper (Berry & Compiani 2020), Chesher & Rosen
(2017) show that the GIV approach may also be applied under weaker assumptions, such as mean or quantile
independence.
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Then, the Chesher–Rosen GIV conditions for identification are as follows. A pair (σ (xit, wit, uit),
θu) is in the identified set if and only if

Pr(ui ∈ S; θu ) ≥ Pr
(U (ai, xi,wi, σ ) ⊆ S |z) 30.

for all closed sets S in the space of unobservables, and for all instrument values z. There are
obviously many test sets S that one could check. Chesher & Rosen show how to find the core-
determining subset of these sets, that is, the minimal collection of sets that one needs to check
in order to characterize the sharp identified set. This collection includes all the elemental sets,
comprising the list of U (ai, xi,wi, σ ) across all the possible values of actions and states. However,
the core-determining set also includes the unions of partially overlapping elemental sets, excluding
cases of strict subsets. We denote the resulting sharp identified set as

�IV (θu ) ⊆ F , 31.

whereF is the set of possible σ functions.The setF can be restricted to include, for example, only
those σ functions that satisfy natural monotonicity restrictions grounded in the model. Note that
�(θu) depends on θu, since the left-hand side of Equation 30 depends on the joint distribution
of ui. Further, if �(θu) is the null set, then that value of θu is rejected by the data and the GIV
conditions.

Before turning to the second step of the Berry–Compiani approach, we illustrate the first step
via two examples: first, an extension of the continuous investment problem discussed in the context
of Equation 19, and second, our single-firm entry/exit model. The first example might plausibly
provide a point-identified policy function, while the second example seems likely to lead to set
identification.

4.6. Point-Identifying the Policy Function in a Continuous Instrumental
Variable Example

Consider a continuous choice problem, such as an investment problemwith convex costs of invest-
ment, that leads to a strictly positive investment level, ait, in each period. Here, the state xit is the
current capital stock, and wit could be within-sample cost shifters. The unobservable could rep-
resent a shock to the profitability of investment. A formal version of this model is given by Olley
& Pakes (1996). Under appropriate monotonicity conditions, we can invert the policy function as
in Equation 19 and write

uit = σ−1(xit ,wit , ait ), ui ⊥ zi. 32.

This differs from a similar example by Bajari et al. (2007) only because we need to use an IV strat-
egy to deal with the potential correlation of u and x. Luckily, Equation 32 takes exactly the form of
the quantile IV regression in Chernozhukov & Hansen’s (2005) paper, which provides conditions
for the point identification of σ . Under those conditions, we have completed step one of the ana-
log to the CCP two-step method. Further, note that Equation 32 also yields identification of all
uit, which implies that its distribution, including the serial correlation parameter θu, is identified.

4.7. Set-Identifying the Policy Function Using the Generalized Instrumental
Variable Approach in the Entry Example

With discrete variables, it is less likely that IV conditions point-identify the policy function.
Chesher (2010) considers set identification of discrete-outcome models via IVs. This subsumes
the problem of recovering the policy function for our entry/exit example into the especially chal-
lenging case in whichwe only see one period of data on (ai1,xi1) andwe do not place any restrictions
on the initial condition other than the availability of an exogenous instrument zi that predicts xi1.
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We illustrate this using our simple entry/exit model, dropping for simplicity variation in w.
First consider the extreme example of having data on just one transition: All we see for each firm
is (ai1, xi1, zi). The data give us the observed probabilities, p(xi1, zi1), of being active in the market,
but due to serially correlated errors and an initial-conditions problem, these do not give the causal
effects of x on entry. Therefore, we cannot invert these choice probabilities, as in Equation 16, to
find the cutoffs δ(x) characterizing the policy function.

As an alternative, drawing on the bounds estimation literature, Chesher (2010) works with the
necessary conditions for actions, imposing the restriction that the probability of a necessary con-
dition for an event be greater than or equal to the observed probability of that event. For instance,
the necessary condition for ai1 = 1 is the cutoff rule ui1 < δ(xi1), and the necessary condition for
ai1 = 0 is ui1 > δ(xi1). In this extreme case, then,we have four necessary conditions for the outcomes
of the endogenous variables ai1 and xi1.With sunk costs of entry, entry should be more likely when
xi1 = 1, and so we expect that δ(1) > δ(0). Given this monotonicity restriction, we can note that
ui1 < δ(1) is a necessary condition not just for the event (ai1, xi1) = (1, 1) but also for the event
(1, 0); that is, when costs are low the firm is active no matter whether it was in or out in the
last period. Similarly, ui1 > δ(0) is a necessary condition for both the event (ai1, xi1) = (0, 1) and
the event (ai1, xi1) = (0, 0). For every value of z, this gives a set of straightforward bounds on the
policy parameters δ(0) and δ(1). These bounds come from the model, the instruments, and the
entry probabilities; that is,

