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SEQUENTIAL ESTIMATION OF DYNAMIC DISCRETE GAMES

BY VICTOR AGUIRREGABIRIA AND PEDRO MIRA1

This paper studies the estimation of dynamic discrete games of incomplete informa-
tion. Two main econometric issues appear in the estimation of these models: the inde-
terminacy problem associated with the existence of multiple equilibria and the compu-
tational burden in the solution of the game. We propose a class of pseudo maximum
likelihood (PML) estimators that deals with these problems, and we study the asymp-
totic and finite sample properties of several estimators in this class. We first focus on
two-step PML estimators, which, although they are attractive for their computational
simplicity, have some important limitations: they are seriously biased in small samples;
they require consistent nonparametric estimators of players’ choice probabilities in the
first step, which are not always available; and they are asymptotically inefficient. Sec-
ond, we show that a recursive extension of the two-step PML, which we call nested
pseudo likelihood (NPL), addresses those drawbacks at a relatively small additional
computational cost. The NPL estimator is particularly useful in applications where con-
sistent nonparametric estimates of choice probabilities either are not available or are
very imprecise, e.g., models with permanent unobserved heterogeneity. Finally, we il-
lustrate these methods in Monte Carlo experiments and in an empirical application to
a model of firm entry and exit in oligopoly markets using Chilean data from several
retail industries.

KEYWORDS: Dynamic discrete games, multiple equilibria, pseudo maximum likeli-
hood estimation, entry and exit in oligopoly markets.

1. INTRODUCTION

EMPIRICAL DISCRETE GAMES are useful tools in the analysis of economic and
social phenomena whenever strategic interactions are an important aspect of
individual behavior. The range of applications includes, among others, models
of market entry (Bresnahan and Reiss (1990, 1991b), Berry (1992), Toivanen
and Waterson (2000)), models of spatial competition (Seim (2000)), release
timing of motion pictures (Einav (2003), Zhang-Foutz and Kadiyali (2003)), in-
trafamily allocations (Kooreman (1994), Engers and Stern (2002)), and models
with social interactions (Brock and Durlauf (2001)). Although dynamic consid-
erations are potentially relevant in some of these studies, most applications of
empirical discrete games have estimated static models. Two main econometric
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issues have limited the scope of applications to relatively simple static games:
the computational burden in the solution of dynamic discrete games and the in-
determinacy problem associated with the existence of multiple equilibria. This
paper studies these issues in the context of a class of dynamic discrete games
of incomplete information and develops techniques for the estimation of struc-
tural parameters. The rest of this introductory section discusses previous work
and describes the contribution of this paper.

The existence of multiple equilibria is a prevalent feature in most empirical
games where best response functions are nonlinear in other players’ actions.
Models with multiple equilibria do not have a unique reduced form, and this in-
completeness may pose practical and theoretical problems in the estimation of
structural parameters. In particular, maximum likelihood and other extremum
estimators require that we obtain all the equilibria for every trial value of the
parameters. This can be infeasible even for simple models. The most com-
mon approach to dealing with this problem has been to impose restrictions
that guarantee equilibrium uniqueness for any possible value of the structural
parameters. For instance, if strategic interactions among players have a recur-
sive structure, the equilibrium is unique (see Heckman (1978)). A similar but
less restrictive approach was used by Bresnahan and Reiss (1990, 1991a) in
the context of empirical games of market entry. These authors considered a
specification where a firm’s profit depends on the number of firms that are
operating in the market but not on the identity of these firms. Under this con-
dition, the equilibrium number of entrants is invariant over the multiple equi-
libria. Based on this property, Bresnahan and Reiss proposed an estimator that
maximizes a likelihood for the number of entrants. Although this can be a use-
ful approach for some applications, it rules out interesting cases like models
where firms have heterogeneous production costs or where they produce dif-
ferentiated products. Notice also that these restrictions are not necessary for
the identification of the model (see Tamer (2003)). (In general, a unique re-
duced form is neither a necessary nor a sufficient condition for identification
(Jovanovic (1989)).)

Computational costs in the solution and estimation of these models have
also limited the range of empirical applications to static models with a rel-
atively small number of players and choice alternatives. Equilibria are fixed
points of the system of best response operators, and in dynamic games, each
player’s best response is itself the solution to a discrete-choice dynamic pro-
gramming problem. There is a “curse of dimensionality” in the sense that the
cost of computing an equilibrium increases exponentially with the number of
players. Furthermore, the standard nested fixed-point algorithms used to esti-
mate single-agent dynamic models and static games require repeated solution
of the model for each trial value of the vector of parameters to estimate. There-
fore, the cost of estimating these models using those algorithms is much larger
than the cost of solving the model just once.
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This paper considers a class of pseudo maximum likelihood (PML) estima-
tors that deals with these problems and studies the asymptotic and finite sam-
ple properties of these estimators. The method of PML was first proposed by
Gong and Samaniego (1981) to deal with the problem of incidental parame-
ters. In general, PML estimation consists of replacing all nuisance parameters
in a model by estimates and solving a system of likelihood equations for the
parameters of interest. This idea has been previously used in estimation of dy-
namic structural econometric models by Hotz and Miller (1993) and Aguirre-
gabiria and Mira (2002). Here we show that this technique is particularly useful
in the estimation of dynamic games of incomplete information with multiple
equilibria and large state spaces.

Our PML estimators are based on a representation of Markov perfect
equilibria as fixed points of a best response mapping in the space of play-
ers’ choice probabilities. These probabilities are interpreted as players’ beliefs
about the behavior of their opponents. Given these beliefs, one can interpret
each player’s problem as a game against nature with a unique optimal decision
rule in probability space, which is the player’s best response. Although equi-
librium probabilities are not unique functions of structural parameters, the
best response mapping is always a unique function of structural parameters
and players’ beliefs about the behavior of other players. We use these best re-
sponse functions to construct a pseudo likelihood function and obtain a PML
estimator of structural parameters. If the pseudo likelihood function is based
on a consistent nonparametric estimator of players’ beliefs, we get a two-step
PML estimator that is consistent and asymptotically normal. The main advan-
tage of this estimator is its computational simplicity. However, it has three
important limitations. First, it is asymptotically inefficient because its asymp-
totic variance depends on the variance of the initial nonparametric estimator.
Second and more important, the nonparametric estimator can be very impre-
cise in the small samples available in actual applications, and this can generate
serious finite sample biases in the two-step estimator of structural parameters.
Third, consistent nonparametric estimators of players’ choice probabilities are
not always feasible for some models and data. These limitations motivate a re-
cursive extension of the two-step PML that we call nested pseudo likelihood
estimator (NPL). We show that the NPL estimator addresses these drawbacks
of the two-step PML at a relatively small additional computational cost. The
NPL estimator is particularly useful in applications where consistent nonpara-
metric estimates of choice probabilities either are not available or are very im-
precise, e.g., models with permanent unobserved heterogeneity. We illustrate
the performance of these estimators in the context of an actual application and
in Monte Carlo experiments based on a model of market entry and exit.

There has been increasing interest in estimation of discrete games during the
last few years, which has generated several methodological papers on this topic.
Pakes, Ostrovsky, and Berry (2004) considered a two-step method of moments
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estimator in the same spirit as the two-step pseudo maximum likelihood esti-
mator in this paper. Pesendorfer and Schmidt-Dengler (2004) defined a gen-
eral class of minimum distance estimators, i.e., the asymptotic least squares esti-
mators. They showed that a number of estimators of dynamic structural models
(including our estimators) belong to this class and characterize the efficient es-
timator within this class. Bajari, Benkard, and Levin (2003) generalized the
simulation-based estimator in Hotz, Miller, Sanders, and Smith (1994) to the
estimation of dynamic models of imperfect competition with both discrete and
continuous decision variables. For the case of static games with complete in-
formation, Tamer (2003) presented sufficient conditions for the identification
of a two-player model and proposed a pseudo maximum likelihood estimation
method. Ciliberto and Tamer (2006) extended this approach to static games
with N players. Bajari, Hong, and Ryan (2004) also studied the identification
of normal form games with complete information.

The rest of the paper is organized as follows. Section 2 presents the class
of models considered in this paper and the basic assumptions. Section 3 ex-
plains the problems associated with maximum likelihood estimation, presents
the two-step PML and the NPL estimators, and describes their properties. Sec-
tion 4 presents several Monte Carlo experiments. Section 5 illustrates these
methods with the estimation of a model of market entry–exit using actual panel
data on Chilean firms. We conclude and summarize in Section 6. Proofs of dif-
ferent results are provided in the Appendix.

2. A DYNAMIC DISCRETE GAME

This section presents a dynamic discrete game with incomplete information
similar to that in Rust (1994, pp. 154–158). To make some of the discussions
less abstract, we consider a model where firms that compete in a local retail
market decide the number of their outlets. A model of market entry–exit is a
particular case of this framework. Although we do not deal with estimation and
econometric issues until Section 3, it is useful to anticipate the type of data that
we have in mind. We consider a researcher who observes many geographically
separate markets such as (nonmetropolitan) small cities or towns. The game
is played at the level of individual markets. The number and the identity of
the players can vary across markets. Examples of applications with this type of
data are Bresnahan and Reiss (1990) for car dealers, Berry (1992) for airlines,
Toivanen and Waterson (2000) for fast-food restaurants, De Juan (2001) for
banks, Netz and Taylor (2002) for gas stations, Seim (2000) for video rental
stores, and Ellickson (2003) for supermarkets.

2.1. Framework and Basic Assumptions

Each market is characterized by demand conditions that can change over
time (e.g., population, income and age distribution). Let dt be the vector of
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demand shifters at period t. There are N firms operating in the market, which
we index by i ∈ I = {1�2� � � � �N}. At every discrete period, t firms decide si-
multaneously how many outlets to operate. Profits are bounded from above
such that the maximum number of outlets, J, is finite. Therefore, a firm’s set
of choice alternatives is A = {0�1� � � � � J}, which is discrete and finite. We rep-
resent the decision of firm i at period t by the variable ait ∈ A.

At the beginning of period t, a firm is characterized by two vectors of state
variables that affect its profitability: xit and εit . Variables in xit are common
knowledge for all firms in the market, but the vector εit is private information
of firm i. For instance, some variables that could enter in xit are the firm’s
number of outlets at the previous period or the years of experience of the firm
in the market. Managerial ability at different outlets could be a component of
εit . Let xt ≡ (dt� x1t � x2t � � � � � xNt) and εt ≡ (ε1t � ε2t � � � � � εNt) be the vectors of
common knowledge and private information variables, respectively. A firm’s
current profits depend on xt , on its own private information εit , and on the
vector of firms’ current decisions at ≡ (a1t � a2t � � � � � aNt). Let Π̃i(at� xt� εit) be
firm i’s current profit function. We assume that {xt� εt} follows a controlled
Markov process with transition probability p(xt+1� εt+1|at�xt� εt). This transi-
tion probability is common knowledge.

A firm decides its number of outlets to maximize expected discounted in-
tertemporal profits,

E

{ ∞∑
s=t

βs−tΠ̃i(as� xs� εis)
∣∣∣xt� εit

}
�(1)

where β ∈ (0�1) is the discount factor. The primitives of the model are the
profit functions {Π̃i(·) : i = 1�2� � � � �N}, the transition probability p(·|·), and
the discount factor β. We consider the following assumptions on these primi-
tives.

ASSUMPTION 1 —Additive Separability: Private information appears addi-
tively in the profit function. That is, Π̃i(at� xt� εit) = Πi(at� xt) + εit(ait), where
Πi(·) is a real-valued function and εit(ait) is the (ait + 1)th component of the
(J + 1)× 1 vector εit with support RJ+1.

ASSUMPTION 2—Conditional Independence: The transition probability p(·|·)
factors as p(xt+1� εt+1|at�xt� εt) = pε(εt+1)f (xt+1|at�xt). That is, (i) given the
firms’ decisions at period t, private information variables do not affect the tran-
sition of common knowledge variables, and (ii) private information variables are
independently and identically distributed over time.

ASSUMPTION 3 —Independent Private Values: Private information is inde-
pendently distributed across players, pε(εt)=∏N

i=1 gi(εit), where, for any player i,
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gi(·) is a density function that is absolutely continuous with respect to the Lebesgue
measure.

ASSUMPTION 4—Discrete Common Knowledge Variables: Common knowl-
edge variables have a discrete and finite support xt ∈ X ≡ {x1�x2� � � � � x|X|}, where
|X| is a finite number.

EXAMPLE 1—Entry and Exit in a Local Retail Market: Suppose that play-
ers are supermarkets making decisions on whether to open, continuing to
operate, or closing their stores. The market is a small city and a supermar-
ket has at most one store in this market, i.e., ait ∈ {0�1}. Every period t, all
firms decide whether to operate their store(s) and then the active stores com-
pete in quantities (Cournot competition). This competition is one period or
static and it determines the variable profits of incumbent firms at period t.
For instance, suppose that (i) the market inverse demand function is linear,
Pt = α0 − (α1/St)Qt , where Pt is the market price, Qt is the aggregate quantity,
St represents the market size at period t, and α0 and α1 are parameters, and
(ii) all firms have the same marginal operating cost c. Under these conditions,
it is simple to show that the variable profit function for a symmetric Cournot
solution is θRSt/(2 +∑j �=i ajt)

2, where θR is the parameter (α0 − c)2/α1. We
obtain the same expression for variable profits if we assume that active firms
are spatially differentiated in a circle city and compete in prices, i.e., the Salop
(1979) model. In this case, the parameter θR is the unit transportation cost.
Then current profits of an active firm are

Π̃it(1)= θRSt

/(
2 +

∑
j �=i

ajt

)2

− θFC�i + εit(1)− (1 − ai�t−1)θEC�(2)

where θFC�i − εit(1) is the fixed operating cost and it has two components: θFC�i

is firm specific, time invariant, and common knowledge, and εit(1) is private in-
formation of firm i and is independently and identically distributed across firms
and over time with zero mean. The term (1 − ai�t−1)θEC is the entry cost, where
θEC is the entry cost parameter. This parameter is multiplied by (1 − ai�t−1) be-
cause the entry cost is paid only by new entrants. If a supermarket does not op-
erate a store, it can put its capital to other uses. Current profits of a nonactive
firm, Π̃it(0), are equal to the value of the best outside opportunity. We assume
that Π̃it(0)= µi +εit(0), where µi is firm specific, time invariant, and common
knowledge, and εit(0) is private information of firm i and is independently and
identically distributed across firms and over time with zero mean. Because the
parameter µi cannot be identified separately from the average fixed cost θFC�i,
we normalize it to zero. Hereafter, the fixed cost θFC�i can be interpreted as
including the opportunity cost µi. In this model, the vector of common knowl-
edge state variables consists of the market size St and the indicators of incum-
bency status, i.e., xt = (St� at−1), where at−1 = {ai�t−1 : i = 1�2� � � � �N}.



ESTIMATION OF DYNAMIC DISCRETE GAMES 7

2.2. Strategies and Bellman Equations

The game has a Markov structure and we assume that firms play (stationary)
Markov strategies. That is, if {xt� εit} = {xs� εis}, then firm i’s decisions at pe-
riods t and s are the same. Therefore, we can omit the time subindex and use
x′ and ε′ to denote next period state variables. Let σ = {σi(x�εi)} be a set of
strategy functions or decision rules, one for each firm, with σi :X ×RJ+1 → A.
Associated with a set of strategy functions σ , we can define a set of conditional
choice probabilities Pσ = {Pσ

i (ai|x)} such that

Pσ
i (ai|x)≡ Pr(σi(x�εi) = ai|x)=

∫
I{σi(x�εi)= ai}gi(εi)dεi�(3)

where I{·} is the indicator function. The probabilities {Pσ
i (ai|x) :ai ∈ A} rep-

resent the expected behavior of firm i from the point of view of the rest of the
firms when firm i follows its strategy in σ .

