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1.0 Introduction

Important aspects of competition in oligopoly markets are dynamic.
Demand can be dynamic if products are storable or durable, or if utility
from consumption is linked intertemporally. On the supply side, dynamics
can be present as well. For example, investment and production decisions
have dynamic implications if there is “learning-by-doing” or if there are
sunk costs. Identifying the factors governing the dynamics is key to under-
standing competition and the evolution of market structure and for the
evaluation of public policy. Advances in econometric methods and model-
ing techniques and the increased availability of data have led to a large body
of empirical papers that study the dynamics of demand and competition in
oligopoly markets.

A key lesson learned early by most researchers is the complexity and
challenges of modeling and estimating dynamic structural models. The
complexity and “curse of dimensionality” are present even in relatively sim-
ple models but are especially problematic in oligopoly markets in which
firms produce differentiated products or have heterogeneous costs. These
sources of heterogeneity typically imply that the dimension of these models,
and the computational cost of solving and estimating them, increases expo-
nentially with the number of products and the number of firms. As a result,
much of the recent work in structural econometrics in IO focuses on finding
ways to make dynamic problems more tractable in terms of computation
and careful modeling to reduce the state space while properly accounting
for rich heterogeneity, dynamics, and strategic interactions.

We thank Manuel Arellano, Gautam Gowrisankaran, Igal Hendel, Pedro Mira, Martin
Pesendorfer, Marc Rysman, Matt Shum, and Junichi Suzuki for thoughtful comments.
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We cannot provide here a complete survey of the large body of recent
work. Instead, we focus on three main challenges discussed in the literature
that we consider particularly important for applied work. Two challenges
are common to models of dynamic demand and dynamic games: (1) the
dimensionality problem and ways to reduce the state space and the compu-
tational burden; and (2) the treatment of heterogeneity in firm, consumer,
and market characteristics. The empirical application of dynamic games also
must deal with (3) the challenge of multiplicity of equilibria in estimation
and prediction.

A key focus in dynamic structural models is on ways to reduce the state
space. A problem that is tractable in an example used to illustrate a method
might quickly become intractable when applied to answering questions in
real markets. For instance, even static models of demand for differentiated
products face a significant dimensionality problem due to the large number
of products. The dimensionality problem becomes a difficult issue when we
try to extend the methods of Rust (1987) originally applied to a durable-
good decision – the replacement of a bus engine – to demand for durable
differentiated products. The dimension of the state space increases (expo-
nentially) with the number of products. A concept that has proved useful
in reducing the state space in the modeling of both dynamic demand and
dynamic games is the inclusive value (McFadden 1974). We show different
examples of how the inclusive value is used to reduce the state space and
the assumptions needed to justify these approaches. We also show how we
can, by the correct conditioning, estimate many of the model parameters
without the need to solve a dynamic-programming problem.

We cannot overemphasize the importance of allowing for heterogeneity
across consumers, firms, products and markets to explain microdata. Not
accounting for this heterogeneity can generate significant biases in param-
eter estimates and in our understanding of competition among firms. For
instance, in the estimation of dynamic games of oligopoly competition,
ignoring unobserved market heterogeneity when present can lead to seri-
ous biases in our estimates of the degree of strategic interaction among
firms. Unfortunately, some of the methods used to reduce the state space
and ease the computational burden limit the ability to estimate observed
and unobserved heterogeneity. At times, this creates a trade-off between
estimation methods that are faster – and potentially allows for the estima-
tion of models that are richer in observed variables and have more flexible
parametric forms – and methods that can handle only simpler models but
can allow for richer unobserved heterogeneity. It is interesting that the two
literatures we survey take somewhat different approaches in handling this
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trade-off. Using our examples, we highlight the trade-offs and the ways that
they are addressed.

Multiple equilibria is a prevalent feature in dynamic games. We focus
on several of the practical problems that this multiplicity introduces in
estimation and prediction. A key way that the literature has addressed
multiple equilibria is to assume that a unique game is being played in
the data. One potential issue is whether this equilibrium is stable, in the
sense that we define herein. As we show, it turns out this has important
implications for the performance of many common methods. In addition,
we review recent methods for the estimation of dynamic games that can deal
with multiple equilibria and unobserved heterogeneity. We also examine
the implementation of counterfactual experiments in models with multiple
equilibria.

The chapter is organized in two parts. Section 2.0 discusses dynamic
models of demand of differentiated products, and Section 3.0 addresses
dynamic games of oligopoly competition.

2.0 Dynamic Demand for Differentiated Products

2.1 Overview

In the last 30 or so years, demand estimation has been a key part of studies in
empirical industrial organization (IO). The key idea is to estimate demand
and use the estimates to recover unobserved costs by inverting a pricing
decision. Once cost has been recovered, the estimated demand and cost
can be used to study the form of competition, understand firm behavior,
generate counterfactuals (e.g., the likely effect of a merger), and quantify
welfare gains (e.g., from the introduction of new products).1

Much of the literature relies on static demand models for this type of
exercise. However, in many markets, demand is dynamic in the sense that
(1) consumers’ current decisions affect their future utility (equivalently,
current utility depends on past decisions); or (2) consumers’ current deci-
sions depend on expectations about the evolution of future states. The exact
effect of dynamics differs depending on the circumstances and can be gen-
erated for different reasons. The literature focuses on several cases includ-
ing storable products, durable products, habit formation, switching costs,
and learning. Because our goal is to demonstrate key challenges faced by

1 See, for example, Bresnahan (1981, 1987); Porter (1983); Hausman, Leonard, and Zona
(1994); Berry, Levinsohn, and Pakes (1995); Goldberg (1995); and Nevo (2001).
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empirical researchers and not to provide a complete survey, we focus on the
first two cases: storable and durable products.2

In the case of storable products, if storage costs are not too large and the
current price is low relative to future prices (i.e., the product is on sale), there
is an incentive for consumers to store the product and consume it in the
future. Dynamics arise because consumers’ past purchases and consump-
tion decisions impact their current inventory and, therefore, may impact
both the costs and benefits of purchasing today. Furthermore, consumers’
expectations about future prices and the availability of products also impact
the perceived trade-offs of buying today versus in the future.

In the case of durable products, dynamics arise due to similar trade-offs.
The existence of transaction costs in the resale market of durable goods
(e.g., because of adverse selection; Akerlof 1970) implies that a consumer’s
decision today of whether to buy a durable good and which product to
buy is costly to change in the future and, for that reason, it will impact
her future utility. Therefore, when a consumer makes a purchase, she is
influenced by her current holdings of the good and by her expectations
about future prices and attributes of available products. For instance, a
consumer who currently owns a one-year-old automobile is likely to make
a different purchasing decision than an identical consumer who owns a
10-year-old automobile. The dynamics are most important in industries
in which prices and available products are changing rapidly over time,
such as many consumer electronic goods, or in which there are policies
that have dynamic effects, such as scrapping subsidies in the automobile
industry.

Ignoring the dynamics and using the data to estimate a static demand
model generates biased and inconsistent estimates. In addition to the econo-
metric bias, it is important to realize that in many cases, static estimation
does not recover desired features and thus fails to address many interesting
questions. For example, in many applications, it is important to separate
between a short-run price elasticity in response to a temporary price change
and a long-run elasticity in response to a permanent price change. In gen-
eral, due to econometric bias, static estimation does not recover short-run

2 As noted in the introduction, our goal is not to provide a complete survey, so we will
not offer a comprehnsive discussion of this wide litterature. For examples, in addition to
the papers discussed herein, see Hartmann (2006); Carranza (2006); Esteban and Shum
(2007); Nair (2007); Rossi (2007); Shcherbakov (2008); Sweeting (2008); Lou, Prentice,
and Yin (2008); Osborne (2009); Perrone (2009); R. Lee (2011); and Schiraldi (2011),
among many others.
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responses but, even if it does, in some special cases, it cannot recover sepa-
rately the long-run response.

Computing price responses obviously is important to fields such as IO
and marketing, but the possible uses of the models discussed herein are
much wider and include many fields in economics; following are a few
examples. Recently, macroeconomists looked at microlevel price data to
study price rigidities.3 A central issue in this literature is how to treat tem-
porary price reductions, or “sales.” A key to understanding sales and why
they exist is to understand consumer response. Similarly, a key issue in trade
is the pass-through of exchange rates. Here again, separating between short-
and long-run price responses is critical. In another example, obesity and
unhealthy eating habits are plaguing many countries and have led to sugges-
tions of taxing unhealthy high-fat and high-calorie foods. To evaluate the
effectiveness of these policies, it is crucial to estimate the heterogeneity in
price response: If a tax were to be imposed, who responds and by how much?
Furthermore, it is probably important to estimate the degree of habit per-
sistence in the consumption of these unhealthy food products. Adoption of
energy-efficient cars and appliances is an important aspect of environmental
economics. To the extent that demand is dynamic, as discussed previously,
modeling the dynamics is crucial. Modeling the dynamics of durable-good
purchases has important implications for evaluating scrapping policies and
computing price indices.

The dynamic factors impacting demand have long been recognized4 and,
indeed, many different models to capture these dynamics are offered in the
literature ranging from models in which the dynamics decisions are modeled
explicitly to modeling approaches in which the dynamics are handled by
including lags and leads of variables (e.g., prices). The IO literature mostly
takes the approach of explicit modeling, often referred to as a “structural”
approach.

To implement these approaches in markets with differentiated products
and address important applied questions, researchers must deal with several
issues, including large state spaces, unobserved (endogenous) state variables,
and heterogeneity. In this section, we survey the approaches taken to address
these issues.

3 See, for example, Kehoe and Midrigan (2008); Eichenbaum, Jaimovich, and Rebelo (2008);
and Nakamura and Steinsson (2008).

4 For an early contribution, see General Motors Corproration (1939), a volume developed
from papers sponsored by General Motors and presented in a joint session of the American
Statistical Association and the Econometric Society in 1938.
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2.1.1 Background: Static Demand for Differentiated Products

Key lessons to learn from static demand estimation is the importance of
allowing for heterogeneity and the difficulty of dealing with the dimension-
ality of the problem while still allowing for flexible functional forms. We con-
sider a classical (static) demand system for J products, q = D(p; r), where
q is a J-dimensional vector of quantities demanded, p is a J -dimensional
vector of prices, and r is a vector of exogenous variables. A key problem in
estimating this system is the dimensionality – due to the large number of
products, the number of parameters is too large to estimate. Several solu-
tions are offered in the IO literature,5 but the most common solution is
to rely on a discrete-choice model (McFadden 1974; Berry, Levinsohn, and
Pakes 1995).

The “workhorse” discrete-choice model used in IO has a consumer i
choosing option j from one of J + 1 options (J brands and a no-purchase
option). The (conditional indirect) utility that the consumer obtains from
option j at time t is given by:

ui j t = a j t β i − αi p j t + ξ j t + εi j t (1)

where p j t is the price of option j at time t, a j t is a 1 × K vector of observ-
able attributes of product j , ξ j t is an unobserved (by the econometrician)
product characteristic, εi j t is a stochastic term. αi represents the consumer’s
marginal utility of income, and β i is a K × 1 vector of individual-specific
marginal utilities associated to the attributes in the vector a j t . In this model,
a product is viewed as a bundle of characteristics and, therefore, the rele-
vant dimension is the number of characteristics, K , and not the number
of products. Flexible substitution patterns are achieved by allowing for
consumer heterogeneity in the willingness to pay and in the valuation of
characteristics.

The model can be estimated using consumer-level data. However, the
wider availability of market-level data and the development of appropriate
econometric techniques made estimation using market-level data the more
popular choice. The estimates from aggregate-level data generally are con-
sidered more credible if the data come from many different markets with
variation in the observed attributes of consumers, or if the aggregate data

5 For example, a common approach in the trade and macro literature is to use the constant
elasticity of substitution (CES) demand system, which is economical on parameters. This
model, however, is not flexible enough to explain microlevel data. An alternative approach
is to use the multilevel demand system developed by Hausman, Leonard, and Zona (1994).
See Nevo (2011) for a discussion.
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are supplemented with so-called micromoments, which are basically the
purchasing patterns of different demographic groups.

2.1.2 Dynamic Demand: Key Ingredients

In building dynamic demand models, the IO literature continues to rely
heavily on the discrete-choice model.

Reducing the Dimensionality. If demand is dynamic, the dimensionality
problem is even worse. The basic idea of a discrete-choice model – to
project the products onto a characteristics space – that essentially solved the
problem in the static context is not sufficient in the dynamic context. For
example, we consider the problem of a forward-looking consumer trying
to form expectations about future price and characteristics of products. In
principle, this consumer must form expectations about the future K + 1
attributes of all products, the number of which could be changing, using
the information of the current and past values of these attributes for all
the products. Even if we assume that variables follow a first-order Markov
process and that the number of products is fixed, the size of the state space
is (K + 1) ∗ J .

A useful concept, used in our examples, is the inclusive value. McFadden
(1974) defined the inclusive value (or social surplus) as the expected utility of
a consumer, from several discrete options, prior to observing (εi0t , . . . εi j t),
and knowing that the choice will be made to maximize utility. When the
idiosyncratic shocks εi j t are distributed i.i.d. extreme value, the inclusive
value from a subset A ⊆ {1, 2, . . . , J } of the choice alternatives is defined
as:

ωA
it = ln

⎛⎝∑
j∈A

exp
{

a j t β i − αi p j t + ξ j t

}⎞⎠ (2)

When β i = β and αi = α, the inclusive value captures the average utility
in the population, up to a constant, averaging over the individual draws of
ε; hence, the term social surplus.

The inclusive value has a key role in reducing the state space. In forming
expectations, the consumer must form expectations about the future inclu-
sive value or, in some cases, a low number of inclusive values for subsets of
products, rather than expectations about the realizations of all attributes of
all products. To reduce significantly the state space, this property is coupled
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with a behavioral assumption on the information that consumers use to
form these expectations.

Heterogeneity. As in static models, allowing for heterogeneity is key for
explaining the data and retaining flexible demand systems. In some cases,
however, a degree of unobserved heterogeneity must be sacrificed to deal
with the dimensionality problem. As we show herein, the trade-off in some
cases is between a richer model that includes more observed heterogeneity
and a model that relies on unobserved heterogeneity.

Data. Similar to the static model, the dynamic model can be estimated using
consumer- or market-level data. The advantages of consumer-level data
seem more obvious in the dynamic setting: Consumer-level data allow us
to see how individual consumers behave over time. However, this is exactly
the reason why consumer-level datasets are difficult to collect, especially
for products (e.g., some durable) that are purchased infrequently. For this
reason, a number of applications rely on aggregate data. We informally
discuss identification and estimation with market-level data.

2.2 Storable Products

Many of the products purchased by consumers are storable so that con-
sumers can buy them for future consumption. A typical pricing pattern
in these markets involves short-lived price reductions with a return to the
regular price. This pattern of prices generates an incentive for consumers to
store the product when the price is low. Boizot, Robin, and Visser (2001) and
Pesendorfer (2002) were among the first to study the effects of temporary
price reductions and storability in economics.6

2.2.1 Evidence

There is ample evidence that once faced with temporary price reduc-
tions, consumers store for future consumption. For example, using data
for ketchup, Pesendorfer (2002) found that holding the current price con-
stant, aggregate quantity sold depends on duration from previous sales.
Hendel and Nevo (2006a, 2010) found similar evidence for other products.

6 An earlier marketing literature examined the same issues, but the treatment there was
generally not consistent with optimal dynamic behavior. See, for example, Shoemaker
(1979); Blattberg, Eppen, and Lieberman (1981); Gupta (1988); and Chiang (1991).
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Additional evidence for the existence of demand accumulation was pro-
vided by Hendel and Nevo (2006a), who used household-level data to
document patterns that are consistent with consumer stockpiling behavior.
For example, they showed that the household’s propensity to purchase on
sales is correlated with proxies of storage costs and that households in areas
where houses are larger (with cheaper storage) buy more on sale. They
also showed that when purchasing on sale, duration to the next purchase is
longer. This is true both within households – for a given household when
buying on sale, the duration is longer – and across households – households
that purchase more on sale also purchase less frequently. Finally, proxies
for inventory are negatively correlated with quantity purchased and the
probability of purchasing.

2.2.2 Implications

Given the evidence on demand accumulation, it is natural to ask what are
the implications. The primary implication is for demand estimation, which
is an input for addressing important economic questions discussed herein.

Once we recognize that consumers can store the product, we must sep-
arate between the short-run response to a temporary price change and the
long-run response to either a temporary or a permanent price change. For
most economic applications, we are concerned about long-run changes.
If price changes in the data are permanent, then static estimation yields
consistent estimates of the long-run demand responses. Indeed, one way
to estimate long-run responses is to use only permanent price changes and
ignore – to the extent possible – the temporary prices changes. In many
datasets, the temporary price changes constitute most or even all of the
variation in prices. Therefore, dropping these price changes means a sig-
nificant loss of efficiency, possibly even completely wiping out any price
variation.

Conversely, if price changes in the data are temporary, then static demand
estimates overestimate own-price effects. The (large) demand response to
a sale is attributed to an increase in consumption (which in a static model
equals purchase) and not to an increase in storage. The decline in purchases
after a sale coincides with an increase in price and is misattributed as a
decline in consumption. At the same time, static estimation underestimates
cross-price effects. During a sale, the quantity of competing products sold
decreases, but static estimation misses an additional effect: the decrease in
the quantity sold in the future. Intuitively, when a competing product was
on sale in the past, consumers purchased to consume today and, therefore,
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the relevant or “effective” cross price is not the current cross price. The
current price is (weakly) higher. Furthermore, when a (cross) product is on
sale, the current (cross) price is more likely to be the effective price. Both of
these effects bias the estimated cross-price effect toward zero.

2.2.3 A Model of Consumer Stockpiling

Hendel and Nevo (2006b) proposed the following model of consumer stock-
piling, which we use to demonstrate some key issues faced by applied
researchers.

The starting point is similar to the discrete-choice model discussed in
Section 2.1.1. The consumer can purchase one of J + 1 brands, which
come in different sizes and which we index by x ∈ {1, 2, . . . , X}. We let d j xt

be equal to 1 if the consumer purchases brand j of size x at time t, and 0
otherwise. Because the choice is discrete, stockpiling is achieved by buying
larger sizes and adding to existing inventory rather than by buying multiple
units on any given shopping trip. This assumption seems reasonable for the
data used by Hendel and Nevo (2006b), in which there were few purchases
of multiple units. In other contexts, this might not be reasonable and we
would need to model the choice of multiple units.

The consumer also must decide how much to consume each period.7 The
per-period utility that consumer i obtains from consuming in t is:

ui (ct , νt) + αi mt (3)

where ct is a J-dimensional vector of the quantities consumed of each brand,
νt is a J-dimensional vector of shocks to utility that change the marginal
utility from consumption, and mt is the utility from the outside good. In
addition to utility from consumption, the one-period utility has two other
components. We assume that the consumer pays a cost Ci (it) for holding
inventories it , where it is a vector of inventories by brand. There also is an
instantaneous utility associated with preference for the purchased brand.

7 An alternative of assuming that consumption is constant over time but varying across
households seems attractive, especially for the type of products usually modeled. A slightly
more general model than constant consumption allows for random shocks, vt , that deter-
mine consumption. Both of these models are nested within our model and, in principle, can
be tested. The results in Hendel and Nevo (2006b) suggested that consumption is mostly
constant but, when inventory runs low, consumers reduce consumption. This behavior is
required to explain long periods of no purchase followed by periods of frequent purchases
observed in the data. Indeed, it is this variation in interpurchase time that identifies the
utility from consumption.
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At period t = 1, the purchase and consumption decisions, {c, j, x}, are
made to maximize:

∞∑
t=1

δt−1
E[ui (ct , νt) − Ci (it) + a j xtβ i − αi p j xt + ξ j xt + εi j xt | s1]

s .t. 0 ≤ it , 0 ≤ ct

∑
j, x

d j xt = 1, (4)

i j, t+1 = i j, t +
∑

x
d j xt xt − c j, t j = 1, . . . , J

where st is the information set at time t; δ is the discount factor; p j xt is
the price of purchasing quantity x of brand j ; ξ j xt is an unobserved (to
the researcher) brand-specific quality; a j xt are observed product attributes;
and εi j xt is a random shock. We allow ξ j xt to vary by brand to capture dif-
ferentiation across products and across sizes, for reasons we discuss herein.
In principle, the brand preference also can vary across consumers.