Pr(u1 < δ(1)) ≥ Pr(a = 1, x1 = 1|z) + Pr(a = 1, x1 = 0|z),
Pr(u1 < δ(0)) ≥ Pr(a = 1, x1 = 0|z),
Pr(u1 > δ(1)) ≥ Pr(a = 0, x1 = 1|z), and
Pr(u1 > δ(0)) ≥ Pr(a = 0, x1 = 1|z) + Pr(a = 0, x1 = 0|z).

Note that the probabilities on the left-hand side are not conditioned on z because u is independent
of z by assumption. Even if there is only one value of z (i.e., there is no instrument), the structure
of the model yields nontrivial upper and lower bounds. However, Chesher (2010) emphasizes that
variation in the instrument is helpful, because, for example, some values of z might be predictive
of x1 = 1, and this will increase the conditional probabilities involving x1 = 1, tightening those
inequality constraints. Other values of z might predict x1 = 0, increasing those probabilities.
In the limit, if some value of z perfectly predicts x1 = 1, then those bounds collapse to a point,
possibly leading to point identification of δ(1). If we also had variation in w, this could further
tighten the bounds.

With only one period of data, there is no hope of learning about any parameter character-
izing the serial correlation in the unobservables. With T = 2, however, we can make progress.
Table 3 displays the probabilities of necessary conditions associated with the eight combinations
of (x1, a1, a2) that are possible in our example.9 In the first column are the probabilities of
necessary conditions for the events, calculated via the bivariate distribution of u, which depends
on θu. In the second column are probabilities of events in the data. At the true values of δ and
θu, the probabilities in the first column must be greater than those in the second column. The
inequalities based on Table 3 are special cases of Equation 30 in which the sets S are taken to be
the elemental sets corresponding to the eight possible sequences (x1, a1, a2). As mentioned above,
characterizing the sharp identified set requires also considering unions of partially overlapping

9Similar information is displayed in two-dimensional graphs in Berry & Compiani’s (2020) paper.
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Table 3 Probabilities of necessary conditions for elemental events with T = 2

Probability of necessary conditions Probability of events in the data
Pr(u1 < δ(1), u2 < δ(1); θu ) Pr(1, 1, 1|z) + Pr(0, 1, 1|z)
Pr(u1 < δ(1), u2 > δ(1); θu ) Pr(1, 1, 0|z) + Pr(0, 1, 0|z)
Pr(u1 > δ(1), u2 < δ(0); θu ) Pr(1, 0, 1|z)
Pr(u1 > δ(1), u2 > δ(0); θu ) Pr(1, 0, 0|z)
Pr(u1 < δ(0), u2 < δ(1); θu ) Pr(0, 1, 1|z)
Pr(u1 < δ(0), u2 > δ(1); θu ) Pr(0, 1, 0|z)
Pr(u1 > δ(0), u2 < δ(0); θu ) Pr(0, 0, 1|z) + Pr(1, 0, 1|z)
Pr(u1 > δ(0), u2 > δ(0); θu ) Pr(0, 0, 0|z) + Pr(1, 0, 0|z)

elemental sets. In our example, this would expand the number of restrictions from eight to a total
of thirteen. Adding w back into the model would further increase the number of sets.

Note that, unlike what happens when T = 1, when T = 2 the probabilities of the necessary
conditions depend on θu, as shown inTable 3. If, for example, ui1 and ui2 were perfectly correlated,
the event (x1, a1, a2) = (1, 0, 1) would not be possible; similarly, a serial correlation parameter
close to 1 would make that event unlikely. Thus, imposing inequalities based on two or more time
periods places restrictions on θu, and the number of restrictions increases in the number of time
periods in the data. Berry & Compiani (2020) illustrate the advantages of more time periods, and
better instruments, via computed examples.