Let πσ
i (ai� x) be firm i’s current expected profit if it chooses alternative ai

and the other firms behave according to their respective strategies in σ .2 By
the independence of private information,

πσ
i (ai� x)=

∑
a−i∈AN−1

(∏
j �=i

Pσ
j (a−i[j]|x)

)
Πi(ai� a−i� x)�(4)

where a−i is the vector with the actions of all players other than i and where
a−i[j] is the jth firm’s element in this vector. Let Ṽ σ

i (x�εi) be the value of firm
i if this firm behaves optimally now and in the future given that the other firms
follow their strategies in σ . By Bellman’s principle of optimality, we can write

Ṽ σ
i (x�εi) = max

ai∈A

{
πσ

i (ai� x)+ εi(ai)(5)

+β
∑
x′∈X

[∫
Ṽ σ
i (x′� ε′

i)gi(ε
′
i) dε

′
i

]
f σ
i (x

′|x�ai)

}
�

where f σ
i (x

′|x�ai) is the transition probability of x conditional on firm i choos-
ing ai and the other firms behaving according to σ :

f σ
i (x

′|x�ai)=
∑

a−i∈AN−1

(∏
j �=i

Pσ
j (a−i[j]|x)

)
f (x′|x�ai� a−i)�(6)

It is convenient to define value functions integrated over private informa-
tion variables. Let V σ

i (x) be the integrated value function
∫
Ṽ σ
i (x�εi)gi(dεi).

2In the terminology of Harsanyi (1995), the profit functions Πi(a1� a2� � � � � aN�x) are the con-
ditional payoffs and the expected profit functions πσ

i (ai� x) are the semiconditional payoffs.
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Based on this definition and (5), we can obtain the integrated Bellman equation

V σ
i (x) =

∫
max
ai∈A

{vσi (ai� x)+ εi(ai)}gi(dεi)(7)

with vσi (ai� x) ≡ πσ
i (ai� x) + β

∑
x′∈X V σ

i (x′)f σ
i (x

′|x�ai). The functions vσi (ai�
x) are called choice-specific value functions. The right-hand side of (7) is a con-
traction mapping in the space of value functions (see Aguirregabiria and Mira
(2002)). Therefore, for each firm, there is a unique function V σ

i (x) that solves
this functional equation for given σ .

2.3. Markov Perfect Equilibria

So far, σ is arbitrary and does not necessarily describe firms’ equilibrium
behavior. The following definition characterizes equilibrium strategies of all
firms as best responses to one another.3

DEFINITION: A stationary Markov perfect equilibrium (MPE) in this game
is a set of strategy functions σ∗ such that for any firm i and for any (x�εi) ∈
X ×RJ+1,

σ∗
i (x�εi)= arg max

ai∈A
{
vσ

∗
i (ai� x)+ εi(ai)

}
�(8)

Following Milgrom and Weber (1985), we can also represent a MPE in prob-
ability space.4 First, notice that for any set of strategies σ , in equilibrium or
not, the functions πσ

i , V σ
i , and f σ

i depend on players’ strategies only through
the choice probabilities P associated with σ . To emphasize this point and to
define a MPE in probability space, we change the notation slightly and use
the symbols πP

i , V P
i , and f P

i , respectively, to denote these functions; vPi de-
notes the corresponding choice-specific value functions. Let σ∗ be a set of
MPE strategies and let P∗ be the probabilities associated with these strategies.
By definition, P∗

i (ai|x) = ∫ I{ai = σ∗
i (x�εi)}gi(εi)dεi. Therefore, equilibrium

probabilities are a fixed point. That is, P∗ = Λ(P∗), where, for any vector of
probabilities P , Λ(P) = {Λi(ai|x;P−i)} and

Λi(ai|x;P−i)=
∫

I
(
ai = arg max

a∈A
{
vP

∗
i (a�x)+ εi(a)

})
gi(εi)dεi�(9)

3In this paper we consider only pure-strategy equilibria because, in the following sense, they
are observationally equivalent to mixed-strategy equilibria. Harsanyi’s “purification theorem” es-
tablished that a mixed-strategy equilibrium in a game of complete information can be interpreted
as a pure-strategy equilibrium of a game of incomplete information (see Harsanyi (1973) and Fu-
denberg and Tirole (1991, pp. 230–234)). That is, the probability distribution of players’ actions
is the same under the two equilibria.

4Milgrom and Weber considered both discrete-choice and continuous-choice games. In their
terminology, {Pσ

i } are called distributional strategies and P∗ is an equilibrium in distributional strate-
gies.



ESTIMATION OF DYNAMIC DISCRETE GAMES 9

We call the functions Λi best response probability functions. Given our assump-
tions on the distribution of private information, best response probability func-
tions are well defined and continuous in the compact set of players’ choice
probabilities. By Brower’s theorem, there exists at least one equilibrium. In
general, the equilibrium is not unique.

Equilibrium probabilities solve the coupled fixed-point problems defined by
(7) and (9). Given a set of probabilities P , we obtain value functions V P

i as
solutions of the N Bellman equations in (7), and given these value functions,
we obtain best response probabilities using the right-hand side of (9).

2.4. An Alternative Best Response Mapping

We now provide an alternative best response mapping (in probability space)
that avoids the solution of the N dynamic programming problems in (7).5 The
evaluation of this mapping is computationally much simpler than the evalua-
tion of the mapping Λ(P), and it will prove more convenient for the estimation
of the model.

Let P∗ be an equilibrium and let V P∗
1 � V P∗

2 � � � � � V P∗
N be firms’ value functions

associated with this equilibrium. Because equilibrium probabilities are best re-
sponses, we can rewrite the Bellman equation (7) as

V P∗
i (x) =

∑
ai∈A

P∗
i (ai|x)

[
πP∗

i (ai� x)+ eP
∗

i (ai� x)
]

(10)

+β
∑
x′∈X

V P∗
i (x′)f P∗

(x′|x)�

where f P∗
(x′|x) is the transition probability of x induced by P∗.6 The term

eP
∗

i (ai� x) is the expectation of εi(ai) conditional on x and on alternative ai be-
ing the optimal response for player i, i.e., eP∗

i (ai� x) ≡ E(εi(ai)|x�σ∗
i (x�εi) =

ai). This conditional expectation is a function of ai, P∗
i (x), and the probability

distribution gi only. To see this, note that the event {σ∗
i (x�εi) = ai} is equiva-

lent to {vP∗
i (ai� x)+ εi(ai)≥ vP

∗
i (a�x)+ εi(a) for any a �= ai}. Then

eP
∗

i (ai� x) = 1
P∗
i (ai|x)(11)

×
∫

εi(ai)I
{
εi(a)− εi(ai)≤ vP

∗
i (ai� x)− vP

∗
i (a�x)

∀a �= ai

}
gi(εi)dεi�

5In this subsection, we adapt to this context results from Aguirregabiria and Mira (2002).
6That is, f P∗

(x′|x)=∑a∈AN (
∏N

j=1 P
∗
j (aj |x))f (x′|x�a).
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The last expression shows that eP
∗

i (ai� x) depends on the primitives of the
model only through the probability distribution of εi and the vector of value
differences ṽP∗

i (x) ≡ {vP∗
i (a�x)− vP

∗
i (0�x) :a ∈ A}. The vector of choice prob-

abilities P∗
i (x) is also a function of gi and ṽσ

∗
i (x), i.e., P∗

i (ai|x) = Pr(εi(a) −
εi(ai) ≤ vσ

∗
i (ai� x) − vσ

∗
i (a�x) ∀a �= ai|x). Hotz and Miller showed that this

mapping, which relates choice probabilities and value differences, is invertible
(see Proposition 1, p. 501, in Hotz and Miller (1993)). Thus, the expectations
eP

∗
i (ai� x) are functions of gi and P∗

i (x) only. The particular functional form
of eP

∗
i (ai� x) depends on the probability distribution gi. A well known case

where eP
∗

i (ai� x) has a closed-form expression is when εi(a) is independently
and identically distributed with extreme value distribution and dispersion para-
meter σ . In this case,

ePi (ai� x)= Euler’s constant − σ ln(Pi(ai|x))�(12)

In a binary choice model with εi ∼ N(0�Ω) we have that7

ePi (ai� x)= var(εi(ai))− cov(εi(0)�εi(1))√
var(εi(1)− εi(0))

φ(
−1(Pi(ai|x)))
Pi(ai|x) �(13)

where φ(·) and 
(·) are the density and the cumulative distribution of the
standard normal, respectively, and 
−1 is the inverse function of 
.

Taking equilibrium probabilities as given, expression (10) describes the vec-
tor of values V P∗

i as the solution of a system of linear equations. In vector form,(
I −βFP∗)

V P∗
i =

∑
ai∈A

P∗
i (ai) ∗ [πP∗

i (ai)+ eP
∗

i (ai)
]
�(14)

where I is the identity matrix; FP∗ is a matrix with transition probabilities
f P∗

(x′|x); P∗
i (ai), πP∗

i (ai), and eP
∗

i (ai) are vectors of dimension |X| that stack
the corresponding state-specific elements; and ∗ represents the element-by-
element or Hadamard product. Let Γi(P

∗) ≡ {Γi(x;P∗) :x ∈ X} be the solu-
tion to this system of linear equations, such that V P∗

i (x) = Γi(x;P∗). For ar-
bitrary probabilities P , not necessarily in equilibrium, the mapping Γi(P) ≡
(I −βFP)−1{∑ai∈A Pi(ai) ∗ [πP

i (ai)+ ePi (ai)]} can be interpreted as a valuation
operator: that is, Γi(P) = {Γi(x�P) :x ∈ X}, where Γi(x�P) is the expected value
of firm i if the current state is x and all firms (including firm i) behave today and
in the future according to their choice probabilities in P . Therefore, looking at (9)

7To derive this expression, define the random variable ε̃ ≡ ε(1) − ε(0) and let σ2 be
var(ε̃). Note that for any constant k, E(ε(1)|ε̃ + k ≥ 0) = cov(ε(1)� ε̃)/σ2E(ε̃|ε̃ ≥ −k) =
cov(ε(1)� ε̃)/σφ(k/σ)/
(k/σ). Similarly, we have that E(ε(0)|ε̃ + k ≤ 0) = cov(ε(0)� ε̃)/σ2 ×
E(ε̃|ε̃≤ −k) = − cov(ε(0)� ε̃)/σφ(−k/σ)/
(−k/σ).
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we can characterize a MPE as a fixed point of a mapping Ψ(P) ≡ {Ψi(ai|x;P)}
with

Ψi(ai|x;P)(15)

=
∫

I

(
ai = arg max

a∈A

{
πP

i (a�x)+ εi(a)

+β
∑
x′∈X

Γi(x
′;P)f P

i (x
′|x�a)

})
gi(εi)dεi�

Clearly, an equilibrium vector P∗ is a fixed point of Ψ . The following lemma
establishes that the reverse is also true and therefore equilibria can be de-
scribed as the set of fixed points of the best response mapping Ψ . In particular,
uniqueness or multiplicity of equilibria corresponds to uniqueness or multiplic-
ity of the fixed points of Ψ .

REPRESENTATION LEMMA: Under Assumptions 1–3, the set of fixed points of
the best response mappings Λ and Ψ are identical.

The only difference between best response mappings Λi and Ψi is that Ψi

takes firm i’s future actions as given, whereas Λi does not. To evaluate Λi one
has to solve a dynamic programming problem, whereas to obtain Γi(P) and
Ψi(P) one has only to solve a system of linear equations. In the context of
the estimation of the model, we will see that using mapping Ψ instead of Λ
provides significant computational gains.

EXAMPLE 2: Consider Example 1 in Section 2.1. The vector of common
knowledge state variables is xt = (St� at−1). Suppose that the private informa-
tion shocks εit(0) and εit(1) are normally distributed with zero means, and
define σ2 ≡ var(εit(0) − εit(1)). Under the alternative best response func-
tion in (15), a firm will be active if and only if {εit(0) − εit(1)} ≤ {πP

i (1�xt) −
πP

i (0�xt)+β
∑

x′∈X Γi(x
′�P) [f P

i (x
′|xt�1)− f P

i (x
′|xt�0)]}. Therefore,

Ψi(1|xt;P) = 


(
1
σ

[
πP

i (1�xt)−πP
i (0�xt)(16)

+β
∑
x′∈X

Γi(x
′�P)[f P

i (x
′|xt�1)− f P

i (x
′|xt�0)]

])
�

The transition probabilities of the state conditional on firm i choosing ai and
the other firms behaving according to P have the form

f P
i (St+1� at |St� at−1� ai)(17)

= fS(St+1|St)
∏
j �=i

Pj(0|xt)
1−ajt Pj(1|xt)

ajt I{ait = ai}�
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where fS(St+1|St) is the transition probability of market size, which is assumed
to follow an exogenous Markov process. Expected current profits if the firm is
not active are πP

i (0�xt)= 0 and if the firm is active are

πP
i (1�xt) = θRStN

P
i (xt)− θFC�i − θEC(1 − ai�t−1)�(18)

where the expectation NP
i (xt) ≡ ∑

a−i∈{0�1}N−1 Pr(a−i|xt)(2 + ∑j �=i a−i[j])−2 is
taken over other players’ choice profiles and Pr(a−i|xt)=∏j �=i Pj(0|xt)

1−a−i[j] ×
Pj(1|xt)

a−i[j].
We now turn to the valuation operator Γi(P). Given that the private informa-

tion shocks are normally distributed, the expectation ePi (ai� x) has the form in
expression (13). It is convenient to write πP

i (0�xt) and πP
i (1�xt) as zP

i (0�xt)θπ

and zP
i (1�xt)θπ , respectively, where θπ is the vector of structural parameters

(θR�θFC�1� � � � � θFC�N� θEC)
′, zP

i (0�xt) is (in this example) a vector of zeros, and
zP
i (1�xt) ≡ {StN

P
i (xt)�−Di�ai�t−1 − 1} with Di a 1 × N vector with a one at

column i and zeros elsewhere. Using this notation, the right-hand side of the
system of equations that define the valuation operator in (14) can be written as∑

ai∈A
Pi(ai) ∗ [πP

i (ai)+ ePi (ai)] =ZP
i θπ + λP

i σ�(19)

where ZP
i is a matrix with rows {Pi(0|x)zP

i (0�x)+ Pi(1|x)zP
i (1�x)} and λP

i is a
vector with elements φ(
−1(Pi(1|x))).8 Note that the structural parameters θπ

and σ do not appear as arguments in ZP
i �λ

P
i , and (I −βFP). Thus multiplica-

tive separability of θπ and σ in expected profits carries over to the valuation
mapping. Substituting (19) into (14) and solving for the value function, we get

Γi(P) = Γ Z
i (P)θπ + Γ λ

i (P)σ�(20)

where Γ Z
i (P) is the matrix (I − βFP)−1ZP

i and Γ λ
i (P) is the vector (I −

βFP)−1λP
i . For each state x, the valuation operator Γi(x�P) collects the infi-

nite sum of expected current profits and expected private information terms
(the elements of ZP

i θπ and φP
i σ), which may occur along all possible future

8By the symmetry of the normal density function, we have that φ(
−1(Pi(1|x))) = φ(
−1(1 −
Pi(1|x))). Also, note that var(εi(0)) − cov(εi(0)�εi(1)) + var(εi(1)) − cov(εi(0)�εi(1)) = σ2.
Therefore, we have

Pi(0|x)ePi (0|x)+ Pi(1|x)ePi (1|x)

=
{

1
σ

[
var(εi(0))− cov(εi(0)�εi(1))

]
φ
(

−1(Pi(0|x)))

+ 1
σ

[
var(εi(1))− cov(εi(0)�εi(1))

]
φ
(

−1(Pi(1|x)))}

= σφ
(

−1(Pi(1|x)))�
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histories that originate from that state. Premultiplication by the correspond-
ing row of (I − βFP)−1 means that each term in the sum is discounted and
weighted by the probability of the corresponding history. The probabilities of
histories, expected current period profits, and expected private information
terms are computed under the assumption that all firms (including firm i) be-
have today and in the future according to the choice probabilities in P . Note
that the structural parameters θπ and σ do not appear as arguments in ZP

i , λP
i ,

and (I −βFP). Thus multiplicative separability of θπ and σ in expected profits
carries over to the valuation mapping.