The expectation E(.) is taken with respect to the uncertainty regarding
future shocks in the vectors νt and εt as well as future prices (and other time-
varying attributes). We assume that ε j xt is i.i.d. extreme value and that νt is
i.i.d. over time and across consumers with a known parametric distribution.
Prices and observed characteristics evolve according to a first-order Markov
process.

Some aspects of the specification of this consumer-decision problem
warrant further explanation. First, we assume no physical depreciation of
the product, although this assumption is easy to relax if needed. Second,
we assume that a decision is made each period with perfect knowledge
of current prices. Implicitly, we are assuming that the consumer visits the
store every period. This assumption also helps us in the specification of
consumer expectations regarding future prices. If consumers do not visit
the store every period, we must model the process by which they arrive at
the store to determine the next set of prices that they should expect.

At the moment, even with the simplifying assumptions already made, the
vector of state variables is quite large and includes a J -dimensional vector
of inventory holdings by brand, it ; a (K + 1)∗ J ∗ X-dimensional vector
of prices and characteristics, pt

8; a J -dimensional vector of consumption
shocks, νt ; and a J ∗ X-dimensional vector of i.i.d. extreme-value shocks,
εt . The vector of state variables at period t is st = (it , pt , νt , εt). Without

8 To keep notation simple, we use pt to denote the observed variables at time t. These
variables include prices and other observed variables.

t
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a first-order Markov assumption, the state space would be even larger and
would include additional lags of prices and characteristics.

We let Vi (st) be the value function of consumer i . As usual in a dynamic-
programming problem, this value function can be obtained as the unique
solution of a Bellman equation:

Vi (st) = max
{c, j, x}

{
ui (c, νt) − Ci (it) + a j xtβ i − αi p j xt + ξ j xt + εi j xt

+ δ

∫
Vi (st+1)d Fs (st+1 | st , c, j, x)

}
(5)

where Fs represents the transition probability of the vector of state vari-
ables. Given that the state variables (νt , εt) are distributed independently
over time, it is convenient to reduce the dimensionality of this dynamic-
programming problem by using a value function that is integrated over
these i.i.d. random variables. The integrated value function, also called the
ex-ante value function, is defined as E Vi (it , pt) ≡ ∫

Vi (st)d Fε(εt)d Fv(v),
where Fε and Fv represent the Cumulative Distribution Functions (CDFs)
of εt and νt , respectively. The value function E Vi is the unique solution of
the integrated Bellman equation. Given the distributional assumptions on
the shocks εt and νt , the integrated Bellman equation is:

E Vi (it , pt)

= max
c, x

∫
ln

⎛⎜⎝∑
j

exp

⎧⎪⎨⎪⎩
ui (c, νt ) − Ci (it ) + a j xtβ i − αi p j xt + ξ j xt

+δ E
[

E Vi (it+1, pt+1) | it , pt , c, j, x
]

⎫⎪⎬⎪⎭
⎞⎟⎠ d F (νt )

(6)

The main computational cost is to compute the functions E Vi . We now
explore ways to reduce this cost.

2.2.4 Reducing the Dimension of the State Space

As it stands, the state space is quite large and not workable for anything
except a small number of products J . To reduce the state space, several
additional assumptions are needed.

Inventories and Consumption. We first explore ways to reduce the dimen-
sion of inventories needed to be tracked. One possible assumption is to
assume that products are perfect substitutes in consumption and storage.

(st

c,

cc,

c,

c,
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Assumption A1: Ui (ct , vt) = Ui (ct , νt) and Ci (it) = Ci (it), where ct =
1′ct , νt = 1′νt , it = 1′it , and 1 is a vector of 1’s.

Under this assumption, the inventory and the consumption shocks reduce
to a scalar: We only need to keep track of a single inventory and a single
consumption shock. Formally, now:

E Vi (it , pt) = E Vi (it , pt) (7)

This assumption not only reduces the state space but, as shown herein, it
also allows us to modify the dynamic-programming problem, which can
aid significantly in estimation of the model.

Taken literally, this assumption implies that there is no differentiation in
consumption: The product is homogeneous in use. We note that through
ξ j xt and εi j xt , we allow differentiation in purchase, as is standard in the
IO literature. Indeed, it is well known that this differentiation is needed to
explain purchasing behavior. This seemingly creates a tension in the model:
Products are differentiated at purchase but not in consumption. Before
explaining how this tension is resolved, we note that the tension is not only
in the model but potentially in reality as well. Many products seem to be
highly differentiated at the time of purchase, but it is difficult to imagine that
they are differentiated in consumption. For example, households tend to
be extremely loyal to the laundry-detergent brand they purchase – a typical
household buys only two or three brands of detergent over a significant
horizon – yet, it is difficult to imagine that the usage and consumption
are very different for different brands. One way to think of the model is to
assume that there is a brand-specific utility in consumption. As long as the
utility in this component is linear and we can ignore discounting, to a first
order, then the brand-specific utility in consumption is captured by ξ j xt .

9

This is the reason we want to let ξ j xt vary by size; indeed, this suggests that
ξ j xt = ξ j t ∗ x .

Assumption A1 implies that the optimal consumption does not depend
on which brand is purchased. Formally, we let c∗

k (st ; x , k) be the optimal
consumption of brand k conditional on state st and on purchase of size
x of that brand. Lemma 1 in the appendix of Hendel and Nevo (2006b)
showed that c∗

k (st ; x , k) = c∗
j (st ; x , j ) = c∗(st ; x). In words, the optimal

consumption does not depend on the brand purchased, only on the size.

9 See Hendel and Nevo (2006a) for details of the argument. Erdem, Imai, and Keane (2003)
offered an alternative model that allowed for two inventories. We can show that under
these assumptions, their model is a private case of the one discussed herein.
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This result implies that the (integrated) Bellman equation in (6) can be
written as:

E Vi (it , pt) = max
c , x

∫
ln

(∑
x

exp {ui (ct , vt) − Ci (it) + ωi xt

+ δ E[E Vi (it+1, pt+1) | it , pt , c , x]}
)

d Fν(vt) (8)

where ωxi t is the inclusive value from all brands of size x , as defined by Equa-
tion (2); that is, ωi xt = ln(

∑
j exp(a j xtβ i − αi p j xt + ξ j xt)). In words, the

problem now can be seen as a choice between sizes, each with a utility given
by the size-specific inclusive value and extreme-value shock. The dimension
of the state space is still large and includes all prices because we need all
of the prices to compute the evolution of the inclusive value. However, in
combination with additional assumptions, the modified problem is easier
to estimate.

Finally, we note that if needed, we could reduce the inventory to sev-
eral types of products rather than to a scalar. For example, suppose we
are studying the breakfast-cereal market; we could divide the brands into
children’s and adults’ cereals such that within a group, products are perfect
substitutes. In this case, we would need to keep two inventories – for adults’
and children’s cereal – still significantly less than the number of brands.

Prices. As noted, even with Assumption A1, the state space is still large and
includes all prices. Therefore, for a realistic number of products, the state
space is still too large to be manageable. To further reduce it, we make an
additional assumption (see Assumption A4 in Hendel and Nevo 2006b).
We let ωi t be a vector of inclusive values for the different sizes.

Assumption A2: F (ωi, t+1 | st) = F (ωi, t+1 | ωi t(pt))

In words, the vector ωi t contains all of the relevant information in st to
obtain the probability distribution of ωi, t+1 conditional on st . Instead of
all of the prices and attributes, we need only a single index for each size.
Two vectors of prices that yield the same vector of current inclusive values
imply the same distribution of future inclusive values. This assumption is
violated if individual prices have predictive power beyond the predictive
power of ωi t . Therefore, if the inclusive values can be estimated outside of
the dynamic-demand model, the assumption can be tested and somewhat
relaxed by including additional statistics of prices in the state space. We
note that ωi t is consumer-specific: Different consumers value a given set of

c
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products differently; therefore, this assumption does not further restrict the
distribution of heterogeneity.

Given Assumptions A1 and A2, we can show ( Hendel and Nevo 2006b)
that:

E Vi (it , pt) = E Vi (it , ωi t(pt)) (9)

In words, the expected future value depends on only a lower dimensional
statistic of the full state vector.

2.3 Estimation

In this section, we discuss the identification and estimation of the model.
We assume that the researcher has access to consumer-level data. Such data
are widely available from several data-collection companies; researchers
in several countries recently have been able to gain access to such data
for academic use.10 The data include the history of shopping behavior
of a consumer in a period of one to three years. The researcher knows
whether a store was visited; if a store was visited, then which one; and
which product (i.e., brand and size) was purchased and at what price.
In many cases, the most difficult information to gather is the prices of
products not purchased. From the viewpoint of the model, the unobserved
key information is consumer inventory and consumption decisions.

The most straightforward way to estimate the model follows an algorithm
similar to the one suggested by Rust (1987).11 For a given set of parame-
ters, we solve the dynamic-programming problem and obtain deterministic
decision rules for purchases and consumption as a function of the state
variables, including the unobserved random shocks. Assuming a distribu-
tion for these shocks, we derive a likelihood of observing each consumer’s

10 See, for example, the ERIM data available at http://research.chicagobooth.edu/marketing/
databases/erim/index.aspx; the so-called Stanford Basket described in Bell and Lattin
(1998); or the IRI Marketing Data Set discussed by Bronnenberg, Kruger, and Mela (2008).
For more recent datasets, see, for example, Griffith, Leicester, Leibtag, and Nevo (2009)
for a use of UK data; Einav, Leibtag, and Nevo (2010) for U.S. data; Bonnet and Dubois
(2010) for French data; and Browning and Carro (2010) for Danish data.

11 For computational reasons, methods based on conditional-choice probabilities (Hotz
and Miller 1993; Hotz, Miller, Sanders, and Smith 1994; Aguirregabiria and Mira 2002)
have become popular. Because the model includes unobserved endogenous time-varying
state variables, these methods cannot be directly applied herein. However, the method
of Arcidiacono and Miller (2011) potentially could be applied to the estimation of this
model. See Section 3.0 for further discussion of these methods.
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decision conditional on prices and inventory. We nest this computation of
the likelihood into the search for the values of parameters that maximize
the likelihood of the observed sample.

We face two hurdles in implementing the algorithm. First, consumption
(a decision variable) and inventory (a state variable) are not observed.
As shown herein, this can be solved by using the model to derive the
optimal consumption and the implied inventory. The second problem is
dimensionality of the state space. We discussed several assumptions that can
be used to reduce the state space; nevertheless, the computational problem
still is quite difficult. We show how the computation can be simplified
significantly by dividing the estimation into estimation of the brand choice
conditional on size, which does not require solving the dynamic problem,
and estimating the choice of size, which requires solving a much simpler
dynamic problem.

For the purpose of inference, because in some specifications we want to
allow for household fixed effects, we usually must assume that the number
of observations per household is very large.

As noted previously, it is quite common in the IO literature to estimate
static demand models using market-level data. We are unaware of any paper
that estimated the model we propose here using aggregate data. Hendel and
Nevo (2010) estimated a simpler model using aggregate data.

2.3.1 Identification

Before discussing the details of estimation, we informally discuss identifica-
tion. If inventory and consumption were observed, then identification using
consumer-level data follows standard arguments (Rust 1994; Magnac and
Thesmar 2002; Aguirregabiria 2010). However, we do not observe inventory
or consumption, so the question is: Which features of the data allow us to
identify functions of these variables?

The correlations and patterns described in Section 2.2.1 to suggest that
dynamics are relevant are those that identify the dynamic model. In particu-
lar, the individual-level data provide the probability of purchase conditional
on current prices and past purchases of the consumer (i.e., amounts pur-
chased and duration from previous purchases). We suppose that we see
that this probability is not a function of past behavior; we then would con-
clude that dynamics are not relevant and that consumers are purchasing for
immediate consumption and not for inventory. Conversely, if we observe
that the purchase probability is a function of past behavior and we assume
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that preferences are stationary, then we conclude that there is dynamic
behavior.12 Regarding the identification of storage costs, we consider the
following example. We suppose that we observe two consumers who face
the same price process and purchase the same amount in a given period.
However, one consumer purchases more frequently than the other. This
variation leads us to conclude that this consumer has higher storage costs.
Therefore, the storage costs are identified from the average duration between
purchases. The utility from consumption is identified from the variation in
these duration times, holding constant the amount purchased. For exam-
ple, a model of constant consumption cannot explain large variation in the
duration times.

In some cases, the researcher may not have consumer-level data, only
store- or market-level data. We are unsure if the model presented here is
identified from aggregate data. Given this discussion, it might seem unlikely.
However, a slightly simpler dynamic-demand model for storable goods can
be identified from aggregate-store-level data, as long as the aggregation
corresponds to the timing of price changes (i.e., if we have weekly data, we
need the prices to be constant within the week). The variation in the data
that identify the model is dependent on total quantity sold on the duration
from the last sale (Hendel and Nevo 2010).

A key emphasis in static demand estimation is the potential endogeneity
of prices. The concern is that prices, and sometimes other variables, are
correlated with ξ j xt . Conversely, some researchers who estimate dynamic
demand have dismissed this concern stating that papers that focus on endo-
geneity have “missed the mark” (Erdem, Imai, and Keane 2003, p. 11)
because it is unlikely that prices respond to aggregate shocks. Others claimed
that endogeneity is not an issue when using household-level data to estimate
demand, static or dynamic, “since the demand of the consumer does not
usually affect market price” (Train 2003, p. 8).

In our view, whether we should be concerned with endogeneity depends
on the data structure, what is included in the model, and the institutional
knowledge of the industry. Broad statements such as “endogeneity is not an
issue in dynamic models or when using consumer-level data” generally are
not correct. For example, if prices are higher for higher quality products,
which in the model is captured by higher ξ j xt , then prices will be correlated

12 Serial correlation in vt also might generate a dependence of the purchase probability on
past behavior. However, positive serial correlation in vt generates positive dependence
between past and current purchases, whereas the stockpiling model generates negative
dependence between past and current purchases.
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with ξ j xt . Of course, with enough data, we could control for the higher
quality of some products (e.g., with a product fixed effect). Of course, if
quality is time varying, then the fixed effect will not fully capture its vari-
ation. Repeated observations and consumer-level data allow us to control
for factors for which we cannot control otherwise, but they do not imply
that prices are automatically exogenous. Furthermore, in many dynamic
models, due to computational constraints, we are limited in the number of
controls. In the next section, we show how the estimation can be simplified
to allow for richer controls.

In the following estimation, as in the literature on dynamic demand
that uses household-level data, we address endogeneity by (1) assuming
that ξ j xt = ξ j x (i.e., does not vary over time) and control for it with fixed
effects; and (2) using the simplified computational problem to control for
time-varying variables such as advertising and promotions. In the discus-
sion of durable goods, we review a Generalized Method of Moments (GMM)
method using market-level data that closely follows the static demand
estimation.

2.3.2 Estimation

The parameters of the model can be estimated via maximum likelihood
following an algorithm similar to Rust (1987).13 Because inventory, one
of the state variables, is not observed, we must impute it as part of the
estimation. This can be accomplished in the following way:

(i) Guess an initial inventory distribution and draw from it for each
consumer.

(ii) For a given value of the parameters, solve the consumer problem
and obtain the value and policy functions.

(iii) Using the draws of inventory from (i), the computed consumption
policy from (ii), and observed purchases, obtain the sequence of
inventory and compute the likelihood of the observed purchases.

(iv) Repeat Steps (ii) and (iii) to choose the parameters that maximize
the likelihood of the observed data, possibly omitting some of the
initial observations to let the inventory process settle.

(v) Update the initial guess of the distribution of inventory and repeat
Steps (i)–(iv).

13 This is subject to the caveat regarding the endogeneity of prices; see the discussion in the
previous section.

if
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The likelihood in Step (iii) of observing a sequence of purchasing
decisions, (d1, . . . , dT ), as a function of the observed state variables,
(p1, . . . , pT ), and observed demographic variables, Di , is:

P(d1, . . . , dT |p1, . . . , pT , Di )

=
∫ T∏

t=1

P (dt |pt , it(dt−1, . . . , d1, vt−1, . . . , v1, i1), vt , Di )

× d F (v1, . . . , vT )d F (i1) (10)

Inventory is a function of previously observed purchase (or no purchase)
decisions, the previous consumption shocks, and the initial inventory. The
exact functional form of the dependence of inventory on past consumption
shocks depends on the consumption policy. The probability inside the
integral represents the integration over the set of epsilons that induce dt

as the optimal choice. Using Assumptions A1 and A2 and the results from
Section 2.2.4, this probability is given by:

P( j, x|pt , it , νt , Di )

= exp
{

a j xtβ i − αi p j xt + ξ j x + maxc (ui (c , vt ) − Ci (it ) + δ E [E Vi (it+1, ωt+1) | it , ωt , c , j, x])
}∑

k, y exp
{

akytβ i − αi pkyt + ξ ky + maxc (ui (c , νt ) − Ci (it ) + δ E [E Vi (it+1, ωt+1) | it , ωt , c , k, y])
}

(11)

Hence, to compute the likelihood, we need to solve the dynamic problem
only in the reduced state space.

Splitting the Likelihood. It is important to note that to this point, we use the
stochastic structure of the problem but we do not restrict the distribution of
consumer heterogeneity. In particular, we can allow for the taste coefficients,
αi and β i , to vary with both observed and unobserved factors, and we can
estimate their distribution using the joint likelihood of brand and size
choice.

We now show that if we are willing to place restrictions on the unob-
served heterogeneity, we can significantly simplify the computational
problem.

As discussed previously, the optimal consumption is not brand-
specific, so Mi (ωt , it ,νt , y)=maxc (ui (c ,νt)−Ci (it)+δE[E Vi (it+1, ωt+1)|
it , ωt , c , j, y]) does not vary by brand j, conditional on a size y. Thus, we

, c

,c ,

,
,
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note that this probability can be written as:

P( j, x|pt , it , νt , Di )

= exp{a j xtβ i − αi p j xt + ξ j x}∑
k exp{akxtβ i − αi pkxt + ξ kx}

exp{ωx
t + M(ωt , it , νt , x)}∑

y exp{ωy
t + M(ωt , it , νt , y)} (12)

= P( j |x , pt , Di ) P(x|ωt , it , Di )

For this factorization to be useful in reducing the computational cost, we
need a conditional independence assumption.

Assumption A3 (Conditional Independence of Heterogeneity): F (αi , β i |
xt , pt , Di ) = F (αi , β i |pt , Di ), where xt represents the chosen size.

This assumption is satisfied if heterogeneity is a function of only observed
demographics, including possible “fixed effects.” If this assumption holds,
then:

P( j |xt , pt , Di ) =
∫

P( j |xt , pt , αi , β i )d F (αi , β i |xt , pt , Di )

=
∫

P( j |xt , pt , αi , β i )d F (αi , β i |pt , Di )

Conversely, if the assumption does not hold, we must compute
F (αi , β i |xt , pt , Di ), which, in general, requires us to solve the dynamic-
programming problem.

