Annual Review of Economics Empirical Models of Industry Dynamics with Endogenous Market Structure

Annu. Rev. Econ. 2021. 13:309-34
First published as a Review in Advance on May 6, 2021

The Annual Review of Economics is online at economics.annualreviews.org
https://doi.org/10.1146/annurev-economics-081720-120019

Copyright © 2021 by Annual Reviews. All rights reserved

JEL codes: L11, C23, C26

www.annualreviews.org

- Download figures
- Navigate cited references
- Keyword search
- Explore related articles
- Share via email or social media

Steven T. Berry ${ }^{1}$ and Giovanni Compiani ${ }^{2}$
${ }^{1}$ Department of Economics, Yale University, New Haven, Connecticut 06520, USA; email: steven.berry@yale.edu
${ }^{2}$ Booth School of Business, University of Chicago, Chicago, Illinois 60637, USA; email: giovanni.compiani@chicagobooth.edu

Keywords

dynamic models, endogenous market structure, autocorrelation, state dependence, two-step methods

Abstract

This article reviews recent developments in the study of firm and industry dynamics, with a special emphasis on the econometric endogeneity of market structure. The endogeneity of market structure follows from the presence of serially correlated unobservable shocks to the profitability of firms' dynamic decisions, a feature common to many empirical settings. Methods that ignore endogeneity can lead to misleading parameter estimates and misleading counterfactual results. We pay particular attention to extensions of standard two-step methods that leverage instrumental variables to address endogeneity in both single-agent and oligopoly models. A first step set-identifies dynamic policy functions together with serial correlation parameters, and a second step quickly solves for profit function parameters using an extension of existing forward-simulation methods. We discuss how these new methods provide a general solution to initial-conditions problems and how they can yield practical estimation strategies.

1. INTRODUCTION

The field of industrial organization (IO) studies firms and markets in equilibrium. Many classic IO models are static. This is not surprising, as it can be difficult enough to model interactions between firms without modeling how firms and markets change over time. Yet, we know that industries and firms evolve. IO models often speak of market structure, which is the broad category of market primitives that are held fixed in a static model of oligopoly price or quantity. These primitives include features like the number of firms, the cost and demand characteristics of those firms, and so forth. While market structure might be held fixed in the short run, it is clearly an economic outcome that is built up over time, in a dynamic setting.

We think that market structure is dynamic partly because we think that sunk costs may be important. In the presence of sunk costs, we understand that markets may exhibit hysteresis, a dependence on past market conditions, as in Dixit's (1992) model. Furthermore, in the presence of sunk costs, decisions about, for example, firm entry, investment, or product development depend on firms' forward-looking beliefs about future market conditions. All of this points the study of market structure toward explicitly dynamic settings.

There are, however, many interesting static empirical models of market structure, such as those reviewed by Berry \& Reiss (2007) and Berry \& Tamer (2007). These models may be an appropriate approximation to reality in the case in which market fundamentals are (relatively) unchanging and firms have settled into a clear best-response Nash equilibrium to rivals' behavior. However, even in a relatively unchanging market, a static model will not be able to distinguish sunk from fixed costs, as the distinction is entirely dynamic. This matters because many counterfactual policies may depend critically on the nature of sunk costs.

To state, even informally, the rough conditions for a credible use of static market structure models is to make a case for dynamic models. A strong counterargument, though, is that dynamic models of market structure face an extremely difficult set of challenges. In the end, we may worry that the attempt to introduce dynamics creates so many compromises that the result is not better than the static version.

This article reviews the difficulties and trade-offs that applied empirical researchers face in estimating dynamic models of market structure. It covers a set of possible solutions, with an emphasis on competing approaches that differ in their computational tractability and their (relative) realism. In particular, this review focuses on the econometric endogeneity of market structure that follows from the presence of serially correlated unobservable shocks to the profitability of firms' dynamic decisions. It seems clearly preferable to allow for these serially correlated shocks, but the history of the literature shows that this leads to challenges for both identification and estimation/computation. Possible modeling solutions that allow for realistic serial correlation are an active area of research and the primary subject of this review.

The topic of serial correlation in unobservables may sound technical, but it involves issues of first-order importance to the modeling of industry dynamics. If market structure is built up over time, then it depends on the past profitability of the industry. Because the data are unlikely to capture all drivers of firm profitability, past profitability typically includes the effects of past unobservables. But if unobservables are correlated over time, this implies that the current market structure is correlated with current unobservables, creating an endogeneity problem.

This logic is famously emphasized, for example, by Olley \& Pakes (1996). They consider capital stock as an element of market structure, which is built up over time and which then shifts the short-run marginal cost curves of oligopolistic firms. In the estimation of a production function, they emphasize that the firm's capital stock will be correlated with the current-period unobserved productivity shock precisely because that shock is correlated with the past shocks that influenced

Table 1 Market structure coefficients with and without fixed effects

Profit shifter	Fixed effects	
	No	Yes
Own-store presence	-0.31	-0.78
	(0.02)	(0.03)
Rival-store presence	0.02	-0.23
	(0.01)	(0.02)

The table shows ordered probit regressions of entry/exit. Standard errors are in parentheses, and a set of further controls (population and income) are omitted from the table. Further details are available in the original paper by Igami \& Yang (2016); the original table includes a much longer set of estimated parameters, not included here. Table adapted from Igami \& Yang (2016) (CC BY-NC 3.0).
past investment decisions, which in turn led to the current capital stock. Thus, the market structure of the short-run fixed capital stock is econometrically endogenous in the production function even if the capital stock is not directly determined by the current productivity shock. Importantly, ignoring this endogeneity will lead to misleading economic conclusions about, for example, the role of capital, labor, and unobserved productivity in explaining output changes over time.

Igami \& Yang (2016) provide another example, in which market structure is defined as the number of firms in a market. Their data set consists of Canadian hamburger chain outlets ("stores"), and they provide some simple descriptive evidence that points to the importance of market structure endogeneity. In Table 1, which is adapted from their paper, we see that adding fixed effects (for market and firm) greatly changes the coefficients in these descriptive regressions. If we gave the coefficients a causal interpretation, the first-column results (without fixed effects) would appear to indicate that, if anything, the presence of a rival firm increases the probability that the own-firm will enter the market. ${ }^{1}$

The literature on empirical dynamic models is vast, and earlier reviews include those by Ackerberg et al. (2007), Aguirregabiria \& Mira (2010), and Arcidiacono \& Ellickson (2011). Here, we focus primarily on the issue of econometrically endogenous market structure. We first consider single-agent problems in Section 2. Many methods for single-agent models extend easily to multiple-agent settings and have the added benefit of simpler notation, so we use the singleagent case to illustrate the different approaches. We start from the methods that rule out serial correlation in the unobservables (Section 3) and then move on to those that do allow for serial correlation and thus account for the econometric endogeneity of market structure (Section 4). We emphasize two approaches to serial correlation and endogeneity. The first is a mixture model approach, following Kasahara \& Shimotsu (2009), that models persistent unobserved heterogeneity via a limited number of discrete types. The second is an instrumental variables (IV) approach, presented in a general context by Berry \& Compiani (2020) and in a clever special case by Kalouptsidi et al. (2020). In Section 5, we turn to oligopoly models, with a special emphasis on the unique challenges that are introduced there, notably the issue of multiple equilibria. However, many of the ideas of the single-firm case carry over to the oligopoly setting, so that most of our work will be done by that point.

Finally, it is worth noting that although we focus our discussion on examples of endogenous market structure, the issue of serial correlation in dynamic models is much broader, and thus our discussion could be applied to a much wider range of empirical settings.

[^0]
2. SINGLE-FIRM DYNAMICS

We start by considering single-firm settings. These models may be directly applicable to situations on both extremes of competition: firms that are market takers and ignore the behavior of their rivals on the one hand, and strict monopoly firms on the other.

We first introduce some general notation and explicitly state the identification problem. We then consider a simple entry/exit example, which is helpful to illustrate the alternative approaches described in Sections 3 and 4. We conclude this section with a discussion of the initial-conditions problem in models with serially correlated errors.

2.1. Model Setup

Our model setup and notation closely follow our previous work (Berry \& Compiani 2020). We consider the identification of a model that generates data on a large set of markets indexed by i. Since, in this section, there is a single firm per market, we will often use the expression "firm i " to refer to "the firm in market i." Within-sample time periods are denoted by $t=1, \ldots, T$. Firm i's current market structure is $x_{i t}$, and in period t firm i chooses an action $a_{i t}$ out of the set of feasible actions, denoted $\mathcal{A}\left(x_{i t}\right)$. Examples of market structure $x_{i t}$ include a continuous measure of capital stock, an indicator of whether a firm is operating in a market, and the current quality level of a firm's product. Actions $a_{i t}$ associated with those example states might be (respectively) investment, entry/exit, and research and development (R\&D) expenditure. The single-period profits of firm i are given by

$$
\begin{equation*}
\pi\left(a_{i t}, x_{i t}, w_{i t}, u_{i t} ; \theta_{\pi}\right) \tag{1.}
\end{equation*}
$$

where $w_{i t}$ is a vector of exogenous profit shifters that are observed by both the firm and the researcher while $u_{i t}$ is an exogenous profit shifter that is observed by the firm but not by the researcher.

The law of motion for the unobservables is

$$
\begin{equation*}
\Phi\left(u_{i t+1} \mid \lambda_{i t} ; \theta_{u}\right), \tag{2.}
\end{equation*}
$$

with θ_{u} being a vector of parameters that govern the distribution of $u_{i t}$. Note that Equation 2 implicitly assumes that the unobservables follow a first-order Markov process. The full vector of unknown parameters of the dynamic model is $\theta \equiv\left(\theta_{\pi}, \theta_{u}\right)$. The term $\lambda_{i t}$ includes various possible sources of serial correlation. One leading special case is a simple first-order autocorrelation process, where we have

$$
\begin{equation*}
\lambda_{i t} \equiv u_{i t} . \tag{3.}
\end{equation*}
$$

A second important special case is time-invariant discrete heterogeneity. Due to time invariance, we can drop the t subscript and write

$$
\begin{equation*}
\lambda_{i} \in\left(\bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots, \bar{\lambda}_{M}\right) \tag{4.}
\end{equation*}
$$

In this notation, the $\bar{\lambda}_{k}$ are the possible discrete values of the persistent heterogeneity. The parameters θ_{u} then include the $\bar{\lambda}$ vector plus the probabilities of each of those discrete values.

The endogenous market structure evolves over time according to the transition probabilities

$$
\begin{equation*}
\Gamma\left(x_{i t+1} \mid a_{i t}, x_{i t}, w_{i t}\right) \tag{5.}
\end{equation*}
$$

Our examples will focus on special cases involving deterministic transitions that are specified by the model, but the framework allows for any transitions that can be directly estimated from the data. The exogenous states $w_{i t}$ are assumed to evolve according to the law of motion

$$
\begin{equation*}
\psi\left(w_{i t+1} \mid w_{i t}\right) \tag{6.}
\end{equation*}
$$

As is typical in the literature, we assume that both Equations 5 and 6 are directly observed or known by the researcher.

The firm's dynamic problem is given by the Bellman equation,

$$
V\left(x_{i t}, w_{i t}, u_{i t}\right)=\max _{a_{i t} \in \mathcal{A}\left(x_{i t}\right)}\left(\pi\left(a_{i t}, x_{i t}, w_{i t}, u_{i t} ; \theta_{\pi}\right)+\beta E\left[V\left(x_{i t+1}, w_{i t+1}, u_{i t+1}\right) \mid a_{i t}, x_{i t}, w_{i t}, u_{i t} ; \theta_{u}\right]\right), \quad 7 .
$$

where β denotes the discount factor and V the value function. Following much of the literature, we assume throughout that the discount factor β is known.