Finally, the best response functions Ψi have the form

Ψi(1|xt;P)= 


(
z̃P
i (xt)

θπ

σ
+ λ̃P

i (xt)

)
�(21)

where

z̃P
i (xt)≡ zP

i (1�xt)− zP
i (0�xt)(22)

+β
∑
x′∈X

Γ Z
i (x′�P)[f P

i (x
′|xt�1)− f P

i (x
′|xt�0)]�

λ̃P
i (xt)≡ β

∑
x′∈X

Γ λ
i (x

′�P)[f P
i (x

′|xt�1)− f P
i (x

′|xt�0)]�

3. ESTIMATION

3.1. Econometric Model and Data Generating Process

Consider a researcher who observes players’ actions and common knowl-
edge state variables across M geographically separate markets over T periods,
where M is large and T is small. This is a common sampling framework in
empirical applications in industrial organization, which is given as

data = {amt�xmt :m= 1�2� � � � �M; t = 1�2� � � � �T }�(23)

where m is the market subindex and amt = (a1mt� a2mt� � � � � aNmt). An impor-
tant aspect of the data is whether players are the same across markets or not.
We use the terminology global players and local players, respectively, to refer to
these two cases. In our example of the model of market entry–exit we may have
some large firms that—active or not—are potential entrants in every local mar-
ket and some other firms that are potential entrants in only one local market.
For instance, in the fast-food industry McDonald’s would be a global player,
whereas a family-owned fast-food outlet would be a local player. Our frame-
work can accommodate both cases. However, we can allow for heterogeneity
in the structural parameters across players only if those players’ decisions are
observed across all or most of the markets. To illustrate both cases, the Monte
Carlo experiments that we present in Section 4 are for the model with global
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players only and the empirical application in Section 5 is for a model with local
players only.

The primitives {Πi�gi� f�β : i ∈ I} are known to the researcher up to a finite
vector of structural parameters θ ∈ Θ ⊂R|Θ|. Primitives are twice continuously
differentiable in θ. We now incorporate θ as an explicit argument in the equi-
librium mapping Ψ . Let θ0 ∈ Θ be the true value of θ in the population. The
researcher is interested in the estimation of θ0. Under Assumption 2 (i.e., con-
ditional independence), the transition probability function f can be estimated
from transition data using a standard maximum likelihood method and with-
out solving the model. We focus on the estimation of the rest of the primitives
and hereafter, for the sake of simplicity, we assume that β and the transition
probability function are known. We consider the following assumption on the
data generating process.

ASSUMPTION 5: Let P0
mt ≡ {Pr(amt = a|xmt = x) : (a�x) ∈ AN ×X} be the dis-

tribution of amt conditional on xmt in market m at period t. (A) For every ob-
servation (m� t) in the sample, P0

mt = P0 and P0 = Ψ(θ0�P0). (B) Players ex-
pect P0 to be played in future (out of sample) periods. (C) For any θ �= θ0 and
P that solves P = Ψ(θ�P), it is the case that P �= P0. (D) The observations
{amt�xmt :m = 1�2� � � � �M; t = 1�2� � � � �T } are independent across markets and
Pr(xmt = x) > 0 for all x in X .

Assumption 5(A) establishes that the data have been generated by only one
Markov perfect equilibrium.9 Thus even if the model has multiple equilibria,
the researcher does not need to specify an equilibrium selection mechanism
because the equilibrium that has been selected will be identified from the con-
ditional choice probabilities in the data. Assumption 5(B) is necessary to ac-
commodate dynamic models. Without it, we cannot compute the expected fu-
ture payoffs of within-sample actions unless we specify the beliefs of players
with regard to the probability of switching equilibria in the future. Assump-
tion 5(C) is a standard identification condition.

Assumption 5(A) does not rule out models with multiple equilibria, but in
its strictest version it would seem to rule out the presence of multiple equilib-
ria in the data generating process. However, our notation allows for a flexible
interpretation of Assumption 5(A) such that different equilibria are played
across subsamples of markets known to the researcher. In this case, subsam-
ples correspond to different “market types,” there is a finite number of types,
and the vector xmt of observable state variables is augmented with the time-
invariant market type xm. Accordingly, the conditional choice probability vec-

9Moro (2003) introduced the assumption that only one equilibrium is present in the data in
a somewhat different context. In his work the researcher observes a function of the equilibrium
strategies rather than the equilibrium object itself; therefore, additional assumptions are needed
to identify the selected equilibrium from the data.
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tor P stacks Markov perfect equilibria for all market types. For instance, mar-
ket types could correspond to different regions. Assumption 5(A) says that the
data from different markets within the same region are generated by a single
equilibrium. However, players in the markets of regions 1 and 2 may be playing
different equilibria P0

1 and P0
2 that correspond to the same population parame-

ter θ0; i.e., P0
1 = Ψ(θ0�P0

1 ) and P0
2 = Ψ(θ0�P0

2). Furthermore, in Section 3.5
we extend our framework to allow for permanent unobserved heterogeneity
and we show that in that case multiple equilibria may be present in the data
generating process. Finally, Assumptions 5(A) and (B) can also be relaxed to
allow for different equilibria to be played over time as long as the researcher
knows (a) the exact time period when the behavior of players switched from
one equilibrium to another and (b) the players’ expectations about the equilib-
rium type that would be played in every period; e.g., if players did not anticipate
the switch from one equilibrium type to another, the researcher knows this.

3.2. Maximum Likelihood Estimation

Define the pseudo likelihood function

QM(θ�P) = 1
M

M∑
m=1

T∑
t=1

N∑
i=1

lnΨi(aimt |xmt;P�θ)�(24)

where P is an arbitrary vector of players’ choice probabilities. We call this func-
tion a pseudo likelihood because the choice probabilities are not necessarily
equilibrium probabilities associated with θ, but just best responses to an arbi-
trary vector P . Consider first the hypothetical case of a model with a unique
equilibrium for each possible value of θ ∈ Θ. Then the maximum likelihood
estimator (MLE) of θ0 can be defined from the constrained multinomial like-
lihood

θ̂MLE = arg max
θ∈Θ

QM(θ�P) subject to P =Ψ(θ�P)�(25)

The computation of this estimator requires one to evaluate the mapping Ψ
and the Jacobian matrix ∂Ψ/∂P ′ at many different values of P . Although eval-
uations of Ψ for different θ’s can be relatively cheap because we do not have to
invert the matrix (I−βF) in (14), evaluations for different P imply a huge cost
when the dimension of the state space is large, because this matrix needs to be
inverted each time. Therefore, this estimator can be impractical if the dimen-
sion of P is relatively large. For instance, that is the case in most models with
heterogeneous players, because the dimension of the state space increases ex-
ponentially with the number of players. For that type of models, this estimator
can be impractical even when the number of players is not too large.

An important complication in the estimation of dynamic games is that for
some values of the structural parameters, the model can have multiple equi-
libria. With multiple equilibria the restriction P = Ψ(θ�P) does not define a
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unique vector P , but a set of vectors. In this case, the MLE can be defined as

θ̂MLE = arg max
θ∈Θ

{
sup

P∈(0�1)N|X|
QM(θ�P) subject to P =Ψ(θ�P)

}
�(26)

This estimator can be shown to be consistent, asymptotically normal, and ef-
ficient. However, in practice, this estimator can be extremely difficult to im-
plement. Notice that for each trial value of θ, we have to compute all the vec-
tors P that are an equilibrium associated with θ and then select the one with
the maximum value for QM(θ�P). Finding all the Markov perfect equilibria
of a dynamic game can be very difficult even for relatively simple models (see
McKelvey and McLennan (1996)). Note also that with multiple equilibria, the
number of evaluations of Ψ for different values of P increases very impor-
tantly. These problems motivate the pseudo likelihood estimators we develop
in the following subsections.

3.3. Pseudo Maximum Likelihood Estimation

The PML estimators try to minimize the number of evaluations of Ψ for dif-
ferent vectors of players’ probabilities P . Suppose that we know the population
probabilities P0 and consider the PML estimator10

θ̂ ≡ arg max
θ∈Θ

QM(θ�P
0)�(27)

Under standard regularity conditions, this estimator is root-M consistent
and asymptotically normal, and its asymptotic variance is Ω−1

θθ , where Ωθθ

is the variance of the pseudo score, i.e., Ωθθ ≡ E({∇θsm}{∇θsm}′), with sm ≡∑T

t=1

∑N

i=1 lnΨi(aimt |xmt;P0� θ0). Notice that to obtain this estimator we have
to evaluate the mapping Ψ at only one value of players’ choice probabilities.

However, this PML estimator is infeasible because P0 is unknown. Suppose
that we can obtain a

√
M-consistent nonparametric estimator of P0. For in-

stance, if there are no unobservable market characteristics, we can use a fre-
quency estimator or a kernel method to estimate players’ choice probabilities.11

Let P̂0 be this nonparametric estimator. Then we can define the feasible two-
step PML estimator θ̂2S ≡ arg maxθ∈ΘQM(θ� P̂

0). Proposition 1 presents the as-
ymptotic properties of this estimator.

10Aguirregabiria (2004) described this PML estimator in a general class of econometric mod-
els, where the distribution of the endogenous variables is implicitly defined as an equilibrium of
a fixed-point problem.

11Note that if x includes time-invariant components that describe observable market types,
Assumption 5(D) guarantees that consistent estimators of equilibrium choice probabilities can
be obtained separately for each market type. However, if we believe that the equilibrium in the
data varies across market types, smoothing cannot be used across observations that correspond
to different types.
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PROPOSITION 1: Suppose that (i) Assumptions 1–5 hold, (ii) Ψ(θ�P) is twice
continuously differentiable, (iii) Θ is a compact set, (iv) θ0 ∈ int(Θ), and (v) let
P̂0 = (1/M)

∑M

m=1 qm be an estimator of P0 such that
√
M(P̂0 −P0) →d N(0�Σ).

Then
√
M(θ̂2S − θ0)→d N(0� V2S), where

V2S =Ω−1
θθ +Ω−1

θθΩθPΣΩ
′
θPΩ

−1
θθ

and ΩθP ≡ E({∇θsm}{∇Psm}′), where ∇P represents the partial derivative with re-
spect to P . Given that Ω−1

θθΩθPΣΩ
′
θPΩ

−1
θθ is a positive definite matrix, we have

that the feasible PML estimator is less efficient than the PML based on true P0,
i.e., V2S ≥ Ω−1

θθ . Furthermore, if P̂0
A and P̂0

B are two estimators of P0 such that
ΣA − ΣB > 0 (positive definite matrix), then the PML estimator based on P̂0

B has
lower asymptotic variance than the estimator based on P̂0

A.

Root-M consistency and asymptotic normality of P̂0, together with regularity
conditions, are sufficient to guarantee root-M consistency and asymptotic nor-
mality of this PML estimator.12 There are several reasons why this estimator is
of interest. It deals with the problem of indeterminacy associated with multiple
equilibria. Furthermore, repeated solutions of the dynamic game are avoided
and this can result in significant computational gains.

EXAMPLE 3: Consider the entry–exit model of Examples 1 and 2. Suppose
that we have a random sample of markets where the N firms are potential en-
trants. We observe market size and entry decisions at two consecutive periods:
{Sm1� am1� Sm2� am2 :m = 1�2� � � � �M}. Nonparametric estimates of choice and
transition probabilities can be obtained using sample frequencies or a kernel
method. Given these estimates, we can construct the matrices ZP̂0

i and Γ Z
i (P̂0),

and the vectors λP̂0
i and Γ λ

i (P̂0), as defined in Example 2. Then, using the for-
mulas in (22) evaluated at the vector of estimates P̂0, we can construct for every
sample point the vector z̃P̂0

i (xm2) and the value λ̃
P̂0
i (xm2). The pseudo likelihood

function that the two-step PML estimator maximizes is13

QM(θ� P̂0) = M−1
M∑

m=1

N∑
i=1

aim2 lnΨi(1|xm2; P̂0)(28)

+ (1 − aim2) lnΨi(0|xm2; P̂0)

= M−1
M∑

m=1

N∑
i=1

ln

(

[2aim2 − 1]
[
z̃
P̂0
i (xm2)

θπ

σ
+ λ̃

P̂0
i (xm2)

])
�

12Note that Assumptions 1 and 3 on the distribution of ε and twice continuous differentiability
of the primitives with respect to θ imply regularity condition (ii).

13Only the second observation for each market is used because incumbency status is not known
for the first observation.
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This is the log-likelihood of a standard probit model where the coefficient
of the explanatory variable λ̃

P̂0
i (xm2) is constrained to be equal to one. This

pseudo likelihood is globally concave in θπ/σ . Furthermore, evaluation of
QM(θ� P̂0) at different values of θ is very simple and does not require one to
recalculate the matrix Γ Z

i (P̂0) and the vector Γ λ
i (P̂0). Therefore, the computa-

tion of this two-step PML estimator is very straightforward.

However, the two-step PML has some drawbacks. First, its asymptotic vari-
ance depends on the variance Σ of the nonparametric estimator P̂0. Therefore,
it can be very inefficient when Σ is large. Second, and more important, for the
sample sizes available in actual applications, the nonparametric estimator of P0

can be very imprecise. Note that a curse of dimensionality in estimation may
arise from the number of players as well as from the number of state variables.
Even when the number of players is not too large (e.g., five players), lack of
precision in the first step can generate serious finite sample biases in the esti-
mator of structural parameters as illustrated in our Monte Carlo experiments
in Section 4.14 Third, for some models it is not possible to obtain consistent
nonparametric estimates of P0; this is the case in models with unobservable
market characteristics.

3.4. Nested Pseudo Likelihood Method

The nested pseudo likelihood (NPL) method is a recursive extension of the
two-step PML estimator. Let P̂0 be an initial guess of the vector of players’
choice probabilities. It is important to emphasize that this guess need not be a
consistent estimator of P0. Given P̂0, the NPL algorithm generates a sequence
of estimators {θ̂K :K ≥ 1}, where the K-stage estimator is defined as

θ̂K = arg max
θ∈Θ

QM(θ� P̂K−1)(29)

and the probabilities {P̂K :K ≥ 1} are obtained recursively as

P̂K =Ψ(θ̂K� P̂K−1)�(30)

That is, θ̂1 maximizes the pseudo likelihood QM(θ� P̂0). Given P̂0 and θ̂1, we
obtain a new vector of probabilities by applying a single iteration in the best
response mapping, i.e., P̂1 = Ψ(θ̂1� P̂0); then θ̂2 maximizes the pseudo likeli-
hood QM(θ� P̂1) and so on. This sequence is well defined as long as, for each

14In our Monte Carlo examples we use frequency estimators in the first step. Replacing these by
smooth nonparametric estimators can reduce finite sample bias of the two-step PML estimator.
See Pakes, Ostrovsky, and Berry (2004) and our discussion in Section 4.
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value of P , there is a unique value of θ that maximizes the pseudo likelihood
function, which we assume hereafter.

EXAMPLE 4: We follow up on the example of the entry and exit model. For
notational simplicity, we use θ to represent the vector of identified structural
parameters θπ/σ . Let θ̂1 be the two-step PML estimator of θ that we described
in Example 3. Then new estimates of choice probabilities can be obtained from
the elements of the maximized pseudo likelihood

P̂i�1(1|x)= 

(
z̃
P̂0
i (x)θ̂1 + λ̃

P̂0
i (x)

)
�(31)

where {z̃P̂0
i (x) :x ∈ X} and {λ̃P̂0

i (x) :x ∈ X} are the vectors and scalars, respec-
tively, that we used to obtain θ̂1, i.e., they are based on the initial choice proba-
bilities P̂0. Given the new vector of probabilities P̂1, we calculate new matrices
Z

P̂1
i and Γ Z

i (P̂1), and new vectors λP̂1
i and Γ λ

i (P̂1), and we use them to construct
z̃
P̂1
i (xm2) and λ̃

P̂1
i (xm2) according to the formulas in (22). Then we use these

values to obtain a new estimator of θ based on a probit model with likelihood
function

∑
m

∑
i ln
([2aim2 − 1][z̃P̂1

i (xm2)θ + λ̃
P̂1
i (xm2)]). We apply this proce-

dure recursively. Note that this pseudo likelihood function is globally concave
in θ. Therefore, for each value of P , there is a unique value of θ that maximizes
the pseudo likelihood.