To illustrate what Assumption A3 rules out, we consider the following
example. We suppose that there are two brands, A and B , offered in two
sizes, L and S. There are two types of consumers, each with equal mass.
Type a prefers brand A; type b prefers brand B . We suppose that brand A
goes on sale in size L but not size S. Now we consider the conditional-choice
probabilities:

P(A|L , pt) = P(A|L , pt , a) P(a|L , pt) + P(A|L , pt , b) P(b|L , pt)

Unconditionally, P(a) = P(b) = 0.5. However, because brand A size L was
on sale, it is likely that conditional on purchasing size L , the mass of type a
is higher than the mass of type b. To determine how much higher, we must
compute for each type the probability that they purchase size L . In general,
this requires solving the dynamic-programming problem.
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If Assumption A3 holds, we can compute the likelihood in the following
three steps:

1. Estimate the parameters governing brand choice, αi and β i , by maxi-
mizing P( j |xt , pt). This results in estimating a static conditional logit
using only the options with size xt .14 This estimation is static, can
be accomplished at low computational cost, and can include many
controls – which, among other benefits, help with concerns about the
endogeneity of prices.

2. Use the estimated parameters to compute ωxi t and estimate the tran-
sition probability function F (ωi, t+1 | ωi t). Because this step is accom-
plished once and outside the dynamic-programing problem, the tran-
sition probability can be estimated flexibly (and Assumption A2 can
be tested by testing whether elements of pt have power in predicting
ωi, t+1 beyond ωt).

3. Estimate the dynamic parameters – governing the utility from con-
sumption, storage cost, and the distribution of νt – using P(x|ωt , it),
which requires solving the modified dynamic-programming problem.

The split of the likelihood significantly reduces the computational cost
and, as a result, a much richer model can be estimated, allowing for addi-
tional variables and rich patterns of observed heterogeneity. Among other
benefits, the control for additional variables somewhat reduces the concerns
of price endogeneity. The results in Hendel and Nevo (2006b) suggested that
this additional richness is important.

A final point worth emphasizing is that the split of the likelihood is
separate from the simplification of the state space. The simplification of the
state space relied on Assumptions A1 and A2. The split in the utility also
required Assumption A3.

2.4 Durable Products

Another area that has seen a lot of recent work on dynamics is the estimation
of demand for durable products. There is a long tradition in IO of estimating
static demand for durable products. Indeed, some of the “classic” IO papers
involved estimation of demand for durable goods (e.g., Bresnahan 1981;
Berry, Levinsohn, and Pakes 1995; among many others). In durable-goods
markets, dynamics arise naturally because products are used in multiple

14 The idea is similar to the computation of fixed effects in a logit model estimated with
panel data: The fixed effects can be partialied out with the correct conditioning. Here, the
conditioning eliminates the dynamics.
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periods. The durability of the product alone does not imply that a static
model cannot properly capture demand. For example, if consumers hold
only a single variety (e.g., single automobile) and there are no transaction
costs in resale (i.e., products can be sold and purchased costlessly) and
no uncertainty about future resale prices, then a purchase of a durable
good can be seen as a static period-by-period “rental.” However, if these
conditions do not hold, then current products owned impact purchases.
Furthermore, consumers’ expectations about future prices, as well as quality
of the available products, impact current decisions.

Several pricing patterns can drive dynamics for durable goods. As with
storable products, there can be temporary price changes that arise – for
example, in the case of automobiles – if gasoline prices temporarily increase
or there are temporary discounts.15 However, a more common pattern,
observed across a wide range of industries, is of declining prices and
increased quality. This means that the trade-off consumers face is between
delaying purchase and obtaining a lower price or higher quality in the future.
This is the pattern on which we focus.

2.4.1 Implications for Static Estimation

The implications for demand estimation of ignoring dynamics, if they are
present in the data, depend on exact details of the data-generating process.
For example, a temporary price cut, as in the case of storable goods, causes
static estimation to overestimate the own-price elasticity and underestimate
the cross-price elasticity. Conversely, if gasoline prices temporarily spike, we
usually think that static estimates underestimate the impacts of a permanent
price increase.

If the key dynamics are declining prices, then – in general – it is more
difficult to sign the direction of the bias in static estimation. It is useful to
separate between two cases: with and without repeat purchase.

Without repeat purchase – once consumers purchase, they leave the
market forever – there are two problems with static demand estimation:
Demand is changing over time because some consumers leave the market,
and consumers might be forward-looking. In the standard static random-
coefficients discrete-choice model, this manifests in the following way. First,
the distribution of the random coefficients is likely to change over time as
some consumers purchase and exit the market. For example, if prices fall

15 Busse, Simester, and Zettelmeyer (2010) studied the 2005 Employee Discount Pricing and
showed that its main effect was to induce consumers to purchase earlier.
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over time, it is likely that fewer price-sensitive consumers purchase initially.
Second, if consumers are forward-looking, then they realize that there is
an option value to not purchasing today. This option value is reflected in
the value of the outside option, which in the static model is assumed to be
constant.

To demonstrate the bias this will generate in static demand estimation,
we consider the following simple example. We suppose that consumers have
a willingness to pay that is distributed uniformly on the unit interval and a
total mass of 100. Consumers are myopic (therefore, we are shutting off the
second effect) and buy the product if the price is below their willingness to
pay. Once consumers buy the product, they are out of the market forever.
This yields a well-defined linear demand curve Q = 100 − 100P . Suppose
that we observe a sequence of prices equal to (0.9, 0.8, 0.7, . . . , 0.1). Given
the previous demand structure, the quantity sold over that same time hori-
zon equals 10 units per period. A static demand model leads a researcher to
conclude that consumers are not sensitive to price because the same quan-
tity is sold as the price declines and to estimate an own-price elasticity of
0. So, in this example, the static model underestimates the price sensitivity.
More generally, however, even in this example, as we change the distribution
of willingness to pay and the sequence of observed prices, the conclusions
may change. Of course, signing the effect is more difficult once we consider
more general models with forward-looking consumers.

With repeat purchases, the issues are somewhat different. First, the dis-
tribution of consumers does not change because consumers do not exit.
However, consumers who previously purchased a product have a different
value of no purchase because their alternative is to stay with their current
product. Therefore, the problem with static estimation is that it does not
account for the different value, across consumers and over time, of the
outside option. Second, when purchasing now, consumers do not forgo the
option to purchase in the future. Indeed, consumers might find it optimal
to buy an inferior option only to replace it shortly thereafter.

2.4.2 A Model of Demand for Durable Goods

We now present a basic model of demand for durable differentiated prod-
ucts. Our presentation follows closely Gowrisankaran and Rysman (2009).16

The framework extends the static discrete-choice model presented in Sec-
tion 2.1.1 and is similar to the inventory model presented in the previous

16 See also Melnikov (2001) and Conlon (2009).
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section. Indeed, to some extent, the role of inventory is equivalent to the
role of the quality of the product already owned. So, in the durable-goods
model, “stockpiling” means buying a higher-quality product. The difference
is in the trade-off faced by consumers. The typical price pattern for durable
goods is a decreasing quality-adjusted price. Faced with this price pattern
for storable goods, consumers would not stockpile; rather, they would buy a
small amount for current consumption and buy in the future, when the price
is lower, for future consumption. In durable-goods markets, consumers can
buy a “small” amount only if they can rent, lease, or resell the used product
with low transaction costs. If these options are not available, the consumer’s
trade-off is between waiting for a lower price or higher quality product and
either forgoing consumption until then or purchasing a product now and
retiring it earlier than needed.

The conditional indirect utility consumer i obtains from product j at
time t is given by:

ui j t = γ
f
i j t − αi p j t + εi j t (13)

where γ
f
i j t = a j tβ i + ξ j t defines flow utility. The notation follows defini-

tions of the static model in Section 2.1.1. We note that, implicitly, the price
also includes finance costs. If a consumer does not purchase, she gets the
utility ui0t = γ

f
i0t + εi0t , where:

γ
f
i0t =

{
0

γ
f

i ĵ t̂

if no previous purchase
if last purchase was product ĵ at time t̂

. (14)

This definition of the utility from the outside option is the main differ-
ence between the static and dynamic models. Once consumers purchase,
it changes their outside option. Thus, previous purchases impact current
decisions – a fact that forward-looking consumers realize when they make
current choices. We note that implicitly in the definition of the no-purchase
option, there is an assumption of repeated purchase: Consumers are still on
the market even after purchase, just with a different outside option.

Assuming that (1) the consumer holds at most a single product at any
time, and (2) there is no resale market, then the Bellman equation of the
consumer problem is given by:

Vi (εi t , γ
f
i0t , pt) = max

j=0, ...J

{
ui j t + δ E[E Vi (γ

f
i j t , pt+1|pt]

}
(15)

where E Vi (γ
f
i j t , pt) = ∫

Vi (εi t , γ
f
i j t , pt)d Fε(εi t) and pt represents the set

of prices and other product characteristics at period t. The expectation
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is taken with respect to the uncertainty regarding future vector εt , future
products, prices, and attributes.

If there are no repeat purchases and no resale, then the consumer’s
problem is slightly different.17 Because there is no resale, without loss of
generality, the utility, γ

f
i j t , can be seen as capturing the lifetime value from

the product and there is no continuation value. Also, there is no need
to keep track of the consumer’s stock and γ

f
i0t = 0. The dynamics arise

because of the option value of not purchasing. The value function in the
no-repeat-purchase case is given by:

Vi (εi t , pt) = max

{
εi0t + δ E[E Vi (pt+1|pt] , max

j=1, ..., J
ui j t

}
(16)

where now E Vi (pt) = ∫
Vi (εi t , pt)d Fε(εi t). The first term within the

brackets represents the value of waiting to purchase in the future; the second
term is the value of purchasing today. Because we do not have to keep track
of the current holding, the state space is reduced.

2.4.3 Reducing the Dimension of the State Space

The main computational cost is computing the expected value function,
which in the repeat-purchase model equals E Vi (γ

f
i j t , pt). The state space

is similar to what we observed in the storable-goods problem and consists
of the quality of the currently held product – which is equivalent to the
inventory in the storable-goods problem – and the matrix of prices and
current attributes required to form expectations regarding the future.

Holdings. It is useful to briefly consider a somewhat more general model
of the consumer’s holding. In this model, the consumer can hold several
varieties of the products, and the utility from the different varieties interact
with one another.18 There are several ways to model the flow utility in this
case19 but, in all of them, the state variable includes a vector describing
the consumer’s current holdings and not a scalar. By assuming that the
consumer holds only a single option at any point in time, we reduce the state

17 See Melnikov (2001) and Conlon (2009) for applied examples and further discussion of
the no-repeat-purchase model.

18 We note that even in static models, the issue of multiple purchases and the interaction in
utility, or through a budget constraint, is mostly an open question and usually ignored.
The few exceptions are Hendel (1999); Dube (2004); Nevo, McCabe, and Rubinfeld (2005);
and Genztkow (2007).

19 For example, the utility can be a function of the products held or it can be a function of
the characteristics of the products held.
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space to a scalar value of the holding in the repeat-purchase model or avoided
it all together in the no-repeat-purchase model. Thus, the assumption of
holding only a single product serves the same purpose as Assumption A1
in the storable-goods model and reduces the dimension of the holdings or
inventory variable.

To further understand the differences between the storable- and durable-
goods models, we consider that a product can be characterized by two
dimensions that can be consumer-specific: its quality (i.e., utility per use)
and its quantity (i.e., how many times it can be used). In the storable-goods
model, we simplified the model by making assumptions on the quality (see
the discussion following Assumption A1) and focused on the quantity. Here,
we leave the quality unrestricted but make assumptions on the quantity by
assuming a single good and no depreciation. Allowing for depreciation that
is a function of endogenously chosen usage makes the durable-goods model
closer to the storable-goods model.

We note that there is another similarity with the storable-goods model.
Here, the utility carried forward is γ

f
i j t and not γ

f
i j t + εi j t . Thus, as in the

inventory model, there is a separation between the utility at the time of
purchase and at the time of usage.

Finally, we note that an alternative way to reduce the state space is to
allow for multiple purchases but to assume no interaction in the utility and
to continue to assume no resale.

Prices. Even after reducing the dimension of the holding vector, for a realistic
number of products, the state space is still too large to be manageable. As
before, we rely on the inclusive value to reduce the state space. We define
the dynamic inclusive value as from the J-inside alternatives as:


i t(pt) = ln

⎛⎝ J∑
j=1

exp(γ f
i j t − αi p j t + δ E[E Vi (γ

f
i j t , pt+1) | pt])

⎞⎠ (17)

We note that this definition is different in an important way from the def-
inition given in Section 2.1.1. It provides the expected value, including the
future value, from the J options. The definition in Section 2.1.1 provides the
expected flow utility, not accounting for the future value. The difference is
not just semantic. The static definition basically provides a utility-consistent
welfare statistic that is a summary of prices and attributes of available prod-
ucts. The dynamic definition also includes endogenous future behavior of
the agent. Once we impose a particular stochastic structure on the evolution
of 
i t , a natural question is whether the imposed structure is consistent with
the consumer-optimization problem. Gowrisankaran and Rysman (2009)
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discussed whether this is restrictive, but generally little is known on which
behavioral assumptions are consistent with the imposed structure.

To reduce the state space, we change the modified version of Assumption
A2 (Assumption A1, Inclusive Value Sufficiency, in Gowrisankaran and
Rysman 2009) to the following:

Assumption A2′: F (
i, t+1 | pt) = F (
i, t+1 | 
i t(pt))

As before, the assumption assumes that the inclusive value is sufficient
to compute the transition probabilities, but now it is the dynamic inclusive
value, 
i t . Furthermore, now there is a single inclusive value rather than a
vector of size-specific inclusive values. Using this assumption, we now can
write in the repeat-purchase model:

E Vi (γ
f
i0t , pt) = E Vi (γ

f
i0t , 
i t)

= ln
(

exp(
i t) + exp
(
γ

f
i0t + δ E[E Vi (γ

f
i0t , 
i t+1|
i t]

))
(18)

As in the storable-goods problem, Assumption A2′ allows us to reduce the
state space; however, unlike the storable-goods problem, we do not mod-
ify the dynamic-programming problem. In the storable-goods problem,
Assumption A1 allowed us to modify the dynamic-programming problem
into a choice among sizes rather than a choice among brand-size combina-
tions. The reason that we could do this is because under Assumption A1,
choices of the same size impacted the dynamics in the same way. Here, we
cannot modify the problem because we cannot generate such equivalence
classes for the dynamics.

The situation is somewhat different in the no-repeat-purchase model.
First, the state space can be reduced but the relevant definition of the
inclusive value is the static one, given in Section 2.1.1, and not the one
given in Equation (17). Assuming a version of A2 ′ for the inclusive values,
we can show that E Vi (pt) = E Vi (
i t). Second, in the no-repeat-purchase,
the dynamics involves a decision on when to buy; however, conditional on
purchase, the decision of which product to buy is static. As in the storable-
products model, the dynamic-programming problem can be simplified.

2.5 Estimation and Identification

This section discusses identification and estimation of the model. Sev-
eral studies estimated demand for durable products using household-level
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data.20 However, many studies of demand for durable goods recently relied
on aggregate data. For this reason, we focus our discussion on estimation
with aggregate data.

2.5.1 Identification

If consumer-level data are observed, then – in principle – identification
follows the standard arguments (Rust 1994; Magnac and Thesmar 2002;
Aguirregabiria 2010).21 With aggregate data, we do not observe the purchase
history of each consumer, which makes identification significantly more
difficult. To see this, we consider the example in Section 2.4.1. The sequence
of quantities can be explained perfectly using a static model with zero price
sensitivity or with the no-repeat-purchase dynamic model, which generated
the example. We suppose that there are multiple products available in each
period; then, the model must explain not only the time-series variation
in shares but also the cross-sectional variation. The key to identifying the
model and to separating the different alternative models is the ability of the
models to explain both the cross-sectional variation, across markets and
products, and the time-series variation.

We are unaware of a formal identification proof and obtaining one may
be difficult. Standard identification proofs for static models require some
form of substitution (e.g., what Berry, Haile, and Gandhi [2011] called
connected substitutes) among products. In static models, the substitution is
among products in a given period; here, however, the requirement is for
substitution over time and across products. This need not be satisfied; for
example, if the price of a high-quality product falls at time t, it actually
could increase the demand for a low-quality product at t − 1 because some
consumers might buy it for one period.

As previously discussed, a key issue in static demand estimation is the
potential endogeneity of price. In dynamic demand models estimated using
aggregate data, the solution follows closely the static literature using GMM
and moment conditions similar to the static models.

2.5.2 Estimation

The estimation follows closely the method proposed by Berry, Levinsohn,
and Pakes (1995) but nests a solution of the dynamic-programming problem

20 Many of these studies estimated static demand. For examples of dynamic demand, see
Erdem, Keane, Oncu, and Strebel (2005) and Prince (2008).

21 The standard arguments must be adjusted for the existence of ξ j t ; however, with enough
observations, these could be controlled for, and then we are back in the standard case.
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inside the inner loop.22 The basic steps are as follows (see Gowrisankaran
and Rysman 2009 for details):

1. For a given value of the parameters and a vector of mean-flow-utility
levels (γ f

j t = a j tβ + ξ j t), compute the predicted market shares by the
following:
(a) For a number of simulated consumers, each with a αi and β i , cal-

culate the dynamic inclusive value given by Equation (17) (begin
the process with an initial guess on E Vi ).

(b) Use these inclusive values to compute F (
i t+1 | 
i t(pt)).23

(c) Use the estimated process to update E Vi .
(d) Iterate the previous three steps until convergence.
(e) Use the estimated policy to simulate for each consumer the pur-

chase path, assuming that all consumers initially hold the outside
good.

(f) Aggregate the consumer’s purchase decision to obtain market
shares.

2. For a given value of the parameters, use the iteration proposed by Berry,
Levinsohn, and Pakes (1995) to compute the vector of γ

f
j t values. The

iteration uses the markets shares computed in Step 1.
3. As in Berry, Levinsohn, and Pakes (1995), use the vector of γ f

j t to com-
pute moment conditions and search for the parameters than minimize
a GMM objective function.

In the no-repeat-purchase model, the computation can be simplified if
we add an assumption like Assumption A3, which limits the heterogeneity
(Melnikov 2001).

3.0 Dynamic Games of Oligopoly Competition

3.1 Overview

The study of firm behavior, especially in oligopoly, is at the heart of IO. In
many industries, a firm’s current actions affect its future profits, as well as
the current and future profits of other firms in the industry. Supply-side

22 For an alternative computational method, see Su and Judd (2012); Dube, Fox, and Su
(2012); and Conlon (2010).

23 In principle, the process here can be quite general. In reality, however, because the compu-
tation is nested with the computation, the process must be fairly simple. Gowrisankaran
and Rysman (2009) assumed that ωi, t+1 = γ 1i + γ 2i ωi, t+1 + vi t .
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dynamics can arise from different sources, including sunk costs of entry, par-
tially irreversible investments, product-repositioning costs, and learning-
by-doing. Ignoring supply-side dynamics potentially can lead to biases in
our estimates of structural parameters. More substantially, accounting for
dynamics can change our view of the impact of competition in some indus-
tries, as well as our evaluation of public policies. The following examples
illustrate these points.24

Example 1: Product Repositioning in Differentiated Product Markets.
Sweeting (2007) and Aguirregabiria and Ho (2012) are two examples of
empirical applications that endogenize product attributes using a dynamic
game of competition in a differentiated-products industry. Sweeting (2007)
estimated a dynamic game of oligopoly competition in the U.S. commercial-
radio industry. The model endogenizes the choice of radio-station for-
mat (i.e., genre) and estimated product-repositioning costs. Aguirregabiria
and Ho (2012) studied the contribution of different factors to explain air-
lines’ adoption of hub-and-spoke networks. They proposed and estimated
a dynamic game of airline-network competition in which the number of
direct connections that an airline has in an airport is an endogenous prod-
uct characteristic. These studies highlighted the two potential limitations
of static models. First, a common assumption in many static and dynamic
demand models is that product characteristics, other than prices, are exoge-
nous. This assumption, if violated, can generate biases in the estimated
parameters. The dynamic game acknowledges the endogeneity of some
product characteristics and exploits the dynamic structure of the model to
generate valid moment conditions for the consistent estimation of the struc-
tural parameters. A second important limitation of a static model of firm
behavior is that it cannot recover the costs of repositioning-product char-
acteristics. As a result, the static model cannot address important empirical
questions, such as the effect of a merger on product repositioning.