The expected value function on the right-hand side of this expression is determined by the laws of motion of the different variables, i.e.,

$$
\begin{align*}
& E\left[V\left(x_{i t+1}, w_{i t+1}, u_{i t+1}\right) \mid a_{i t}, x_{i t}, w_{i t}, u_{i t} ; \theta_{u}\right] \\
& =\iiint V\left(x_{i t+1}, w_{i t+1}, u_{i t+1}\right) d \Gamma\left(x_{i t+1} \mid a_{i t}, x_{i t}, w_{i t}\right) d \psi\left(w_{i t+1} \mid w_{i t}\right) d \Phi\left(u_{i t+1} \mid \lambda_{i t} ; \theta_{u}\right) \tag{8.}
\end{align*}
$$

Note that the expectation of the future value function in Equations 7 and 8 depends on θ_{u} because that parameter governs the serial correlation of the unobservables, which influences future expected profits conditional on $u_{i t}$.

Associated with the true Bellman equation is then the policy function that gives the optimal action for each state,

$$
\begin{equation*}
a_{i t}=\sigma\left(x_{i t}, w_{i t}, u_{i t}\right) . \tag{9.}
\end{equation*}
$$

It is important to distinguish the true policy function, generated by the Bellman equation evaluated at the true value of the parameter, from the policy function that would result from the Bellman equation evaluated at arbitrary guesses for the parameter θ. We denote the policy function consistent with an arbitrary parameter θ as $\hat{\sigma}\left(x_{i t}, w_{i t}, u_{i t} ; \theta\right)$. Obviously, if the true parameter is θ_{0}, then we have

$$
\begin{equation*}
\sigma\left(x_{i t}, w_{i t}, u_{i t}\right)=\hat{\sigma}\left(x_{i t}, w_{i t}, u_{i t} ; \theta_{0}\right) . \tag{10.}
\end{equation*}
$$

2.2. The Identification Problem

For purposes of identification, we assume that we observe the true data-generating process for the observable variables (a_{i}, x_{i}, w_{i}), but not for u. The underlying parameters to be identified are $\theta=$ $\left(\theta_{\pi}, \theta_{u}\right) .^{2}$ In many applications, it will also be useful to think separately about the identification of the policy function, $\sigma\left(x_{i t}, w_{i t}, u_{i t}\right)$.

2.3. Single-Firm Entry/Exit Example

We now introduce a simple single-firm entry/exit example which will be helpful to illustrate different approaches in Sections 3 and 4. Consider a monopolist entry/exit example in which the endogenous state $x_{i t} \in\{0,1\}$ indicates whether the firm was active in the market in the prior period, and $a_{i t} \in\{0,1\}$ is the decision to operate in the current period. The single-period profit from

[^1]being active in the market is
\[

$$
\begin{equation*}
\pi(x, w, u)=\bar{\pi}(x, w)-u \tag{11.}
\end{equation*}
$$

\]

where $\bar{\pi}(x, w)$ is the variable profit of operations and the scalar u is a random fixed cost. The exogenous profit shifters are discrete, taking on one of K_{w} possible values. The sunk cost of entry, $\bar{\pi}(1, w)-\bar{\pi}(0, w)$, is here allowed to depend on the exogenous profit shifters w. In every period in which it is inactive, the firm earns a single-period profit of zero. However, the firm retains the ability to reenter the market. The value function is then

$$
\begin{equation*}
V(x, w, u)=\max \left(\bar{\pi}(x, w)-u+\beta E_{w^{\prime}, u^{\prime}}\left[V\left(1, w^{\prime}, u^{\prime}\right) \mid w, u ; \theta_{u}\right], \beta E_{w^{\prime}, u^{\prime}}\left[V\left(0, w^{\prime}, u^{\prime}\right) \mid w, u ; \theta_{u}\right]\right) \tag{12.}
\end{equation*}
$$

Under well-understood conditions, ${ }^{3}$ the value function is strictly decreasing in u, and so the policy function $\sigma(x, w, u)$ involves a cut-off rule whereby the firm enters if and only if

$$
\begin{equation*}
u<\delta(x, w) \tag{13.}
\end{equation*}
$$

where $\delta(x, w)$ is the value of u that sets the expected dynamic return of being in the market to be equal to the value of being out. From Equation 12, this is defined implicitly by

$$
\begin{equation*}
\delta(x, w)=\bar{\pi}(x, w)+\beta E_{w^{\prime}, u^{\prime}}\left[V\left(1, w^{\prime}, u^{\prime}\right)-V\left(0, w^{\prime}, u^{\prime}\right) \mid w, u=\delta(x, w) ; \theta_{u}\right] \tag{14.}
\end{equation*}
$$

We denote the true cutoffs in the data as $\delta(x, w)$ and the cutoffs that result from computation of the firm's fixed point at an arbitrary parameter vector θ as $\hat{\delta}(x, w, \theta)$. In this special example and related cases with cutoff rules, $\delta(x, w)$ is the most general description of the policy function. Moreover, when x and w are discrete (as in our example), this involves a finite parametrization.

In the most general case, the unknown profit parameters, θ_{π}, are the $2 K_{w}$ variable profit terms $\bar{\pi}(x, w)$. We assume that the normalized marginal density of $u, \phi_{0}(u)$, is known and that the unknown parameter θ_{u} controls the serial correlation of u.

2.4. The Initial-Conditions Problem

When the data tracks each firm or market from the beginning of its potential life, the distribution of the first-period unobservables, $u_{i 1}$, can be considered an additional primitive of the model. However, if we first observe firms in the middle of their existence, serially correlated unobservables will likely be selected by past history. Specifically, the distribution of $u_{i 1}$ will not be equal to the unconditional marginal distribution of the unobservables. This creates a well-known initial-conditions problem, as discussed in many classic papers, including those by Heckman (1981), Chamberlain (1985), Blundell \& Bond (1998), and Wooldridge (2005). These papers emphasize that structural parameters may not be identified without placing restrictive assumptions on the distribution of initial conditions.

Honoré \& Tamer (2006) note that an alternative is to look for estimators that allow for unspecified initial conditions. In the context of dynamic panel data models, they show that leaving initial conditions unspecified may result in set-identified parameters. They also show that in many cases the identified set is quite small and thus useful for economic analysis. As discussed below, Berry \& Compiani (2020) take a similar approach to initial conditions in the context of dynamic models of endogenous market structure.

[^2]
3. APPROACHES WITH NO SERIAL CORRELATION IN u

This section discusses approaches to recovering the primitives of dynamic models under the assumption that the unobservables are not serially correlated. Although, as discussed above, this restriction effectively amounts to assuming away the econometric endogeneity of market structure, it greatly simplifies the analysis and is thus maintained in much of the empirical literature to date. Lessons from this literature prove to be very useful once serial correlation is introduced, and we refer back to these lessons below.

Although our focus throughout is primarily on model identification, we do discuss selected important computation and estimation issues that can influence the choice of methods.

3.1. Full-Solution Maximum Likelihood Estimation

Dating back at least to Rust's (1987) work, one popular approach to dynamic models uses the structure of the Bellman equation to write the likelihood of the data as a function of the structural parameters. We illustrate this case with the simple entry/exit model of Section 2.3, which provides a useful starting point for discussion.

The cutoff rule in Equation 13 defines a set of intervals in \mathbb{R}^{T} that give the set of $\left(u_{i 1}, \ldots, u_{i T}\right)$ values that are consistent with the data. For example, if firm i chooses $a_{i t}=1$ in period t, then we know that $u_{i t}<\delta\left(x_{i t}, w_{i t}\right)$; if it chooses $a_{i t}=0$, then we know that $u_{i t}>\delta\left(x_{i t}, w_{i t}\right)$. Without serial correlation, the two-period likelihood when the firm is not active in the first period but is active in the second period is

$$
\begin{equation*}
\mathcal{L}_{i}(\theta)=\int_{\hat{\delta}\left(x_{i 1}, w_{i 1}, \theta\right)}^{\infty} \int_{-\infty}^{\hat{\delta}\left(x_{i 2}, w_{2}, \theta\right)} \phi_{0}\left(u_{2}\right) \phi_{0}\left(u_{1}\right) d u_{2} d u_{1} . \tag{15.}
\end{equation*}
$$

Critically, it is possible to use the unconditional density ϕ_{0} for the first-period unobservable u_{1} in Equation 15 only under the assumption of no serial correlation in the unobservables, unless we observe the firm or market from the beginning of its existence.

A full-computation maximum likelihood estimation (MLE) method proceeds by evaluating the likelihood function in Equation 15 at trial values of the parameter θ, which in the general case requires computational techniques (such as value-function iteration) to solve for the value function and the policy cutoffs $\hat{\delta}(x, w, \theta)$. Rust $(1987,1994)$ refers to this method as a nested fixed-point algorithm, since the Bellman equation must be solved for each trial value of θ. Rust and later authors find computational shortcuts that apply to special cases, whereas Dubé et al. (2012) develop a different computational approach based on more modern advances.

3.2. Two-Step Methods

Motivated by a desire to avoid the computational burden inherent in full-solution methods, Hotz \& Miller (1993) propose a two-step alternative that does not require solving the model for each candidate parameter value. ${ }^{4}$ In the first step, the policy function is recovered from the data. For example, when actions are discrete, the policy function is identified from observed conditional choice probabilities (CCP). In the second step, the policies are combined with restrictions from the Bellman equation to recover the structural profit parameters.

When specialized to the entry/exit model of Section 2.3, the first step involves estimating the probabilities of entry for each value of $(x, w), p(x, w)$. This works because when u is not serially

[^3]correlated, (x, w) are econometrically exogenous in the policy function in Equation 9, and thus $p(x, w)$ capture the true causal effect of (x, w). Specifically, we have
\[

$$
\begin{equation*}
p(x, w) \equiv \operatorname{Pr}(u<\delta(x, w))=\Phi_{0}(\delta(x, w)), \tag{16.}
\end{equation*}
$$

\]

where Φ_{0} is the cumulative distribution function of u. Assuming that Φ_{0} is strictly increasing, $\delta(x, w)$ is then recovered as

$$
\begin{equation*}
\delta(x, w)=\Phi_{0}^{-1}(p(x, w)) . \tag{17.}
\end{equation*}
$$

Thus, in the example, knowing $p(x, w)$ is equivalent to knowing the entry cutoffs $\delta(x, w)$. This first-step identification of $\delta(x, w)$ depends entirely on the observed data, the assumed distribution for u, and the existence of a cutoff rule. It makes no use of the Bellman equation (Equation 7). While our example involves a binary action, the original paper by Hotz \& Miller (1993) derives a vector equivalent of $\delta(x, w)$ by inverting the action probabilities in a multinomial discrete choice problem. The idea is the same. Further, the Hotz-Miller insight of uncovering the policy function in a first step can be extended to many other cases lacking serial correlation, including the wide range of discrete choice problems considered by Berry (1994) and Berry et al. (2013).