The discussion so far has focused on (set) identification of the policy functions and θu. In
practice, with finite samples, one typically wants to go one step further and obtain confidence
regions. Given that the model restrictions take the form of Equation 30, the large literature on
moment inequalities provides approaches to conduct inference (e.g., Chernozhukov et al. 2007,
Andrews & Soares 2010, Beresteanu et al. 2011, Galichon & Henry 2011, Andrews & Shi 2013,
Chernozhukov et al. 2013). Within this literature, of particular importance are the papers that
focus on the case in which the number of inequalities is large relative to the sample size (e.g.,
Menzel 2014, Andrews & Shi 2017, Chernozhukov et al. 2018), since this scenario is likely to arise
in the GIV framework, especially when the number of time periods in the data is large.

4.8. The Second Step with Serial Correlation in u

The Berry–Compiani first step results in an identified set for the policy functions—in our
entry/exit example, the thresholds δ(x, w)—plus the θu parameters. To map this into the space
of θπ , Berry & Compiani (2020) note that the identified set for the structural parameters is

�ID ≡ {θ = (θπ , θu ) : σ̂ (xit ,wit , uit; θ ) ∈ �IV (θu )}, 33.

where σ̂ (·, ·, ·; θ ) is again the policy function that results from the Bellman equation evaluated at θ .
The identification condition establishes that the solution to the dynamic model at the parameter
θ must satisfy the GIV conditions in the data. This defines the sharp identified set.

Given the set of policies identified by the GIV first step, the second-step method illustrated in
Section 3.2 carries over easily. First, note that it is still trivial to forward-simulate value functions.
For the purposes of forward simulation, the serially correlated u are just like a serially correlated
w. In addition, policy functions will still be typically defined by boundaries in u space leading to
indifference conditions.
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Illustrating the second-step indifference equations for the entry/exit example with serial cor-
relation, note that the action-specific value functions are now

ṽ(1, x,w, u; σ , θ ) = π̄ (x,w) − u+ βEw′ ,u′
[
Ṽ (1,w′, u′ )|w, u; σ , θ

]
and

ṽ(0, x,w, u; σ , θ ) = βEw′ ,u′
[
Ṽ (0,w′, u′ )|w, u; σ , θ

]
.

From Equation 14, we have

ṽ(1, x,w, u = δ(x,w); σ , θ ) = ṽ(0, x,w, u = δ(x,w); σ , θ ). 34.

These are the equations used in the Berry–Compiani second-step procedure. Once again, they
will be linear in θπ when π̄ (x,w) is linear in θπ .

Note that some other CCP-style second-step methods, such as the one in Hotz & Miller’s
(1993) original paper, cannot be directly employed in this example of serially correlated unob-
servables. That is because these methods use tricks that are specific to models with additive inde-
pendent errors. In particular, they do not account for the conditioning on u in future expectations,
as in Equation 14. However, it is possible to choose specifications (as in Section 4.2) that include
both a serially correlated unobserved component and an additive time-independent unobserved
component. The original Hotz–Miller second step will work in this case.

In the case of serially correlated errors, the forward simulation will depend on θu as well as θπ ,
as θu is necessary to simulate future values of u. If the GIV first step produces an identified set of
(σ , θu) pairs, then the Berry–Compiani second step based on Equation 34 needs to be applied to
each (σ , θu) in the set. This second step produces an identified set for θπ . If the GIV first step
produces a point-identified (σ , θu), then the second step will similarly produce a point-identified
θπ (as long as there is a unique solution in θπ to the indifference conditions in Equation 34).
Similarly, a confidence region for θ can be produced by applying the second step to each element
in the confidence region for (σ , θu).

Note that if for some reason the forward-simulated indifference-condition method fails, Berry
&Compiani’s (2020) first idea for the second step, outlined in Equations 23 and 24, is still available.

5. OLIGOPOLY

Moving from single-firm to oligopoly problems adds realism and greatly increases the scope for
interesting policy counterfactuals.However, the dynamic estimation problem becomesmore com-
plicated, as the full computation approach becomes a doubly nested fixed point. Given rivals’
strategies, each firm is solving a best-reply Bellman fixed-point equation that defines the firm’s
own behavior as a function of its rivals’ strategies. In a dynamic Nash (or Bayesian Nash) equilib-
rium, these strategies themselves must solve a second fixed point: the mapping between strategies
and the dynamic best replies to those strategies. This raises problems of existence and uniqueness
of equilibria that make full computational methods particularly difficult. As a result, much of the
oligopoly literature has eventually followed the single-agent literature into models without serial
correlation.