Example 2: Evaluating the Effects of Regulation. Ryan (2012) provided
another example of how ignoring the endogeneity of market structure and
its dynamics can lead to misleading results. He studied the effects of the
1990 Amendments to the Clean Air Act on the U.S. cement industry. This
environmental regulation added new categories of regulated emissions and
introduced the requirement of an environmental certification that cement

24 As before, we cannot provide a complete survey of the literature. Other examples of papers
that studied similar questions are Einav (2009); Collard-Wexler (2006); Macieira (2007);
Kryukov (2008); Hashmi and Van Biesebroeck (2010); Snider (2009); Suzuki (2010);
Gowrisankaran et al. (2010); Walrath (2010); and Finger (2008), among others.
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plants must pass before starting their operation. Ryan estimated a dynamic
game of competition in which the sources of dynamics are sunk-entry costs
and adjustment costs associated with changes in installed capacity. The
estimated model showed that the new regulation had negligible effects on
variable production costs, but it increased significantly the sunk cost of
opening a new cement plant. A static analysis that ignores the effects of the
policy on firms’ entry–exit decisions would conclude that the regulation
had negligible effects on firms’ profits and consumer welfare. In contrast,
the dynamic analysis shows that the increase in sunk-entry costs caused a
reduction in the number of plants that, in turn, implied higher markups
and a decline in consumer welfare.

Initial attempts to answer many of these questions used entry models in
the spirit of Bresnahan and Reiss (1990, 1991a, 1991b) and Berry (1992).
The simplest forms of these models use a reduced-form profit function
in the sense that variable profits are not derived from explicit models of
price or quantity competition, and static in the sense that firms are not
forward-looking. These models were used to explain cross-market variation
in market structure that is assumed to be an equilibrium of an entry game.
It is possible to include predetermined variables in the payoff function
(e.g., firm size, capacity, and incumbent status) and to interpret the payoff
function as an intertemporal value function (Bresnahan and Reiss 1993).
Indeed, we could use panel data to estimate some of the parameters or
use price and quantity data to estimate the variable profits. These models
typically are much easier to estimate than the dynamic games discussed
herein; therefore, at times, they might serve as a useful first cut of the data.
The main limitation of this approach is that the parameters often do not
have a clear economic interpretation in terms of costs or demand, and the
model cannot be used for counterfactual-policy experiments. Furthermore,
empirical questions in IO that are related to the effects of uncertainty on
firm behavior and competition or that try to distinguish between short- and
long-run effects of exogenous shocks typically require the specification and
estimation of dynamic structural models that explicitly take into account
firms’ forward-looking behavior. For these reasons, most of the recent work
in IO addressing industry dynamics relies on more explicit modeling of
dynamics, as in the model of Ericson and Pakes (1995). Sections 3.2 and 3.3
briefly describe a simple version of this model that allows us to demonstrate
our key points.

Sections 3.4–3.7 discuss some of the main econometric, computational,
and modeling issues faced by applied researchers who want to estimate a
dynamic game. The standard nested fixed-point algorithm, which was used
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successfully in the estimation of single-agent models, is computationally
infeasible in actual applications of dynamic games. As a result, researchers
turned to alternative methods based on the ideas of Hotz and Miller (1993)
and Aguirregabiria and Mira (2002) (i.e., estimation methods based on con-
ditional choice probabilities [CCP]). We survey some of the methods that
were proposed to implement these ideas, and we focus on several issues. First,
we discuss the impact of multiple equilibria on identification and present
sufficient conditions for point identification of the structural parameters.
We then discuss the properties of an iterative procedure that was proposed
by Aguirregabiria and Mira (2009) to address a potential shortcoming of
two-step CCP methods: finite-sample bias. A paper by Pesendorfer and
Schmidt-Dengler (2008) showed that, indeed, in some cases, finite-sample
bias is reduced but in other cases, the iterative procedure actually increases
the bias. We provide stability conditions on the equilibrium that guarantee
the performance of the method, and we explain the results of Pesendorfer
and Schmidt-Dengler (2008).

Another main shortcoming of the CCP approach is the lack of unob-
served firm- or market-level heterogeneity beyond a firm level i.i.d. shock.
Section 3.5 briefly discusses new CCP methods that allow us to relax this
assumption. Section 3.6 returns to a theme that was a major part of our
discussion of dynamic demand: methods to reduce the dimension of the
state space. We show how the inclusive-value approach discussed herein
can be extended to dynamic games to reduce the computational burden in
the solution and estimation of this class of models. Section 3.7 concludes
with a description of a homotopy method that can be used to implement
counterfactual experiments given the estimated model.

3.2 The Structure of Dynamic Games of Oligopoly Competition

We use a simple dynamic game of market entry–exit to illustrate different
issues and methods. Time is discrete and indexed by t. The game is played
by N firms that we index by i . We let ait be the decision variable of firm i
at period t. In the entry–exit model we consider, the decision variable is a
binary indicator of the event “firm i is active in the market at period t.” The
action is taken to maximize the expected and discounted flow of profits in
the market, Et

(∑∞
r=0 δr �i t+r

)
, where δ ∈ (0, 1) is the discount factor and

�i t is firm i ’s profit at period t.
The profits of firm i at time t are given by �i t = V Pit − F Cit − E Cit ,

where V Pit represents variable profits, F Cit is the fixed cost of operating,
and E Cit is a one-time entry cost. Following the standard structure in the

9)
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Ericson and Pakes (1995) framework, incumbent firms in the market at
period t compete in prices or quantities in a static Cournot or Bertand
model. For example, the variable profit function can take on the form25:

V Pit(ait , a−i t) = ait Ht
∑N−1

n=0 1
{∑

j 	=i a j t = n
}

θV P
i,n (19)

where Ht is a measure of market size; 1{.} is the indicator function; and∑
j 	=i a j t is the number of active competitors of firm i at period t. The vec-

tor of parameters {θV P
i,n : n = 0, 1, . . . , N − 1} represents firm i ′s variable

profit per-capita when there are other n competitors active in the market.
We expect θV P

i,0 ≥ θV P
i,1 ≥ . . . ≥ θV P

i, N−1. The fixed cost is paid every period
that the firm is active in the market, and it has the following structure:
F Cit = ait

(
θ F C

i + εi t

)
, where θ F C

i is a parameter that represents the mean
value of the fixed operating cost of firm i ; and εi t is a zero-mean shock that is
private information of firm i . The entry cost is paid only if the firm was not
active in the market at the previous period: E Cit = ait(1 − si t) θ E C

i , where
si t is a binary indicator that is equal to 1 if firm i was active in the market
in period t − 1 (i.e., si t ≡ ai, t−1), and θ F C

i is a parameter that represents
the entry cost of firm i . The specification of the primitives of the model
is completed with the transition rules of the state variables. Market size
follows an exogenous Markov process with transition-probability function
FH (Ht+1|Ht). The transition of the incumbent status is trivial, si t+1 = ait .
Finally, the private-information shock εi t is i.i.d. over time and independent
across firms with CDF G i .26

Somewhat in contrast to static entry models, in which both games of
complete and incomplete information are studied, the recent literature on
empirical dynamic games focuses solely on games of incomplete infor-
mation. The introduction of private-information shocks ensures the exis-
tence of an equilibrium in pure strategies (Doraszelski and Satterthwaite
2010). In addition, these random shocks are a convenient way to allow for

25 This indirect variable-profit function may come from the equilibrium of a static Bertrand
game with differentiated product, as in the framework presented in Section 2.1. We suppose
that all firms have the same marginal cost and that product differentiation is symmetric.
For instance, consumer utility of buying product i is uit = ν − α pit + εi t , where ν and α

are parameters and εi t is a consumer-specific i.i.d. random variable. Then, the equilibrium
variable profit of an active firm depends on only the number of firms active in the market.

26 In this example, we consider that firms’ entry–exit decisions are made at the beginning of
period t and that they are effective during the same period. An alternative timing considered
in some applications is that there is a one-period time-to-build (i.e., the decision is made
at period t and entry costs are paid at period t but the firm is not active in the market until
period t + 1). The latter is, in fact, the timing of decisions in Ericson and Pakes (1995).
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econometric unobservables that can explain how agents with the same
observable characteristics make different decisions.

Following Ericson and Pakes (1995), most of the recent IO literature
studying industry dynamics focuses on studying a Markov Perfect Equi-
librium (MPE), as defined by Maskin and Tirole (1987, 1988a, 1988b).
The key assumption in this solution concept is that players’ strategies are
functions of only payoff-relevant state variables. We use the vector xt to
represent all of the common-knowledge state variables at period t (i.e.,
xt ≡ (Ht , s1t , s2t , . . . , s Nt)). In this model, the payoff-relevant state vari-
ables for firm i are (xt , εi t).27 We let α = {αi (xt , εi t) : i ∈ {1, 2, . . . , N}}
be a set of strategy functions, one for each firm. A MPE is a set of strategy
functions α∗ such that every firm is maximizing its value given the strate-
gies of other players. For given strategies of the other firms, the decision
problem of a firm is a single-agent dynamic-programming problem. We let
Vα

i (xt , εi t) be the value function of this dynamic-programming problem.
This value function is the unique solution to the Bellman equation:

Vα
i (xt , εi t) = max

ait∈{0,1}

{
ait (�α

i (xt) − εi t)

+ δ

∫
Vα

i (xt+1, εi t+1) dG i (εi t+1) F α
i (xt+1|ait , xt)

}
(20)

where ait (�α
i (xt) − εi t) and F α

i (xt+1|ait , xt) are the expected one-period
profit and the expected transition of the state variables, respectively, for firm
i given the strategies of other firms. By definition, the expected one-period
profit �α

i (xt) is:

�α
i (xt) = Ht

N−1∑
n=0

Pr
(∑

j 	=i α j (xt , ε j t) = n | xt

)
θV P

i,n − θ F C
i − (1 − si t)θ

E C
i

(21)
The expected transition of the state variables is:

F α
i (xt+1|ait , xt)

= 1{si t+1 = ait}
[∏

j 	=i
Pr
(
s j, t+1 = α j (xt , ε j t) | xt

)]
FH (Ht+1 | Ht) (22)

27 If private-information shocks are correlated serially, the history of previous decisions
contains useful information to predict the value of a player’s private information, and it
should be part of the set of payoff-relevant state variables. Therefore, the assumption that
private information is distributed independently over time has implications for the set of
payoff-relevant state variables.
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A player’s best-response function gives his optimal strategy if the other
players behave – now and in the future – according to their respective
strategies. In this model, the best-response function of player i is 1{vα

i (xt) −
εi t ≥ 0}, where vα

i (xt) is the difference between the value of firm i if it
chooses Alternative 1 (without including εi t) and its value if it chooses
Alternative 0, given that the other players play their strategies in α. According
to our model:

vα
i (xt) ≡ �α

i (xt) + δ

∫
Vα

i (xt+1, εi t+1) dG i (εi t+1)

× [F α
i (xt+1|1, xt) − F α

i (xt+1|0, xt)] (23)

A MPE in this game is a set of strategy functions α∗ such that for any player
i and for any (xt , εi t) , we have that α∗

i (xt , εi t) = 1{εi t ≤ vα∗
i (xt)}.

3.3 Conditional-Choice Probabilities

This section introduces the concept of the conditional-choice probability
(CCP) function and defines players’ strategies, value functions, and best
responses in terms of this probability function. This representation is useful
in the empirical analysis of dynamic games because CCPs can be seen
as conditional expectations involving players’ actions and state variables
observed in the data.

Given a strategy function αi (xt , εi t), we define the corresponding CCP
function as:

Pi (xt) ≡ Pr (αi (xt , εi t) = 1 | xt) =
∫

αi (xt , εi t) dG i (εi t) (24)

Because choice probabilities are integrated over the continuous variables in
εi t , they are lower-dimensional objects than the strategies α. For instance,
when both ait and xt are discrete, CCPs can be described as vectors in
a finite-dimensional Euclidean space. In our entry–exit model, Pi (xt) is
the probability that firm i is active in the market given the state xt . By
definition, given αi (xt , εi t), the CCP Pi (xt) is uniquely determined. If the
private-information shock εi t (1) is i.i.d. over time; (2) does not enter in the
transition probability of xt (i.e., conditional-independence assumption);
and (3) enters additively in the expected one-period profit (i.e., additive
separability), then given a CCP function Pi (xt), there is a unique strategy
function αi (xt , εi t) compatible with it.28 Therefore, there is a one-to-one

28 Under conditions (1), (2), and (3), the best-response function has the single-threshold
form 1{εi t ≤ vα

i (xt )}. Therefore, we can limit our analysis to the set of strategy functions
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relationship between strategy functions and CCPs. From now on, we use
CCPs to represent players’ strategies, and we use the terms strategy and CCP
interchangeably. We also use �P

i and F P
i instead of �α

i and F α
i to repre-

sent the expected-profit function and the transition-probability function,
respectively.

Based on the CCP concept, we describe a representation of the equilib-
rium mapping and of a MPE that is particularly useful for the econometric
analysis.29 This representation has two main features: (1) a MPE is a vec-
tor of CCPs, and (2) a player’s best response is an optimal response not
only to other players’ strategies but also to his own strategy in the future.
A MPE is a vector of CCPs, P ≡ {Pi (xt) : i = 1, 2, . . . , N; xt ∈ X }, such
that for every firm and any state xt , the following equilibrium condition is
satisfied:

Pi (xt) = G i

(
�P

i (xt) + δ
∑

xt+1

[
F P

i (xt+1|1, xt) − F P
i (xt+1|0, xt)

]
V P

i (xt+1)
)

(25)

The right-hand side of Equation (25) is a best-response probability function.
V P

i is the valuation operator of player i if every player behaves now and in
the future according to their respective strategies in P. We can obtain V P

i as
the unique solution of the recursive expression:

V P
i (xt) = Pi (xt)

[
�P

i (xt) + ei (Pi (xt))
] + δ

∑
xt+1

V P
i (xt+1) F P(xt+1|xt)

(26)

where ei (Pi (xt)) is the expectation Eεi t (−εi t |εi t ≤ G−1
i (Pi (xt))) and the

form of the function ei (.) depends on the probability distribution of εi t .30

with this threshold structure. This implies that CCP functions should have the form
Pi (xt ) = G i (vα

i (xt )). Because the CDF function G i is invertible everywhere, for given
Pi (xt ), there is a unique threshold vα

i (xt ) that is compatible with this choice probability;
that is, vα

i (xt ) = G−1
i (Pi (xt )), where G−1

i (.) is the inverse function of G i . Thus, given
a CCP function Pi (xt ), the unique strategy function compatible with it is αi (xt , εi t ) =
1{εi t ≤ G−1

i (Pi (xt ))}. This result can be extended to a multinomial discrete-choice model
with a general number of J choice alternatives and to dynamic games with continuous
decision variables.

29 For the general results, see the Representation Lemma in Aguirregabiria and Mira (2009).
30 We consider the event ε ≤ c , where c is a constant and ε is a random variable with CDF G .

We let P be the probability of that event, P ≡ Pr(εi t ≤ c), such that P = G(c). We define
the function e(P ) ≡ E(−ε|ε ≤ c) = E(−ε|ε ≤ G−1(P )). If ε is normally distributed with
zero mean and variance σ 2, then e (P ) = σ φ(�−1 (P )), where φ is the PDF and �−1

is the inverse CDF of the standard normal. If ε is extreme-value Type 1 with dispersion
parameter σ , we have that e (P ) = σ (γ+ ln(P )), where γ is Euler’s constant.

9)
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When the space X is discrete and finite, we can obtain V P
i as the solution

of a system of linear equations of dimension |X |. In vector form, VP
i =(

I − δ FP
)−1

Pi ∗ [�P
i + eP

i ], where I is the identity matrix; Pi is the |X | × 1
vector of CCPs for player i ; VP

i , �P
i , and eP

i also are |X | × 1 vectors; FP

is the |X | × |X | transition matrix with elements F P(xt+1|xt); and ∗ is
the element-by-element product. We represent the equilibrium mapping
in matrix form as �(P, θ), such that a MPE associated with a vector of
structural parameters θ is a fixed point P = �(P, θ).

The valuation and the best-response operators can be simplified fur-
ther for the class of models in which the expected-profit function is
multiplicatively separable in the structural parameters. In our entry-
exit model, the profit function can be written as �i t = ait (zi (a−i t , xt)
θ i − εi t), where θ i is the column vector of structural parameters(
θV P

i,0 , θV P
i,1 , . . . , θV P

i, N−1, θ F C
i , θ E C

i

)′
and zi (a−i t , xt) is the row vector

of known functions {Ht 1{∑ j 	=i a j t = 0}, Ht 1{∑ j 	=i a j t = 1}, . . . , Ht

1{∑ j 	=i a j t = N − 1}, −1, −(1 − si t)}. Therefore, the expected-profit
function also is multiplicatively separable in the structural parameters:
�P

i (xt) = E(zi (a−i t , xt) | xt , P(xt)) θ i , where the expectation is over the
distribution of a−i t conditional on xt under the condition that firms
behave according to their respective CCPs in P(xt). In this example, we
have that E(zi (a−i t , xt) | xt , P(xt)) = { Ht Pr(

∑
j 	=i a j t = 0 | xt , P), . . . ,

Ht Pr(
∑

j 	=i a j t = N − 1 | xt , P), −1, −(1 − si t)}. The |X | × 1 vector with

expected one-period payoffs, �P
i , can be represented as �P

i = ZP
i θ i , where

ZP
i is a matrix with rows the vectors E(zi (a−i t , xt) | xt , P(xt)) for each value

of xt in the state space X . If εi t is normally distributed with zero mean
and variance σ 2

i , we have that ei (Pi (xt)) = σ i φ(�−1 (Pi (xt))). Thus, the
valuation operator is multiplicatively separable in the structural parameters
and it has the following structure: VP

i = WP
z, i θ i − WP

e , i σ i , where WP
i is the

matrix
(

I − δ FP
)−1

Pi ∗ ZP
i and WP

e , i is the vector
(

I − δ FP
)−1

Pi ∗ eP
i , with

eP
i being the vector with elements φ(�−1 (Pi (xt))). Then, the best-response

probability function is:

Pi (xt) = �

(
z̃P

i (xt)
θ i

σ i
+ ẽP

i (xt)

)
(27)

where z̃P
i (xt) is equal to ZP

i (xt) + δ
∑

xt+1
[F P

i (xt+1|1, xt) − F P
i (xt+1|0, xt)]

WP
z, i (xt+1), and ẽP

i (xt) is δ
∑

xt+1
[F P

i (xt+1|1, xt) − F P
i (xt+1|0, xt)]

WP
e , i (xt+1). The vector z̃P

i (xt) has a more intuitive interpretation as the
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difference between two expected-discounted values of current and future
firm i ’s profits:

z̃P
i (xt) = E

( ∞∑
r=0

δr ai t+r zi (a−i t+r , xt+r ) | ait = 1, xt , P

)
− E

( ∞∑
r=0

δr ai t+r zi (a−i t+r , xt+r ) | ait = 0, xt , P

) (28)

That is, z̃P
i (xt) is equal to the difference in the expected value of

∑∞
r=0 δr

ai t+r zi (a−i t+r , xt+r ) when firm i chooses to be in the market at period
t (ait = 1) and when it decides not to be in the market (ait = 0). ẽP

i (xt)
has a similar interpretation, but it applies to the component ε of the profit
function and it includes only future values of ε and not the current value;
that is:

ẽP
i (xt) = E

( ∞∑
r=1

δr εi t+r | ait = 1, xt , P

)
− E

( ∞∑
r=1

δr εi t+r | ait = 0, xt , P

)
(29)

3.4 Data, Identification, and Estimation

3.4.1 Data

In most applications of dynamic games in empirical IO, the researcher
observes a random sample of M markets, indexed by m, over T periods of
time, where the observed variables consist of players’ actions and state vari-
ables. In the standard application in IO, the values of N and T are small but
M is large. Two aspects of the data warrant comment. For the moment, we
consider that the industry and the data are such that (1) each firm is observed
making decisions in every of the M markets; and (2) the researcher knows
all of the payoff-relevant market characteristics that are common knowledge
to the firms. We describe condition (1) as a dataset with global players. For
instance, this is the case in a retail industry characterized by competition
between large retail chains that are potential entrants in any of the local mar-
kets that constitute the industry. With this type of data, we can allow for rich-
firm heterogeneity that is fixed across markets and time by estimating firm-
specific structural parameters, θ i . This “fixed-effect” approach to address
firm heterogeneity is not feasible in datasets in which most of the competi-
tors can be characterized as local players (i.e., firms specializing in operating
in a few markets). Condition (2) rules out the existence of unobserved
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market heterogeneity. Although it is a convenient assumption, it also is
unrealistic for most applications in empirical IO. In Section 3.5, we present
estimation methods that relax conditions (1) and (2) and address unob-
served market and firm heterogeneity.