If the initial guess P̂0 is a consistent estimator, all elements of the sequence of
estimators {θ̂K :K ≥ 1} are consistent.15 Here we focus instead on the estimator
we obtain in the limit. If the sequence {θ̂K� P̂K} converges, regardless of the
initial guess, its limit (θ̂� P̂) satisfies the following two properties: θ̂ maximizes
the pseudo likelihood QM(θ� P̂) and P̂ = Ψ(θ̂� P̂). We call any pair (θ�P) that
satisfies these properties a NPL fixed point. In this section we show that a NPL
fixed point exists in every sample and that if more than one exists, the one with
the highest value of the pseudo likelihood is a consistent estimator. Because
our method uses NPL iterations to find NPL fixed points, convergence is a
concern. Although we have not proved convergence of the NPL algorithm in
general, we have always obtained convergence in our Monte Carlo experiments
and applications.

It is useful to introduce the following NPL operator φM to describe NPL
iterations in (29) and (30):

φM(P) ≡Ψ(θ̃M(P)�P) where θ̃M(P) ≡ arg max
θ∈Θ

QM(θ�P)�(32)

15This is a straightforward extension of the consistency of the two-step estimator in Proposi-
tion 1. See Aguirregabiria and Mira (2002) for the proof in a single-agent context.
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A NPL fixed point is a pair (θ�P) such that P is a fixed point of φM and
θ = θ̃M(P). If the maximizer θ̃M(P) is unique for every P , then the map-
ping θ̃M is continuous by the theorem of the maximum, and the NPL opera-
tor φM is continuous in the compact and convex set [0�1]N|X|. Thus, for any
given sample, Brower’s theorem guarantees the existence of at least one NPL
fixed point. However, uniqueness need not follow in general. The NPL esti-
mator (θ̂NPL� P̂NPL) is defined as the NPL fixed point associated with the max-
imum value of the pseudo likelihood. In practical terms this means that the
researcher should initiate the NPL algorithm with different P guesses and, if
different limits are attained, he should select the one that maximizes the value
of the pseudo likelihood. Let ΥM be the set of NPL fixed points, i.e., ΥM ≡
{(θ�P) ∈ Θ× [0�1]N|X| :θ = θ̃M(P) and P = φM(P)}. Then the NPL estimator
can be defined as

(θ̂NPL� P̂NPL)= arg max
(θ�P)∈ΥM

QM(θ�P)�(33)

Proposition 2 establishes the large sample properties of the NPL estimator.

PROPOSITION 2: Let (θ̂NPL� P̂NPL) be the NPL estimator, i.e., the NPL fixed
point in the sample with the maximum value of the pseudo likelihood. Con-
sider the following population counterparts of the sample functions QM , θ̃M ,
and φM : Q0(θ�P) ≡ E(QM(θ�P)), θ̃0(P) ≡ arg maxθ∈ΘQ0(θ�P), and φ0(P) ≡
Ψ(θ̃0(P)�P). The set of population NPL fixed points is Υ0 ≡ {(θ�P) ∈ Θ ×
[0�1]N|X| :θ = θ̃0(P) and P = φ0(P)}. Suppose that (i) Assumptions 1–5 hold,
(ii) Ψ(θ�P) is twice continuously differentiable, (iii) Θ is a compact set, (iv)
θ0 ∈ int(Θ), (v) (θ0�P0) is an isolated population NPL fixed point, i.e., it is
unique, or else there is an open ball around it that does not contain any other
element of Υ0, (vi) there exists a closed neighborhood of P0, N(P0), such that, for
all P in N(P0), Q0 is globally concave in θ and ∂2Q0(θ�P

0)/∂θ∂θ′ is a nonsin-
gular matrix, and (vii) the operator φ0(P)−P has a nonsingular Jacobian matrix
at P0. Then θ̂NPL is a consistent estimator and

√
M(θ̂NPL − θ0) →d N(0� VNPL),

with

VNPL = [Ωθθ +ΩθP(I − ∇PΨ
′)−1∇θΨ ]−1(34)

×Ωθθ[Ωθθ + ∇θΨ
′(I − ∇PΨ)−1Ω′

θP]−1�

where ∇PΨ is the Jacobian matrix ∇PΨ(P0� θ0). Furthermore, if the matrix ∇PΨ
has all its eigenvalues between 0 and 1, the NPL estimator is more efficient than
the infeasible PML estimator, i.e., VNPL <Ω−1

θθ < V2S .

Nested pseudo likelihood estimation maintains the two main advantages of
PML: it is feasible in models with multiple equilibria and it minimizes the num-
ber of evaluations of the mapping Ψ for different values of P . Furthermore, it
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addresses the three limitations of the two-stage PML that were mentioned pre-
viously. First, under some conditions on the Jacobian matrix ∇PΨ , the NPL is
asymptotically more efficient than the infeasible PML and therefore more ef-
ficient than any two-step PML estimator for whatever initial estimator of P0

we use. In other words, imposing the equilibrium condition in the sample can
yield asymptotic efficiency gains relative to the two-step PML estimators. The
last part of Proposition 2 provides one set of sufficient conditions for such a
result to hold. Second, in small samples the NPL estimator reduces the finite
sample bias generated by imprecise estimates of P0. This point is illustrated in
the Monte Carlo experiments in Section 4. Third, consistency of the NPL esti-
mator does not require that we start the algorithm with a consistent estimator
of choice probabilities. A particularly important implication of this is that NPL
may be applied to situations in which some time-invariant market characteris-
tics are unobserved by the researcher. We develop this case in some detail in
the next subsection.

In the proof of Proposition 2 in the Appendix we show that sample NPL fixed
points converge in probability to population NPL fixed points. An implication
of this result is that if the researcher is able to establish uniqueness of the
NPL fixed point in the population, any sample NPL fixed point is a consistent
estimator and there is no need to search for—and compare—multiple NPL
fixed points. However, if the population function has more than one NPL fixed
point, a “poorly behaved” initial guess P̂0 might identify a NPL fixed point that
is not (θ0�P0). Thus a comparison between all NPL fixed points in the sam-
ple is needed to guarantee consistency. We show that Assumption 5(A) yields
identification because it implies that (θ0�P0) uniquely maximizes the pseudo
likelihood Q0(θ�P) in the set of population NPL fixed points. Therefore, the
estimator (θ̂NPL� P̂NPL) is to the sample function QM what the true parameter
(θ0�P0) is to the limiting function Q0. However, proving consistency of the
NPL estimator is less straightforward than for standard extremum estimators
because the definition of the NPL estimator combines both maximization and
fixed-point conditions. If the population has multiple NPL fixed points, we re-
quire additional regularity conditions that are listed as (v)–(vii) in Proposi-
tion 2. Condition (vii) is the more substantive. We need this condition in order
to guarantee that there exists a sample NPL fixed point close to (θ0�P0). The
condition states that the Jacobian of the population NPL operator does not
have any eigenvalues in the unit circle. It is the vector-valued equivalent of a
requirement that a scalar differentiable function with a fixed point should cross
the 45◦ line at the fixed point, rather than being tangent. Condition (v) rules
out the possibility of a continuum of NPL fixed points around (θ0�P0). This
condition is actually implied by (vii), but we state it separately in spite of its
redundancy because it is used independently in the proof. Condition (vi) states
that the population pseudo likelihood is globally concave in θ for all P in a
neighborhood of P0 and that this concavity is strict at P0. The proof of consis-
tency requires that θ̃0(P)� the maximizer of the population pseudo likelihood
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in θ� be a single-valued and continuous function of P in a neighborhood of P0.
Condition (vi) is not necessary for this, but it is a sufficient condition on the
primitives of the model, and it holds in our example and in the models that we
estimate in Sections 4 and 5.

Finding all NPL fixed points may not be a simple task. This is similar to the
problem that arises in extremum estimators when the criterion function has
more than one local extremum. Clearly, the problem does not arise if the sam-
ple NPL fixed point is unique and stable, but we do not have general enough
sufficient conditions on the primitives of the model that guarantee this prop-
erty. However, it should be stressed that multiplicity of NPL fixed points does
not follow from multiplicity of equilibria of the model. A fixed point of the NPL
operator is not just a solution to P =Ψ(θ�P). The NPL fixed points are special
in that θ̂ maximizes QM(θ� P̂). A model may have multiple equilibria yet only
one NPL fixed point. For instance, Example 5 shows that when the number of
structural parameters to estimate is equal to the number of free probabilities
in P , then the NPL fixed point is always unique and stable.

EXAMPLE 5: Returning to the entry–exit model of our previous examples,
we consider specifications in which the number of structural parameters in θ
is exactly equal to the number of free probabilities in P; i.e., the model is just
identified. A concrete example can be described as follows. There are only
two firms in the M markets (N = 2). Market size is constant (i.e., Smt = 1
for all (m� t)) and therefore the vector of state variables xt is (a1�t−1� a2�t−1),
which belongs to the set X = {(0�0)� (0�1)� (1�0)� (1�1)}. The entry cost is
(1 − ai�t−1)(θEC�1 + a−i�t−1θEC�2), where θEC�1 and θEC�2 are parameters. The pa-
rameter θEC�2 captures the notion that entry in a market where there is an in-
cumbent can be more costly than entry in a market with no active firms. Firms
are homogeneous in their fixed operating costs. Suppose the equilibrium in
the data generating process (DGP) is symmetric between the two firms. Then
the model has four structural parameters, θ = (θR/σ�θFC/σ�θEC�1/σ�θEC�2/σ)

′,
and four free probabilities, P(1|0�0) (i.e., probability of entry in a market with
no active firms), P(1|0�1) (i.e., probability of entry in a market with an incum-
bent monopolist), P(1|1�0) (i.e., probability that the incumbent monopolist
will stay), and P(1|1�1) (i.e., probability that a duopolist will stay). In general,
the model will have multiple equilibria for the true parameter θ0.16

In a probit model with discrete explanatory variables, when the number of
parameters is the same as the number of free conditional choice probabili-
ties, one can show that the maximum likelihood estimator of the structural
parameters is the value that makes the predicted probabilities equal to the

16For a particular parameterization of this example, which has σ = 1� θR = 17�28� θFC =
3�22� θEC�1 = 0�10, and θEC�2 = 0, Pesendorfer and Schmidt-Dengler (2004) showed that at least
five different equilibria exist.
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corresponding sample frequencies.17 In our case, this implies that the PML es-
timator θ̃M(P) is the value of θ that solves the system of N|X| equations with
N|X| unknowns,18


(z̃P
i (x)θ+ λ̃P

i (x))= P̂
Freq
i (1|x)(35)

for any x ∈ X and any i ∈ {1�2� � � � �N}�

where P̂
Freq
i (1|x) ≡ (

∑M

m=1 I{xm = x}aim)/(
∑M

m=1 I{xm = x}). Solving for θ, we
have that

θ̃M(P) =


z̃P

1 (x
1)

z̃P
1 (x

2)
���

z̃P
N(x

|X|)


−1



−1(P̂

Freq
1 (1|x1))


−1(P̂
Freq
1 (1|x2))
���


−1(P̂
Freq
N (1|x|X|))

−


λ̃P

1 (x
1)

λ̃P
1 (x

2)
���

λ̃P
N(x

|X|)


 �(36)

where the rank condition for identification implies that the matrix (z̃P
1 (x

1)′� � � � �
z̃P
N(x

|X|)′) is nonsingular for P in a neighborhood of P0. Solving the expression
for θ̃M(P) into the best response mapping Ψ in (21), we obtain the NPL oper-
ator (φM)

φM(P) =



(z̃P

1 (x
1)θ̃M(P)+ λ̃P

1 (x
1))


(z̃P
1 (x

2)θ̃M(P)+ λ̃P
1 (x

2))
���


(z̃P
N(x

|X|)θ̃M(P)+ λ̃P
N(x

|X|))

=


P̂

Freq
1 (1|x1)

P̂
Freq
1 (1|x2)

���

P̂
Freq
N (1|x|X|)

 �(37)

where the last equality follows from Ψ being the left-hand side of the first order
conditions in (35). That is, for any vector P , we have that φM(P) = P̂Freq. The

17The result follows from the form of the first order conditions, which in our case are the
pseudo likelihood equations

M∑
m=1

N∑
i=1

Wi(xm�P�θ)
(
aim −
(z̃Pi (x)θ+ λ̃P

i (x))
)= 0�

where Wi(xm�P�θ)≡ [
(z̃Pi (x)θ+ λ̃P
i (x))
(−z̃Pi (x)θ− λ̃P

i (x))]−1φ(z̃Pi (x) θ+ λ̃P
i (x))z̃

P
i (x)

′.
18If the state space has |X| points, there are N players, and the equilibrium is not symmetric,

there are 2N|X| conditional choice probabilities. However, the number of free probabilities is
N|X| because Pi(0|x)+ Pi(1|x) = 1 for all (i�x)�
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model can have multiple equilibria, but the NPL mapping is constant and has
a unique fixed point that is stable: P̂NPL = P̂

Freq
M and

θ̂NPL =


z̃P̂Freq

1 (x1)

z̃P̂Freq

1 (x2)
���

z̃P̂Freq

N (x|X|)


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���
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Freq
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λ̃P̂Freq
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λ̃P̂Freq
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���
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N (x|X|)


 �(38)

Notice that regardless of the value of P that we use to initialize the NPL pro-
cedure, we always converge to this estimator in two NPL iterations. Also note
that the two-step PML is inconsistent if P is inconsistent, but the NPL estima-
tor is consistent.

Although the example illustrates the difference between multiple equilibria
and multiple NPL fixed points, assuming a just identified model is too restric-
tive for most relevant applications of dynamic games. However, our limited
experience with the NPL algorithm in the Monte Carlo experiments (in Sec-
tion 4) and in our empirical application (in Section 5) suggests that the unique-
ness of the NPL fixed point in the presence of multiple equilibria may be more
general than the just identified case. For every one of the 6,000 Monte Carlo
samples and for the actual sample in our application we always converged to
the same NPL fixed point, regardless of the initial values that we considered
for P .19

3.5. NPL with Permanent Unobserved Heterogeneity

The econometric model in Section 3.1 allowed for the case in which the vec-
tor of common knowledge state variables xmt includes time-invariant market
characteristics xm with discrete and finite support. We now consider the es-
timation of models in which some of the time-invariant common knowledge
characteristics are unobservable. For instance, in the entry–exit model, we may
have a profit function

Π̃imt(1)= θRSmt

/(
2+
∑
j �=i

ajmt

)2

−θFC�i−θEC(1−aim�t−1)+ωm+εimt�(39)

where ωm is a random effect interpreted as a time-invariant market character-
istic that affects firms’ profits, which is common knowledge to the players but

19In those cases where the NPL algorithm has multiple fixed points, the combination of the
NPL with a stochastic algorithm is a promising approach, which we have explored in other work
(Aguirregabiria and Mira (2005)). See Rust (1997) and Pakes and McGuire (2001) for earlier
applications of stochastic algorithms to dynamic programming and equilibrium problems, the
latter in the context of the Ericson and Pakes (1995) model.
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unobservable to the econometrician. We make the following assumptions on
the distribution of observable and unobservable market characteristics:

ASSUMPTION 6: (A) The vector of unobservable common knowledge market
characteristics ωm has a discrete and finite support Ω = {ω1�ω2� � � � �ωL}. (B)
Conditional on xm, ωm is independently and identically distributed across mar-
kets with probability mass function ϕl(xm) ≡ Pr(ωm = ωl|xm). (C) The vec-
tor ωm does not enter into the conditional transition probability of xmt , i.e.,
Pr(xm�t+1|amt�xmt�ωm)= f (xm�t+1|amt�xmt).

Assumption 6(B) allows the unobserved component of ωm to be correlated
with observable (fixed) market characteristics. Assumption 6(C) states that all
markets are homogeneous with respect to (exogenous) transitions and it im-
plies that the transition probability function f can still be estimated from tran-
sition data without solving the model.