Bajari et al. (2007) consider a case with continuous actions in which the policy function takes the form

$$
\begin{equation*}
a=\sigma(x, w, u), \tag{18.}
\end{equation*}
$$

with a and u continuously distributed. Under appropriate assumptions, the methods of Stokey et al. (1989) can be used to establish the strict monotonicity of σ in u, so that the equation can be inverted to obtain

$$
\begin{equation*}
u=\sigma^{-1}(x, w, a) . \tag{19.}
\end{equation*}
$$

This is a nonseparable regression of the form proposed by Matzkin (2003) and can be identified from the inverse distribution function of a conditional on (x, w). As in Hotz \& Miller's (1993) first step, this then gives us the policy function directly from the data, without reference to the dynamic model. More complicated versions with a mix of discrete and continuous variables are also possible. In each of these extended CCP examples, the policy function is point-identified in the first step without reference to the Bellman equation. This first step identifies the data-generating process without recovering the underlying structural parameters that are necessary for many interesting counterfactuals.

The second step of a CCP-style method conditions on the policy function from the first step and imposes the Bellman equation to recover the single-period profit parameters. There are several alternative approaches to this step. In this review, we focus on the forward-simulation method of Hotz et al. (1994). This method is broadly applicable to the class of models considered in the CCP literature, and Bajari et al. (2007) also emphasize forward simulation. The approach is useful for our purposes because Berry \& Compiani (2020) extend the idea to the case of serially correlated unobservables. We discuss that extension in Section 4.8.

To review the forward-simulation procedure as applied to the entry/exit model, recall the cutoff defined in Equation 14. Without serial correlation, we drop the conditioning on u, which gives

$$
\begin{equation*}
\delta(x, w)=\bar{\pi}(x, w)+\beta E_{w^{\prime}, u^{\prime}}\left[V\left(1, w^{\prime}, u^{\prime}\right)-V\left(0, w^{\prime}, u^{\prime}\right) \mid w\right] . \tag{20.}
\end{equation*}
$$

Hotz et al. (1994) show how to use first-step policy functions, together with a guess of the profit parameters, to forward-simulate the value functions in Equation 20. Intuitively, starting from a state (x, w), draw u from its assumed distribution, use the known policy function to obtain the action $a=$ $\sigma(x, w, u)$, and then assign the profit $\pi(a, x, w, u)$ to that action. The known state transitions then
predict new states (x^{\prime}, w^{\prime}), which are used to obtain the next period's profits via the same steps, and so forth. The sum of discounted profits computed in this way can be used to construct an unbiased estimate of the value function, and the average of many such simulations will provide a more precise estimate. Denote such a simulated value function by $\tilde{V}(x, w, u ; \sigma, \theta)$.

Furthermore, Hotz et al. (1994) note that if the single-period profit function is linear in a set of parameters, then the forward-simulated version of the expected value function will also be linear in those parameters. This yields a system of linear-in-parameter equations of the form given in Equation 20, which we write as

$$
\begin{equation*}
\delta(x, w)=h_{0}(x, w ; \sigma)+h_{1}(x, w ; \sigma) \theta_{\pi} . \tag{21.}
\end{equation*}
$$

The δ on the left-hand side of this equation is known from the first CCP step, and the h_{0}, h_{1} functions on the right-hand side are known from the forward simulation, given the σ uncovered in the first step. We then have a set of linear equations [one for each (x, w)] in the unknown θ_{π}. The parameter is point-identified if the equations have a unique solution in θ_{π}, which is easy to check. Hotz et al.'s (1994) argument is applied to multinomial choice, as opposed to this binary example, but the logic is exactly the same.

Bajari et al. (2007) note that Hotz et al. (1994) only consider the dynamic discrete-choice example. Bajari and colleagues propose a more general strategy of forward-simulating the value function under alternative policies, $\sigma^{\prime}(x, w, u)$. Since the true policy maximizes the value function, at the true θ_{π} we must have, for all possible policies $\sigma^{\prime}(x, w, u)$,

$$
\begin{equation*}
\tilde{V}\left(x, w, u ; \sigma, \theta_{\pi}\right) \geq \tilde{V}\left(x, w, u ; \sigma^{\prime}, \theta_{\pi}\right) . \tag{22.}
\end{equation*}
$$

This yields very many inequality constraints. A finite set of such constraints may not point-identify θ_{π}, so Bajari et al. (2007) consider set identification of θ_{π}, even when σ is point-identified in the first step.

Berry \& Compiani (2020) propose two alternatives to Bajari et al.'s (2007) inequalities. Each generalizes to the case of serially correlated unobservables. The first, more general, approach relies on a single policy-function iteration of the Bellman equation. The second approach, applicable in a very wide range of cases, generalizes Hotz et al.'s (1994) model to a broader class of problems while retaining computational simplicity. In this second case, we note that Hotz et al. (1994) are implicitly using an indifference condition that applies to a much broader class of models. We now review each of the two approaches.

As a first alternative to Bajari et al.'s (2007) inequalities, Berry \& Compiani (2020) propose that a guess θ_{π} is rejected if a single policy iteration on the forward-simulated Bellman equation does not return the first-step $\sigma(x, w, u)$. In the entry/exit example this is written as

$$
\tilde{\sigma}\left(x, w, u ; \sigma, \theta_{\pi}\right) \equiv 1\left\{\tilde{\pi}(x, w)-u+\beta E_{w^{\prime}, u^{\prime}}\left[\tilde{V}\left(1, w^{\prime}, u^{\prime} ; \sigma, \theta_{\pi}\right)-\tilde{V}\left(0, w^{\prime}, u^{\prime} ; \sigma, \theta_{\pi}\right) \mid w\right]>0\right\}, 23 .
$$

where $1\{\cdot\}$ is the indicator function. We then exclude a candidate θ_{π} from the identified set if

$$
\begin{equation*}
\tilde{\sigma}(x, w, u ; \sigma, \theta) \neq \sigma(x, w, u) \tag{24.}
\end{equation*}
$$

for any value of (x, w, u). This amounts to checking whether the firm's static best response to its future self playing σ is to also play σ. This is one iteration on the policy-function fixed point implied by the Bellman equation. Beyond the entry/exit example, the general method is to reject a given θ_{π} if it does not solve the policy-function problem in one iteration, an idea common to any problem in which the Bellman equation generates a unique policy function.

However, the policy-function iteration still requires some computational effort, since it involves searching over candidate values of θ_{π}. As a second alternative to Bajari et al.'s (2007) inequalities, Berry \& Compiani (2020) show that Hotz et al.'s (1994) approach implicitly uses a set
of indifference conditions in the unobservables. To see this in the simple entry/exit example, note that the expected discounted values of taking action a, denoted by $v(a, x, w, u)$, are

$$
\begin{aligned}
& v(0, x, w, u)=\beta E_{w^{\prime}, u^{\prime}}\left[V\left(0, w^{\prime}, u^{\prime}\right) \mid w\right] \text { and } \\
& v(1, x, w, u)=\bar{\pi}(x, w)-u+\beta E_{w^{\prime}, u^{\prime}}\left[V\left(1, w^{\prime}, u^{\prime}\right) \mid w\right] .
\end{aligned}
$$

At $u=\delta(x, w)$, these two equations imply Equation 20. That is, setting $u=\delta(x, w)$ equates the values of being in and out of the market, and this results in Hotz et al.'s (1994) condition in Equation 20. A similar indifference condition, across the action-specific values of all the choices, holds in the multinomial analysis of Hotz and colleagues.

Berry \& Compiani (2020) go further and show formally that policy functions in problems with discrete actions are generally defined by indifference conditions, as long as payoffs are continuous in the unobservables. Under mild conditions, for every pair of actions a and a^{\prime} there is an unobservable $\tilde{u}\left(a, a^{\prime}, x, w\right)$ such that the firm is indifferent between actions a and a^{\prime} when the firm is at the state $\left(x, w, \tilde{u}\left(a, a^{\prime}, x, w\right)\right)$. That is, letting $\tilde{v}\left(a, x, w, \tilde{u}\left(a, a^{\prime}, x, w\right) ; \sigma, \theta_{\pi}\right)$ denote the forwardsimulated version of the action-specific value functions, we have

$$
\begin{equation*}
\tilde{v}\left(a, x, w, \tilde{u}\left(a, a^{\prime}, x, w\right) ; \sigma, \theta_{\pi}\right)=\tilde{v}\left(a^{\prime}, x, w, \tilde{u}\left(a, a^{\prime}, x, w\right) ; \sigma, \theta_{\pi}\right) . \tag{25.}
\end{equation*}
$$

If, as in the CCP literature, the first step of the identification procedure uniquely identifies σ, then we can treat σ as known when we get to the second step. The values $\tilde{v}\left(a, w, u ; \sigma, \theta_{\pi}\right)$ can be forward-simulated and they are linear in θ_{π} when the single-period profit function is linear in θ_{π}. In that case, then, for a given $\left(a, a^{\prime}, x, w\right)$, Equation 25 defines one linear equation in $\theta_{\pi} .{ }^{5}$ Berry \& Compiani (2020) note that there will typically be at least one equation of the form of Equation 25 for each combination of $\left(a, a^{\prime}, x, w\right)$. In many discrete examples, this is a sufficient number of equations to potentially identify a θ_{π} of length equal to the number of distinct combinations of (a, x, w). In our entry/exit model, in which a, x, and w each take on discrete values, this implies that we could consider the identification of a model with the most flexible ("natural") profit parameterization-that is, one that treats the value of $\bar{\pi}$ at each combination of (x, w) as a separate parameter. Whether the implied equations actually invert is directly verifiable from a given data-generating process. ${ }^{6}$

We can also consider continuous actions, or a mix of continuous and discrete actions. With continuous actions, the analog of the indifference conditions may be found in first-order conditions. Stokey et al. (1989) provide sufficient conditions for the differentiability of the value function, under which the optimal continuous actions satisfy

$$
\begin{equation*}
\frac{\partial \tilde{v}\left(a, x, w, u ; \sigma, \theta_{\pi}\right)}{\partial a}=0 . \tag{26.}
\end{equation*}
$$

Note that the derivative $\partial \tilde{v} / \partial a$ can often be forward-simulated and, again, will typically be linear in θ_{π} if the single-period profits are linear in θ_{π}. The first-order conditions then provide a large number (likely a continuum) of equations that restrict the values of θ_{π}. Again, the point identification of θ_{π} via these conditions is verifiable. Berry \& Compiani (2020) provide a particularly easy differentiable example based on a stochastic accumulation model.

[^4]In summary, then, our review of second-step CCP-style methods is weighted toward ideas that extend to the case of serially correlated errors. The Berry-Compiani explication/extension of Hotz et al.'s (1994) model implies that the second step can be quite easy and that the inequality approach of Bajari et al. (2007) may be unnecessary in most cases, including examples with continuous actions. However, we do find that Bajari et al. (2007)'s suggested use of forward simulation is quite helpful and will extend nicely to the case of serial correlation.

4. APPROACHES WITH SERIAL CORRELATION IN u

After briefly covering two established approaches that allow for serial correlation-full-solution MLE and methods based on mixture models-we focus on the more recent generalized instrumental variable (GIV) approach by Berry \& Compiani (2020).

4.1. Full-Solution Maximum Likelihood Estimation

It is possible to adapt the full-solution MLE approach described in Section 3.1 to the case with serial correlation in the unobservables. Again, unless one observes firms from the beginning of their existence, this requires modeling the dependence of the distribution of the first-period $u_{i 1}$ on $\left(x_{i 1}, w_{i 1}\right)$. This conditional distribution then replaces the unconditional $\phi_{0}\left(u_{1}\right)$ in Equation 15, and the distribution of u_{2} is conditioned on u_{1} and parameterized by θ_{u}. One approach to initial conditions is to flexibly parameterize the distribution of u_{0} as a function of $\left(x_{i 1}, w_{i 1}\right)$; another is to assume that such distribution is equal to the stationary distribution generated by the model (see, e.g., Collard-Wexler 2014).