3.4.2 Identification with Multiple Equilibria

Multiple equilibria are the rule rather than the exception in most dynamic
games. We now discuss the implications of multiple equilibria for identifi-
cation. Equilibrium uniqueness is neither necessary nor sufficient condition
for the identification of a model (Jovanovic 1989). To see this, we consider a
model with vector of structural parameters θ ∈ � and define the mapping
C (θ) from the set of parameters � to the set of measurable predictions of
the model. Multiple equilibria imply that the mapping C (.) is a correspon-
dence. A model is not point-identified if at the observed data the inverse
mapping C−1 is a correspondence. In general, C being a function (i.e.,
equilibrium uniqueness) is neither a necessary nor sufficient condition for
C−1 being a function (i.e., for point identification).

To illustrate the identification of a game with multiple equilibria, we
start with a simple binary-choice game with identical players in which the
equilibrium probability P is implicitly defined as the solution of the con-
dition P = � (−1.8 + θ P ), where θ is a structural parameter and � (.)
is the CDF of the standard normal. We suppose that the true value θ0

is 3.5. It is possible to verify that the set of equilibria associated with θ0

is C (θ0) = { P (A)(θ0) = 0.054, P (B)(θ0) = 0.551, and P (C)(θ0) = 0.924}.
The game has been played M times and we observe players’ actions for
each realization of the game {aim : i, m}. We let P0 be the population prob-
ability Pr(aim = 1). Without further assumptions, the probability P0 can
be estimated consistently from the data. For instance, a simple frequency
estimator P̂0 = (N M)−1

∑
i,m aim is a consistent estimator of P0. Without

further assumption, we do not know the relationship between population
probability P0 and the equilibrium probabilities in C (θ0). If all of the sam-
ple observations come from the same equilibrium, then P0 should be one
of the points in C (θ0). However, if the observations come from different
equilibria in C (θ0), then P0 is a mixture of the elements in C (θ0). To obtain
identification, we can assume that every observation in the sample comes
from the same equilibrium. Under this condition, because P0 is an equi-
librium associated with θ0, we know that P0 = � (−1.8 + θ0 P0). Given
that �(.) is an invertible function, we have that θ0 = (�−1 (P0) + 1.8)/P0.
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Provided that P0 is not zero, it is clear that θ0 is point-identified regardless
of the existence of multiple equilibria in the model.31

The basic idea in this example can be extended to obtain identification
in our class of dynamic games. We make the following assumptions.

Assumption: Single equilibrium in the data. Every observation in the sam-
ple comes from the same equilibrium; that is, for any observation (m, t),
P0

mt = P0.

Assumption: No unobserved common-knowledge variables. The only unob-
servables for the econometrician are the private-information shocks εimt

and the structural parameters θ .

The distribution of εimt is known up to a scale parameter. For the purpose
of concreteness, we consider that εimt is a normal random variable with zero
mean and variance σ i . Under these assumptions, the vector of population
CCPs P0 is an equilibrium of the model associated with θ0 (i.e., it is not
a mixture of equilibria) and it is identified from the data. Because P0 is
an equilibrium, the condition P 0

i (xmt) = �(z̃P0

i (xmt) θ0
i /σ i + ẽP0

i (xmt)) is
satisfied for any firm i and any state xmt . We can rewrite this equilibrium
condition as a linear-in-parameters model Yimt = Zimt θ0

i /σ i where Yimt ≡
�−1

(
P 0

i (xmt)
) − ẽP0

i (xmt) and Zimt ≡ z̃P0

i (xmt). A necessary and sufficient
condition for the identification of θ0

i /σ i is that the variance–covariance
matrix E(Z ′

imt Zimt) is nonsingular or, equivalently, that the variables in
Zimt are not perfectly collinear. The variables in Zimt are expected-present
values of the variables in the one-period expected profit, zP0

i (xmt). In general,
these variables and their expected-present values are not collinear; therefore,
θ0

i /σ i is identified. Under the single-equilibrium-in-the-data assumption,
the multiplicity of equilibria in the model does not have any role in the
identification of the structural parameters.

The assumption of a single equilibrium in the data is less restrictive
than it may appear. The vector of observable state variables xmt can include
discrete and time-invariant market characteristics that we can use to define

31 The single-equilibrium-in-the-data assumption has a key role in this identification result.
We suppose that a fraction λ of the observations comes from the stable equilibrium
P (A)(θ0) = 0.054 and a fraction 1 − λ from the other stable equilibrium P (C )(θ 0) =
0.924, but the researcher does not know which observation comes from which equilibrium.
Therefore, P0 = λP (A)(θ 0) + (1 − λ)P (C )(θ0). We note that P0 is not an equilibrium of
the model but rather a mixture of two equilibria. If the researcher ignores this mixture and
imposes the assumption of a single-equilibrium-in-the-data assumption, the estimator of
θ0 will be inconsistent.
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a finite number of market types (e.g., urban versus rural markets or markets
in different geographic region). As long as the observed number of market
types does not increase with the number of markets M, we can allow
for different equilibria at each market type. Therefore, the assumption
of a single equilibrium in the data is basically a restriction on unobserved
heterogeneity. Under this assumption, there is no unobserved heterogeneity
that implies the selection of a different type of equilibrium in markets with
the same observable characteristics (i.e., within the same observable type).
We note that the single-equilibrium-in-the-data assumption is sufficient
for identification but it is not necessary. Sweeting (2009), Aguirregabiria
and Mira (2009), and De Paula and Tang (2012) presented conditions for
the identification of static games of incomplete information when there
are multiple equilibria in the data. These papers assumed that there is no
payoff-relevant unobserved heterogeneity for the researcher. As far as we
know, there are not yet identification results of games that allow for both
payoff-relevant unobserved heterogeneity and multiple equilibria in the
data (i.e., non–payoff-relevant unobserved heterogeneity).

3.4.3 Estimation: Maximum Likelihood and Two-Step Methods

In principle, estimation of dynamic games could follow the same methods
as the estimation of single-agent dynamic structural models. For exam-
ple, we could imagine using a nested fixed-point algorithm that maximizes
a sample criterion function over the space of structural parameters and
solves for the equilibrium of the model – assuming it is unique – for each
trial value of the parameters. Although this approach has been success-
ful in single-agent problems, it is problematic in games. The existence
of multiple equilibria significantly increases the computational burden,
especially if we use standard estimation methods such as maximum likeli-
hood or GMM. In this section, we discuss how the literature addresses this
issue.

The use of an “extended” or “pseudo” likelihood (or, alternatively, GMM
criterion) function has an important role in the different estimation meth-
ods. For arbitrary values of the vector of structural parameters θ and firms’
strategies P, we define the following likelihood function of observed players’
actions {aimt} conditional on observed state variables {xmt}:

Q(θ , P)= ∑
i,m, t

aimt ln �
(

z̃P
imt θ i + ẽP

imt

) + (1−aimt) ln �
(−̃zP

imt θ i −ẽP
imt

)
(30)

n)
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where, for the porpose of concreteness, we consider that private-information
shocks are normally distributed. For notational simplicity, we use θ i to rep-
resent θ i/σ i , z̃P

imt ≡ z̃P
i (xmt) and ẽP

imt ≡ ẽP
i (xmt). We call Q(θ , P) a pseudo-

likelihood function because players’ CCPs in P are arbitrary and do not
represent the equilibrium probabilities associated with θ implied by the
model. An implication of using arbitrary instead of equilibrium CCPs is
that likelihood Q is a function and not a correspondence.32 To compute
this pseudolikelihood, a useful construct is the representation of equilibrium
in terms of CCPs, which we presented previously.

Full Maximum Likelihood. The dynamic game imposes the restriction
that the strategies in P should be in equilibrium. The maximum likelihood
(ML) estimator is defined as the pair (θ̂ ML E , P̂ML E ) that maximizes the
pseudolikelihood subject to the constraint that the strategies in P̂ML E are
equilibrium strategies associated with θ̂ ML E . That is:

(θ̂ ML E , P̂ML E ) = arg max
(θ ,P)

Q(θ , P)

s.t. Pi (xmt) = �
(

z̃P
i (xmt)θ i + ẽP

i (xmt)
)

for any (i, xmt) ∈ I × X
(31)

This is a constrained ML estimator that satisfies the standard regularity
conditions for consistency, asymptotic normality, and efficiency of ML esti-
mation.33 The numerical solution of the constrained-optimization prob-
lem that defines these estimators requires us to search over an extremely
large dimensional space. In the empirical applications of dynamic-oligopoly
games, the vector of probabilities P includes thousands or millions of ele-
ments. Searching for an optimum in that type of space is computationally
demanding. Su and Judd (2012) proposed to use a Mathematical Program-
ming with Equilibrium Constraints (MPEC) algorithm, which is a general-
purpose algorithm for the numerical solution of constrained-optimization
problems. However, even using the most sophisticated algorithm such as
MPEC, the optimization with respect to (P, θ) can be extremely demanding
when P has a high dimension.

Two-Step Methods. To avoid this large computational cost, alternative
two-step methods were explored. In this class of models, for given P, the
best-response probability function G i (z̃P

i (xt) θ i + ẽP
imt) has the structure in

32 In fact, Q is the likelihood function of a standard probit model for aimt with explanatory
variables z̃P

imt and ẽP
imt .

33 Similarly, we could define a pseudo-GMM criterion function. The GMM estimator is
defined as the pair (θ̂G MM , P̂G MM) that minimizes the pseudo-GMM criterion subject
to the constraint that the strategies in P̂G MM are equilibrium strategies associated with
θ̂G MM .
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a standard binary-choice model with an index that is linear in parameters.
A pseudolikelihood function based on these best-response probabilities is
globally concave in the structural parameters; therefore, optimization of
Q(θ , P) with respect to θ for given P is a simple task. Furthermore, the
multiplicative separability of the valuation operator VP

i in the structural
parameters34 implies that although it is costly to compute VP

i for multiple
values of P, it is much cheaper to compute it for multiple values of θ i.
Two-step estimation methods exploit this particular structure of the model.

We let P0 be the vector with the population values of the probabilities
P 0

i (x) ≡ Pr(aimt = 1|xmt = x) for every firm i and any value of x. Under the
assumptions of “no unobserved common knowledge variables” and “single
equilibrium in the data,” the CCPs in P0 also represent firms’ strategies in
the only equilibrium that is played in the data. These probabilities can be
estimated consistently using standard nonparametric methods. We let P̂0 be
a consistent nonparametric estimator of P0. The two-step estimator of θ0 is

defined as θ̂2S = arg maxθ Q(θ , P̂
0
). Under standard regularity conditions,

this two-step estimator is root-M consistent and asymptotically normal.
This idea originally was exploited for estimation of single-agent problems
by Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith (1994). It
was expanded to the estimation of dynamic games by Aguirregabiria and
Mira (2009); Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry
(2007); and Pesendorfer and Schmidt-Dengler (2008). Pesendorfer and
Schmidt-Dengler (2008) showed that different estimators can be described
as a general class of two-step estimators of dynamic games. An estimator
within this class can be described using the following minimum distance
(or asymptotic least squares) approach:

θ̂ = arg min
θ

[
P̂0 − �

(
P̂0, θ

)]′
AM

[
P̂0 − �

(
P̂0, θ

)]
(32)

where AM is a weighting matrix. Each estimator within this general class is
associated with a particular choice of the weighting matrix. The asymptot-
ically optimal estimator within this class has a weighting matrix equal to
the inverse of [I − ∂�(P0, θ0)/∂P′]′ �P̂ [I − ∂�(P0, θ0)/∂P′], where �P̂ is
the variance matrix of the initial nonparametric estimator P̂0. Pesendorfer
and Schmidt-Dengler (2008) showed that this estimator is asymptotically
equivalent to the maximum ML estimator. Therefore, there is no loss of

34 The vector of values VP
i is equal to WP

z, i θ i + WP
e , i σ i , where WP

i is the matrix(
I − δ FP

)−1
Pi ∗ ZP

i and WP
e , i is the vector

(
I − δ FP

)−1
Pi ∗ eP

i . Calculating WP
z, i and

WP
e , i is significantly simpler than solving for the dynamic-progamming problem of one

player and much simpler than solving for an equilibrium of the dynamic game.

9)
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asymptotic efficiency by using a two-step estimator of the structural param-
eters instead of the MLE.

The main advantage of these two-step estimators is their computational
simplicity. The first step is a simple nonparametric regression; the second
step is the estimation of a standard discrete-choice model with a criterion
function that in most applications is globally concave (e.g., the likelihood of a
standard probit model in the entry–exit example). The main computational
burden comes from the calculation of the present values WP̂

z, i (x) and WP̂
e , i (x).

Although the computation of these present values may be subject to a
curse of dimensionality (see Section 3.6), the cost of obtaining a two-step
estimator is several orders of magnitude smaller than solving (just once) for
an equilibrium of the dynamic game. In most applications, this makes the
difference between being able to estimate the model or not.

These two-step estimators have important limitations. First is the restric-
tion imposed by the assumption of no unobserved common-knowledge
variables. Ignoring persistent unobservables, if present, can generate impor-
tant biases in the estimation of structural parameters. We discuss this issue
in Section 3.5.

A second problem is finite-sample bias. Whereas two-step CCP methods
address the curse of dimensionality in the solution of dynamic games, they
also create a different curse of dimensionality that is not present in full-
solution maximum likelihood or GMM methods. This is the so-called curse
of dimensionality in nonparametric estimation. As the dimension of the
state space increases, so does the asymptotic variance and finite-sample vari-
ance and bias of the initial nonparametric estimator of CCPs.35 The initial
nonparametric estimator can be imprecise in the samples available in actual
applications, which can generate serious finite-sample biases in the two-step
estimator of structural parameters. The source of this bias is well under-
stood in two-step methods: P̂ enters nonlinearly in the sample-moment
conditions that define the estimator, and the expected value of a nonlinear
function of P̂ is not equal to that function evaluated at the expected value
of P̂. The larger the variance or the bias of P̂, the larger is the bias of the
two-step estimator of θ0. This problem is particularly serious in dynamic

35 If the model includes state variables with continuous support, the rate of convergence
of the nonparametric estimator of CCPs declines with the number of continuous state
variables. However, in this class of models and under standard regularity conditions, the
lower rate of convergence of the initial nonparametric estimator of CCP functions does
not affect the root-M consistency of the estimator of structural parameters in the second
step (Kasahara and Shimotsu 2008a; Linton and Srisuma 2012). Of course, the slower rate
of convergence of the initial nonparametric estimator has important implications on the
finite-sample properties of the two-step estimator.
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games with heterogeneous players because in these models, the number of
observable state variables is proportional to the number of players in the
game.36

3.4.4 Recursive K-Step Estimators

To address finite sample bias, Aguirregabiria and Mira (2002, 2009) con-
sidered a recursive K-step extension. Given the two-step estimator θ̂2S and
the initial nonparametric estimator of CCPs, P̂0, we can construct a new

estimator of CCPs, P̂1, such that P̂ 1
i (x) = �

(
z̃P̂0

i (x) θ̂ i,2S + ẽ P̂0

i (x)
)

. This

estimator exploits the parametric structure of the model and the structure
of best-response functions. It seems intuitive that this new estimator of
CCPs has better statistical properties than the initial nonparametric esti-
mator (i.e., smaller asymptotic variance and smaller finite-sample bias and
variance). As explained herein, this intuition is correct as long as the equi-
librium that generated the data is Lyapunov stable. Under this condition,
it seems natural to obtain a new two-step estimator by replacing P̂0 with
P̂1 as the estimator of CCPs. The same argument can be applied recursively
to generate a sequence of K-step estimators. Given an initial consistent

nonparametric estimator P̂0, the sequence of estimators {θ̂ K
, P̂K : K ≥ 1}

is defined as θ̂
K = arg maxθ Q(θ , P̂

K −1
), where P̂K = �(P̂K −1, θ̂

K
). To

study the properties of these K-step estimators, it is convenient to represent
the sequence {P̂K : K ≥ 1} as the result of iterating in a fixed-point map-
ping. For arbitrary P, we define the mapping ϕ(P) ≡ �(P, θ̂(P)), where
θ̂(P) ≡ arg maxθ Q (θ , P). The mapping ϕ(P) is called the nested pseudo-
likelihood (NPL) mapping. The sequence of estimators {P̂K : K ≥ 1} can
be obtained by successive iterations in the mapping ϕ starting with the
nonparametric estimator P̂0 (i.e., for K ≥ 1, P̂K = ϕ(P̂K −1)).

Monte Carlo experiments in Aguirregabiria and Mira (2002, 2009) and
Kasahara and Shimotsu (2008a, 2009) showed that iterating in the NPL

36 The asymptotically efficient two-step estimator proposed by Pesendorfer and Schmidt-
Dengler (2008) did not address the finite-sample-bias problem. In fact, as it is well known in
the literature of covariance-structure models, the finite-sample bias of this asymptotically
optimal estimator can be significantly more severe than the standard two-step estimator
because the estimation of the optimal weighting matrix also is contaminated by the
imprecise nonparametric estimator and it contributes to increase the finite-sample bias
(see Altonji and Segal 1996 and Horowitz 1998). In the context of two-step estimation of
dynamic games, Pakes, Ostrovsky, and Berry (2007) presented Monte Carlo experiments
supporting this concern.

)

9)
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mapping can reduce significantly the finite-sample bias of the two-step esti-
mator. The Monte Carlo experiments in Pesendorfer and Schmidt-Dengler
(2008) presented a different, more mixed picture. Whereas for some of
their experiments, NPL iteration reduced the bias, in other experiments,
the bias remained constant or even increased. The Monte Carlo experi-
ments in Pesendorfer and Schmidt-Dengler (2008) showed that the NPL
iterations provide poor results in those cases in which the equilibrium that
generates the data is not Lyapunov stable. As explained herein, this is not a
coincidence. It turns out that the computational and statistical properties
of the sequence of K-step estimators depend critically on the stability of the
NPL mapping around the equilibrium in the data. Lyapunov stability of the
NPL mapping also is important for the properties of the methods proposed
so far to address unobserved heterogeneity in the estimation of dynamic
games (see Section 3.5). Therefore, it is important to analyze this issue in
more detail here.

Lyapunov Stability. We let P∗ be a fixed point of the NPL mapping such
that P∗ = ϕ (P∗). We say that the mapping ϕ is Lyapunov stable around
the fixed point P∗ if there is a neighborhood of P∗, N , such that successive
iterations in the mapping ϕ starting at P ∈N converge to P∗. A necessary
and sufficient condition for Lyapunov stability is that the spectral radius of
the Jacobian matrix ∂ϕ (P∗) /∂P′ is smaller than 1. The neighboring set N
is denoted the dominion of attraction of the fixed point P∗.37 Similarly, if
P∗ is an equilibrium of the mapping � (., θ), we say that this mapping is
Lyapunov stable around P∗ if and only if (iff) the spectral radius of the
Jacobian matrix ∂� (P∗, θ) /∂P′ is smaller than 1.