The vector of structural parameters to be estimated, θ, now includes the pa-
rameters in the conditional distributions of ω. The vector P now stacks the
distributions of players’ actions conditional on all values of observable and
unobservable common knowledge state variables. We use the notation P =
{P1�P2� � � � �PL} with Pl ≡ {Pr(amt = a|xmt = x�ωm = ωl) : (a�x) ∈ AN × X}.
We adapt Assumptions 5(A), (B), (D) on the data generating process as follows:

ASSUMPTION 5′ (A), (B), (D): Let P0
mt ≡ {Pr(amt = a|xmt = x�ωm = ω) :

(a�x�ω) ∈ AN × X × Ω} be the distributions of amt conditional on xmt and
ωm in market m at period t. (A) For every observation (m� t) in the sample,
P0
mt = P0 and P0

l = Ψ(θ0�P0
l �ω

l) for any l. (B) Players expect P0 to be played in
future (out of sample) periods. (D) The observations {amt�xmt :m = 1�2� � � � �M;
t = 1�2� � � � � T } are independent across markets and Pr(xmt = x) > 0 for all x
in X .

Assumption 5′ still states that only one equilibrium is played in the data con-
ditional on market type (xm�ωm), which is partly unobservable to the econome-
trician but known to players. This has the important implication that the data
generating process may correspond to multiple equilibria. In our entry–exit ex-
ample, markets that are observationally equivalent to the econometrician may
have different probabilities of entry and exit because the random effect com-
ponent of profits ω is different. Furthermore, differences across unobserved
market types need not even be payoff relevant. That is, a “sunspot” mecha-
nism may sort otherwise identical markets into two or more unobserved market
types that select different equilibria. Our estimation framework allows for such
a data generating process, as long as the econometrician knows the number of
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unobserved types and the parameter θ is identified (see Assumption 5′(C) in
the subsequent text).20

To obtain the pseudo likelihood function, we integrate the best response
probabilities over the conditional distribution of unobservable market char-
acteristics. We have that

ln Pr(data|θ�P) =
M∑

m=1

ln Pr(ãm� x̃m|θ�P)(40)

=
M∑

m=1

ln

(
L∑
l=1

ϕl(xm)Pr(ãm� x̃m|ωl;θ�P)
)
�

where ãm = {amt : t = 1�2� � � � �T } and x̃m = {xmt : t = 1�2� � � � � T }. Applying the
Markov structure of the model, and Assumption 6(C), we get

Pr(ãm� x̃m|ωl;θ�P)(41)

=
(

T∏
t=1

Pr(amt|xmt�ω
l;θ�P)

)(
T∏
t=2

Pr(xmt |am�t−1�xm�t−1�ω
l;θ�P)

)
× Pr(xm1|ωl;θ�P)

=
(

T∏
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Ψi(aimt|xmt�ω
l;Pl� θ)

)(
T∏
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)

× Pr(xm1|ωl;θ�P)�
Therefore,

ln Pr(data|θ�P)(42)

=
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ln

(
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l=1

ϕl(xm)
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Ψi(aimt |xmt�ω
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+
M∑
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ln f (xmt |am�t−1�xm�t−1;θ)�

20With unobserved heterogeneity and multiple equilibria in the DGP, identification places a
heavier burden on the data. In this sense, the strict version of Assumption 5 (“only one equilib-
rium is played in the data”) can be thought of as an identifying assumption.
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The first component on the right-hand side is the pseudo likelihood function
QM(θ�P). The second component is the part of the likelihood associated with
transition data. As previously mentioned, the transition probability functions
f can still be estimated separately from transition data without solving the
model. Likewise, we are not considering estimation of the marginal distribu-
tion of the observed market type xm. Therefore, all probability statements and
the pseudo likelihood have been implicitly conditioned on each observation’s
market type xm.

Given our sampling framework, the observed state vector at the first observa-
tion for each market xm1 is not exogenous with respect to unobserved market
type: Pr(xm1|ωm) �= Pr(xm1). This is the initial conditions problem in the esti-
mation of dynamic discrete models with autocorrelated unobservables (Heck-
man (1981)). Under the assumption that the time-varying component of xm1

is drawn from the stationary distribution induced by the Markov perfect equi-
librium, we may implement a computationally tractable solution to this prob-
lem. Let p∗(x|f�P) denote the steady-state probability distributions of state
variables x under transition probability f and Markov perfect equilibrium P .21

Therefore, our pseudo likelihood function is

QM(θ�P� f ) = 1
M

M∑
m=1

ln

(
L∑
l=1

ϕl(xm)

[
T∏
t=1

N∏
i=1

Ψi(aimt|xmt�ω
l;Pl� θ)

]
(43)

×p∗(xm1|f�Pl)

)
�

Given this pseudo likelihood function, the NPL estimator is defined as in Sec-
tion 3.4. To obtain consistency, the identification condition in Assumption 5 is
suitably modified:

ASSUMPTION 5′(C): There is a unique θ0 ∈ Θ such that θ0 = arg maxθ Q0(θ�
P0� f ), where

Q0(P�θ� f ) ≡ E

(
ln

(
L∑
l=1

ϕl(xm)

[
T∏
t=1

N∏
i=1

Ψi(aimt |xmt�ω
l;Pl� θ)

]
(44)

×p∗(xm1|f�Pl)

))
�

21There is a slight abuse of notation here because p∗(x|·) is the steady-state distribution of the
time-varying component of x conditional on the fixed component of x and the other conditioning
variables. Also note that the function f stacks all transition probabilities for the time-varying
components of x, for all values of the fixed components x.
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We obtain this NPL estimator using an iterative procedure that is similar to
the one without unobserved heterogeneity. The main difference is that now
we have to calculate the steady-state distributions p∗(·|f�Pl) to deal with the
initial conditions problem. However, our pseudo likelihood approach also re-
duces very significantly the cost of dealing with the initial conditions problem.
The reason is that given the probabilities (f�Pl), the steady-state distributions
p∗(·|f�Pl) do not depend on the structural parameters in θ. Therefore, the dis-
tributions p∗(·|f�Pl) remain constant during any pseudo maximum likelihood
estimation and they are updated only between two pseudo maximum likeli-
hood estimations when we obtain new choice probabilities. This implies a very
significant reduction in the computational cost associated with the initial con-
ditions problem. We now describe our algorithm in detail.

At iteration 1, we start with L vectors of players’ choice probabilities, one for
each market type: P̂0 = {P̂0l : l = 1�2� � � � �L}. Then we perform the following
steps:

Step 1: For every market type l ∈ {1�2� � � � �L}, we obtain the steady-state
distribution of xm1 as the unique solution to the system of linear equations,

p∗(x|f� P̂0l)=
∑
x0∈X

f P̂0l (x|x0)p
∗(x0|f� P̂0l) for any x ∈X�(45)

where f P̂0l (·|·) is the transition probability for x induced by the conditional
transition probability f (·|·� ·) and by the choice probabilities in P̂0l. That is,

f P̂0
l (x|x0)=

∑
a∈A

(
N∏
i=1

P̂0
l�i(ai|x0)

)
f (x|x0� a)�(46)

Step 2: Given the steady-state probabilities {p∗(·|f� P̂0l) : l = 1�2� � � � �L},
construct the pseudo likelihood function QM(θ� P̂0) and obtain the pseudo
maximum likelihood estimator of θ as θ̂1 = arg maxθ∈Θ QM(θ� P̂0).

Step 3: For every market type l, update the vector of players’ choice prob-
abilities using the best response probability mapping associated with market
type l. That is, P̂1l = Ψ(θ̂1� P̂0l�ω

l).

Step 4: If ‖P̂1 − P̂0‖ is smaller than a predetermined small constant, then stop
the iterative procedure and choose (θ̂1� P̂1) as the NPL estimator. Otherwise,
replace P̂0 by P̂1 and repeat Steps 1–4.
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3.6. One-Step Maximum Likelihood Estimation

The pseudo likelihood approach we are advocating in this paper can be com-
bined with a “one-step” MLE that uses consistent estimates of θ0 and P0 from
NPL estimators to construct consistent estimates of the likelihood score and
the information matrix. The likelihood score evaluated at the consistent esti-
mates θ̂ is

∇̃θl ≡ ∂QM(θ̂� P̂)

∂θ
+ ∂P̂(θ̂)′

∂θ

∂QM(θ̂� P̂)

∂P
�(47)

where P̂ = Ψ(θ̂� P̂) and ∂P̂(θ̂)′/∂θ can be obtained using Assumption 5 and
the implicit function theorem: ∂Ψ(θ̂� P̂)′/∂θ(I − ∂Ψ(θ̂� P̂)/∂P ′)−1. The infor-
mation matrix can be estimated as

Ĩ =
M∑

m=1

{
∇θŝm + ∂P̂(θ̂)′

∂θ
∇P ŝm

}{
∇θŝm + ∂P̂(θ̂)′

∂θ
∇P ŝm

}′
�

i.e., the sum of the outer products of individual score observations in (47) eval-
uated at (θ̂� P̂). The one-step MLE is then θ̃ = θ̂ − Ĩ−1∇̃θl. A consistent esti-
mate of the population fixed-point pair is immediately available from the NPL
estimator: (θ̂� P̂) = (θ̂NPL� P̂NPL). Furthermore, most of the terms needed to
compute the estimates of the likelihood score and the information matrix are
also available as side products from the calculation of the asymptotic variance
of the NPL estimator. The one-step MLE is asymptotically efficient and there-
fore improves asymptotically on the NPL estimator from which it is derived. Its
performance in finite samples as well as the trade-offs between computational
simplicity and finite sample precision across pseudo likelihood and one-step
maximum likelihood (ML) estimators are topics for further research.22

4. MONTE CARLO EXPERIMENTS

4.1. Data Generating Process and Simulations

This section presents the results from several Monte Carlo experiments
based on a dynamic game of market entry and exit with heterogeneous firms.
The model is similar to those in our examples, but we consider a log-linear
specification of the variable profit function, θRS ln(Smt)−θRN ln(1 +∑j �=i ajmt),
where θRS and θRN are parameters. Therefore, the profit function of an active

22One might consider using the two-step PML estimator as a starting point for one-step effi-
cient estimation. However, to implement the one-step ML, we would first need to iterate in the
best response mapping to find the equilibrium probabilities that satisfy P̂2S = Ψ(θ̂2S�P̂2S)� and
elements of the score would not be available as side products of two-step PML estimation. Also
note that in models with permanent unobserved heterogeneity, where nonparametric estimates
of P0 are not available, the one-step ML estimator can be obtained only from the NPL estimates.
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firm i is

Π̃imt(1) = θRS ln(Smt)− θRN ln

(
1 +

∑
j �=i

ajmt

)
(48)

− θFC�i − θEC(1 − aim�t−1)+ εimt�

The parameters we estimate are the fixed operating costs {θFC�i : i = 1�2� � � � �
N}, the entry cost θEC, and the parameters in the variable profit function, θRS

and θRN . The logarithm of market size Smt is discrete and it follows a first order
Markov process that is known by the researcher and is homogeneous across
markets. We consider a sampling framework in which the same N firms are
the potential entrants in M separate markets, i.e., all firms are global players.

The following parameters are invariant across the different experiments.
The number of potential entrants is N = 5. Fixed operating costs are θFC�1 =
−1�9, θFC�2 = −1�8, θFC�3 = −1�7, θFC�4 = −1�6, and θFC�5 = −1�5, such that firm
5 is the most efficient and firm 1 is the least efficient. The support of the log-
arithm of market size has five points: {1�2�3�4�5}.23 The private information
shocks {εimt} are independent and identically distributed extreme value type I,
with zero mean and unit dispersion. The parameter θRS is equal to 1. The dis-
count factor equals 0�95 and is known by the researcher. The space of common
knowledge state variables (Smt� at−1) has 25 ∗ 5 = 160 cells. There is a different
vector of choice probabilities for each firm. Therefore, the dimension of the
vector of choice probabilities for all firms is 5 ∗ 160 = 800.

We present results from six experiments. The only difference between the
data generating processes in these experiments is in the values of the para-
meters θEC and θRN. Table I presents the values of these parameters for the
six experiments. The table also presents two ratios that provide a measure of
the magnitude of these parameter values relative to variable profits. The term
θEC/(θRS ln(3)) is the ratio between entry costs and the variable profit of a mo-
nopolist in a market of average size, and 100(θRN ln(2))/(θRS ln(3)) represents
the percentage reduction in variable profits when we go from a monopoly to a
duopoly in a market of average size.

For each experiment we compute a MPE. The equilibrium is obtained by it-
erating in the best response probability mapping starting with a 800 × 1 vector
of choice probabilities with all probabilities equal to 0�5, i.e., Pi(ai = 1|x)= 0�5
for every i and x. Given the equilibrium probabilities and the transition prob-

23The transition probability matrix for market size is
0�8 0�2 0�0 0�0 0�0
0�2 0�6 0�2 0�0 0�0
0�0 0�2 0�6 0�2 0�0
0�0 0�0 0�2 0�6 0�2
0�0 0�0 0�0 0�2 0�8

 �

The steady-state distribution implied by this transition probability is Pr(S = j) = 0�2 for any j ∈
{1�2�3�4�5}. The average market size is 3.
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TABLE I

MONTE CARLO EXPERIMENTS: PARAMETERS θEC AND θRN

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
θEC = 1�0 θEC = 1�0 θEC = 1�0 θEC = 0�0 θEC = 2�0 θEC = 4�0

Parametera θRN = 0�0 θRN = 1�0 θRN = 2�0 θRN = 1�0 θRN = 1�0 θRN = 1�0

θEC

θRS ln(3)
0.91 0.91 0.91 0.00 1.82 3.64

100
θRN ln(2)
θRS ln(3)

0.0% 63.1% 126.2% 63.1% 63.1% 63.1%

aThe parameter θEC/(θRS ln(3)) represents the ratio between entry costs and the annual variable profit of a
monopolist in a market of average size, i.e., Smt = 3. The parameter 100(θRN ln(2))/(θRS ln(3)) represents the per-
centage reduction in annual variable profits when we go from a monopoly to a duopoly in an average size market, i.e.,
Smt = 3.

abilities for market size, we obtain the steady-state distribution of the state,
p∗(St� at−1)� which is the unique solution to the system of equations

p∗(s�a) =
∑

a0∈{0�1}5

5∑
s0=1

fS(St+1 = s|St = s0)(49)

× Pr(at = a|St = s0� at−1 = a0)p
∗(S0� a0)

for all (s�a) ∈ {1�2�3�4�5} × {0�1}5, where Pr(at |St� at−1) = ∏N

i=1 Pi(ait |St�
at−1), where Pi(·|·� ·) is the equilibrium probabilities and fS(St+1|St) is the tran-
sition probability function of market size.

Steady-state probabilities and equilibrium choice probabilities are used
to generate all the Monte Carlo samples of an experiment. These samples
are {Sm1� am0� am1 :m = 1�2� � � � �M}. The initial state values {Sm1� am0 :m =
1�2� � � � �M} are random draws from the steady-state distribution of these vari-
ables. Then, given a draw (Sm1� am0), am1 is obtained by drawing a single choice
for each firm from the equilibrium choice probabilities Pi(·|Sm1� am0). Because
markets are homogeneous and all firms are global players in this design, the
time dimension of the data is not important and firm fixed effects are iden-
tified from multiple market observations. We have implemented experiments
with sample sizes M = 200 and M = 400. The results for the two sample sizes
are qualitatively very similar and therefore we only report results for M = 400.
For each experiment we use 1,000 Monte Carlo simulations to approximate the
finite sample distribution of the estimators.