To our knowledge, the identification properties of the fixed-point MLE method are not well explored in the general case with serial correlation. Consider, for instance, our entry/exit example, where the policy cutoffs δ, which enter the likelihood, depend on a limited amount of data. Specifically, the model implies that past data are excluded from these cutoffs. As a consequence, if the degree of hysteresis in the data cannot be entirely explained by the cutoffs, the MLE method may find evidence of serial correlation. The methods below further clarify the role of exclusion restrictions and make this intuition more precise.

4.2. Mixture Models

The problem of serially correlated unobservables can be reframed as a problem of unobserved heterogeneity. The challenge involves controlling for the persistent aspects of firms or markets that we do not see. One suggestion is to posit discrete unobserved heterogeneity, such as the timeinvariant discrete heterogeneity in Equation 4.

In labor economics, beginning at least with Heckman \& Singer's (1984) work, discrete heterogeneity has been a popular approach to disentangling persistent heterogeneity from state dependence. In our context, state dependence would follow, for example, from sunk costs that make a firm more likely to be active in a market if it was active in the prior period. Dynamic labor supply models often employ low-dimensional time-persistent discrete unobserved heterogeneity, as in Wolpin \& Keane's (1994) model and a large related literature.

In an important contribution, Kasahara \& Shimotsu (2009) discuss the identification of finite mixture models in the context of two-step methods. In our entry/exit example, we could specify the single-period profits from entry as

$$
\begin{equation*}
\pi(x, w, u)=\bar{\pi}(x, w, \lambda)-\epsilon \tag{27.}
\end{equation*}
$$

where the unobservables are now $u=(\lambda, \epsilon)$. In the simplest case, λ would take two possible values, $\lambda \in\{0,1\}$, that are time-invariant. The spirit of Kasahara \& Shimotsu's (2009) contribution is that all of the time-persistent heterogeneity is in λ, so ϵ is assumed independent over time.

Whereas Magnac \& Thesmar (2002) obtain negative results for mixture approaches with two periods of data, Kasahara \& Shimotsu (2009) consider the advantages of longer periods of data. One reason for the longer time series is to deal with the initial-conditions problem. With discrete heterogeneity, fully flexible initial conditions add only a finite number of extra parameters. The additional restrictions coming from more periods of data can then achieve point identification.

Suppose we see the joint distribution of three periods of discrete data, $\operatorname{Pr}\left(a_{3}, x_{3}, a_{2}, x_{2}, a_{1}, x_{1}\right)$, where we suppressed the notation for w. According to a first-order Markov model, we should be able to predict this distribution exactly via the Markov representation. Say that $\tilde{p}\left(a_{t}, x_{t} \mid a_{t-1}, x_{t-1}\right)$ is the first-order Markov transition function, which is constant across time. If correct, this model should fit the data for every two-period transition. One can also test longer and shorter sequences, constrained only by the length of the data. For example, for every observed data sequence we should have

$$
\begin{equation*}
\operatorname{Pr}\left(a_{3}, x_{3}, a_{2}, x_{2}, a_{1}, x_{1}\right)=\tilde{p}\left(a_{3}, x_{3} \mid a_{2}, x_{2}\right) \tilde{p}\left(a_{2}, x_{2} \mid a_{1}, x_{1}\right) p^{*}\left(a_{1}, x_{1}\right) \tag{28.}
\end{equation*}
$$

where $p^{*}\left(a_{1}, x_{1}\right)$ is an initial condition. If the restrictions are rejected, there are two possible conclusions. First, the underlying data process may not actually be first-order Markov. Second, the apparent long dependence in the data might be explained by persistent hidden states. If these states are indexed by m, then there are hidden probabilities $\tilde{p}^{m}\left(a_{t}, x_{t} \mid a_{t-1}, x_{t-1}\right)$ and hidden initial conditions $p^{*, m}\left(a_{1}, x_{1}\right)$ for types $m=(1, \ldots, M)$.

Kasahara \& Shimotsu (2009) consider all the possible sequences and subsequences of the data and form all the possible restrictions. Variation in x and w helps greatly with identification. If d is the number of covariates and T the number of time periods, then Kasahara \& Shimotsu (2009) show that there are on the order of d^{T} restrictions. With sufficiently long time series $(T \geq 3)$ and sufficiently rich variation of the data, they show that it is possible to use the restrictions to identify a limited number of different hidden types-and, with even larger T, to identify more types and/or types that can change over time. The identification problem is, as usual, made more complicated by the initial-conditions problem. As mentioned above, the discrete heterogeneity literature deals with this, first, by restricting the heterogeneity to depend on a small number of types, and second, by using longer periods of data.

That the number of types is limited by the time periods and variability of the data is not surprising. A great advantage of the method, however, is that once the type probabilities are identified, all of the classic first- and second-step CCP approaches come into play. In terms of the first step, once we known the action (choice) probabilities conditional on λ, we can use them to identify the λ specific policy functions. Because ϵ in Equation 27 is independent over time, all of the classic CCP second-step methods work as well. This includes not only Hotz et al.'s (1994) forward-simulation methods, but also the original second-step method of Hotz \& Miller (1993) as well as the finite dependence approaches that are well summarized by Arcidiacono \& Ellickson (2011).

To the degree that the empirical curse of dimensionality (i.e., the statistical problem of estimating many choice probabilities) is a problem for the original CCP models, it is an even larger problem for the multiple-type mixture model, as this requires identifying a larger number of probabilities and cutting the data into smaller bins to do so. To gain possible efficiencies, Arcidiacono \& Miller (2011) develop an MLE approach.

We can see some similarities between the IV and the mixture model approaches. In mixture models, the exclusion of sufficiently past history from the causal policy function is critical.

Furthermore, there has to be sufficient variation in this excluded history. Finally, once we condition on the discrete heterogeneity, past history is exogenous in the sense that it is independent of the current unobservables. This combination of exclusion, variation, and exogeneity is familar from IV methods. The next subsection will push this idea further.

4.3. Introduction to Instrumental Variable Methods in the Single-Firm Case

We now turn to formal IV methods, introduced in this context by Berry \& Compiani (2020) and, in an interesting special case, by Kalouptsidi et al. (2020). We next discuss a modified two-step method that follows Berry \& Compianis (2020). In the first step, identification of the policy functions is modified to use GIV methods, as discussed by Chesher \& Rosen (2017) and others. ${ }^{7}$ The GIV approach can handle both the initial-conditions problem and endogenous market structure by leveraging IVs and the structure of the model. The approach may result in point identification of the policy functions, but it also allows for set identification. In either case, the second-step forward-simulation approach of Section 3.2 carries over easily. When the policy function is setidentified, the second step is applied to each policy in the identified set. This results in an identified set for the single-period profit parameters θ_{π}.

4.4. An Instrumental Variable Special Case

Kalouptsidi et al. (2020) discuss the problem of endogenous states and propose an IV approach for a special case. They call their method the Euler conditional choice probability (ECCP) approach. In their model, there are many firms within each market, and oligopoly behavior is assumed away. Serially correlated shocks are modeled at the market level, and the form of the serial correlation can be quite general, in contrast to the mixture model approach. At the individual-firm level, additive time-independent shocks allow for techniques to be adapted from the CCP literature, including from the finite dependence literature that was initiated by Hotz \& Miller (1993) and extended by Arcidiacono \& Miller (2011) and others.

The model treats market-level terms as fixed effects that can be differenced out across firms within the market, and finite dependence creates a kind of multi-period indifference condition related to that described in Section 3.2. The result is an equation that is linear in the parameters and is amenable to IV approaches. The authors also provide a nice set of empirical examples with endogenous states (durable goods, land use, technology adoption, and labor supply).

The ECCP method point-identifies firm-specific profit parameters, but not parameters on market-level effects. The authors note the potential complementarity between ECCP and GIV methods. Under the appropriate conditions, the ECCP approach could be used to identify some parameters, with the remaining parameters identified (possibly, set-identified) by GIV methods. We turn to those methods next.

[^5]Table 2 Examples of possible instruments from Berry \& Compiani (2020)

State	Example instruments
Capital	Past investment cost
In/out of market	Past market population, past regulation
Number of stores	Distance from headquarters, interacted with time
Quality	Past R\&D shocks, age of firm

Abbreviation: R\&D, research and development.

4.5. A Generalized Instrumental Variable First Step

The idea of the GIV first step is to set-identify policy functions from the data, using some structure from the model together with IVs. An appealing feature of the GIV approach is that it accommodates features relevant to dynamic settings-notably, discreteness of states and outcomes, set identification, and incompleteness of the model-as discussed, for example, by Tamer (2003). In dynamic settings, incompleteness will often arise in the case of an unknown initial condition. In the absence of incompleteness, the GIV approach will often be equivalent to MLE.

To be useful, potential IVs should be correlated with current-period endogenous states and yet excluded from the current-period policy function and independent of u. One class of potential IVs in our model consists of past values of the exogenous w. In many specifications, past values of w do not enter the current-period policy function and so are excluded exogenous variables, available as instruments as long as they shift current states (which is typically guaranteed by the dynamic nature of the model). Exogenous variables from the pre-sample period may be particularly useful in dealing with the initial-conditions problem if they are correlated with the initial state. An example of such variables might be past demand shifters, such as market size, that are correlated with current market structure (conditional on current market size). Some of these variables may be available from the pre-sample period even though the full set of variables is not.

More formally, the potential instruments are

$$
\begin{equation*}
z_{i}=\left(r_{i}, w_{i}\right), \tag{29.}
\end{equation*}
$$

where the vector r_{i} consists of information prior to the sample period. To motivate the econometric use of these instruments, we assume independence of the instrument and the unobservables ${ }^{8}$

$$
z_{i} \perp u_{i}
$$

Table 2, taken directly from Berry \& Compiani (2020), gives some ideas of possible instruments in different contexts. As in all applied situations, the independence assumption may be better motivated in some examples than in others, and as with all IV methods, this discussion will be a key component of applied work. One advantage of GIV methods is that they bring this discussion to the forefront of the identification approach.

Given these IVs, we now sketch the use of GIV methods to set-identify the policy function. Set $a_{i} \equiv\left[a_{i 1}, \ldots, a_{i T}\right]$, and similarly for x_{i}, w_{i}, and u_{i}. If the sequence (a_{i}, x_{i}, w_{i}) occurs, then u_{i} must be in the inverse image set

$$
\mathcal{U}\left(a_{i}, x_{i}, w_{i}, \sigma\right)=\left\{u_{i}: \sigma\left(x_{i t}, w_{i t}, u_{i t}\right)=a_{i t}, \forall t\right\} .
$$

[^6]Then, the Chesher-Rosen GIV conditions for identification are as follows. A pair $\left(\sigma\left(x_{i t}, w_{i t}, u_{i t}\right)\right.$, θ_{u}) is in the identified set if and only if

$$
\begin{equation*}
\operatorname{Pr}\left(u_{i} \in \mathcal{S} ; \theta_{u}\right) \geq \operatorname{Pr}\left(\mathcal{U}\left(a_{i}, x_{i}, w_{i}, \sigma\right) \subseteq \mathcal{S} \mid z\right) \tag{30.}
\end{equation*}
$$

for all closed sets \mathcal{S} in the space of unobservables, and for all instrument values z. There are obviously many test sets \mathcal{S} that one could check. Chesher \& Rosen show how to find the coredetermining subset of these sets, that is, the minimal collection of sets that one needs to check in order to characterize the sharp identified set. This collection includes all the elemental sets, comprising the list of $\mathcal{U}\left(a_{i}, x_{i}, w_{i}, \sigma\right)$ across all the possible values of actions and states. However, the core-determining set also includes the unions of partially overlapping elemental sets, excluding cases of strict subsets. We denote the resulting sharp identified set as

$$
\begin{equation*}
\Sigma^{I V}\left(\theta_{u}\right) \subseteq \mathcal{F}, \tag{31.}
\end{equation*}
$$

where \mathcal{F} is the set of possible σ functions. The set \mathcal{F} can be restricted to include, for example, only those σ functions that satisfy natural monotonicity restrictions grounded in the model. Note that $\Sigma\left(\theta_{u}\right)$ depends on θ_{u}, since the left-hand side of Equation 30 depends on the joint distribution of u_{i}. Further, if $\Sigma\left(\theta_{u}\right)$ is the null set, then that value of θ_{u} is rejected by the data and the GIV conditions.