There is a relationship between the stability of the NPL mapping and
the equilibrium mapping �

(
., θ0

)
around P0 (i.e., the equilibrium that

generates the data). The Jacobian matrices of the NPL and equilibrium
mapping are related by the following expression (Kasahara and Shimotsu
2009): ∂ϕ

(
P0
)
/∂P′ = M(P0) ∂�(P0, θ0)/∂P′, where M(P0) is an idempo-

tent projection matrix.38 In single-agent dynamic-programming models,
the Jacobian matrix ∂�

(
P0, θ0

)
/∂P′ is zero (i.e., the zero Jacobian matrix

property; Aguirregabiria and Mira 2002). Therefore, for that class of mod-
els, ∂ϕ

(
P0
)
/∂P′ = 0 and the NPL mapping is Lyapunov stable around

37 The spectral radius of a matrix is the maximum absolute eigenvalue. If the mapping ϕ is
twice continuously differentiable, then the spectral radius is a continuous function of P.
Therefore, if ϕ is Lyapunov stable at P∗, for any P in the dominion of attraction of P∗, we
have that the spectral radius of ∂ϕ (P) /∂P′ also is smaller than 1.

38 The idempotent matrix M(P0) is I − �θ (� ′
θ diag {P0}−1 �θ )−1� ′

θ diag {P0}−1, where
�θ ≡ ∂�(P0, θ0)/∂θ ′.
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P0. In dynamic games, ∂�
(

P0, θ0
)
/∂P′ is not zero. However, Aguirre-

gabiria and Mira (2011) showed that a strong stability condition of P0 in
the equilibrium mapping � implies Lyapunov stability of P0 in the NPL
mapping ϕ.

Convergence of NPL Iterations. We suppose that the true equilibrium in
the population, P0, is Lyapunov stable with respect to the NPL mapping.
This implies that with probability approaching 1, as M goes to infinity, the
sample NPL mapping is stable around a consistent nonparametric estimator
of P0. Therefore, the sequence of K-step estimators converges to a limit P̂0

lim
that is a fixed point of the NPL mapping; that is, P̂0

lim = ϕ(P̂0
lim). It is possible

to show that this limit P̂0
lim is a consistent estimator of P0 (Kasahara and

Shimotsu 2009). Therefore, under Lyapunov stability of the NPL mapping,
if we begin with a consistent estimator of P0 and iterate in the NPL mapping,
we converge to a consistent estimator that is an equilibrium of the model. It
is possible to show that this estimator is asymptotically more efficient than
the two-step estimator (Aguirregabiria and Mira 2007).

Pesendorfer and Schmidt-Dengler (2010) presented an example in which
the sequence of K-step estimators converges to a limit estimator that is not
consistent. As implied by the results presented herein, the equilibrium that
generated the data in their example is not Lyapunov stable.

The concept of Lyapunov stability of the best-response mapping at an
equilibrium means that if we marginally perturb players’ strategies and then
allow players to best-respond to the new strategies, then we converge to the
original equilibrium. To us, this seems like a plausible equilibrium-selection
criterion. However, it should be clear that Lyapunov stability of an equilib-
rium is not a regularity condition but rather a testable restriction that we
can impose (or not) in our model. Ultimately, whether an unstable equi-
librium is interesting depends on the application and the researchers’ taste.
Nevertheless, at the end of this section, we present simple modified versions
of the NPL method that can address data generated from an equilibrium
that is not stable.

Reduction of Finite-Sample Bias. Kasahara and Shimotsu (2008a, 2009)
derived a second-order approximation to the bias of the K-step estimators.
They showed that the key component in this bias is the distance between
the first-step and the second-step estimators of P0 (i.e., ‖ϕ (

P̂0
) − P̂0‖). An

estimator that reduces this distance is an estimator with lower finite-sample
bias. Therefore, based on our previous discussion, the sequence of K-step
estimators is decreasing in their finite-sample bias iff the NPL mapping is
Lyapunov stable around P0 (see Lemma 2 in Kasahara and Shimotsu 2009).
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The Monte Carlo experiments in Pesendorfer and Schmidt-Dengler (2008)
illustrated this point. They implemented experiments using different Data
Generating Process (DGP) in some, the data are generated from a stable
equilibrium; in others, the data come from a nonstable equilibrium. It is
simple to verify (Aguirregabiria and Mira 2011) that the experiments in
which NPL iterations do not reduce the finite-sample bias are those in
which the equilibrium that generates the data is not Lyapunov stable.

Modified NPL Algorithms. We note that Lyapunov stability can be tested
after obtaining the first NPL iteration. Once we have obtained the two-
step estimator, we can calculate the Jacobian matrix ∂ϕ(P̂0)/∂P′ and its
eigenvalues and then check whether Lyapunov stability holds at P̂0. If the
applied researcher considers that his data may have been generated by an
equilibrium that is not stable, then it is worthwhile to compute this Jacobian
matrix and its eigenvalues. If Lyapunov stability holds at P̂0, then we know
that NPL iterations reduce the bias of the estimator and converge to a
consistent estimator.39

When the condition does not hold, the solution to this problem is not
simple. Although the researcher may choose to use the two-step estimator,
the nonstability of the equilibrium also has important negative implica-
tions on the properties of this simple estimator.40 In this context, Kasahara
and Shimotsu (2009) proposed alternative recursive estimators based on
fixed-point mappings other than the NPL that, by construction, are stable.
Iterating in these alternative mappings is significantly more costly than iter-
ating in the NPL mapping, but these iterations guarantee reduction of the
finite-sample bias and convergence to a consistent estimator.

Aguirregabiria and Mira (2011) proposed two modified versions of the
NPL algorithm that are simple to implement and that always converge to
a consistent estimator with better properties than two-step estimators. The

39 We note that stability testing followed by NPL estimation amounts to a pretest estimator,
possibly with different statistical properties than simply applying NPL estimation without
a pretest. As far as we know, the properties of this particular type of pretest estimator have
not been studied yet in this literature.

40 Nonstability of the NPL mapping at P0 implies that the asymptotic variance of the two-
step estimator of P0 is larger than asymptotic variance of the nonparametric reduced-form
estimator. To see this, we note that the two-step estimator of CCPs is P̂1 = ϕ(P̂0); applying
the delta method, we have that Var (P̂1) = [∂ϕ

(
P0
)
/∂P′] Var (P̂0) [∂ϕ

(
P0
)
/∂P′]′. If

the spectral radius of ∂ϕ
(

P0
)
/∂P′ is greater than 1, then Var (P̂1) > Var (P̂0). This is

a puzzling result because the estimator P̂0 is nonparametric, whereas the estimator P̂1

exploits most of the structure of the model. Therefore, the nonstability of the equilibrium
that generates the data is an issue for this general class of two-step or sequential estimators.
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first modified-NPL algorithm applies to dynamic games. The first NPL iter-
ation is standard but, in every successive iteration, best-response mappings
are used to update guesses of each player’s own future behavior without
updating beliefs about the strategies of the other players. This algorithm
always converges to a consistent estimator, even if the equilibrium gener-
ating the data is not stable and it reduces monotonically the asymptotic
variance and the finite-sample bias of the two-step estimator. The second
modified-NPL algorithm applies to static games and it consists in the appli-
cation of the standard NPL algorithm, to both the best-response mapping
and the inverse of this mapping. If the equilibrium that generates the data
is unstable in the best-response mapping, it should be stable in the inverse
mapping. Therefore, the NPL applied to the inverse mapping should con-
verge to the consistent estimator and should have the largest value of the
pseudolikelihood that the estimator to which we converge when applying
the NPL algorithm to the best-response mapping. Aguirregabiria and Mira
(2010) illustrated the performance of these estimators using the examples
in Pesendorfer and Schmidt-Dengler (2008, 2010).

3.5 Addressing Unobserved Heterogeneity

So far, we maintain the assumption that the only unobservables for the
researcher are the private-information shocks that are i.i.d. over firms, mar-
kets, and time. In most applications in IO, this assumption is not realistic
and it can be rejected easily by the data. Markets and firms are hetero-
geneous in terms of characteristics that are payoff-relevant for firms but
unobserved to the researcher. Not accounting for this heterogeneity may
generate significant biases in parameter estimates and in our understanding
of competition in the industry. For instance, Aguirregabiria and Mira (2007)
and Collard-Wexler (2006) presented empirical applications of dynamic
games and compared the estimation results with and without controlling
for unobserved market heterogeneity. They found that the model without
unobserved market heterogeneity implies estimates of strategic interaction
between firms (i.e., competition effects) that are close to zero – or even
have the opposite sign than the one expected under competition. In both
applications, including unobserved heterogeneity in the models results in
estimates that show significant and strong competition effects.

Aguirregabiria and Mira (2007); Aguirregabiria, Mira, and Roman
(2007); and Arcidiacono and Miller (2011) proposed methods for the esti-
mation of dynamic games that allow for persistent unobserved heterogene-
ity in players or markets. Here, we concentrate on the case of permanent
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unobserved market heterogeneity in the profit function. Arcidiacono and
Miller (2011) proposed a method that combines the NPL method, presented
herein, with an expectation-maximization (EM) algorithm, and they con-
sidered a more general framework that included unobserved heterogeneity
that can vary over time according to the Markov chain process and that can
enter in both the payoff function and the transition of state variables.41

We consider our entry – exit model, but now the profit of firm i , if active
in market m, includes a term ξm that is unobserved to the researcher:

�imt = Hmt
∑N−1

n=0 1
{∑

j 	=i a j mt = n
}

θV P
i,n − θ F C

i

− (1 − simt)θ
E C
i − σ ξ i ξm − εimt (33)

where σ ξ i is a parameter and ξm is a time-invariant “random effect” that is
common knowledge to the players but unobserved to the researcher.42 The
distribution of this random effect has the following properties:

(A.1) It has a discrete and finite support
{
ξ 1, ξ 2, . . . , ξ L

}
, each value in

the support of ξ represents a “market type,” and we index market
types by � ∈ {1, 2, . . . , L }.

(A.2) It is i.i.d. over markets with probability-mass function λ� ≡
Pr(ξm = ξ�).

(A.3) It does not enter into the transition probability of the observed
state variables (i.e., Pr(xmt+1 | xmt , amt , ξm) = Fx (xmt+1 | xmt ,
amt)).

Without loss of generality, ξm has mean zero and unit variance because
the mean and the variance of ξm are incorporated in the parameters θ F C

i

and σ ξ i , respectively. Also, without loss of generality, the researcher knows
the points of support

{
ξ� : � = 1, 2, . . . , L

}
although the probability mass

function {λ�} is unknown.
Assumptions (A.1) and (A.2) define a finite-mixture model.43 Assumption

(A.1) is common when dealing with permanent unobserved heterogeneity
in dynamic structural models. The discrete support of the unobservable

41 In fact, the framework that we present herein can be generalized to include unobserved
market heterogeneity that varies over time according to a Markov chain with finite support.

42 In this example, we include unobserved heterogeneity only in the fixed cost. However, the
estimation methods presented here can address richer forms of unobserved heterogeneity
(e.g., in fixed costs, variable profits, and entry costs).

43 A finite mixture is a general class of semiparametric model for distribution of a random
variable that is convenient for its flexibility and simplicity (McLachlan and Peel 2000). In
econometrics, the influential work of Heckman and Singer (1984) made finite mixtures a
useful tool to incorporate time-invariant unobserved heterogeneity in panel data and dura-
tion models. More closely related to the literature in this paper, Wolpin et al. estimated
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implies that the contribution of a market to the likelihood (or pseudolikeli-
hood) function is a finite mixture of likelihoods under the different possible
best responses that we would have for each possible market type. With
continuous support, we would have an infinite mixture of best responses,
which could complicate significantly the computation of the likelihood.
Nevertheless, as we illustrate herein, using a pseudolikelihood approach
and a convenient parametric specification of the distribution of ξm simpli-
fies this computation such that we can consider many values in the support
of this unobserved variable at a low computational cost. Assumption (A.2)
also is standard when addressing unobserved heterogeneity. Unobserved
spatial correlation across markets does not generate inconsistency of the
estimators that we present here because the likelihood equations that define
the estimators are still valid moment conditions under spatial correlation.
Incorporating spatial correlation in the model, if present in the data, would
improve the efficiency of the estimator but at a significant computational
cost. Assumption (A.3) can be relaxed; in fact, the method by Arcidiacono
and Miller (2011) addressed unobserved heterogeneity in both payoffs and
transition probabilities.

Each market type � has its own equilibrium mapping (with a different
level of profits given ξ�) and its own equilibrium. We let P� be a vector
of strategies (i.e, CCPs) in market-type �: P� ≡ {Pi�(xt) : i = 1, 2, . . . , N;
xt ∈ X }.44 It is straightforward to extend the description of an equilib-
rium mapping in CCPs to this model. A vector of CCPs P� is a MPE
for market type � iff for every firm i and every state xt we have that

Pi�(xt) = �
(

z̃P�

i (xt , ξ�) θ i + ẽP�

i (xt , ξ�)
)

, where now the vector of struc-

tural parameters θ i is
{
θV P

i,0 , . . . , θV P
i, N−1, θ F C

i , θ E C
i , σ ξ i

}
that includes σ ξ i

and the vector z̃P�

i (xt , ξ�) has a similar definition as before, with the only
difference that it has one more component associated with −ξ�. Because
the points of support

{
ξ� : � = 1, 2, . . . , L

}
are known to the researcher,

he can construct the equilibrium mapping for each market type.
We let λ be the vector of parameters in the probability-mass function

of ξ (i.e., λ≡ {λ� : � = 1, 2, . . . , L }), and we let P be the set of CCPs for
every market type, {P� : � = 1, 2, . . . , L }. The (conditional) pseudolog-
likelihood function of this model is Q(θ ,λ, P) = ∑M

m=1 log Pr(am1, am2,

dynamic discrete-choice structural models with a rich structure of unobserved hetero-
geneity with a finite-mixture structure (Eckstein and Wolpin 1990; Keane and Wolpin
1997).

44 The introduction of unobserved market heterogeneity also implies that we can relax the
assumption of only “a single equilibrium in the data” to allow for different market types
to have different equilibria.
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. . . , amT | xm1, xm2, . . . , xmT ; θ ,λ, P). We can write this function as∑M
m=1 log qm(θ ,λ, P), where qm(θ ,λ, P) is the contribution of market m

to the pseudolikelihood:

qm(θ , λ, P)

=
L∑

�=1
λ�|xm1

[∏
i, t

�
(

z̃P�

im�t θ i + ẽP�

im�t

)aimt

�
(
−z̃P�

im�t θ i − ẽP�

im�t

)1−aimt

]
(34)

where z̃P�

im�t ≡ z̃P�

i (xmt , ξ�), ẽP�

im�t ≡ ẽP�

i (xmt , ξ�), and λ�|x is the conditional
probability Pr(ξm = ξ�|xm1 = x). The conditional-probability distribution
λ�|x is different than the unconditional distribution λ�. In particular, ξm

is not independent of the predetermined endogenous state variables that
represent market structure. For instance, we expect a negative correlation
between the indicators of incumbent status, simt , and the unobserved com-
ponent of the fixed cost ξm (i.e., markets in which it is more costly to
operate tend to have a smaller number of incumbent firms). This is the
so-called initial-conditions problem (Heckman 1981). In short panels (for
T relatively small), not considering this dependence between ξm and xm1

can generate significant biases, similar to those associated with ignoring
the existence of unobserved market heterogeneity. There are different ways
to address the initial-conditions problem in dynamic models (Heckman
1981). One possible approach is to derive the joint distribution of xm1 and
ξm implied by the equilibrium of the model. That is the approach proposed
and applied in Aguirregabiria and Mira (2007) and Collard Wexler (2006).
We let pP� ≡ {pP�(xt) : xt ∈ X } be the ergodic or steady-state distribution
of xt induced by the equilibrium P� and the transition Fx . This stationary
distribution can be obtained simply as the solution to the following system
of linear equations: For every value xt ∈ X , pP�(xt) = ∑

xt−1∈X pP�(xt−1)

F P�
x (xt | xt−1) or, in vector form, pP� = FP�

x pP� subject to pP�′1 = 1. Given
the ergodic distributions for the L market types, we can apply Bayes’, rule
to obtain:

λ�|xm1 = λ� pP�(xm1)
L∑

�′=1
λ�′ pP�′ (xm1)

(35)

We note that given the CCPs {P�}, this conditional distribution does not
depend on parameters in the vector θ , only on the distribution λ. Given this
expression for the probabilities {λ�|xm1}, we have that the pseudolikelihood
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in Equation (34) depends on only the structural parameters θ and λ and
the incidental parameters P.

For the estimators discussed here, we maximize Q(θ ,λ, P) with respect to
(θ ,λ) for given P. Therefore, the ergodic distributions pP� are fixed during
this optimization. This implies a significant reduction in the computational
cost associated with the initial-conditions problem. Nevertheless, in the lit-
erature of finite-mixture models, it is well known that optimization of the
likelihood function with respect to the mixture probabilities λ is a com-
plicated task because the problem is plagued with many local maxima and
minima. To address this problem, Aguirregabiria and Mira (2007) intro-
duced an additional parametric assumption on the distribution of ξm that
simplifies significantly the maximization of Q(θ ,λ, P) for fixed P. They
assumed that the probability distribution of unobserved market hetero-
geneity is such that the only unknown parameters for the researcher are the
mean and the variance, which are included in θ F C

i and σ ξ i , respectively.
Therefore, they assumed that the distribution of ξm (i.e., the points of sup-
port and the probabilities λ�) are known to the researcher. For instance, we
may assume that ξm has a discretized standard normal distribution with
an arbitrary number of points of support L . Under this assumption, the
pseudolikelihood function is maximized only with respect to θ for given P.
Avoiding optimization with respect to λ simplifies importantly the compu-
tation of the different estimators described herein.

NPL Estimator. As defined previously, the NPL mapping ϕ(.) is the com-
position of the equilibrium mapping and the mapping that provides the
maximand in θ to Q(θ , P) for given P. That is, ϕ(P) ≡ �(θ̂(P), P), where
θ̂(P) ≡ arg maxθ Q(θ , P). By definition, an NPL fixed point is a pair (θ̂ , P̂)
that satisfies two conditions: (1) θ̂ maximizes Q(θ , P̂); and (2) P̂ is an equi-
librium associated to θ̂ . The NPL estimator is defined as the NPL fixed point
with the maximum value of the likelihood function. The NPL estimator is
consistent under standard regularity conditions (Aguirregabiria and Mira
2007; Proposition 2).

When the equilibrium that generates the data is Lyapunov stable, we
can compute the NPL estimator using a procedure that iterates in the NPL
mapping (see Section 3.4) to obtain the sequence of K-step estimators (i.e.,
NPL algorithm). The main difference is that now we must calculate the
steady-state distributions p(P�) to address the initial-conditions problem.
However, the pseudolikelihood approach also reduces significantly the cost
of addressing the initial-conditions problem. This NPL algorithm proceeds
as follows. We start with L arbitrary vectors of players’-choice probabilities,
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one for each market type: {P̂0
� : � = 1, 2, . . . , L }. Then, we perform the

following steps:

Step 1: For every market type, we obtain the steady-state distributions
and the probabilities {λ�|xm1}.

Step 2: We obtain a PML estimator of θ as θ̂
1 = arg maxθ Q(θ , P̂0}).