Table II presents some descriptive statistics associated with the Markov per-
fect equilibrium of each experiment. These descriptive statistics were obtained
using a large sample of 50,000 markets where the initial values of state vari-
ables were drawn from their steady-state distribution. An increase in θRN re-
duces firms’ profits; therefore it reduces the number of firms in the market and
the probability of entry, and it increases the probability of exit. The effect on
the number of exits (or entries) is ambiguous and depends on the other pa-
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TABLE II

MONTE CARLO EXPERIMENTS: DESCRIPTION OF THE MARKOV PERFECT
EQUILIBRIUM IN THE DGPa

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
θEC = 1�0 θEC = 1�0 θEC = 1�0 θEC = 0�0 θEC = 2�0 θEC = 4�0

Descriptive Statistics θRN = 0�0 θRN = 1�0 θRN = 2�0 θRN = 1�0 θRN = 1�0 θRN = 1�0

Number of active firms
Mean 3�676 2�760 1�979 2�729 2�790 2�801
Std. dev. 1�551 1�661 1�426 1�515 1�777 1�905

AR(1) for number of active firms 0�744 0�709 0�571 0�529 0�818 0�924
(autoregressive parameter)

Number of entrants 0�520 0�702 0�748 0�991 0�463 0�206
(or exits) per period

Excess turnoverb 0�326 0�470 0�516 0�868 0�211 0�029
(in # of firms per period)

Correlation between −0�015 −0�169 −0�220 −0�225 −0�140 −0�110
entries and exits

Prob. of being active
Firm 1 0�699 0�496 0�319 0�508 0�487 0�455
Firm 2 0�718 0�527 0�356 0�523 0�521 0�501
Firm 3 0�735 0�548 0�397 0�547 0�556 0�550
Firm 4 0�753 0�581 0�434 0�564 0�592 0�610
Firm 5 0�770 0�607 0�475 0�586 0�632 0�686

aFor all these experiments, the values of the rest of the parameters are N = 5� θFC�1 = −1�9� θFC�2 = −1�8� θFC�3 =
−1�7� θFC�4 = −1�6� θFC�5 = −1�5� θRS = 1�0�σε = 1, and β = 0�95�

bExcess turnover is defined as (#entrants + #exits) − abs(#Entrants − #Exits).

rameters of the model.24 In Table II, we can see that for larger values of θRN ,
we get fewer active firms but more exits and entries. We can also see that in
markets with higher entry costs, we have lower turnover and more persistence
in the number of firms. Interestingly, increasing the cost of entry has different
effects on the heterogeneous potential entrants. That is, it tends to increase
the probability of being active of relatively more efficient firms and reduces
that probability for the more inefficient firms.

4.2. Results25

For each of these six experiments we have obtained the two-step PML and
the NPL estimators under the following choices of the initial vector of prob-

24Notice that the number of exits is equal to the number of active firms times the probability of
exit. Although a higher θRN increases the probability of exit, it also reduces the number of active
firms; therefore, its effect on the number of exits is ambiguous.

25The estimation programs that implement these Monte Carlo experiments, as well as those
for the empirical application in Section 5, have been written in the Gauss language. These pro-
grams can be downloaded from Victor Aguirregabiria’s web page at http://individual.utoronto.ca/
vaguirre.

http://individual.utoronto.ca/vaguirre
http://individual.utoronto.ca/vaguirre
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TABLE III

MONTE CARLO EXPERIMENTS: MEDIAN NUMBER
OF ITERATIONS OF THE NPL ALGORITHM

Initial Probabilities

Experiment Frequencies Logits Random

1 8 4 6
2 11 7 9
3 27 19 23
4 16 8 11
5 12 7 9
6 13 9 10

abilities: (i) the true vector of equilibrium probabilities P0; (ii) nonparamet-
ric frequency estimates; (iii) logit models, one for each firm, with explanatory
variables the logarithm of market size and the indicators of incumbency sta-
tus for all the firms; and (iv) independent random draws from a Uniform(0�1)
random variable. The first estimator, which we label 2S-True, is the infeasible
PML estimator. We use this estimator as a benchmark for comparison with
the other estimators. The estimator initiated with logit estimates (which we
label 2S-Logit) is not consistent, but has lower variance than the estimator
initiated with nonparametric frequency estimates (labeled 2S-Freq) and there-
fore may have better properties in small samples. The random values for P̂0

represent an extreme case of inconsistent initial estimates of choice proba-
bilities. The two-step estimator based on these initial random draws is called
2S-Random.

Tables III, IV, and V summarize the results from these experiments. Table III
presents the median number of iterations it takes the NPL algorithm to obtain
a NPL fixed point. Table IV shows the empirical mean and standard devia-
tions of the estimators based on the 1,000 replications. Table V compares the
mean squared error (MSE) of the 2S-Freq, 2S-Logit, and NPL estimators by
showing the ratio of the MSE of each to the MSE of the benchmark 2S-True
estimator.

REMARK 1: The NPL algorithm always converged and, more importantly,
it always converged to the same estimates regardless of the value of P̂0 (true,
nonparametric, logit, or random) that we used to initialize the procedure. This
was the case not only for the 6,000 data sets generated in the six experiments
presented here, but also for other similar experiments that we do not report
here (e.g., 6,000 data sets with 200 observations). Of course, this may be a con-
sequence of our functional form assumptions (e.g., logit, multiplicative separa-
bility of parameters) or of the equilibrium that we have selected for the DGP
(e.g., stable equilibrium), but it is encouraging to see that, at least for this par-
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TABLE IV

MONTE CARLO EXPERIMENTS: EMPIRICAL MEANS AND EMPIRICAL STANDARD
DEVIATIONS OF ESTIMATORS

Parameters

Experiment Estimator θFC�1 θRS θEC θRN

1 True values −1.900 1.000 1.000 0.000
2S-True −1�915 (0�273) 1�007 (0�152) 1�002 (0�139) 0�002 (0�422)
2S-Freq −0�458 (0�289) 0�374 (0�141) 1�135 (0�190) 0�200 (0�364)
2S-Logit −1�929 (0�279) 1�006 (0�153) 0�997 (0�138) −0�009 (0�431)
NPL −1�902 (0�279) 1�018 (0�157) 0�994 (0�139) 0�036 (0�439)

2 True values −1�900 1.000 1.000 1.000
2S-True −1�894 (0�212) 1�002 (0�186) 1�007 (0�118) 1�007 (0�583)
2S-Freq −0�919 (0�208) 0�351 (0�119) 0�886 (0�123) 0�095 (0�337)
2S-Logit −1�920 (0�226) 0�977 (0�197) 1�000 (0�122) 0�915 (0�597)
NPL −1�893 (0�232) 1�016 (0�220) 0�998 (0�121) 1�050 (0�681)

3 True values −1�900 1.000 1.000 2.000
2S-True −1�910 (0�183) 1�006 (0�209) 1�000 (0�112) 2�008 (0�783)
2S-Freq −1�126 (0�189) 0�286 (0�094) 0�792 (0�107) 0�027 (0�311)
2S-Logit −1�919 (0�248) 1�022 (0�305) 0�985 (0�145) 2�070 (1�110)
NPL −1�920 (0�232) 0�950 (0�189) 1�007 (0�116) 1�792 (0�667)

4 True values −1�900 1.000 0.000 1.000
2S-True −1�890 (0�516) 1�020 (0�329) 0�001 (0�119) 1�063 (1�345)
2S-Freq −0�910 (0�243) 0�337 (0�104) 0�239 (0�113) 0�127 (0�354)
2S-Logit −2�070 (0�436) 0�903 (0�262) 0�000 (0�119) 0�571 (1�061)
NPL −1�891 (0�482) 1�014 (0�291) 0�001 (0�115) 1�047 (1�186)

5 True values −1�900 1.000 2.000 1.000
2S-True −1�912 (0�178) 1�007 (0�142) 2�008 (0�132) 1�006 (0�359)
2S-Freq −0�840 (0�218) 1�379 (0�130) 1�591 (0�143) 0�181 (0�302)
2S-Logit −1�921 (0�204) 0�997 (0�167) 2�002 (0�138) 0�971 (0�405)
NPL −1�924 (0�203) 1�018 (0�178) 2�000 (0�137) 1�027 (0�435)

6 True values −1�900 1.000 4.000 1.000
2S-True −1�899 (0�206) 1�003 (0�132) 4�050 (0�203) 1�006 (0�238)
2S-Freq −0�558 (0�228) 0�332 (0�128) 2�745 (0�211) 0�206 (0�238)
2S-Logit −1�895 (0�240) 0�996 (0�147) 4�048 (0�208) 0�992 (0�277)
NPL −1�918 (0�239) 1�009 (0�152) 4�044 (0�207) 1�009 (0�285)

ticular class of models, the NPL works even when initial probabilities are ran-
dom. We obtained the same result when using actual data in the application in
Section 5.

REMARK 2: Table II shows that with θRN = 1, we need a relatively small
number of iterations to obtain the NPL estimator. With θRN = 2, the number
of NPL iterations is significantly larger. In general, the algorithm converges
faster when we initialize it with the logit estimates.
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TABLE V

SQUARE-ROOT MEAN SQUARE ERROR RELATIVE TO THE ONE-STAGE PML WITH TRUE P0

Parameters

Experiment Estimator θFC�1 θRS θEC θRN

1 2S-Freq 5�380 4�222 1�676 0�983
2S-Logit 1�027 1�006 1�002 1�022
NPL 1�019 1�040 0�996 1�044

2 2S-Freq 4�736 3�553 1�415 1�655
2S-Logit 1�070 1�066 1�029 1�034
NPL 1�098 1�188 1�020 1�171

3 2S-Freq 4�347 3�440 2�095 2�549
2S-Logit 1�357 1�462 1�301 1�419
NPL 1�268 0�935 1�038 0�892

4 2S-Freq 1�977 2�035 2�228 0�699
2S-Logit 0�906 0�848 1�000 0�850
NPL 0�935 0�884 0�969 0�881

5 2S-Freq 6�054 4�459 3�279 2�429
2S-Logit 1�146 1�176 1�043 1�130
NPL 1�143 1�250 1�037 1�210

6 2S-Freq 6�591 5�589 6�072 3�487
2S-Logit 1�162 1�209 1�020 1�166
NPL 1�158 1�248 1�010 1�197

REMARK 3: The 2S-Freq estimator has a very large bias in all the experi-
ments, although its variance is similar to, and sometimes even smaller than,
the variances of NPL and 2S-True estimators. Therefore, it seems that the main
limitation of 2S-Freq is not its larger asymptotic variance (relative to NPL), but
its large bias in small samples.

REMARK 4: The NPL estimator performs very well relative to the 2S-True
estimator both in terms of variance and bias. The square-root MSE of the NPL
estimator is never more than 27% larger than that of the 2S-True estimator.
In fact, the NPL estimator can have lower MSE than the 2S-True estimator.
This was always the case in experiments where the parameter θRN is relatively
large, as in Experiment 3. When strategic interactions are stronger, the NPL
estimator, which imposes the equilibrium condition, has better asymptotic and
finite sample properties than an estimator that does not impose this restriction,
such as the two-step PML.

REMARK 5: The 2S-Logit performs very well for this simple model. In fact, it
has bias and variance very similar to the NPL estimator. Only in Experiment 4,
with θRN = 2, do we find very significant gains in terms of lower bias and vari-
ance by using NPL instead of the 2S-Logit estimator. Again, the stronger the
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strategic interactions, the more important the gains from iterating in the NPL
procedure.

REMARK 6: In all the experiments, the most important gains associated with
the NPL estimator occur for the entry cost parameter θEC.

In drawing conclusions about the relative merits of two-step PML and NPL
estimators, one final word of caution is warranted. Notice that with 400 obser-
vations and a state space of 160 points, the frequency estimator in this example,
although consistent, is very imprecise; i.e., most estimates are zeros or ones.
Using a smooth nonparametric estimator in the first step may reduce finite
sample bias in the second step. Pakes, Ostrovsky, and Berry (2004) do this, and
in the second step they also consider an alternative method of moments esti-
mator based on the moment conditions E(Wit[I{ait = a}−Ψi(a|xit;θ�P)])= 0,
where the “instruments” Wit do not depend on θ. In a Monte Carlo experiment
using a very simple entry model with homogeneous firms, one state variable,
and two structural parameters, they find that this estimator performs much bet-
ter than the two-step PML. On the other hand, Pakes, Ostrovsky, and Berry’s
two-step method of moments estimator was first proposed by Hotz and Miller
(1993) in models with no strategic interactions. Several Monte Carlo studies,
including Hotz, Miller, Sanders, and Smith (1994), have shown that this esti-
mator can still perform poorly when sample sizes are small relative to the size
of the state space. Furthermore, the Monte Carlo experiments for single-agent
models in Aguirregabiria and Mira (2002) show that, even when smoothing is
used in the first step, there can be significant improvements in finite sample
properties when we iterate in the NPL procedure.

5. AN APPLICATION

5.1. Data and Descriptive Evidence

This section presents an empirical application of a dynamic game of firm en-
try and exit in local retail markets. The data come from a census of Chilean
firms created for tax purposes by the Chilean Servicio de Impuestos Inter-
nos (Internal Revenue Service). This census contains the whole population
of Chilean firms that pay the sales tax (Impuesto de Ventas y Servicios). The
sales tax is mandatory for any firm in Chile regardless of its size, industry, re-
gion, etc. The data set has a panel structure; it has annual frequency and covers
the years 1994–1999. The variables in the data set at the firm level are (i) firm
identification number, (ii) firm industry at the five digit level, (iii) annual sales,
discretized in 12 cells, and (iv) the comuna (i.e., county) where the firm is lo-
cated. We combine these data with annual information on population at the
level of comunas for every year between 1990 and 2003.

We consider five retail industries and estimate a separate model for each.
The industries are restaurants, bookstores, gas stations, shoe shops, and fish
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shops. Competition in these retail industries occurs at the local level and
we consider comunas as local markets. There are 342 comunas in Chile. To
have a sample of independent local markets, we exclude those comunas in
the metropolitan areas of the larger towns: Santiago (52 comunas), Valparaiso
(9 comunas), Rancagua (17 comunas), Concepcion (11 comunas), Talca (10 co-
munas), and Temuco (20 comunas). We also exclude 34 comunas with popu-
lations larger than 50,000 because it is likely that they have more than one
market for some of the industries we consider. Our working sample contains
189 comunas. In 1999, the median population of a comuna in our sample
was 10,400, and the first and third quartiles were 5,400 and 17,900, respec-
tively.

Table VI presents descriptive statistics on the structure and the dynamics
of these markets. There are some significant differences in the structure of
the five industries. The number of restaurants (15 firms per 10,000 people) is

TABLE VI

DESCRIPTIVE STATISTICS: 189 MARKETS; YEARS 1994–1999

Descriptive Statistics Restaurants Gas Stations Bookstores Shoe Shops Fish Shops

Number of firms per 14�6 1�0 1�9 0�9 0�7
10,000 people

Markets with
0 firms 32�2% 58�6% 49�5% 67�1% 74�1%
1 firm 1�3% 15�3% 15�8% 10�8% 9�6%
2 firms 1�2% 7�8% 8�0% 6�7% 5�0%
3 firms 0�5% 5�2% 6�9% 3�8% 3�4%
4 firms 1�2% 4�0% 3�6% 2�7% 2�0%
More than 4 firms 63�5% 9�2% 16�2% 8�9% 5�9%

Herfindahl index (median) 0�169 0�738 0�663 0�702 0�725
Annual revenue per firm 17�6 67�7 23�3 67�2 124�8

(in thousand $)
Regression log(1+# firms) 0�383 0�133 0�127 0�073 0�062

on log(market size)a (0�043) (0�019) (0�024) (0�020) (0�018)
Regression log(firm size) −0�019 0�153 −0�066 0�223 0�097

on log(market size)b (0�034) (0�082) (0�050) (0�081) (0�111)
Entry rate (%)c 9�8 14�6 19�7 12�8 21�3
Exit rate (%)d 9�9 7�4 13�5 10�4 14�5

Survival rate (hazard rate)
1 year (%)e 86�2 (13�8) 89�5 (10�5) 84�0 (16�0) 86�8 (13�2) 79�7 (20�3)
2 years (%) 69�5 (19�5) 88�5 (1�1) 70�0 (16�6) 71�1 (18�2) 58�1 (27�2)
3 years (%) 60�1 (14�9) 84�6 (4�3) 60�0 (14�3) 52�6 (25�1) 44�6 (23�3)

aMarket size = population. Regression included time dummies. Standard errors are given in parentheses.
bFirm size = revenue per firm. Regression included time dummies. Standard errors are given in parentheses.
cEntry rate = entrants / incumbents.
dExit rate = exits / incumbents.
eSurvival and hazard rates are calculated using the subsample of new entrants in years 1995 and 1996.
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much larger than the number of gas stations, bookstores, fish shops, or shoe
shops (between 1 and 2 firms per 10,000 people). Market concentration, mea-
sured by the Herfindahl index, and firm size (i.e., revenue per firm) are also
smaller in the restaurant industry. Turnover rates are very high in all these re-
tail industries. It is difficult to survive during the first three years after entry.
However, survival is more likely in gas stations than in the other industries.