Before turning to the second step of the Berry-Compiani approach, we illustrate the first step via two examples: first, an extension of the continuous investment problem discussed in the context of Equation 19, and second, our single-firm entry/exit model. The first example might plausibly provide a point-identified policy function, while the second example seems likely to lead to set identification.

4.6. Point-Identifying the Policy Function in a Continuous Instrumental Variable Example

Consider a continuous choice problem, such as an investment problem with convex costs of investment, that leads to a strictly positive investment level, $a_{i t}$, in each period. Here, the state $x_{i t}$ is the current capital stock, and $w_{i t}$ could be within-sample cost shifters. The unobservable could represent a shock to the profitability of investment. A formal version of this model is given by Olley \& Pakes (1996). Under appropriate monotonicity conditions, we can invert the policy function as in Equation 19 and write

$$
\begin{equation*}
u_{i t}=\sigma^{-1}\left(x_{i t}, w_{i t}, a_{i t}\right), u_{i} \perp z_{i} \tag{32.}
\end{equation*}
$$

This differs from a similar example by Bajari et al. (2007) only because we need to use an IV strategy to deal with the potential correlation of u and x. Luckily, Equation 32 takes exactly the form of the quantile IV regression in Chernozhukov \& Hansen's (2005) paper, which provides conditions for the point identification of σ. Under those conditions, we have completed step one of the ana\log to the CCP two-step method. Further, note that Equation 32 also yields identification of all $u_{i t}$, which implies that its distribution, including the serial correlation parameter θ_{u}, is identified.

4.7. Set-Identifying the Policy Function Using the Generalized Instrumental Variable Approach in the Entry Example

With discrete variables, it is less likely that IV conditions point-identify the policy function. Chesher (2010) considers set identification of discrete-outcome models via IVs. This subsumes the problem of recovering the policy function for our entry/exit example into the especially challenging case in which we only see one period of data on $\left(a_{i 1}, x_{i 1}\right)$ and we do not place any restrictions on the initial condition other than the availability of an exogenous instrument z_{i} that predicts $x_{i 1}$.

We illustrate this using our simple entry/exit model, dropping for simplicity variation in w. First consider the extreme example of having data on just one transition: All we see for each firm is $\left(a_{i 1}, x_{i 1}, z_{i}\right)$. The data give us the observed probabilities, $p\left(x_{i 1}, z_{i 1}\right)$, of being active in the market, but due to serially correlated errors and an initial-conditions problem, these do not give the causal effects of x on entry. Therefore, we cannot invert these choice probabilities, as in Equation 16, to find the cutoffs $\delta(x)$ characterizing the policy function.

As an alternative, drawing on the bounds estimation literature, Chesher (2010) works with the necessary conditions for actions, imposing the restriction that the probability of a necessary condition for an event be greater than or equal to the observed probability of that event. For instance, the necessary condition for $a_{i 1}=1$ is the cutoff rule $u_{i 1}<\delta\left(x_{i 1}\right)$, and the necessary condition for $a_{i 1}=0$ is $u_{i 1}>\delta\left(x_{i 1}\right)$. In this extreme case, then, we have four necessary conditions for the outcomes of the endogenous variables $a_{i 1}$ and $x_{i 1}$. With sunk costs of entry, entry should be more likely when $x_{i 1}=1$, and so we expect that $\delta(1)>\delta(0)$. Given this monotonicity restriction, we can note that $u_{i 1}<\delta(1)$ is a necessary condition not just for the event $\left(a_{i 1}, x_{i 1}\right)=(1,1)$ but also for the event $(1,0)$; that is, when costs are low the firm is active no matter whether it was in or out in the last period. Similarly, $u_{i 1}>\delta(0)$ is a necessary condition for both the event $\left(a_{i 1}, x_{i 1}\right)=(0,1)$ and the event $\left(a_{i 1}, x_{i 1}\right)=(0,0)$. For every value of z, this gives a set of straightforward bounds on the policy parameters $\delta(0)$ and $\delta(1)$. These bounds come from the model, the instruments, and the entry probabilities; that is,

$$
\begin{aligned}
& \operatorname{Pr}\left(u_{1}<\delta(1)\right) \geq \operatorname{Pr}\left(a=1, x_{1}=1 \mid z\right)+\operatorname{Pr}\left(a=1, x_{1}=0 \mid z\right), \\
& \operatorname{Pr}\left(u_{1}<\delta(0)\right) \geq \operatorname{Pr}\left(a=1, x_{1}=0 \mid z\right), \\
& \operatorname{Pr}\left(u_{1}>\delta(1)\right) \geq \operatorname{Pr}\left(a=0, x_{1}=1 \mid z\right), \text { and } \\
& \operatorname{Pr}\left(u_{1}>\delta(0)\right) \geq \operatorname{Pr}\left(a=0, x_{1}=1 \mid z\right)+\operatorname{Pr}\left(a=0, x_{1}=0 \mid z\right) .
\end{aligned}
$$

Note that the probabilities on the left-hand side are not conditioned on z because u is independent of z by assumption. Even if there is only one value of z (i.e., there is no instrument), the structure of the model yields nontrivial upper and lower bounds. However, Chesher (2010) emphasizes that variation in the instrument is helpful, because, for example, some values of z might be predictive of $x_{1}=1$, and this will increase the conditional probabilities involving $x_{1}=1$, tightening those inequality constraints. Other values of z might predict $x_{1}=0$, increasing those probabilities. In the limit, if some value of z perfectly predicts $x_{1}=1$, then those bounds collapse to a point, possibly leading to point identification of $\delta(1)$. If we also had variation in w, this could further tighten the bounds.

With only one period of data, there is no hope of learning about any parameter characterizing the serial correlation in the unobservables. With $T=2$, however, we can make progress. Table 3 displays the probabilities of necessary conditions associated with the eight combinations of (x_{1}, a_{1}, a_{2}) that are possible in our example. ${ }^{9}$ In the first column are the probabilities of necessary conditions for the events, calculated via the bivariate distribution of u, which depends on θ_{u}. In the second column are probabilities of events in the data. At the true values of δ and θ_{u}, the probabilities in the first column must be greater than those in the second column. The inequalities based on Table $\mathbf{3}$ are special cases of Equation 30 in which the sets \mathcal{S} are taken to be the elemental sets corresponding to the eight possible sequences (x_{1}, a_{1}, a_{2}). As mentioned above, characterizing the sharp identified set requires also considering unions of partially overlapping

[^7]Table 3 Probabilities of necessary conditions for elemental events with $T=2$

Probability of necessary conditions	Probability of events in the data
$\operatorname{Pr}\left(u_{1}<\delta(1), u_{2}<\delta(1) ; \theta_{u}\right)$	$\operatorname{Pr}(1,1,1 \mid z)+\operatorname{Pr}(0,1,1 \mid z)$
$\operatorname{Pr}\left(u_{1}<\delta(1), u_{2}>\delta(1) ; \theta_{u}\right)$	$\operatorname{Pr}(1,1,0 \mid z)+\operatorname{Pr}(0,1,0 \mid z)$
$\operatorname{Pr}\left(u_{1}>\delta(1), u_{2}<\delta(0) ; \theta_{u}\right)$	$\operatorname{Pr}(1,0,1 \mid z)$
$\operatorname{Pr}\left(u_{1}>\delta(1), u_{2}>\delta(0) ; \theta_{u}\right)$	$\operatorname{Pr}(1,0,0 \mid z)$
$\operatorname{Pr}\left(u_{1}<\delta(0), u_{2}<\delta(1) ; \theta_{u}\right)$	$\operatorname{Pr}(0,1,1 \mid z)$
$\operatorname{Pr}\left(u_{1}<\delta(0), u_{2}>\delta(1) ; \theta_{u}\right)$	$\operatorname{Pr}(0,1,0 \mid z)$
$\operatorname{Pr}\left(u_{1}>\delta(0), u_{2}<\delta(0) ; \theta_{u}\right)$	$\operatorname{Pr}(0,0,1 \mid z)+\operatorname{Pr}(1,0,1 \mid z)$
$\operatorname{Pr}\left(u_{1}>\delta(0), u_{2}>\delta(0) ; \theta_{u}\right)$	$\operatorname{Pr}(0,0,0 \mid z)+\operatorname{Pr}(1,0,0 \mid z)$

elemental sets. In our example, this would expand the number of restrictions from eight to a total of thirteen. Adding w back into the model would further increase the number of sets.

Note that, unlike what happens when $T=1$, when $T=2$ the probabilities of the necessary conditions depend on θ_{u}, as shown in Table 3. If, for example, $u_{i 1}$ and $u_{i 2}$ were perfectly correlated, the event $\left(x_{1}, a_{1}, a_{2}\right)=(1,0,1)$ would not be possible; similarly, a serial correlation parameter close to 1 would make that event unlikely. Thus, imposing inequalities based on two or more time periods places restrictions on θ_{u}, and the number of restrictions increases in the number of time periods in the data. Berry \& Compiani (2020) illustrate the advantages of more time periods, and better instruments, via computed examples.

The discussion so far has focused on (set) identification of the policy functions and θ_{u}. In practice, with finite samples, one typically wants to go one step further and obtain confidence regions. Given that the model restrictions take the form of Equation 30, the large literature on moment inequalities provides approaches to conduct inference (e.g., Chernozhukov et al. 2007, Andrews \& Soares 2010, Beresteanu et al. 2011, Galichon \& Henry 2011, Andrews \& Shi 2013, Chernozhukov et al. 2013). Within this literature, of particular importance are the papers that focus on the case in which the number of inequalities is large relative to the sample size (e.g., Menzel 2014, Andrews \& Shi 2017, Chernozhukov et al. 2018), since this scenario is likely to arise in the GIV framework, especially when the number of time periods in the data is large.

4.8. The Second Step with Serial Correlation in u

The Berry-Compiani first step results in an identified set for the policy functions-in our entry/exit example, the thresholds $\delta(x, w)$ —plus the θ_{u} parameters. To map this into the space of θ_{π}, Berry \& Compiani (2020) note that the identified set for the structural parameters is

$$
\begin{equation*}
\Theta^{I D} \equiv\left\{\theta=\left(\theta_{\pi}, \theta_{u}\right): \hat{\sigma}\left(x_{i t}, w_{i t}, u_{i t} ; \theta\right) \in \Sigma^{I V}\left(\theta_{u}\right)\right\} \tag{33.}
\end{equation*}
$$

where $\hat{\sigma}(\cdot, \cdot, \cdot ; \theta)$ is again the policy function that results from the Bellman equation evaluated at θ. The identification condition establishes that the solution to the dynamic model at the parameter θ must satisfy the GIV conditions in the data. This defines the sharp identified set.