Step 3: We update the vector of players’-choice probabilities using the
best-response probability mapping. That is, for market type �,

firm i , and state x, P̂ 1
i�(x) = �(z̃

P̂0
�

i (x, ξ�)θ̂
1
i + ẽ

P̂0
�

i (x, ξ�)).
Step 4: If, for every type �, ||P̂1

� − P̂0
�|| is smaller than a predetermined

small constant, then we stop the iterative procedure and keep θ̂
1

as a candidate estimator; otherwise, we repeat Steps 1 through 4
using P̂1 instead of P̂0.

The NPL algorithm, on convergence, finds an NPL fixed point. To guar-
antee consistency, the researcher needs to start the NPL algorithm from
different CCPs in case there are multiple NPL fixed points. This situation is
similar to using a gradient algorithm, designed to find a local root, to obtain
an estimator that is defined as a global root. Of course, this global-search
aspect of the method renders it significantly more costly than the applica-
tion of the NPL algorithm in models without unobserved heterogeneity.
This is the additional computational cost that we must pay for dealing with
unobserved heterogeneity. We note, however, that this global search can be
parallelized in a computer with multiple processors.

Arcidiacono and Miller (2011). They extended this approach in several
interesting and useful ways. Their paper made two main contributions to
the literature of dynamic discrete-choice structural models. The first contri-
bution is the finite-state representation of optimal-decision rules in dynamic
discrete-choice models. We suppose that the model is such that there are
two sequences of agents’ choices, sequence A1 = {a1

t , a1
t+1, . . . , a1

t+k} and
sequence A2 = {a2

t , a2
t+1, . . . , a2

t+k} with k relatively small (e.g., k = 1) that
satisfy the following conditions: (1) the sequences have different initial
choices, a1

t 	= a2
t ; and (2) the sequences lead to the same distribution of the

state variables at period t + k + 1. Under these conditions and a General-
ized Extreme Value (GEV) distribution of the unobservable ε′s , there is a
simple transformation of players’ best-response functions between periods
t and t + k such that this transformation provides a closed-form expression
that includes only structural parameters and conditional-choice probabili-
ties at the states visited between periods t and t + q . Using this expression,
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we can define a “new” best response or equilibrium mapping in the space
of conditional-choice probabilities. This mapping is much simpler to eval-
uate than our original mapping because it involves probabilities at only
a few states. For instance, in the well-known bus-replacement model in
Rust (1987), we can obtain the following “equilibrium” condition for the
probability of bus replacement: P (x) = �∗(θ , P (0), P (x + 1)), where x
represents the cumulative mileage since the last replacement and �∗ is the
finite-state representation of the equilibrium mapping:

�∗(θ1, P (0), P (x + 1))

= exp {−θ1x − θ2 + δ ln P (x + 1) − δ ln P (0) }
1 + exp {−θ1x − θ2 + δ ln P (x + 1) − δ ln P (0) } (36)

In this example, the evaluation of the equilibrium mapping �∗ at state x
involves only CCPs P (0) and P (x + 1) and it does not require any matrix
inversion to compute the inclusive values z̃P and ẽP. The new equilibrium
conditions can be used to define a pseudolikelihood in a similar way as
described previously. Arcidiacono and Miller (2011) showed that condi-
tions (1) and (2) are satisfied in a class of dynamic decision models that
includes but it is not limited to optimal stopping problems. We note that
the finite-state representation applies to models with or without permanent
unobserved heterogeneity.

A second contribution is that Arcidiacono and Miller (2011) proposed
a new algorithm that reduces substantially the complexity in the optimiza-
tion of the likelihood function with respect to the distribution of the finite
mixture. Their algorithm combined the NPL method with an EM algo-
rithm. They considered a general class of finite-mixture models in which
unobserved heterogeneity may enter in both the payoff function and the
transition of state variables; it also can be time-invariant or follow a Markov
chain. We note that Lyapunov stability of each equilibrium type that gener-
ates the data is a necessary condition for the NPL and for the Arcidiacono –
Miller algorithms to converge to a consistent estimator.

Kasahara and Shimotsu (2008b). The estimators of finite-mixture mod-
els in Aguirregabiria and Mira (2007) and Arcidiacono and Miller (2011)
considered that the researcher cannot obtain consistent nonparametric esti-
mates of market-type CCPs {P0

�}. Kasahara and Shimotsu (2008b), based
on previous work by Hall and Zhou (2003), derived sufficient conditions
for the nonparametric identification of market-type CCPs, {P0

�}, and the
probability distribution of market types, {λ0

�}. Given the nonparametric
identification of market-type CCPs, it is possible to estimate structural
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parameters using a two-step approach similar to that described herein.
However, this two-step estimator has three limitations that do not appear
in two-step estimators without unobserved market heterogeneity. First, the
conditions for nonparametric identification of P0 may not hold. Second,
the nonparametric estimator in the first step is a complex estimator from a
computational point of view. In particular, it requires that the minimization
of a sample criterion function with respect to the large-dimensional object
P.45 This is, in fact, the type of computational problem that we want to
avoid by using two-step methods instead of standard ML or GMM. Finally,
the finite-sample bias of the two-step estimator can be significantly more
severe when P0 incorporates unobserved heterogeneity and we estimate it
nonparametrically.

3.6 Reducing the State Space

Although two-step and sequential methods are computationally much less
expensive than full-solution-estimation methods, they still are impractical
for applications in which the dimension of the state space is large. The cost
of computing exactly the matrix of present values WP

z, i increases cubically
with the dimension of the state space. In the context of dynamic games,
the dimension of the state space increases exponentially with the number
of heterogeneous players. Therefore, the cost of computing the matrix of
present values may become intractable even for a relatively small number
of players.

A simple approach to deal with this curse of dimensionality is to assume
that players are homogeneous and the equilibrium is symmetric. For
instance, in our dynamic game of market entry–exit, when firms are het-
erogeneous, the dimension of the state space is |H| ∗ 2N , where |H| is the
number of values in support of market size Ht . To reduce the dimensionality
of the state space, we must assume that (1) only the number of competitors
(and not their identities) affects the profit of a firm; (2) firms are homoge-
neous in their profit function; and (3) the selected equilibrium is symmetric.
Under these conditions, the payoff-relevant state variables for a firm i are
{Ht , si t , nt−1}, where si t is its own incumbent status and nt−1 is the total
number of active firms at period t − 1. The dimension of the state space is
|H| ∗ 2 ∗ (N + 1) that increases only linearly with the number of players.46

45 Furthermore, the criterion function is not globally concave/convex and its optimization
requires a global search.

46 This is a particular example of the “exchangeability assumption” proposed by Pakes and
McGuire (2001).
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It is clear that the assumption of homogeneous firms and symmetric equi-
librium can reduce substantially the dimension of the state space, and it can
be useful in empirical applications. Nevertheless, there are many applica-
tions in which this assumption is too strong (e.g., in applications in which
firms produce differentiated products).

To address this issue, Hotz, Miller, Sanders, and Smith (1994) proposed an
estimator that uses Monte Carlo simulation techniques to approximate the
values WP

z, i . Bajari, Benkard, and Levin (2007) extended this method
to dynamic games and models with continuous-decision variables. This
approach proved useful in some applications; nevertheless, it is important
to be aware that in those applications with large state spaces, simulation
error can be sizable and can induce biases in the estimation of structural
parameters. In those cases, it is worthwhile to reduce the dimension of the
state space by making additional structural assumptions. This is the general
idea in the inclusive-value approach discussed in Section 2.0, which can
be extended to the estimation of dynamic games. Different versions of this
idea were proposed and applied by Nevo and Rossi (2008), Macieira (2007),
Rossi (2009), and Aguirregabiria and Ho (2012).

To present the main ideas, we consider here a dynamic game of quality
competition in the spirit of Pakes and McGuire (1994): the differentiated-
product version of the Ericson and Pakes (1995) model. There are N firms in
the market that we index by i and B brands or differentiated products that we
index by b. The set of brands sold by firm i is Bi ⊂ {1, 2, . . . , B}. Demand
is given by a model similar to that in Section 2.1.1: Consumers choose one
of the B products offered in the market or the outside good. The utility that
consumer h obtains from purchasing product b at time t is Uhbt = xbt − α

pbt + uhbt , where xbt is the quality of the product, pbt is the price, α is
a parameter, and uhbt represents consumer-specific taste for product b.
These idiosyncratic errors are i.i.d. over (h, b, t) with Type I extreme-value
distribution. If the consumer decides to not purchase any of the goods,
she chooses the outside option that has a mean utility normalized to zero.
Therefore, the aggregate demand for product b is qbt = Ht exp{xbt − α

pbt} [1 + ∑B
b′=1 exp{xb′t − α pb′t}]−1, where Ht represents market size at

period t. The market structure of the industry at time t is characterized
by the vector xt = (Ht , x1t , x2t , . . . , xBt). Every period, firms take as given
current market structure and decide simultaneously their current prices and
their investment in quality improvement. The one-period profit of firm i
can be written as:

�i t = ∑
b∈Bi

( pbt − mcb) qbt − F Cb − (cb + εbt) abt (37)
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where abt ∈ {0, 1} is the binary variable that represents the decision to
invest in quality improvement of product b; mcb , F Cb , and cb are structural
parameters that represent marginal cost, fixed operating cost, and quality
investment cost for product b, respectively; and εbt is an i.i.d. private-
information shock in the investment cost. Product quality evolves according
to a transition probability fx (xbt+1|abt , xbt). For instance, in the Pakes–
McGuire (2001) model, xbt+1 = xbt − ζ t + abt vbt , where ζ t and vbt are
two independent and non-negative random variables that are i.i.d. over
(b, t).

In this model, price competition is static. The Nash–Bertrand equilib-
rium determines prices and quantities as functions of market structure xt

(i.e., p∗
b (xt) and q∗

b (xt)). Firms’ quality choices are the result of a dynamic
game. The one-period profit function of firm i in this dynamic game is
�i (ai t , xt) = ∑

b∈Bi
( p∗

i (xt) − mcb) q∗
b (xt) − F Cb − (cb + εbt) abt , where

ai t ≡ {abt : b ∈ Bi }. This dynamic game of quality competition has the same
structure as the game described in Section 3.2, and it can be solved and esti-
mated using the same methods. However, the dimension of the state space
increases exponentially with the number of products, and the solution and
estimation of the model becomes impractical even when B is not too large.

We define the cost-adjusted inclusive value of firm i at period t as
ωi t ≡ log[

∑
b∈Bi

exp{xbt − α mcb}]. This value is closely related to the
inclusive value discussed in Section 2.2.4. It can be interpreted as the
net-quality level, or a value-added of sorts, that the firm is able to pro-
duce in the market. Under the assumptions of the model, the variable
profit of firm i in the Nash–Bertrand equilibrium can be written as a
function of the vector of inclusive values ωt ≡ (ω1t , ω2t , . . . , ωNt) ∈ 
;
that is

∑
b∈Bi

( p∗
i (xt) − mcb) q∗

b (xt) = vpi (ωt). Therefore, the one-period
profit �i t is a function �̃i (ai t , ωt). The following assumption is similar
to Assumption A2 in Section 2.0 and it establishes that given vector ωt ,
the remainder of the information contained in the xt is redundant for the
prediction of future values of ω.

Assumption: The transition probability of the vector of inclusive values ωt

from the point of view of a firm (i.e., conditional on a firm’s choice) is such
that Pr(ωt+1 | ai t , xt) = Pr(ωt+1 | ai t , ωt).

Under these assumptions, ωt is the vector of payoff-relevant state variables
in the dynamic game. The dimension of the space 
 increases exponentially
with the number of firms but not with the number of brands. Therefore,
the dimension of 
 can be much smaller than the dimension of the original
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state space of xt in applications in which the number of brands is large
relative to the number of firms.

Of course, the assumption of sufficiency of ωt in the prediction of next-
period ωt+1 is not trivial. To justify it, we can place strong restrictions on
the stochastic process of quality levels. Alternatively, it can be interpreted
in terms of limited information, and/or bounded rationality. For instance,
a possible way to justify this assumption is that firms face the same type of
computational burdens that we do. Limiting the information that they use
in their strategies reduces firms’ computational costs of calculating a best
response.

We note that the dimension of the space of ωt still increases exponen-
tially with the number of firms. To deal with this curse of dimensionality,
Aguirregabiria and Ho (2012) considered a stronger inclusive value/
sufficiency assumption. We let vpit be the variable profit of firm i at period t.

Assumption: Pr(ωi t+1, vpit+1 | ai t , xt) = Pr(ωi t+1, vpit+1 | ai t , ωi t , vpit).

Under this assumption, the vector of payoff-relevant state variables in the
decision problem of firm i is (ωi t , vpit) and the dimension of the space of
(ωi t , vpit) does not increase with the number of firms.

3.7 Counterfactual Experiments with Multiple Equilibria

One of the attractive features of structural models is that they can be used
to predict the effects of new counterfactual policies. This is a challenging
exercise in a model with multiple equilibria. Under the assumption that our
data are generated by a single equilibrium, we can use the data to identify
which of the multiple equilibria is the one that we observe. However, even
under this assumption, we still do not know which equilibrium will be
selected when the values of the structural parameters are different than
those we estimated from the data. For some models, a possible approach to
address this issue is to calculate all of the equilibria in the counterfactual
scenario and then draw conclusions that are robust to whatever equilibrium
is selected. However, this approach is of limited applicability in dynamic
games of oligopoly competition because the different equilibria typically
provide contradictory predictions for the effects we want to measure.

For instance, Aguirregabiria and Ho (2012) used their estimated dynamic
game of airline-network competition to disentangle the contribution of
demand, cost, and strategic factors to explain airlines’ propensity to oper-
ate using hub-and-spoke networks. To measure the relative contribution of
each factor, the authors implemented four counterfactual experiments in
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which they shut down (i.e., set to zero) different structural parameters of
the model such as hub-size effects in variable profits, in fixed costs, and
in entry costs (i.e., Experiments 1 through 3) and the entry deterrence
motive of hub-and-spoke networks (i.e., Experiment 4). For each scenario,
they compared the actual airlines’ networks observed in the data with the
airlines’ networks that result from “the” equilibrium in counterfactual sce-
nario. When implementing each counterfactual experiment, the authors
should have dealt with multiplicity of equilibria. The dynamic game has
many equilibria in the counterfactual scenario and some of these equilibria
implied very different airline networks. Which of these equilibria should we
select to compare it with the actual equilibrium in the data?

Here, we describe a simple homotopy method that was proposed in
Aguirregabiria (2012) and applied in the empirical application in
Aguirregabiria and Ho (2012). Under the assumption that the equilibrium-
selection mechanism, which is unknown to the researcher, is a smooth
function of the structural parameters, we showed how to obtain a Taylor
approximation to the counterfactual equilibrium. Despite the fact that the
equilibrium-selection function is unknown, a Taylor approximation of that
function, evaluated at the estimated equilibrium, depends on objects that
the researcher knows.

We let �(θ , P) be the equilibrium mapping such that an equilibrium
associated with θ can be represented as a fixed point P = �(θ , P). We
suppose that there is an equilibrium-selection mechanism in the population
under study, but we do not know that mechanism. We let π(θ) be the
selected equilibrium given θ . The approach here is agnostic with respect to
this equilibrium-selection mechanism: It assumes only that there is such a
mechanism and that it is a smooth function of θ . Because we do not know
the mechanism, we do not know the form of the mapping π(θ) for every
possible θ . However, we know that the equilibrium in the population, P0,
and the vector of the structural parameters in the population, θ0, belong to
the graph of that mapping (i.e., P0 = π(θ0)).

We let θ∗ be the vector of parameters under the counterfactual experiment
that we want to analyze. We want to know the counterfactual equilibrium
π(θ∗) and compare it to the factual equilibrium π(θ0). We suppose that
� is twice continuously differentiable in θ and P . The following is the key
assumption to implement the homotopy method described here.

Assumption: The equilibrium-selection mechanism is such that π(.) is a
continuous-differentiable function within a convex subset of � that includes
θ0 and θ∗.
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That is, the equilibrium-selection mechanism does not “jump” among the
possible equilibria when we move over the parameter space from θ0 to
θ∗. This seems a reasonable condition when the researcher is interested in
evaluating the effects of a change in the structural parameters but “keeping
constant” the same equilibrium type as the one that generates the data.

Under these conditions, we can make a Taylor approximation to π(θ∗)
around θ0 to obtain:

π(θ∗) = π
(
θ0
) + ∂π

(
θ0
)

∂θ ′
(
θ∗ − θ0

) + O
(∥∥θ∗ − θ0

∥∥2
)

(38)

We know that π
(
θ0
) = P0. Furthermore, by the implicit-function theorem,

∂π
(
θ0
)
/∂θ ′ = ∂�(θ 0, P0)/∂θ ′ +∂�(θ0, P0)/∂P′ ∂π

(
θ0
)
/∂θ ′. If P0 is not

a singular equilibrium, then I − ∂�(θ 0, P0)/∂P′ is not a singular matrix
and ∂π

(
θ0
)
/∂θ ′ = (I − ∂�(θ 0, P0)/∂P′)−1 ∂�(θ 0, P0)/∂θ ′. Solving this

expression in the Taylor approximation, we have the following approxima-
tion to the counterfactual equilibrium:

P̂∗ = P̂0 +
(

I − ∂�(θ̂
0
, P̂

0
)

∂P′

)−1
∂�(θ̂

0
, P̂

0
)

∂θ ′
(
θ∗ − θ̂

0
)

(39)

where (θ̂
0
, P̂0) represents our consistent estimator of (θ0, P0). It is clear that

P̂∗ can be computed given the data and θ∗. Under our assumptions, P̂∗ is a
consistent estimator of the linear approximation to π(θ∗).

As in any Taylor approximation, the order of magnitude of the error
depends on the distance between the value of the structural parameters
in the factual and counterfactual scenarios. Therefore, this approach can
be inaccurate when the counterfactual experiment implies a substantial
change in some of the parameters. For these cases, we can combine the Tay-
lor approximation with iterations in the equilibrium mapping. We suppose
that P∗ is a Lyapunov stable equilibrium. We also suppose that the Taylor
approximation P̂∗ belongs to the dominion of attraction of P∗. Then, by
iterating in the equilibrium mapping �(θ∗, .) starting at P̂∗, we obtain the
counterfactual equilibrium P∗. We note that this approach is substantially
different to iterating in the equilibrium mapping �(θ∗, .) starting with the
equilibrium in the data P̂0. This approach returns the counterfactual equi-
librium P∗ iff P̂0 belongs to the dominion of attraction of P∗. This condition
is stronger than the one that establishes that the Taylor approximation P̂∗

belongs to the dominion of attraction of P∗.47

47 Aguirregabiria (2012) provided examples in which iterating in �(θ∗, .) starting from
P̂0 returns an equilibrium that is not π(θ∗) (i.e., it is not of the same “type” as the
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4.0 Concluding Comments

In this chapter, we survey several challenges that we consider particularly
important for applied work in estimation of dynamic demand and dynamic
games. Our discussions of the two areas are mostly separate, reflecting to a
large extent that these two literatures developed almost separately. In our
view, an interesting area for future work is better integration and cross
fertilization. We see several directions in which future work might proceed.

Further Model Simplification. Although we discuss several ways to simplify
the computation and estimation of the models, the methods and computa-
tion are still complex and have limited applications. For demand for storable
goods, Hendel and Nevo (2010) offered an alternative simple model that
can be estimated easily using aggregate data. They made several nontriv-
ial assumptions; the most important for simplifying the computation is
that consumers can store at most for a known and predetermined number
of periods. With these assumptions, they showed that the storable-goods
model is identified from aggregate data and does not require solving the
dynamic-programming problem. Thus, the computational cost is of the
same order as that of a static demand model. We think this type of careful
economic modeling is potentially useful in both the modeling of dynamic
demand and dynamic games.