There are at least three factors that could explain why the number of restau-
rants is much larger than the number of gas stations or bookstores. First, dif-
ferences in economies of scale are potentially important. The proportion of
fixed costs in total operating costs may be smaller for restaurants. Second, dif-
ferences in entry sunken costs might also be relevant. Although the creation
of a new gas station or a new bookstore requires an important investment in
industry-specific capital, this type of irreversible investment may be less im-
portant for restaurants. Third, strategic interactions could be smaller between
restaurants than between other retail businesses. For instance, product differ-
entiation might be more important among restaurants than among gas stations.
To analyze how these three factors contribute to explain the differences be-
tween these industries, we estimate a model of entry and exit that incorporates
these elements.

5.2. Specification

The specification of the profit function is similar to that in our Monte Carlo
experiments but with two differences: we assume that firms are homogeneous
in their fixed operating costs and we incorporate the variable ωm that repre-
sents time-invariant market characteristics that are common knowledge to the
players but are unobservable to us. The profit of a nonactive firm is zero and
the profit of an active firm is

Π̃imt(1) = θRS ln(Smt)− θRN ln

(
1 +

∑
j �=i

ajmt

)
(50)

− θFC − θEC(1 − aim�t−1)+ωm + εimt�

The inclusion of unobserved market heterogeneity has important implications
in our estimation results. We found that for some industries the model with-
out heterogeneity provides a significantly negative estimate for the parame-
ter θRN , i.e., a firm’s current expected profit increases with the expected num-
ber of active firms in the market. This result is not economically plausible. It
may reflect the existence of positive correlation between the expected value of
ln(1+∑j �=i ajmt) and some unobserved market characteristics that affect firms’
profits. If this unobserved heterogeneity is not accounted for, the estimates
of θRN will be biased downward. As we subsequently show, this conjecture is
confirmed for all industries.
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We assume that the current payoff of a nonactive firm is zero regardless of
its incumbency status. Therefore, we are implicitly normalizing the exit value
to zero. A nice feature of this normalization is that the estimate of θEC is an
estimate of the sunken cost, i.e., entry cost minus exit value. However, this
normalization is not innocuous for the interpretation of other parameter esti-
mates. In particular, our estimate of θFC is an estimate of the fixed operating
cost plus a term that is zero only if the exit value is zero.

Our measure of market size Smt is the population in comuna m at year t. We
assume that the logarithm of market size follows an AR(1) process, where the
autoregressive parameter is homogeneous across markets but the mean varies
over markets:

ln(Smt)= ηm + ρ ln(Sm�t−1)+ umt�(51)

We use the method in Tauchen (1986) to discretize this AR(1) process and
obtain the transition matrix of the discretized variable with a 10-point support.
For the unobserved market effect ωm, we assume it has a discrete distribution
with L = 21 points of support and independent of our observed measure of
market size. More precisely, the distribution of ωm is a discretized version of a
Normal(0�σ2

ω) with support points {ωl :ωl = σωc
l� l = 1�2� � � � �L}, where cl is

the expected value of a standard normal random variable between percentile
100((l− 1)/L) and percentile 100(l/L). Let pl be the percentile 100(l/L) of a
standard normal such that pl =
−1(l/L), where 
−1(·) is the inverse function
of the cumulative distribution function of a standard normal. Then

cl = −φ(pl)+φ(pl−1)


(pl)−
(pl−1)
= −(φ(pl)−φ(pl−1))L�(52)

where φ and 
 are the probability distribution function and the cumulative
distribution function of the standard normal, respectively. By construction, all
the probabilities ϕl ≡ Pr(ωm =ωl) are equal to 1/L.

Notice that all firms are ex ante identical and, therefore, we consider sym-
metric Markov perfect equilibria. That is, every incumbent firm has the same
probability of exit and every potential entrant has the same probability of en-
try. Second, a firm’s profit depends on the number of competitors but not on
the identity of the competitors. Taking into account these two features of the
model, it is simple to show that all the information in {aim�t−1 : i = 1�2� � � � �N}
that is relevant to predict a firms’ current and future profits is contained in just
two variables: the firm’s own incumbency status, aim�t−1, and the number of in-
cumbent firms, nm�t−1. The number of possible states associated with these two
variables is 2N . Therefore, the size of the full state space including market size
Smt is (20)N .
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The distribution of the private information variables is assumed normal with
mean zero and variance σ2

ε . Therefore, the log pseudo likelihood function is

M∑
m=1

ln

(
L∑
l=1

(
T∏
t=1

Nm∏
i=1




(
[2aimt − 1]

[
z̃P
i (xmt)

θ

σε

+ λ̃P
i (xmt)+ σω

σε

cl
]))

(53)

×p∗(xm1|f�Pl)

)
�

where θ = (θRS� θRN�θFC� θEC)
′. This function is globally concave in the para-

meters θ/σε and σω/σε. This is another nice feature of the pseudo likelihood
approach to deal with the initial conditions problem, because the probabilities
p∗(xm1|f�Pl) do not depend on the structural parameters θ/σε and σω/σε. We
estimate these parameters following the procedure that we described at the
end of Section 3.5.

All the parameters in the model are identified even in a myopic (not forward
looking) version of this game. The identification of the parameters θRN/σε

and θEC/σε deserves some explanation. The entry cost parameter is essentially
identified from the difference between incumbent firms and potential entrants
in the probability of being active and from turnover behavior. The strategic
interaction parameter θRN/σε is identified because entry–exit probabilities in
the data vary with the number of incumbent firms, and this variable enters the
profit function only through the expected value of ln(1+∑j �=i ajmt) conditional
on xmt .

5.3. Estimation Results

The parameters of the AR(1) process for the logarithm of population are
estimated by full maximum likelihood using data for the period 1990–2003.
The estimate of the autoregressive coefficient is 0�9757 (s�e� = 0�0008). Other
estimation methods provide very similar estimates.26 As previously mentioned,
we follow Tauchen (1986) to discretize this variable and to obtain the matrix
of transition probabilities. Given that the intercept of the AR(1) process is
market specific, the discretization and the transition matrix vary over markets.

We treat the number of potential entrants in each market as an estimable pa-
rameter and we assume that it varies across markets and industries but is con-
stant over time. Our estimate of the number of potential entrants in market–
industry m is

Nm = max
{

max
t∈(1�2�����T )

{nm�t−1 + enmt};2
}
�(54)

26The within groups (or fixed effects) estimator is 0�9766 (s�e� = 0�0008). The ordinary least
squares estimator in first differences is: 0�9739 (s�e� = 0�0032). The instrumental variables esti-
mator in first differences using the population at t − 2 as the instrument is 0�9706 (s�e�= 0�0128).
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TABLE VII

DISTRIBUTION OF THE ESTIMATED NUMBER OF POTENTIAL ENTRANTS

Nm Restaurants Gas Stations Bookstores Shoe Shops Fish Shops

2 63 (33.3%) 146 (77.3%) 123 (65.1%) 153 (81.0%) 158 (83.6%)
3 1 (0.5%) 9 (4.8%) 14 (7.4%) 6 (3.2%) 6 (3.2%)
4 3 (1.6%) 8 (4.2%) 10 (5.3%) 8 (4.2%) 9 (4.8%)
5 1 (0.5%) 8 (4.2%) 5 (2.7%) 5 (2.7%) 2 (1.1%)
6 1 (0.5%) 3 (1.6%) 5 (2.7%) 4 (2.1%) 4 (2.1%)

Maximum 105 17 48 16 20

where nm�t−1 is the number of firms active at period t − 1, enmt is the number
of new entrants at period t, and we assume that there are at least two poten-
tial entrants in each market. Table VII presents the distribution of the number
of potential entrants for each industry. We have also obtained estimates of
the models under two alternative scenarios about the number of potential en-
trants: (a) the same N for different markets within an industry but different
N ’s across industries, and (b) the same N for every market and every indus-
try. The qualitative estimation results that we describe subsequently are very
similar regardless of which of these three approaches is used to estimate the
number of potential entrants.

Table VIII presents NPL estimates of this model for the five industries. The
discount factor is fixed at β = 0�95. As in the case of the Monte Carlo experi-
ments, we initialized the NPL algorithm with different vectors of probabilities
and we always converged to the same NPL fixed point. In spite of the parsi-
monious specification of the model, with only five parameters, the measures of
goodness of fit are high. Both for the number of entrants and for the number
of exits, the R-squared coefficients are always larger than 0�19. All the parame-
ters have the expected signs. It is important to note that in the estimation of a
version of the model without unobserved market characteristics, we obtained
much smaller estimates of the parameter θRN for every industry. In fact, this
estimate was negative for the gas station and the shoe shop industries.

As is common in discrete-choice models, the parameters in the profit func-
tion are identified only up to scale. Given that the dispersion of the unobserv-
able ε’s may change across industries, we cannot obtain the relative magnitude
of fixed costs, entry costs, or strategic interactions by just comparing the values
of θFC/σε, θEC/σε, or θRN/σε for different industries. For this reason, Table IX
reports the following normalized coefficients:
• The parameter θFC/(θRS ln(SMed)) is the ratio between fixed operating costs

and the variable profit of a monopolist in a market of median size (i.e.,
10,400 consumers).

• The parameter θEC/(θRS ln(SMed)) is the ratio between sunken entry costs
and the variable profit of a monopolist in a market of median size.
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TABLE VIII

NPL ESTIMATION OF ENTRY–EXIT MODELa

Parameters Restaurants Gas Stations Bookstores Shoe Shops Fish Shops

Variable profit:
θRS

σε

1�743 1�929 2�029 2�030 0�914
(0�045) (0�127) (0�076) (0�121) (0�125)

θRN

σε

1�643 2�818 1�606 2�724 1�395
(0�176) (0�325) (0�201) (0�316) (0�234)

Fixed operating cost:
θFC

σε

9�519 12�769 15�997 14�497 6�270
(0�478) (1�251) (0�141) (1�206) (1�233)

Entry cost:
θEC

σε

5�756 10�441 5�620 5�839 4�586
(0�030) (0�150) (0�081) (0�145) (0�121)

σω

σε

1�322 2�028 1�335 2�060 1�880
(0�471) (1�247) (0�133) (1�197) (1�231)

Number of observations 945 945 945 945 945
R-squared:

Entries 0�298 0�196 0�442 0�386 0�363
Exits 0�414 0�218 0�234 0�221 0�298

aStandard errors are given in parentheses. These standard errors are computed from the formulae in Section 4,
which do not account for the error in the estimation of the parameters in the autoregressive process of market size.

• The parameter 100(θRN ln(2))/(θRS ln(SMed)) is the percentage reduction in
variable profits per firm when we go from a monopoly to a duopoly in a
market of median size.

TABLE IX

NORMALIZED PARAMETERS

Parametersa Restaurants Gas Stations Bookstores Shoe Shops Fish Shops

θFC

θRS ln(SMed)
0�590 0�716 0�852 0�772 0�742

θEC

θRS ln(SMed)
0�357 0�585 0�299 0�311 0�542

100
θRN ln(2)

θRS ln(SMed)
7�1% 10�9% 5�9% 10�1% 11�4%

σ2
ω

θ2
RS var(ln(S))+ σ2

ω + 1
0�278 0�436 0�235 0�423 0�642

aθFC/(θRS ln(SMed)) is the ratio between fixed operating costs and variable profits of a monopolist in a market of
median size. SMed = 10,400 individuals. θEC/(θRS ln(SMed)) is the ratio between entry costs and variable profits of a
monopolist in a market of median size. 100θRN ln(2)/(θRS ln(SMed)) is the percentage reduction in variable profits
per firm when we go from a monopoly to a duopoly in a market of median size. σ2

ω/(θ2
RS var(ln(S)) + σ2

ω + 1) is the
proportion of the cross-sectional variability in monopoly profits that is explained by the unobserved market type ωm .
Note that var(ln(S)) = 1�16.



ESTIMATION OF DYNAMIC DISCRETE GAMES 43

• The parameter σ2
ω/(θ

2
RS var(ln(S)) + σ2

ω + 1) is the proportion of the cross-
market variability in monopoly profits that is explained by the unobserved
market type ωm.
Fixed operating costs are a very important component of total profits. These

costs range between 59% (in restaurants) and 85% (in bookstores) of the vari-
able profit of a monopolist in a median market. The relatively small degree
of economies of scale in restaurants seems to be a major factor to explain the
large number of firms in the restaurant industry. Sunken entry costs are sta-
tistically significant in the five industries. They range between 31% (in shoe
shops) and 58% (in gas stations) of monopolist variable profits in a median
market. However, it seems that for these retail industries, sunken entry costs
are smaller than annual fixed operating costs. Gas stations are the retailers
with largest sunken costs. However, the interindustry differences in sunken
costs explain little of the differences in the number of firms.

The strategic interaction parameter is statistically significant for all five in-
dustries. The normalized coefficient measures the percentage reduction in
variable profits when we go from a monopoly to a duopoly in a medium size
market. According to this parameter, restaurants and bookstores are the re-
tailers with the smallest strategic interactions. This might be due to product
differentiation in these two industries. However, strategic interactions do not
seem very strong as measured by the normalized parameter because its value
ranges between 5.9% and 11.4%.

In this model there are four sources of cross-sectional variation in average
profits across markets: market size, the unobserved variable ωm, the private
information shocks, and the number of incumbent firms, which is endogenous.
The coefficient σ2

ω/(θ
2
RS var(ln(S))+ σ2

ω + 1) measures the contribution of the
unobserved market type to the cross-market variability in monopoly profits.
This contribution varies over industries, but is always very important. For the
case of gas stations, this contribution is just as important as market size (i.e.,
44%); for the fish shops industries, it is much more important (i.e., 64%).

Based on these estimations, the main differences between these retail indus-
tries can be summarized as follows. First, economies of scale are smaller in
the restaurant industry and this is the main factor that explains the large num-
ber of restaurants. Second, strategic interactions are particularly small among
restaurants and among bookstores, which might be due to more product differ-
entiation in those industries. This also contributes to explain the large number
of restaurants. Third, economies of scale seem very important in the bookstore
industry. However, the number of bookstores is, in fact, larger than the num-
ber of gas stations or the number of shoe shops. The reason is that negative
strategic interactions are weak in this industry. Fourth, industry-specific invest-
ments, i.e., sunken entry costs, are significant in the five industries. However,
these costs are smaller than annual fixed operating costs. Gas stations is the
industry with largest sunken costs, but the magnitude of these costs does not
result in a particularly small number of firms in this industry. However, it does
contribute to explain the lower turnover for gas stations.
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6. CONCLUSIONS

This paper presents a class of empirical dynamic discrete games and stud-
ies the estimation of structural parameters in these models. We are particu-
larly concerned with two estimation problems: the computational burden in
the solution of the game and the problem of multiple equilibria. We proposed
two different pseudo maximum likelihood methods that successfully deal with
these issues: two-step pseudo maximum likelihood and nested pseudo maxi-
mum likelihood (NPL). We argue that the second method has several potential
advantages relative to the first. These advantages are illustrated in our Monte
Carlo experiments and in an empirical application to a model of firm entry
and exit in oligopoly markets. In particular, the NPL estimator has a smaller
finite sample bias than the two-step PML estimator. Furthermore, it can be
implemented in models with permanent unobserved heterogeneity.
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APPENDIX: PROOFS

PROOF OF THE REPRESENTATION LEMMA: The best response operator Ψ
was derived in Section 2.4 to provide an alternative characterization of an equi-
librium so that any fixed point of Λ is obviously a fixed point of Ψ . To prove
the converse, partition a vector of choice probabilities P as (Pi�P−i). Given the
choice probabilities of other players P−i, player i faces a “game against nature,”
which is a single-agent Markov decision process as defined in Aguirregabiria
and Mira (2002). Note that Ψi (in Pi� with P−i fixed) is that paper’s “policy
iteration operator” in the single agent’s game against nature. It follows from
Proposition 1(a) and (c) in Aguirregabiria and Mira (2002) that a fixed point
of Ψi is unique and the “smoothed” value function associated with it is the V P

i

function that solves the integrated Bellman equation in (7) of Section 2.2. Re-
peating this reasoning for all i establishes that a fixed point of Ψ is a fixed point
of Λ. Q.E.D.