Given the set of policies identified by the GIV first step, the second-step method illustrated in Section 3.2 carries over easily. First, note that it is still trivial to forward-simulate value functions. For the purposes of forward simulation, the serially correlated u are just like a serially correlated w. In addition, policy functions will still be typically defined by boundaries in u space leading to indifference conditions.

Illustrating the second-step indifference equations for the entry/exit example with serial correlation, note that the action-specific value functions are now

$$
\begin{aligned}
& \tilde{v}(1, x, w, u ; \sigma, \theta)=\bar{\pi}(x, w)-u+\beta E_{w^{\prime}, u^{\prime}}\left[\tilde{V}\left(1, w^{\prime}, u^{\prime}\right) \mid w, u ; \sigma, \theta\right] \text { and } \\
& \tilde{v}(0, x, w, u ; \sigma, \theta)=\beta E_{w^{\prime}, u^{\prime}}\left[\tilde{V}\left(0, w^{\prime}, u^{\prime}\right) \mid w, u ; \sigma, \theta\right] .
\end{aligned}
$$

From Equation 14, we have

$$
\begin{equation*}
\tilde{v}(1, x, w, u=\delta(x, w) ; \sigma, \theta)=\tilde{v}(0, x, w, u=\delta(x, w) ; \sigma, \theta) \tag{34.}
\end{equation*}
$$

These are the equations used in the Berry-Compiani second-step procedure. Once again, they will be linear in θ_{π} when $\bar{\pi}(x, w)$ is linear in θ_{π}.

Note that some other CCP-style second-step methods, such as the one in Hotz \& Miller's (1993) original paper, cannot be directly employed in this example of serially correlated unobservables. That is because these methods use tricks that are specific to models with additive independent errors. In particular, they do not account for the conditioning on u in future expectations, as in Equation 14. However, it is possible to choose specifications (as in Section 4.2) that include both a serially correlated unobserved component and an additive time-independent unobserved component. The original Hotz-Miller second step will work in this case.

In the case of serially correlated errors, the forward simulation will depend on θ_{u} as well as θ_{π}, as θ_{u} is necessary to simulate future values of u. If the GIV first step produces an identified set of (σ, θ_{u}) pairs, then the Berry-Compiani second step based on Equation 34 needs to be applied to each $\left(\sigma, \theta_{u}\right)$ in the set. This second step produces an identified set for θ_{π}. If the GIV first step produces a point-identified $\left(\sigma, \theta_{u}\right)$, then the second step will similarly produce a point-identified θ_{π} (as long as there is a unique solution in θ_{π} to the indifference conditions in Equation 34). Similarly, a confidence region for θ can be produced by applying the second step to each element in the confidence region for $\left(\sigma, \theta_{u}\right)$.

Note that if for some reason the forward-simulated indifference-condition method fails, Berry \& Compiani's (2020) first idea for the second step, outlined in Equations 23 and 24, is still available.

5. OLIGOPOLY

Moving from single-firm to oligopoly problems adds realism and greatly increases the scope for interesting policy counterfactuals. However, the dynamic estimation problem becomes more complicated, as the full computation approach becomes a doubly nested fixed point. Given rivals' strategies, each firm is solving a best-reply Bellman fixed-point equation that defines the firm's own behavior as a function of its rivals' strategies. In a dynamic Nash (or Bayesian Nash) equilibrium, these strategies themselves must solve a second fixed point: the mapping between strategies and the dynamic best replies to those strategies. This raises problems of existence and uniqueness of equilibria that make full computational methods particularly difficult. As a result, much of the oligopoly literature has eventually followed the single-agent literature into models without serial correlation.

A more recent approach has been to tackle serial correlation and endogenous market structure by combining the insights of the oligopoly literature à la Hotz \& Miller with the insights of the discrete heterogeneity literature and/or the GIV approach of Berry \& Compiani (2020). We first discuss full computational methods and then turn to the more recent advances.

5.1. Full Computational Methods

One motive for the use of a full computation approach in market structure models has been precisely to account for serial correlation. The works of Pakes \& McGuire (1994), Ericson \& Pakes (1995), and Pakes \& Ericson (1998) emphasize the idea of rich oligopoly models with a mix of discrete and continuous variables together with serially correlated unobservables. These authors suggest an empirical strategy of fitting the ergodic market structure distribution computed from long-run simulations onto the observed transitions in the data. This framework deals with the initial-conditions problem by assuming that the industry has settled into its long-run distribution of transitions. Gowrisankaran \& Town (1997) provide one of the rare full empirical applications of this approach.

Ericson \& Pakes's (1995) method faces problems of both existence and uniqueness of equilibria, as discussed by Doraszelski \& Pakes (2007), Doraszelski \& Satterthwaite (2010), and Pesendorfer \& Schmidt-Dengler (2010). It is hard to guarantee a unique equilibrium in the general case, and it can be hard or impossible to find all the equilibria that may exist (Borkovsky et al. 2012).

In a series of papers, Igami considers the problem of dynamic market structure estimation in the context of industries that are not in a stationary equilibrium, but rather in the process of rising and/or falling (Igami 2017, 2018; Igami \& Uetake 2020). In the first two papers, Igami (2017,2018) takes a full computation approach that ensures a unique equilibrium, which aids both estimation and counterfactual analysis. Specifically, Igami ensures uniqueness by (a) assuming sequential moves (with either deterministic or random order) and (b) modeling a long but finite horizon. Under these conditions, the oligopoly game can be uniquely solved backwards from the end. Igami assumes serially uncorrelated errors and therefore has no initial-conditions problem. However, in one case he also traces the industry from its birth, which would solve the initialconditions problem even in the presence of serially correlated unobservables. One interesting extension would be to apply the Igami sequential-move approach to the case with unknown initial conditions, either in a GIV or a mixture model framework.

However, in many cases the problems of multiple equilibria led the oligopoly literature back to two-step methods with serially uncorrelated errors, as we discuss next.

5.2. Two-Step Methods Applied to Oligopoly

A common assumption of a number of dynamic oligopoly papers is that, even when the model admits multiple equilibria, the industry plays the same equilibrium every time it reaches the same state (Aguirregabiria \& Mira 2007, Bajari et al. 2007, Pakes et al. 2007, Pesendorfer \& SchmidtDengler 2008). ${ }^{10}$ In addition, these papers assume that the unobservables are (a) independent over time and (b) purely private information. Under these assumptions, a firm can treat its rivals' behavior just like "plays of nature"; that is, the evolution of rivals' behavior is just like the evolution of the exogenous w profit shifters in the single-firm case. Further, private information means that firms cannot take current-period rival shocks into account, and independence over time means that neither the own-firm nor the rival states are correlated with current-period unobservables. Thus, there is no endogeneity problem. Under these assumptions, then, the computational simplicity of the preexisting CCP methods can be brought to oligopoly dynamics. This includes both first- and second-step methods.

[^8]In this literature, Pesendorfer \& Schmidt-Dengler's (2008) approach is the closest to Hotz \& Miller's (1993), and they take particular care to make the formal connection between the dynamic oligopoly model and the Hotz \& Miller’s framework. Pakes et al. (2007) reverse Hotz \& Miller's argument, arguing that it is the distribution of unobservables that should be identified from knowledge of the single-period return, rather than the other way round. They argue that the elements of single-period variable profits can in many cases be identified from static data on prices and quantities (and perhaps variable cost or input data), whereas fixed and sunk costs are only revealed by dynamic behavior. We have already discussed the approach of Bajari et al. (2007).

Empirical applications of these methods to market structure include work on environmental policy (Ryan 2012, Fowlie et al. 2016), the entry of Walmart (Holmes 2011), responses to demand fluctuations (Collard-Wexler 2013), airlines (Aguirregabiria \& Ho 2012), product positioning and entry in radio mergers (Sweeting 2013, Jeziorski 2014), and entry subsidies for health care providers (Dunne et al. 2013). Many such papers make explicit use of the empirical strategy developed by Bajari et al. (2007). Dunne et al. (2013) follow Pakes et al.'s (2007) suggestion of estimating the variable profit function prior to the dynamic estimation of sunk and fixed costs.

Given the same assumption of a unique equilibrium in the data, the mixture model approach described in Section 4.2 also carries over to the oligopoly context. In this case, we assume that persistent unobservables are known to the firms, but the single-period profits are further shocked by an independent and private information term, as in Equation 27. In that equation, the extension to oligopoly involves adding the rivals' states to a firm's own state in the x vector.

As noted in the introduction, Igami \& Yang (2016) provide an empirical example of mixture models applied to entry in fast-food markets. The empirical strategy in that paper follows the likelihood approach of Arcidiacono \& Miller (2011). The results obtained by Kasahara \& Shimotsu (2009) are used to identify the minimum number of discrete profit levels that would explain the serial correlation in the empirical transition, and that number is used in the empirical work. As noted, Igami \& Yang (2016) emphasize the incorrect inferences that would result from entirely ignoring persistent heterogeneity.

In two-step applications to oligopoly, the curse of dimensionality can be particularly severe because the states of rival firms enter the own-firm state space. One concept that is applicable to cases with a large number of small firms (and perhaps a small number of large firms) is the notion of oblivious equilibrium proposed by Weintraub et al. (2008). Another strategy is to consider continuous time models, as Doraszelski \& Judd (2012) do. Arcidiacono et al. (2016) discuss an appropriate two-step estimation approach and provide an empirical application that considers the effect of entry by Walmart on existing competitors. They model perfectly persistent heterogeneity for each type of store via a mixture model method in the first step.

5.3. Generalized Instrumental Variable Methods in Oligopoly

As with full computational and two-step methods, the work done in the single-agent case carries over to GIV methods applied to oligopoly. As in the single-agent case, we let i index markets and t index time. In addition, we introduce $j=1, \ldots, J$ to index firms that coexist in a market.

Firm j 's profits depend on its own action $a_{i j t}$ as well as its rivals' actions. Thus, letting $a_{i t}=$ $\left(a_{i l t}, \ldots, a_{i J t}\right)$, firm j 's profit is now

$$
\pi_{j}\left(a_{i t}, x_{i t}, w_{i t}, u_{i t} ; \theta_{\pi}\right)
$$

In equilibrium, each firm's policy is the single-agent best reply to its rivals' equilibrium strategies. The firm still solves a value function problem similar to the one in Equation 7, but now its expectations of the future evolution of endogenous market states depend on its action as well as the equilibrium actions of its rivals.

In the oligopoly case, Berry \& Compiani (2020) assume that the serially correlated unobservables are complete information to all of the firms. Serially correlated private information raises very difficult issues of signaling behavior, which would be a large additional complication. However, mixture models of the private information may help (Hodgson 2019).