Integration of Dynamic Demand and Supply Models. Another promising
avenue for future research is the combination of dynamic demand and
dynamic supply. Most of the literature on estimation of dynamic games
concentrate on dynamics in supply but ignores dynamics in demand, and
most of the literature on dynamic demand does not allow for dynamic
supply.48 This obviously is an important limitation in the current state of
the literature. As we move toward combining the two areas, we believe that
the modeling simplifications discussed in the previous paragraph would be
a particularly useful way to proceed. For example, with a simpler demand
model, Hendel and Nevo (2011) were able to add a supply side to the
dynamic demand.

Identification. Our discussion of identification of dynamic demand was
informal, which reflects the state of the literature. A productive future
avenue for research is to formally derive identification conditions, especially
for estimation using aggregate data.

equilibrium P0), whereas the iterations starting at P̂∗ converge to the desired counterfactual
equilibrium.

48 Goettler and Gordon (2012) is one of the few exceptions.
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Estimation Methods. We see several directions for future work in estima-
tion methods. First, estimation based on CCP has been applied successfully
elsewhere but has been used rarely for estimating dynamic demand, in large
part because the first generation of these estimators could not allow for
persistent unobserved heterogeneity. With the emergence of new estimators
(see Section 3.5), we suspect that we will see more use of these methods
in estimation of dynamic demand.49 Second, Bayesian estimation methods
are particularly efficient from a computational point of view when multiple
integration is cheaper than optimization. As shown for some of the estima-
tors presented herein, optimization is particularly costly because it requires
a global search over a large dimensional space. This seems to be a good sce-
nario to which to apply Bayesian estimation methods. Although Bayesian
methods were proposed for the estimation of single-agent dynamic struc-
tural models (Norets 2009; Imai, Nair, and Ching 2009; Norets and Tang
2010), this type of method has not been extended yet to address games with
multiple equilibria.

Multiple Equilibria. We see a couple of directions for future work here.
First, in the macroeconometric literature of Dynamic Stochastic General
Equilibrium (DSGE) models, the standard approach to address multiple
equilibria is to linearize the equilibrium mapping.50 This seems a reasonable
approach when we consider that multiple equilibria do not comprise an
important feature of the model that is needed to explain the data but is
more of a nuisance associated to the nonlinearity of the model. Although the
idea of linearizing the equilibrium mapping is related to two-step methods
presented herein, it is a different approach and it will be interesting to explore
it. Alternatively, instead of treating multiple equilibrium as a nuisance, we
might consider whether it actually may aid in identification. Sweeting (2009)
exploited multiple equilibria in a static entry game to gain identification.51

This idea has not been explored for dynamic games.

49 The recent paper by J. Lee (2011) is an important step in this direction. Lee proposed a
nested pseudo GMM algorithm, in the spirit of the NPL method, for the estimation of the
static Berry-Levinsohn-Pakes (BLP) model of demand. He showed that the zero Jacobian
property in Aguirregabiria and Mira (2002) holds in this class of models. Based on this
result, Lee showed that his nested pseudo GMM algorithm has good computational and
statistical properties in the estimation of the static BLP model. The extension of this result
to dynamic versions of the BLP model is an interesting and promising area for future
research.

50 See the survey on the econometrics of DSGE models by Fernandez-Villaverde (2010)
and the references there. Section 4.1 of that survey describes the linearization (or log-
linearization) of equilibrium conditions as the most common approach for approximating
the solution and likelihood function of DSGE models.

51 See also de Paula and Tang (2010).
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Strategic Uncertainty and Beliefs out of Equilibrium. If the researcher
believes that multiplicity of equilibria is a real issue in competition in
actual markets, then firms may face significant strategic uncertainty in the
sense that they may not know the strategies that other firms are playing.
This strategic uncertainty can be particularly important in the context of
oligopoly competition. Firms tend to be secretive about their own strategies,
and it can be in their own interest to hide or even misrepresent them.
The identification and estimation of dynamic oligopoly games when firms’
beliefs are out of equilibrium is an interesting area of further research.
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Dubè, J.-P., J. Fox, and C.-L. Su (2012), “Improving the Numerical Performance of
BLP Static and Dynamic Discrete Choice Random Coefficients Demand Estimation,”
Econometrica, forthcoming.

Dunne, T., S. Klimek, M. Roberts, and Y. Xu (2009), “Entry, Exit and the Determi-
nants of Market Structure,” Department of Economics, Pennsylvania State University,
manuscript.

Eckstein, Z., and K. I. Wolpin (1990), “Estimating a Market Equilibrium Search Model
from Panel Data on Individuals,” Econometrica, 58(4), 783–808.

Eichenbaum, M., N. Jaimovich, and S. Rebelo (2008), “Reference Prices and Nominal
Rigidities,” NBER, Working Paper No. 13829.

Einav, L. (2009), “Not All Rivals Look Alike: An Empirical Model for Discrete Games
with Asymmetric Rivals,” Economic Inquiry, 48(2), 369–90.

Einav, L., E. Leibtag, and A. Nevo (2010), “Recording Discrepancies in Nielsen Homescan
Data: Are They Present and Do They Matter?,” Quantitative Marketing and Economics,
8(2), 207–39.

Erdem, T., S. Imai, and M. P. Keane (2003), “Brand and Quantity Choice Dynamics
under Price Uncertainty,” Quantitative Marketing and Economics 1, 5–64.

Erdem, T., M. Keane, S. Oncu, and J. Strebel (2005), “Learning about Computers: An
Analysis of Information Search and Technology Choice,” Quantitative Marketing and
Economics, 3, 207–46.

Ericson, R., and A. Pakes (1995), “Markov-Perfect Industry Dynamics: A Framework
for Empirical Work,” Review of Economic Studies, 62, 53–82.

Esteban, S., and M. Shum (2007), “Durable Goods Oligopoly with Secondary Markets:
The Case of Automobiles,” RAND Journal of Economics, 38, 332–54.

Fernandez-Villaverde, J. (2010), “The Econometrics of DSGE Models,” SERIEs: Journal
of the Spanish Economic Association, 1, 3–49.

Finger, S. (2008), “An Empirical Analysis of R&D Competition in the Chemicals Indus-
try,” University of South Carolina, manuscript.

General Motors Corproration (1939), “The Dynamics of Automobile Demand,” based
on papers presented at a joint meeting of the American Statistical Association and the
Econometric Society in Detroit, Michigan, on December 27, 1938.

GentzKow, M. (2007), “Valuing New Goods in a Model with Complementarity: Online
Newspapers,” American Economic Review, 97(3), 713–44.

Goettler, R., and B. Gordon (2011), “Does AMD Spur Intel to Innovate More?,” Journal
of Political Economy, 119(6). 1141–1200.

Goldberg, P. (1995), “Product Differentiation and Oligopoly in International Markets:
The Case of the U.S. Automobile Industry,” Econometrica, 63, 891–951.

Gowrisankaran, G., C. Lucarelli, P. Schmidt-Dengler, and R. Town (2010), “Govern-
ment Policy and the Dynamics of Market Structure: Evidence from Critical Access
Hospitals,” University of Arizona, manuscript.

Gowrisankaran, G., and M. Rysman (2009), “Dynamics of Consumer Demand for New
Durable Goods,” University of Arizona, manuscript.

Griffith, R., A. Leicester, E. Leibtag, and A. Nevo (2009), “Consumer Shopping Behavior:
How Much Do Consumers Save?,” Journal of Economics Perspectives, 23(2), 99–120.

Gupta, S. (1988), “Impact of Sales Promotions on When, What, and How Much to Buy,”
Journal of Marketing Research, 24, 342–55.



P1: KpB Trim: 6in × 9in Top: 0.5in Gutter: 0.875in

CUUS1759-02 CUUS1757/Acemoglu Volume III 978 1 107 01606 4 November 5, 2012 15:17

Recent Developments in Empirical IO 119

Hall, P., and X-H. Zhou (2003), “Nonparametric Estimation of Component Distribu-
tions in a Multivariate Mixture,” Annals of Statistics, 31(1), 201–24.

Hartmann, W. (2006), “Intertemporal Effects of Consumption and Their Implications
for Demand Elasticity Estimates,” Quantitative Marketing and Economics, 4(4), 325–
49.

Hashmi, A., and J. Van Biesebroeck (2010), “Market Structure and Innovation: A
Dynamic Analysis of the Global Automobile Industry,” NBER, Working Paper No.
15959.

Hausman, J., G. Leonard, and J. Zona (1994), “Competitive Analysis with Differentiated
Products,” Annales D’Economie et de Statistique, 34, 159–80.

Heckman, J. (1981), “The Incidental Parameters Problem and the Problem of Initial
Conditions in Estimating a Discrete Time – Discrete Data Stochastic Process,” in C.
Manski and D. McFadden (eds.), Structural Analysis of Discrete Data with Econometric
Applications, Cambridge, MA, The MIT Press.

Heckman, J., and B. Singer (1984), “A Method for Minimizing the Impact of Distribu-
tional Assumptions in Econometric Models for Duration Data,” Econometrica, 52(2),
271–320.

Hendel, I. (1999), “Estimating Multiple Disccrete–Choice Models: An Application to
Computerization Returus,” Review of Economic Studies, 66(2), 423–46.

Hendel, I., and A. Nevo (2006a), “Measuring the Implications of Sales and Consumer
Inventory Behavior,” Econometrica, 74, 1637–74.

Hendel, I., and A. Nevo (2006b), “Sales and Consumer Inventory,” RAND Journal of
Economics, 37(3), 543–61.

Hendel, I., and A. Nevo (2010), “A Simple Model of Demand Anticipation,” Department
of Economics, Northwestern University, manuscript.

Hendel, I., and A. Nevo (2011), “Intertemporal Price Discrimination in Storable Goods
Markets,” Department of Economics, Northwestern University, manuscript.

Horowitz, J. (1998), “Bootstrap Methods for Covariance Structures,” Journal of Human
Resources, 33, 39–61.

Hotz, J., and R. A. Miller (1993), “Conditional Choice Probabilities and the Estimation
of Dynamic Models,” Review of Economic Studies, 60, 497–529.

Hotz, J., R. A. Miller, S. Sanders, and J. Smith (1994), “A Simulation Estimator for
Dynamic Models of Discrete Choice,” Review of Economic Studies, 61, 265–89.

Imai, S., N. Jain, and A. Ching (2009), “Bayesian Estimation of Dynamic Discrete Choice
Models,” Econometrica, 77(6), 1865–99.

Jovanovic, B. (1989), “Observable Implications of Models with Multiple Equilibria,”
Econometrica, 57, 1431–7.

Kasahara, H., and K. Shimotsu (2008a), “Pseudo-Likelihood Estimation and Bootstrap
Inference for Structural Discrete Markov Decision Models,” Journal of Econometrics,
146(1), 92–106.

Kasahara, H., and K. Shimotsu (2008b), “Nonparametric Identification of Finite Mixture
Models of Dynamic Discrete Choices,” Econometrica, 77(1), 135–75.

Kasahara, H., and K. Shimotsu (2009), “Sequential Estimation of Structural Models with
a Fixed Point Constraint,” University of Western Ontario, manuscript.

Keane, M., and K. I. Wolpin (1997), “The Career Decisions of Young Men,” Journal of
Political Economy, 105(3), 473–522.



P1: KpB Trim: 6in × 9in Top: 0.5in Gutter: 0.875in

CUUS1759-02 CUUS1757/Acemoglu Volume III 978 1 107 01606 4 November 5, 2012 15:17

120 Victor Aguirregabiria and Aviv Nevo

Kehoe, P., and V. Midrigan (2008), “Temporary Price Changes and the Real Effects of
Monetary Policy,” NBER, Working Papers No. 14392.

Kryukov, Y. (2008), “Dynamic R&D and the Effectiveness of Policy Intervention in the
Pharmaceutical Industry,” Tepper School of Business, Carnegie Mellon University,
manuscript.

Lee, J. (2011), “A New Computational Algorithm for Estimating Random Coefficients
Models with Aggregate-Level Data,” Department of Economics, UCLA, manuscript.

Lee, R. (2011), “Dynamic Demand Estimation in Platform and Two-Sided Markets:
The Welfare Cost of Software Incompatibility,” Stern School of Business, New York
University, manuscript.

Linton, O., and S. Srisuma (2012), “Semiparametric Estimation of Markov Decision
Processes with Continuous State Space,” Journal of Econometrics, 166, 320–41.

Lou, W., D. Prentice, and X. Yin (2008), “The Effects of Product Ageing on Demand:
The Case of Digital Cameras,” MPRA, Paper No. 13407.

Macieira, J. (2007), “Extending the Frontier: A Structural Model of Investment and Tech-
nological Competition in the Supercomputer Industry,” Virginia Tech, manuscript.

Magnac, T., and D. Thesmar (2002), “Identifying Dynamic Discrete Decision Processes,”
Econometrica, 70(2), 801–16.

Maskin, E., and Tirole, J. (1987), “A Theory of Dynamic Oligopoly, III: Cournot Com-
petition,” European Economic Review, 31, 947–68.

Maskin, E., and Tirole, J. (1988a), “A Theory of Dynamic Oligopoly, I: Overview and
Quantity Competition with Large Fixed Costs,” Econometrica, 56, 549–69.

Maskin, E., and Tirole, J. (1988b), “A Theory of Dynamic Oligopoly, II: Price Competi-
tion, Kinked Demand Curves, and Edgeworth Cycles,” Econometrica, 56, 571–99.

McFadden, D. (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” in
P. Zarembka (ed.), Frontiers in Econometrics, pp. 105–42, New York: Academic Press.

McLachlan, G., and D. Peel (2000), Finite Mixture Models, New York: John Wiley and
Sons.

Melnikov, O. (2001), “Demand for Differentiated Durable Products: The Case of the U.S.
Computer Printer Market,” Department of Economics, Yale University, manuscript.

Nair, H. (2007). “Intertemporal Price Discrimination with Forward Looking Consumers:
Application to the US Market of Console Video-Games,” Quantitative Marketing and
Economics, 5(3), 239–92.

Nakamura, E., and J. Steinsson (2008), “Five Facts about Prices: A Reevaluation of Menu
Cost Models,” Quarterly Journal of Economics, 123(4), 1415–64.

Nevo, A. (2001), “Measuring Market Power in the Ready-to-Eat Cereal Industry,” Econo-
metrica, 69(2), 307–42.

Nevo, A. (2011), “Empirical Models of Consumer Behavior,” Annual Review of Economics,
3, 51–75.

Nevo, A., M. McCabe and D. Rubinfeld (2005), “Academic Journal Pricing and the
Demand of Libraries,” American Economic Review, 95(2), 447–52.

Nevo, A., and Rossi, F. (2008), “An Approach for Extending Dynamic Models to Settings
with Multi-Product Firms,” Economics Letters, 100(1), 49–52.

Norets, A. (2009), “Inference in Dynamic Discrete Choice Models with Serially Corre-
lated Unobserved State Variables,” Econometrica, 77, 1665–82.

Norets, A., and X. Tang (2010), “Semiparametric Inference in Dynamic Binary Choice
Models,” Department of Economics, Princeton University, manuscript.



P1: KpB Trim: 6in × 9in Top: 0.5in Gutter: 0.875in

CUUS1759-02 CUUS1757/Acemoglu Volume III 978 1 107 01606 4 November 5, 2012 15:17

Recent Developments in Empirical IO 121

Osborne, M. (2011), “Consumer Learning, Switching Costs and Heterogeneity: A Struc-
tural Examination,” Quantitative Marketing and Economics, 9(1), 25–70.

Pakes, A., and P. McGuire (1994), “Computing Markov-Perfect Nash Equilibria: Numer-
ical Implications of a Dynamic Differentiated Product Model,” RAND Journal of
Economics, 25(4), 555–89.

Pakes, A., and P. McGuire (2001), “Stochastic Algorithms, Symmetric Markov Perfect
Equilibrium, and the ‘Curse of Dimensionality,’ ” Econometrica, 69, 1261–81.

Pakes, A., M. Ostrovsky, and S. Berry (2007), “Simple Estimators for the Parameters of
Discrete Dynamic Games (with Entry/Exit Examples),” RAND Journal of Economics,
38, 373–99.

Perrone, H. (2009), “Inventories, Unobservable Heterogeneity and Long-Run Price
Elasticities,” Department of Economics and Business at Universitat Pompeu Fabra,
manuscript.

Pesendorfer, M. (2002), “Retail Sales: A Study of Pricing Behavior in Supermarkets,”
Journal of Business, 75(1), 33–66.

Pesendorfer, M., and P. Schmidt-Dengler (2008), “Asymptotic Least Squares Estimators
for Dynamic Games,” Review of Economic Studies, 75(3), 901–28.

Pesendorfer, M., and P. Schmidt-Dengler (2010), “Sequential Estimation of Dynamic
Discrete Games: A Comment,” Econometrica, 78(2), 833–42.

Porter, R. (1983), “A Study of Cartel Stability: The Joint Executive Committee, 1880–
1886,” Bell Journal of Economics, 14(2), 301–14.

Prince, J. (2008), “Repeat Purchase Amid Rapid Quality Improvement: Structure Esti-
mation of Demand for Personal Computers,” Journal of Economics and Management
Strategy, 17, 1–33.

Rossi, F. (2008), “1$ Discount or 1$ Reward? The Effect of Consumers’ Preferences
on Reward Programs,” Kellog School of Management, Northwestern University,
manuscript.

Rossi, F. (2009), “A Dynamic Oligopoly Model of Product Entry, and Exit with Multi-
Product Firms,” University of North Carolina at Chapel Hill, manuscript.

Rust, J. (1987), “Optimal Replacement of GMC Bus Engines: An Empirical Model of
Harold Zurcher,” Econometrica, 55(5), 999–1033.

Rust, J. (1994), “Estimation of Dynamic Structural Models, Problems and Prospects:
Discrete Decision Processes,” in C. Sims (ed.), Advances in Econometrics, Sixth World
Congress, Cambridge University Press.

Ryan, S. (2012), “The Costs of Environmental Regulation in a Concentrated Industry,”
Econometrica, 80(3), 1019–61.

Schiraldi, P. (2011), “Automobile Replacement: A Dynamic Structural Approach,” RAND
Journal of Economics, 42(2), 266–91.

Shcherbakov, O. (2008), “Measuring Switching Costs in the Television Industry,” Uni-
versity of Arizona, manuscript.

Shoemaker, R. (1979), “An Analysis of Consumer Reactions to Product Promotions,” in
N. Beakwith, M. Houston, R. Mittlestaedt, K. Monroe, and S. Ward (eds.), Educators’
Conference Proceedings, 244–248. Chicago: American Marketing Association.

Snider, C. (2009), “Predatory Incentives and Predation Policy: The American Airlines
Case,” Department of Economics, UCLA, manuscript.

Su, C., and K. Judd (2012), “Constrained Optimization Approaches to Estimation of
Structural Models,” Econometrica, forthcoming.



P1: KpB Trim: 6in × 9in Top: 0.5in Gutter: 0.875in

CUUS1759-02 CUUS1757/Acemoglu Volume III 978 1 107 01606 4 November 5, 2012 15:17

122 Victor Aguirregabiria and Aviv Nevo

Suzuki, J. (2010), “Land Use Regulation as a Barrier to Entry: Evidence from the Texas
Lodging Industry,” Department of Economics, University of Toronto, manuscript.

Sweeting, A. (2007), “Dynamic Product Repositioning in Differentiated Product Mar-
kets: The Case of Format Switching in the Commercial Radio Industry,” NBER,
Working Paper No. 13522.

Sweeting, A. (2009), “The Strategic Timing of Radio Commercials: An Empirical Analysis
Using Multiple Equilibria,” RAND Journal of Economics, 40(4), 710–42.

Sweeting, A. (2012), “Price Dynamics in Perishable Goods Markets: the Case of Sec-
ondary Markets for Major League Baseball Tickets,” Journals of Political Economy,
forthcoming.

Train, K. (2003), Discrete Choice Models with Simulation, New York: Cambridge Univer-
sity Press.

Walrath, M. (2010), “Religion as an Industry: Estimating a Strategic Entry Model for
Churches,” University of St. Thomas, manuscript.