A more recent approach has been to tackle serial correlation and endogenous market structure
by combining the insights of the oligopoly literature à la Hotz & Miller with the insights of the
discrete heterogeneity literature and/or the GIV approach of Berry & Compiani (2020). We first
discuss full computational methods and then turn to the more recent advances.
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5.1. Full Computational Methods

One motive for the use of a full computation approach in market structure models has been pre-
cisely to account for serial correlation. The works of Pakes & McGuire (1994), Ericson & Pakes
(1995), and Pakes & Ericson (1998) emphasize the idea of rich oligopoly models with a mix of
discrete and continuous variables together with serially correlated unobservables. These authors
suggest an empirical strategy of fitting the ergodic market structure distribution computed from
long-run simulations onto the observed transitions in the data. This framework deals with the
initial-conditions problem by assuming that the industry has settled into its long-run distribution
of transitions. Gowrisankaran & Town (1997) provide one of the rare full empirical applications
of this approach.

Ericson&Pakes’s (1995) method faces problems of both existence and uniqueness of equilibria,
as discussed by Doraszelski & Pakes (2007), Doraszelski & Satterthwaite (2010), and Pesendorfer
& Schmidt-Dengler (2010). It is hard to guarantee a unique equilibrium in the general case, and
it can be hard or impossible to find all the equilibria that may exist (Borkovsky et al. 2012).

In a series of papers, Igami considers the problem of dynamic market structure estimation
in the context of industries that are not in a stationary equilibrium, but rather in the process of
rising and/or falling (Igami 2017, 2018; Igami & Uetake 2020). In the first two papers, Igami
(2017, 2018) takes a full computation approach that ensures a unique equilibrium, which aids
both estimation and counterfactual analysis. Specifically, Igami ensures uniqueness by (a) assuming
sequential moves (with either deterministic or random order) and (b) modeling a long but finite
horizon. Under these conditions, the oligopoly game can be uniquely solved backwards from the
end. Igami assumes serially uncorrelated errors and therefore has no initial-conditions problem.
However, in one case he also traces the industry from its birth, which would solve the initial-
conditions problem even in the presence of serially correlated unobservables. One interesting
extension would be to apply the Igami sequential-move approach to the case with unknown initial
conditions, either in a GIV or a mixture model framework.

However, in many cases the problems of multiple equilibria led the oligopoly literature back
to two-step methods with serially uncorrelated errors, as we discuss next.

5.2. Two-Step Methods Applied to Oligopoly

A common assumption of a number of dynamic oligopoly papers is that, even when the model
admits multiple equilibria, the industry plays the same equilibrium every time it reaches the same
state (Aguirregabiria & Mira 2007, Bajari et al. 2007, Pakes et al. 2007, Pesendorfer & Schmidt-
Dengler 2008).10 In addition, these papers assume that the unobservables are (a) independent
over time and (b) purely private information. Under these assumptions, a firm can treat its rivals’
behavior just like “plays of nature”; that is, the evolution of rivals’ behavior is just like the evolution
of the exogenous w profit shifters in the single-firm case. Further, private information means that
firms cannot take current-period rival shocks into account, and independence over timemeans that
neither the own-firm nor the rival states are correlated with current-period unobservables. Thus,
there is no endogeneity problem. Under these assumptions, then, the computational simplicity of
the preexisting CCPmethods can be brought to oligopoly dynamics. This includes both first- and
second-step methods.

10Rust (1994) offers an early version of the idea, and Jofre-Bonet & Pesendorfer (2003) provide a related
insight in the context of dynamic auctions.
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In this literature, Pesendorfer & Schmidt-Dengler’s (2008) approach is the closest to
Hotz & Miller’s (1993), and they take particular care to make the formal connection between the
dynamic oligopoly model and the Hotz & Miller’s framework. Pakes et al. (2007) reverse Hotz
& Miller’s argument, arguing that it is the distribution of unobservables that should be identified
from knowledge of the single-period return, rather than the other way round. They argue that
the elements of single-period variable profits can in many cases be identified from static data on
prices and quantities (and perhaps variable cost or input data), whereas fixed and sunk costs are
only revealed by dynamic behavior.We have already discussed the approach of Bajari et al. (2007).

Empirical applications of these methods to market structure include work on environmen-
tal policy (Ryan 2012, Fowlie et al. 2016), the entry of Walmart (Holmes 2011), responses to
demand fluctuations (Collard-Wexler 2013), airlines (Aguirregabiria & Ho 2012), product posi-
tioning and entry in radio mergers (Sweeting 2013, Jeziorski 2014), and entry subsidies for health
care providers (Dunne et al. 2013). Many such papers make explicit use of the empirical strategy
developed by Bajari et al. (2007). Dunne et al. (2013) follow Pakes et al.’s (2007) suggestion of
estimating the variable profit function prior to the dynamic estimation of sunk and fixed costs.