Denoting the equilibrium policies of firm j 's rivals by the function σ_{-j}, the firm expects the states to evolve in equilibrium according to transition probabilities of the form

$$
\begin{equation*}
\Gamma_{j}\left(x_{i t+1} \mid a_{i j t}, x_{i t}, w_{i t}, \sigma_{-j}\left(x_{i t}, w_{i t}, u_{i t}\right)\right) . \tag{35.}
\end{equation*}
$$

Thus, in equilibrium, the Bellman equation for firm j depends on the strategies played by its rivals, although we drop this dependence from the notation

$$
\begin{align*}
& V_{j}\left(x_{i t}, w_{i t}, u_{i t}\right) \\
& =\max _{a_{i j t} \in \mathcal{A}\left(x_{i j t}\right)}\left(\pi_{j}\left(a_{i t}, x_{i t}, w_{i t}, u_{i t} ; \theta_{\pi}\right)+\beta E\left[V_{j}\left(x_{i t+1}, w_{i t+1}, u_{i t+1}\right) \mid a_{i t}, x_{i t}, w_{i t}, u_{i t} ; \theta_{u}\right]\right) . \tag{36.}
\end{align*}
$$

This dynamic program yields a best-reply strategy for firm j, which we assume is unique and denote by $\bar{\sigma}_{j}\left(\sigma_{-j}, \theta\right)$. We stack the best-reply function into a J-vector,

$$
\bar{\sigma}(\sigma, \theta)=\left(\bar{\sigma}_{1}\left(\sigma_{-1}, \theta\right), \ldots, \bar{\sigma}_{J}\left(\sigma_{-J}, \theta\right)\right) .
$$

Any equilibrium strategy σ^{*} must then satisfy the fixed point

$$
\begin{equation*}
\sigma^{*}=\bar{\sigma}\left(\sigma^{*}, \theta\right) . \tag{37.}
\end{equation*}
$$

Given this, the set of possible equilibrium policy functions associated with a candidate parameter θ is given by

$$
\Sigma^{E Q}(\theta)=\left\{\sigma^{*}: \sigma^{*}=\bar{\sigma}\left(\sigma^{*}, \theta\right)\right\}
$$

Following earlier papers, we maintain the assumption of a unique equilibrium in the data. The set $\Sigma^{E Q}\left(\theta_{0}\right)$, where θ_{0} is the true parameter that generates our data, contains the true policy function.

As in the single-agent case, we define the sharp identified set for the structural parameters as the set of values of θ that simultaneously satisfy the GIV restrictions and solve the equilibrium Bellman equation; i.e.,

$$
\begin{equation*}
\Theta_{I D} \equiv\left\{\theta=\left(\theta_{\pi}, \theta_{u}\right) \text { : there exists } \sigma^{*} \in \Sigma^{E Q}(\theta) \text { such that } \sigma^{*} \in \Sigma^{I V}\left(\theta_{u}\right)\right\} . \tag{38.}
\end{equation*}
$$

In other words, a parameter vector θ belongs to the sharp identified set if there is a policy that (a) is not rejected by the GIV restrictions and the data (given θ_{u}) and (b) is an equilibrium strategy given θ.

Again, the first step consists of characterizing the set $\Sigma^{I V}\left(\theta_{u}\right)$ of policies that survive the GIV restrictions. However, this step will be complicated by a possibly large state space and by the presence of multiple firm unobservables in the policy functions. The large state space may lead to the use of parameterized and simplified policy functions, which is already common in existing CCP applications.

The first step can be illustrated through a simple extension of Olley \& Pakes's (1996) capital accumulation model of Section 4.6 to the duopoly case. Denote the equilibrium policy functions of the two firms by

$$
\begin{equation*}
a_{i j t}=\sigma\left(x_{i t}, w_{i t}, u_{i t}\right), \tag{39.}
\end{equation*}
$$

where the capital stocks are $x_{i t}=\left(x_{i 1 t}, x_{i 2 t}\right)$ and investments are $a_{i t}=\left(a_{i 1 t}, a_{i 2 t}\right)$. Similarly, $\left(u_{i 1 t}, u_{i 2 t}\right)$ is the vector of serially correlated unobservables, and $w_{i t}$ are exogenous shifters of the profitability
of investment. Under the assumption that $x_{i j t}$ and $a_{i j t}$ are continuous variables and that the policy functions are continuous and injective in $u_{i t}$, we can write

$$
\begin{equation*}
u_{i j t}=\sigma_{j}^{-1}\left(x_{i t}, w_{i t}, a_{i t}\right) . \tag{40.}
\end{equation*}
$$

This is now a two-equation version of the quantile IV model of Chernozhukov \& Hansen (2005), following which the policies may then be point-identified. Importantly, this would yield identification of each $u_{i j t}$ and thus of its distribution, including the serial correlation parameter θ_{u}.

This example shows how multiple unobservables can naturally show up in the policy functions of oligopoly firms. In the case of discrete actions, this may pose particular problems that are yet to be fully explored in the literature. Once again, the problems might be dealt with in part by parsimoniously parameterizing the policy functions, while leaving the single-period profit functions as free as possible.

Up to the (difficult) issues involving the dimensions of the observed and unobserved states, then, the GIV first step is the same in the oligopoly and single-firm cases. The second step also follows through quite easily. Recall that Berry \& Compiani (2020) propose two approaches that accommodate serially correlated unobservables. Adapted to the oligopoly case, the first idea now amounts to calculating a best reply to (a) one's rivals' future behavior and (b) one's own optimal future behavior. This is much easier than computing (a) the full best reply to rivals' behavior and especially (b) the fixed point of the dynamic oligopoly.

The indifference approach carries forward to the oligopoly case with even less modification. Recall again that the second step only employs the structure of the model, and that whether a given variable was observed by us (or not) in the first step plays no role. Thus, in this step the states of rival firms, whether initially observed or not, simply become additional (x, w) terms in Equation 25.

As an empirical oligopoly example, Collard-Wexler (2014) studies entry and exit in the concrete industry, modeling a parametric policy function and serially correlated market-level shocks. He considers a restrictive (although not unreasonable) initial-conditions assumption that allows him to point-identify and estimate the policy-function parameters (as well as a serial correlation parameter) by MLE. His work is guided by the full-computation oligopoly framework developed by Abbring \& Campbell (2010). Berry \& Compiani (2020) use a simplified version of the same data to illustrate how their approach allows one to drop the restrictive initial conditions and use a GIV first step. They also employ the linear indifference in Equation 25, with different degrees of parametrization, to produce a confidence region for the single-period profit function that is valid given the set-identified policy functions. They show that the GIV method can easily reject the model with serially uncorrelated unobservables, and that the presence of serial correlation greatly alters counterfactuals involving changes in the sunk cost of entry, as might be caused by changes in regulation.

This empirical application serves as a proof of concept for further empirical work. That work would ideally explore additional policy questions as it grapples with the issues of finding good instruments and dealing with the traditional problems of high-dimensional state spaces in dynamic modeling.

6. CONCLUSION

Two-step CCP methods without serially correlated errors have helped the empirical analysis of theoretically endogenous market structure to overcome various problems with fully computed equilibrium oligopoly models. However, the initial gains in the literature came at the expense of
econometrically exogenous market structure, with the associated likely biases in counterfactual predictions. There are now at least two approaches to including serially correlated errors in such models: mixture models of discrete persistent heterogeneity and GIV methods that allow for general forms of serial correlation. At a practical level, GIV methods can allow for shorter time periods, unrestricted initial conditions, a mix of continuous and discrete actions, and different kinds of serial correlation. This comes at the cost of potentially set-identified parameters and counterfactuals. Theoretical concerns and existing empirical results show the importance of further developing this research agenda by applying and refining methods that allow for serial correlation in models of industry dynamics.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We thank Mengsi Gao for helpful comments.

LITERATURE CITED

Abbring JH, Campbell JR. 2010. Last-in first-out oligopoly dynamics. Econometrica 78:1491-527
Ackerberg D, Benkard L, Berry S, Pakes A. 2007. Econometric tools for analyzing market outcomes. In Handbook of Econometrics, Vol. 6A, ed. JJ Heckman, E Leamer, pp. 4171-276. Amsterdam: North-Holland
Aguirregabiria V, Ho CY. 2012. A dynamic oligopoly game of the US airline industry: estimation and policy experiments. 7. Econom. 168:156-73
Aguirregabiria V, Mira P. 2007. Sequential estimation of dynamic discrete games. Econometrica 75:1-53
Aguirregabiria V, Mira P. 2010. Dynamic discrete choice structural models: a survey. F. Econom. 156:38-67
Andrews DW, Shi X. 2013. Inference based on conditional moment inequalities. Econometrica 81:609-66
Andrews DW, Shi X. 2017. Inference based on many conditional moment inequalities. 7. Econom. 196:27587
Andrews DW, Soares G. 2010. Inference for parameters defined by moment inequalities using generalized moment selection. Econometrica 78:119-57
Arcidiacono P, Bayer P, Blevins JR, Ellickson PB. 2016. Estimation of dynamic discrete choice models in continuous time with an application to retail competition. Rev. Econ. Stud. 83:889-931
Arcidiacono P, Ellickson PB. 2011. Practical methods for estimation of dynamic discrete choice models. Annu. Rev. Econ. 3:363-94
Arcidiacono P, Miller R. 2011. Conditional choice probability estimation of dynamic discrete choice models with unobserved heterogeneity. Econometrica 7:1823-68
Bajari P, Benkard CL, Levin J. 2007. Estimating dynamic models of imperfect competition. Econometrica 75:1331-70
Beresteanu A, Molinari F, Molchanov I. 2011. Sharp identification regions in models with convex moment predictions. Econometrica 79:1785-821
Berry ST. 1994. Estimating discrete choice models of product differentiation. RAND 7. Econ. 23:242-62
Berry ST, Compiani G. 2020. An instrumental variable approach to dynamic models. Tech. Rep., Yale Univ., New Haven, CT
Berry ST, Gandhi A, Haile PA. 2013. Connected substitutes and invertibility of demand. Econometrica 81:2087111
Berry ST, Haile PA. 2018. Nonparametric identification of simultaneous equations models with a residual index structure. Econometrica 86:289-315

Berry ST, Reiss P.2007. Empirical models of entry and market structure. In Handbook of Industrial Organization, Vol. 3, ed. M Armstrong, R Porter, pp. 1845-86. Amsterdam: North Holland
Berry ST, Tamer E. 2007. Identification in models of oligopoly entry. In Advances in Economics and Econometrics: Theory and Applications, Vol. 2, ed. R Blundell, W Newey, T Persson, pp. 46-85. Cambridge, UK: Cambridge Univ. Press
Blundell R, Bond S. 1998. Initial conditions and moment restrictions in dynamic panel data models. F. Econom. 87:115-43
Borkovsky R, Doraszelski U, Kryukov Y. 2012. A dynamic quality ladder model with entry and exit: exploring the equilibrium correspondence using the homotopy method. Quant. Mark. Econ. 10:197-229
Chamberlain G. 1985. Heterogeneity, omitted variable bias, and duration dependence. In Longitudinal Analysis of Labor Market Data, ed. JJ Heckman, B Singer, pp. 3-38. Cambridge, UK: Cambridge Univ. Press
Chernozhukov V, Chetverikov D, Kato K. 2018. Inference on causal and structural parameters using many moment inequalities. Rev. Econ. Stud. 86:1867-900
Chernozhukov V, Hansen C. 2005. An IV model of quantile treatment effects. Econometrica 73:245-61
Chernozhukov V, Hong H, Tamer E. 2007. Estimation and confidence regions for parameter sets in econometric models. Econometrica 75:1243-84
Chernozhukov V, Lee S, Rosen A. 2013. Intersection bounds: estimation and inference. Econometrica 81:667-737
Chesher A. 2010. Instrumental variables models for discrete outcomes. Econometrica 78:575-601
Chesher A, Rosen A. 2017. Generalized instrumental variable models. Econometrica 83:959-89
Ciliberto F, Tamer E. 2009. Market structure and multiple equilibria in airline markets. Econometrica 77:1791-828
Collard-Wexler A. 2013. Demand fluctuations in the ready-mix concrete industry. Econometrica 81:100337
Collard-Wexler A. 2014. Mergers and sunk costs: an application to the ready-mix concrete industry. Am. Econ. 7. Microecon. 6:407-47