Given the same assumption of a unique equilibrium in the data, the mixture model approach
described in Section 4.2 also carries over to the oligopoly context. In this case, we assume that
persistent unobservables are known to the firms, but the single-period profits are further shocked
by an independent and private information term, as in Equation 27. In that equation, the extension
to oligopoly involves adding the rivals’ states to a firm’s own state in the x vector.

As noted in the introduction, Igami & Yang (2016) provide an empirical example of mixture
models applied to entry in fast-food markets. The empirical strategy in that paper follows the like-
lihood approach of Arcidiacono & Miller (2011). The results obtained by Kasahara & Shimotsu
(2009) are used to identify the minimum number of discrete profit levels that would explain the
serial correlation in the empirical transition, and that number is used in the empirical work. As
noted, Igami & Yang (2016) emphasize the incorrect inferences that would result from entirely
ignoring persistent heterogeneity.

In two-step applications to oligopoly, the curse of dimensionality can be particularly severe
because the states of rival firms enter the own-firm state space. One concept that is applicable to
cases with a large number of small firms (and perhaps a small number of large firms) is the notion
of oblivious equilibrium proposed by Weintraub et al. (2008). Another strategy is to consider
continuous time models, as Doraszelski & Judd (2012) do. Arcidiacono et al. (2016) discuss an
appropriate two-step estimation approach and provide an empirical application that considers the
effect of entry byWalmart on existing competitors.Theymodel perfectly persistent heterogeneity
for each type of store via a mixture model method in the first step.

5.3. Generalized Instrumental Variable Methods in Oligopoly

As with full computational and two-step methods, the work done in the single-agent case carries
over to GIV methods applied to oligopoly. As in the single-agent case, we let i index markets and
t index time. In addition, we introduce j = 1, . . . , J to index firms that coexist in a market.

Firm j’s profits depend on its own action aijt as well as its rivals’ actions. Thus, letting ait =
(ai1t, . . . , aiJt), firm j’s profit is now

π j (ait , xit ,wit , uit; θπ ).
In equilibrium, each firm’s policy is the single-agent best reply to its rivals’ equilibrium strategies.
The firm still solves a value function problem similar to the one in Equation 7, but now its ex-
pectations of the future evolution of endogenous market states depend on its action as well as the
equilibrium actions of its rivals.
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In the oligopoly case, Berry & Compiani (2020) assume that the serially correlated unobserv-
ables are complete information to all of the firms. Serially correlated private information raises
very difficult issues of signaling behavior, which would be a large additional complication. How-
ever, mixture models of the private information may help (Hodgson 2019).

Denoting the equilibrium policies of firm j’s rivals by the function σ−j, the firm expects the
states to evolve in equilibrium according to transition probabilities of the form

� j
(
xit+1|ai jt , xit ,wit , σ− j (xit ,wit , uit )

)
. 35.

Thus, in equilibrium, the Bellman equation for firm j depends on the strategies played by its rivals,
although we drop this dependence from the notation

Vj (xit ,wit , uit )

= max
ai jt∈A(xi jt )

(
π j (ait , xit ,wit , uit; θπ ) + βE

[
Vj (xit+1,wit+1, uit+1) |ait , xit ,wit , uit; θu

])
.

36.

This dynamic program yields a best-reply strategy for firm j, which we assume is unique and
denote by σ̄ j (σ− j , θ ). We stack the best-reply function into a J–vector,

σ̄ (σ , θ ) = (σ̄1(σ−1, θ ), . . . , σ̄J(σ−J, θ )).

Any equilibrium strategy σ ∗ must then satisfy the fixed point

σ ∗ = σ̄ (σ ∗, θ ). 37.

Given this, the set of possible equilibrium policy functions associated with a candidate parameter
θ is given by

�EQ(θ ) = {σ ∗ : σ ∗ = σ̄ (σ ∗, θ )}.
Following earlier papers, we maintain the assumption of a unique equilibrium in the data. The set
�EQ(θ0), where θ0 is the true parameter that generates our data, contains the true policy function.

As in the single-agent case, we define the sharp identified set for the structural parameters as
the set of values of θ that simultaneously satisfy the GIV restrictions and solve the equilibrium
Bellman equation; i.e.,

�ID ≡ {θ = (θπ , θu ) : there exists σ ∗ ∈ �EQ(θ ) such that σ ∗ ∈ �IV (θu )}. 38.