Dixit A. 1992. Investment and hysteresis. 7. Econ. Perspect. 6:107-32
Doraszelski U, Judd KL. 2012. Avoiding the curse of dimensionality in dynamic stochastic games. Quant. Econ. 3:53-93
Doraszelski U, Pakes A. 2007. A framework for applied dynamic analysis in IO. In Handbook of Industrial Organization, Vol. 3, ed. M Armstrong, R Porter, pp. 1887-966. Amsterdam: Elsevier
Doraszelski U, Satterthwaite M. 2010. Computable Markov-perfect industry dynamics. RAND 7. Econ. 41:215-43
Dubé J, Fox JT, Su C. 2012. Improving the numerical performance of static and dynamic aggregate discrete choice random coefficients demand estimation. Econometrica 80:2231-67
Dunne T, Klimek SD, Roberts MJ, Xu DY. 2013. Entry, exit, and the determinants of market structure. RAND 7. Econ. 44:462-87

Ericson R, Pakes A. 1995. Markov perfect industry dynamics: a framework for empirical work. Rev. Econ. Stud. 62:53-82
Fowlie M, Reguant M, Ryan SP. 2016. Market-based emissions regulation and industry dynamics. F. Political Econ. 124:249-302
Galichon A, Henry M. 2011. Set identification in models with multiple equilibria. Rev. Econ. Stud. 78:126498
Gowrisankaran G, Town RJ. 1997. Dynamic equilibrium in the hospital industry. 7. Econ. Manag. Strategy 6:45-74
Heckman J. 1981. The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process. In Structural Analysis of Discrete Data with Econometric Applications, ed. CF Manski, DL McFadden, pp. 179-95. Cambridge, MA: MIT Press
Heckman J, Singer B. 1984. A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica 52:271-320
Hodgson C. 2019. Information externalities, free riding, and optimal exploration in the UK oil industry. Tech. Rep., Yale Univ., New Haven, CT

Holmes TJ. 2011. The diffusion of Wal-Mart and economies of density. Econometrica 79:253-302
Honoré BE, Tamer E. 2006. Bounds on parameters in panel dynamic discrete choice models. Econometrica 74:611-29
Hotz VJ, Miller RA. 1993. Conditional choice probabilities and the estimation of dynamic models. Rev. Econ. Stud. 60:497-529
Hotz VJ, Miller RA, Sanders S, Smith J. 1994. A simulation estimator for dynamic models of discrete choice. Rev. Econ. Stud. 61:265-89
Ichimura H, Thompson TS. 1998. Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution. 7. Econometrics 86:269-95
Igami M. 2017. Estimating the innovator's dilemma: structural analysis of creative destruction in the hard disk drive industry, 1981-98. 7. Political Econ. 125:798-847
Igami M. 2018. Industry dynamics of offshoring: the case of hard disk drives. Am. Econ. 7. Microecon. 10:67-101
Igami M, Uetake K. 2020. Mergers, innovation, and entry-exit dynamics: consolidation of the hard disk drive industry, 1996-2016. Rev. Econ. Stud. 87:2672-702
Igami M, Yang N. 2016. Unobserved heterogeneity in dynamic games: cannibalization and preemptive entry of hamburger chains in Canada. Quant. Econ. 7:483-521
Jeziorski P. 2014. Estimation of cost efficiencies from mergers: application to US radio. RAND 7. Econ. 45:816-46
Jofre-Bonet M, Pesendorfer M. 2003. Estimation of a dynamic auction game. Econometrica 71:1443-89
Kalouptsidi M, Scott P, Souza-Rodrigues E. 2020. Linear IV regression estimators for single-agent dynamic discrete choice models. Tech. Rep., Harvard Univ., Cambridge, MA
Kasahara H, Shimotsu K. 2009. Nonparametric identification of finite mixture models of dynamic discrete choices. Econometrica 77:135-75
Magnac T, Thesmar D. 2002. Identifying dynamic discrete decision processes. Econometrica 70:801-16
Manski CF. 2003. Partial Identification of Probability Distributions. New York: Springer
Manski CF, Tamer E. 2002. Inference on regressions with interval data on a regressor or outcome. Econometrica 70:519-46
Matzkin RL. 2003. Nonparametric estimation of nonadditive random functions. Econometrica 71:1339-75
Menzel K. 2014. Consistent estimation with many moment inequalities. 7. Econom. 182:329-50
Olley SG, Pakes A. 1996. The dynamics of productivity in the telecommunications equipment industry. Econometrica 64:1263-97
Pakes A, Ericson R. 1998. Empirical implications of alternative models of firm dynamics. 7. Econ. Theory 79:1-45
Pakes A, McGuire P. 1994. Computing Markov-perfect Nash equilibria: numerical implications of a dynamic differentiated product model. RAND 7. Econ. 25:555-89
Pakes A, Ostrovsky M, Berry S. 2007. Simple estimators for the parameters of dynamic games, with entry/exit examples. RAND 7. Econ. 38:373-99
Pesendorfer M, Schmidt-Dengler P. 2008. Asymptotic least squares estimators for dynamic games. Rev. Econ. Stud. 75:901-28
Pesendorfer M, Schmidt-Dengler P. 2010. Sequential estimation of dynamic discrete games: a comment. Econometrica 78:833-42
Rust J. 1987. Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher. Econometrica 55:999-1033
Rust J. 1994. Estimation of dynamic structural models, problems and prospects: discrete decision processes. In Advances in Econometrics, ed. C Sims, pp. 119-70. Cambridge, UK: Cambridge Univ. Press
Ryan SP. 2012. The costs of environmental regulation in a concentrated industry. Econometrica 80:1019-61
Stokey NL, Lucas RE, Prescott EC. 1989. Recursive Methods in Economic Dynamics. Cambridge, MA: Harvard Univ. Press
Sweeting A. 2013. Dynamic product positioning in differentiated product markets: the effect of fees for musical performance rights on the commercial radio industry. Econometrica 81:1763-803
Tamer E. 2003. Incomplete simultaneous discrete response model with multiple equilibria. Rev. Econ. Stud. 70:147-65

Toivanen O, Waterson M. 2005. Market structure and entry: Where's the beef? RAND F. Econ. 36:680-99
Weintraub GY, Benkard CL, Van Roy B. 2008. Markov perfect industry dynamics with many firms. Econometrica 76:1375-411
Wolpin K, Keane M. 1994. The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. Rev. Econ. Stat. 76:648-72
Wooldridge JM. 2005. Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. 7. Appl. Econ. 20:39-54

Contents

Emmanuel Farhi, Economist Par Excellence
Jean Tirole 1
The Political Economy of Deep Integration
Giovanni Maggi and Ralph Ossa 19
Large Games: Robustness and Stability
Ronen Gradwobl and Ebud Kalai 39
Does Vote Trading Improve Welfare?
Alessandra Casella and Antonin Macé 57
What Shapes the Quality and Behavior of Government Officials?
Institutional Variation in Selection and Retention Methods Claire S.H. Lim and James M. Snyder 7r. 87
The Elusive Peace Dividend of Development Policy: From War Traps to Macro Complementarities
Dominic Rohner and Mathias Thoenig 111
Why Does Globalization Fuel Populism? Economics, Culture, and the Rise of Right-Wing Populism
Dani Rodrik 133
Systemic Risk in Financial Networks: A Survey
Matthew O. Fackson and Agathe Pernoud 171
The International Aspects of Macroprudential Policies
Kristin 7. Forbes 203
Estimating DSGE Models: Recent Advances and Future Challenges
Jesús Fernández-Villaverde and Pablo A. Guerrón-Quintana 229
Firm Dynamics and Trade
George Alessandria, Costas Arkolakis, and Kim 7. Ruhl 253
The Economics of Currency Risk
Tarek A. Hassan and Tony Zhang 281
Empirical Models of Industry Dynamics with Endogenous Market Structure
Steven T. Berry and Giovanni Compiani 309
The Macroeconomics of Financial Speculation Alp Simsek 335
Uncertainty Spillovers for Markets and Policy
Lars Peter Hansen 371
A Helicopter Tour of Some Underlying Issues in Empirical Industrial Organization Ariel Pakes 397
The Story of the Real Exchange Rate
Oleg Itskhoki 423
Choice in Insurance Markets: A Pigouvian Approach to Social Insurance Design
Nathaniel Hendren, Camille Landais, and Jobannes Spinnewijn 457
The Econometrics of Early Childhood Human Capital and Investments Flavio Cunha, Eric Nielsen, and Benjamin Williams 487
Sufficient Statistics Revisited Henrik 7. Kleven 515
The Blossoming of Economic Epidemiology
David McAdams 539
Directed Technical Change in Labor and Environmental Economics David Hémous and Morten Olsen 571
Inflation Inequality: Measurement, Causes, and Policy Implications
Xavier Jaravel 599
Theoretical Foundations of Relational Incentive Contracts Foel Watson 631
Indexes
Cumulative Index of Contributing Authors, Volumes 9-13 661

Errata

An online log of corrections to Annual Review of Economics articles may be found at http://www.annualreviews.org/errata/economics

[^0]: ${ }^{1}$ Indeed, this interpretation is offered by Toivanen \& Waterson (2005) in their study of UK data.

[^1]: ${ }^{2}$ Because u enters the single-period profit function, there is a somewhat arbitrary distinction between the parameters of the single-period profit function, θ_{π}, and the parameters of the distribution of unobservables, θ_{u}. However, in many cases it is clear how to define θ_{u} so that it contains the parameters that govern serial correlation.

[^2]: ${ }^{3}$ Readers are referred to Stokey et al. (1989) and, for examples close to the present context, Bajari et al. (2007).

[^3]: ${ }^{4}$ The broad idea of the two-step method is reviewed in many places, including the survey of Aguirregabiria \& Mira (2010).

[^4]: ${ }^{5}$ Note that we do not require that $\tilde{u}\left(a, a^{\prime}, x, w\right)$ be unique. Indeed, the original indifference conditions in Hotz et al.'s (1994) model use a vector u at which the values of all actions, including the outside choice, are equal. There are other planes in the u space that equate the value of two actions (Ichimura \& Thompson 1998). However, these are not necessary for identification in this example.
 ${ }^{6}$ Berry \& Haile (2018) formally define "verifiable" as the identification of the binary truth or falsehood of the hypothesis that the given condition holds.

[^5]: ${ }^{7}$ Chesher \& Rosen (2017) consider a broad class of models with nonseparable error structures, develop an approach explicitly based on the IV logic, and provide a sharp characterization of the identified set. The results build on the work of Galichon \& Henry (2011) and Beresteanu et al. (2011), while the broad approach to set identification is informed by a vast literature that includes the works of Manski \& Tamer (2002), Tamer (2003), Manski (2003), Chernozhukov et al. (2007), Berry \& Tamer (2007), Ciliberto \& Tamer (2009), Chesher (2010), Beresteanu et al. (2011), Galichon \& Henry (2011), and Andrews \& Shi (2013).

[^6]: ${ }^{8}$ While we focus on this restriction throughout the paper (Berry \& Compiani 2020), Chesher \& Rosen (2017) show that the GIV approach may also be applied under weaker assumptions, such as mean or quantile independence.

[^7]: ${ }^{9}$ Similar information is displayed in two-dimensional graphs in Berry \& Compiani's (2020) paper.

[^8]: ${ }^{10}$ Rust (1994) offers an early version of the idea, and Jofre-Bonet \& Pesendorfer (2003) provide a related insight in the context of dynamic auctions.