In other words, a parameter vector θ belongs to the sharp identified set if there is a policy that (a)
is not rejected by the GIV restrictions and the data (given θu) and (b) is an equilibrium strategy
given θ .

Again, the first step consists of characterizing the set �IV(θu) of policies that survive the GIV
restrictions. However, this step will be complicated by a possibly large state space and by the
presence of multiple firm unobservables in the policy functions. The large state space may lead
to the use of parameterized and simplified policy functions, which is already common in existing
CCP applications.

The first step can be illustrated through a simple extension of Olley & Pakes’s (1996) capital
accumulation model of Section 4.6 to the duopoly case. Denote the equilibrium policy functions
of the two firms by

ai jt = σ (xit ,wit , uit ), 39.

where the capital stocks are xit = (xi1t, xi2t) and investments are ait = (ai1t, ai2t). Similarly, (ui1t, ui2t)
is the vector of serially correlated unobservables, and wit are exogenous shifters of the profitability
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of investment. Under the assumption that xijt and aijt are continuous variables and that the policy
functions are continuous and injective in uit, we can write

ui jt = σ−1
j (xit ,wit , ait ). 40.

This is now a two-equation version of the quantile IV model of Chernozhukov & Hansen (2005),
following which the policies may then be point-identified. Importantly, this would yield identifi-
cation of each uijt and thus of its distribution, including the serial correlation parameter θu.

This example shows how multiple unobservables can naturally show up in the policy functions
of oligopoly firms. In the case of discrete actions, this may pose particular problems that are yet
to be fully explored in the literature. Once again, the problems might be dealt with in part by par-
simoniously parameterizing the policy functions, while leaving the single-period profit functions
as free as possible.

Up to the (difficult) issues involving the dimensions of the observed and unobserved states,
then, the GIV first step is the same in the oligopoly and single-firm cases. The second step also
follows through quite easily. Recall that Berry & Compiani (2020) propose two approaches that
accommodate serially correlated unobservables. Adapted to the oligopoly case, the first idea now
amounts to calculating a best reply to (a) one’s rivals’ future behavior and (b) one’s own optimal
future behavior. This is much easier than computing (a) the full best reply to rivals’ behavior and
especially (b) the fixed point of the dynamic oligopoly.

The indifference approach carries forward to the oligopoly case with even less modification.
Recall again that the second step only employs the structure of the model, and that whether a
given variable was observed by us (or not) in the first step plays no role. Thus, in this step the
states of rival firms, whether initially observed or not, simply become additional (x, w) terms in
Equation 25.

As an empirical oligopoly example, Collard-Wexler (2014) studies entry and exit in the con-
crete industry, modeling a parametric policy function and serially correlated market-level shocks.
He considers a restrictive (although not unreasonable) initial-conditions assumption that allows
him to point-identify and estimate the policy-function parameters (as well as a serial correlation
parameter) by MLE. His work is guided by the full-computation oligopoly framework developed
by Abbring & Campbell (2010). Berry & Compiani (2020) use a simplified version of the same
data to illustrate how their approach allows one to drop the restrictive initial conditions and use a
GIV first step. They also employ the linear indifference in Equation 25, with different degrees of
parametrization, to produce a confidence region for the single-period profit function that is valid
given the set-identified policy functions. They show that the GIV method can easily reject the
model with serially uncorrelated unobservables, and that the presence of serial correlation greatly
alters counterfactuals involving changes in the sunk cost of entry, as might be caused by changes
in regulation.

This empirical application serves as a proof of concept for further empirical work. That work
would ideally explore additional policy questions as it grapples with the issues of finding good
instruments and dealing with the traditional problems of high-dimensional state spaces in dynamic
modeling.

6. CONCLUSION

Two-step CCP methods without serially correlated errors have helped the empirical analysis of
theoretically endogenous market structure to overcome various problems with fully computed
equilibrium oligopoly models. However, the initial gains in the literature came at the expense of
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econometrically exogenous market structure, with the associated likely biases in counterfactual
predictions. There are now at least two approaches to including serially correlated errors in such
models: mixture models of discrete persistent heterogeneity and GIV methods that allow for
general forms of serial correlation. At a practical level, GIV methods can allow for shorter time
periods, unrestricted initial conditions, a mix of continuous and discrete actions, and different
kinds of serial correlation. This comes at the cost of potentially set-identified parameters and
counterfactuals. Theoretical concerns and existing empirical results show the importance of
further developing this research agenda by applying and refining methods that allow for serial
correlation in models of industry dynamics.
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