PROOFS OF PROPOSITIONS 1 AND 2.: To prove the propositions, we consider
various attributes.

Uniform Convergence of QM to Q0. Under Assumption 1, the probabilities
Ψ(θ�P) are bounded away from zero and one for every value of (θ�P), and
this condition implies that QM(θ�P) converges almost surely and uniformly in

mailto:victor.aguirregabiria@utoronto.ca
mailto:mira@cemfi.es
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(θ�P) ∈ Θ× [0�1]N|X| to a continuous nonstochastic function Q0(θ�P), where
Q0(θ�P) ≡ E(

∑T

t=1

∑N

i=1 lnΨi(aimt|xmt;θ�P)). Continuity and differentiability
of sample and population criterion functions follow from conditions (i) and (ii)
in Propositions 1 and 2.

Consistency of the Two-Step PML Estimator. Notice that (a) Q0(θ�P) is
uniformly continuous, (b) QM(θ�P) converges almost surely and uniformly
in (θ�P) to Q0(θ�P), and (c) P̂0 converges almost surely to P0. Under
(a)–(c), QM(θ� P̂

0) converges almost surely and uniformly in θ to Q0(θ�P
0)

(Lemma 24.1 in Gourieroux and Monfort (1995)). By the identification As-
sumption 5(C), θ0 is the only vector in Θ such that Ψ(θ�P0) = P0. Therefore,
by the information inequality, Q0(θ�P

0) has a unique maximum in Θ at θ0. It
follows that θ̂2S ≡ arg maxθ∈ΘQM(θ� P̂

0) converges almost surely to θ0 (Prop-
erty 24.2 in Gourieroux and Monfort (1995)).

Consistency of the NPL Estimator. Throughout the proof we use the super-
script index c to denote the complement of a set. We use Υ0 to denote the set
of population NPL fixed points: Υ0 ≡ {(θ�P) ∈ Θ × [0�1]N|X| :θ = θ̃0(P) and
P = φ0(P)}.

We begin with an outline of the proof, which proceeds in five steps:
Step 1. The term (θ0�P0) uniquely maximizes Q0(θ�P) in the set Υ0.
Step 2. With probability approaching 1, every element of ΥM belongs to the

union of a set of arbitrarily small open balls around the elements
of Υ0.

Step 3. The function φM converges to φ0 in probability uniformly in
P ∈ N(P0).

Step 4. With probability approaching 1, there exists an element (θ∗
M�P

∗
M) of

ΥM in any open ball around (θ0�P0).
Step 5. With probability approaching 1, the NPL estimator is the element of

ΥM that belongs to an open ball around (θ0�P0).
When Υ0 contains only one element, then Steps 1 and 2 prove the consis-

tency of the NPL estimator. When there are multiple NPL fixed points in the
population, Steps 3–5 are needed to prove consistency.

STEP 1—The term (θ0�P0) uniquely maximizes Q0(θ�P) in the set Υ0: Given
the identification Assumption 5, we can show that (θ0�P0) is the unique pair
that satisfies the conditions (a) θ0 = arg maxθ∈Θ Q0(θ�P

0), (b) P0 = Ψ(θ0�P0),
and (c) for any (θ�P) that verifies (a) and (b), then Q0(θ

0�P0) ≥ Q0(θ�P).
Conditions (a) and (c) result from the application of Assumption 5(A) and
(B) and the Kullback–Leibler information inequality. Condition (b) follows
from Assumption 5(B) and uniqueness follows from Assumption 5(C). Note
that (θ0�P0) may be the only pair that satisfies (a) and (b), i.e., Υ0 may be a
singleton.
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STEP 2 —With probability approaching 1, every element of ΥM belongs to
the union of a set of arbitrarily small open balls around the elements of Υ0:
Define the function

Q∗
0(θ�P)≡ max

c∈Θ
{Q0(c�P)} −Q0(θ�P)�

Because Q0(θ�P) is continuous and Θ × [0�1]N|X| is compact, Berge’s max-
imum theorem establishes that Q∗

0(θ�P) is a continuous function in Θ ×
[0�1]N|X|. By construction, Q∗

0(θ�P) ≥ 0 for any (θ�P) ∈ Θ × [0�1]N|X|. Let E
be the set of vectors (θ�P) that are fixed points of the equilibrium mapping Ψ ,
i.e.,

E ≡ {(θ�P) ∈Θ× [0�1]N|X| :P −Ψ(θ�P) = 0
}
�

Given that Θ×[0�1]N|X| is compact and the function P−Ψ(θ�P) is continuous,
then E is a compact set. By definition, the set Υ0 is included in E. For each
element of Υ0, consider an (arbitrarily small) open ball that contains it. Let �
be the union of these open balls that contain the elements of Υ0. Because the
sets E and �c are compact, then �c ∩E is also compact. Define the constant

ε = min
(θ�P)∈�c∩E

Q∗
0(θ�P)�

By construction, we have that ε > 0. To see this, note that ε = 0 implies
that there is a (θ�P) such that (θ�P) /∈ Υ0 but (θ�P) ∈ E and Q0(θ�P) =
maxc∈Θ{Q0(c�P)}, a contradiction. Define the event

AM ≡ {|QM(θ�P)−Q0(θ�P)| < ε/2 for all (θ�P) ∈ Θ× [0�1]N|X|}�
Let (θ∗

M�P
∗
M) be an element of ΥM . Then we have that (a) AM implies Q0(θ

∗
M�

P∗
M) > QM(θ

∗
M�P

∗
M) − ε/2 and (b) for any θ ∈ Θ, AM implies QM(θ�P

∗
M) >

Q0(θ�P
∗
M) − ε/2. Furthermore, given that (θ∗

M�P
∗
M) is a NPL fixed point, we

have that (c) QM(θ
∗
M�P

∗
M) ≥ QM(θ�P

∗
M) for any θ ∈ Θ. Combining inequalities

(a) and (c), we get that AM implies Q0(θ
∗
M�P

∗
M) > QM(θ�P

∗
M) − ε/2 for any

θ ∈ Θ. Adding up this inequality to (b), we get

AM ⇒ {
Q0(θ

∗
M�P

∗
M) >Q0(θ�P

∗
M)− ε for any θ ∈Θ

}
⇒
{
Q0(θ

∗
M�P

∗
M) > max

θ∈Θ
{Q0(θ�P

∗
M)} − ε

}
⇒ {ε >Q∗

0(θ
∗
M�P

∗
M)}

⇒
{

min
(θ�P)∈�c∩E

Q∗
0(θ�P) >Q∗

0(θ
∗
M�P

∗
M)
}

⇒ {(θ∗
M�P

∗
M) ∈ �}
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because (θ∗
M�P

∗
M) ∈ E. Therefore, Pr(AM) ≤ Pr((θ∗

M�P
∗
M) ∈ �). Thus, Pr((θ∗

M�
P∗
M) ∈ �) converges to 1 as M goes to infinity, i.e., any element of the set ΥM

belongs to an open ball around an element of Υ0 with probability approach-
ing 1.

As a corollary, note that if Υ0 is a singleton, consistency follows and there is
no need to search for multiple NPL fixed points.

STEP 3 —The function φM converges to φ0 in probability uniformly in P ∈
N(P0): First, we show that θ̃M(P) converges to θ̃0(P) in probability uniformly
in P ∈ N(P0). By condition (vi), θ̃0(P) is an interior singleton for P ∈ N(P0).
Let Nε(θ̃0(P)) ⊂ Θ be an open ball around θ̃0(P) with radius ε > 0. By condi-
tion (vi) in Proposition 2, for all ε small enough, there is a constant δ(ε) > 0
such that

max
θ∈Θ∩Nε(θ̃0(P))

c
Q0(θ�P) ≤Q0(θ̃0(P)�P)− δ(ε)

for all P in N(P0). Define the event

AM ≡ {|QM(θ�P)−Q0(θ�P)| < δ(ε)/2

for all (θ�P) ∈ Θ× [0�1]N|X|}�
For any P ∈ N(P0) we have that (a) AM implies Q0(θ̃M(P)�P) > QM(θ̃M(P)�

P)− δ(ε)/2 and (b) AM implies QM(θ̃0(P)�P) >Q0(θ̃0(P)�P)− δ(ε)/2. Fur-
thermore, by definition of θ̃M(P), we have (c) QM(θ̃M(P)�P) >QM(θ̃0(P)�P).
Combining inequalities (a) and (c), we get that AM implies Q0(θ̃M(P)�P) >

QM(θ̃0(P)�P)− δ(ε)/2. Adding up this inequality to (b), we get

AM ⇒ {
for any P ∈ N(P0)� we have that

Q0(θ̃0(P)�P)−Q0(θ̃M(P)�P) < δ(ε)
}
�

Given the definition of δ(ε), the previous expression implies that

AM ⇒
{

for any P ∈N(P0)� we have that

Q0(θ̃M(P)�P) > max
θ∈Θ∩Nε(θ̃0(P))

c
Q0(θ�P)

}
⇒ {

for any P ∈ N(P0)� we have that θ̃M(P) ∈ Nε(θ̃0(P))
}

⇒
{

sup
P∈N(P0)

‖θ̃M(P)− θ̃0(P)‖ < ε
}
�
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Therefore,

Pr(AM)≤ Pr
(

sup
P∈N(P0)

‖θ̃M(P)− θ̃0(P)‖< ε
)
�

We previously showed that QM(θ�P) converges in probability to Q0(θ�P)
uniformly in (θ�P), i.e., Pr(AM) goes to 1 as M goes to infinity. Thus,
Pr(supP∈N(P0) ‖θ̃M(P) − θ̃0(P)‖ < ε) also converges to 1 as M goes to infin-
ity, i.e., θ̃M(P) converges to θ̃0(P) in probability uniformly in P ∈ N(P0). Fi-
nally, φM(P) ≡ Ψ(θ̃M(P)�P) converges uniformly in probability to φ0(P) ≡
Ψ(θ̃0(P)�P) because Ψ is uniformly continuous and bounded in the compact
space Θ× [0�1]N|X|.

STEP 4 —With probability approaching 1, there exists an element (θ∗
M�P

∗
M)

of ΥM in an open ball around (θ0�P0): This part of the proof is constructive
and goes beyond the result in Step 2, because it establishes that there exists
an element of ΥM in the open ball around a particular population NPL fixed
point. Condition (vii) in Proposition 2 is the key sufficient condition here. The
proof is based on an argument by Manski (1988).27 Because NPL iteration can
be described in terms of P only, with θ as a by-product, we focus here on the
choice probability component of the NPL operator. Let N(P0) be a neighbor-
hood of P0 that is small enough that P0 is the only P with φ0(P) = P . Consider
the estimator

P∗
M = arg min

P∈N(P0)
‖φM(P)− P‖2�

By Step 3, we have that supP∈N(P0){‖φM(P)−P‖2 −‖φ0(P)−P‖2} →p 0. Also,
‖φ0(P) − P‖2 has a unique minimum at P0 in N(P0). Therefore, by the usual
extremum estimator consistency argument, P∗

M →p P
0. Because P∗

M is interior
to N(P0) with probability approaching 1, then the first order conditions

2
(
∂φM(P

∗
M)

′

∂P
− I

)
(φM(P

∗
M)− P∗

M)= 0

must be satisfied. By P∗
M →p P0 and the fact that (∂φ0(P

0)′/∂P − I) is non-
singular, we have that (∂φM(P

∗
M)

′/∂P − I) is nonsingular with probability ap-
proaching 1, so, by the first order conditions, φM(P

∗
M)= P∗

M .

STEP 5 —with probability approaching 1, the NPL estimator is the element
of ΥM that belongs to an open ball around (θ0�P0) (or another one in the same
ball): Let �0 be an open ball around (θ0�P0) and let �1 be the union of a set of

27We thank a co-editor for pointing out this argument, which is simpler than our original proof.
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open balls around the elements of Υ0 other than (θ0�P0). Define the constant

ε ≡
{

inf
(θ�P)∈�0

Q0(θ�P)
}

−
{

sup
(θ�P)∈�1

Q0(θ�P)
}
�

Given the continuity of Q0, the result of Step 1 above, and the assumption that
(θ0�P0) is isolated, we can always take small enough neighborhoods �0 and �1

to guarantee that ε > 0. That is, we can construct a ball around (θ0�P0) such
that every point in this ball has a higher value of Q0 than the points in the
balls around the other population NPL fixed points. Note that �0 and �1 are
disjoint sets. From the result in Step 4, let (θ∗

M�P
∗
M) be the sample NPL fixed

point that belongs to �0 with probability approaching 1. We show here that
with probability approaching 1, the vector (θ∗

M�P
∗
M) maximizes QM in the set

ΥM , i.e., (θ∗
M�P

∗
M) is the NPL estimator. Consider the event

AM ≡ {|QM(θ�P)−Q0(θ�P)| < ε∗/2 for all (θ�P) ∈ Θ× [0�1]N|X|}�
where ε∗ is the smallest of the ε’s defined here and in Steps 2–4. Then we have
that (a) AM implies QM(θ

∗
M�P

∗
M) > Q0(θ

∗
M�P

∗
M) − ε∗/2 and (b) AM implies

Q0(θ�P) > QM(θ�P) − ε∗/2 for any (θ�P). Furthermore, given that (θ∗
M�P

∗
M)

belongs to �0 with probability approaching 1, we have that (c) for any (θ�P) ∈
ΥM ∩ �1, Q0(θ

∗
M�P

∗
M) ≥ Q0(θ�P) + ε∗. Combining inequalities (a) and (c), we

get that AM implies that QM(θ
∗
M�P

∗
M) >Q0(θ�P)+ ε∗/2 for any (θ�P) ∈ ΥM ∩

�1. Adding up this inequality to (b), we get

AM ⇒ {QM(θ
∗
M�P

∗
M) >QM(θ�P) for any (θ�P) ∈ ΥM ∩ �1}�

By Step 2, with probability approaching 1, ΥM is contained in �0 ∪ �1� There-
fore, with probability approaching 1, the NPL estimator is either (θ∗

M�P
∗
M) or

another element of ΥM ∩ �0. Thus, with probability approaching 1 the NPL es-
timator belongs to any ball around (θ0�P0). The NPL estimator converges in
probability to (θ0�P0).

Asymptotic Distribution of the Two-Step PML Estimator. For notational sim-
plicity we consider that T = 1, and we omit the time subindex. We use P0

(a�x) to
denote the vector of dimension NJ|X|×1 with the joint distribution of am and
xm in the population. The vector P̂0

(a�x) is the sample counterpart of P0
(a�x), i.e.,

the frequency estimator of P0
(a�x). Using this notation, we can write expectations

and sample means in matrix form. For instance,

E

(
N∑
i=1

lnΨi(aim|xm;θ�P)
)

= lnΨ(θ�P)′P0
(a�x)�(A.1)

(1/M)

M∑
m=1

N∑
i=1

lnΨi(aim|xm;θ�P) = lnΨ(θ�P)′P̂0
(a�x)�
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We use also ∇θΨ(θ�P) and ∇PΨ(θ�P) to denote the Jacobian matrices
∂Ψ(θ�P)/∂θ′ and ∂Ψ(θ�P)/∂P ′, respectively.

Let ∇θsm and ∇Psm be the pseudo scores (for observation m) evalu-
ated at the true parameter values, i.e., ∇θsm = ∑N

i=1 ∇θ lnΨi(aim|xm;P0� θ0)

and ∇Psm = ∑N

i=1 ∇P lnΨi(aim|xm;P0� θ0). Define Ωθθ ≡ E(∇θsm∇θs
′
m) and

ΩθP ≡ E(∇θsm∇Ps
′
m). Given conditions (i) and (ii), the best response mapping

Ψ(θ�P), which defines probability distributions for the discrete choice, is con-
tinuously differentiable and choice probabilities are bounded away from zero.
Therefore, the regularity condition specified in McFadden and Newey (1994,
p. 2164) is satisfied (i.e., the square root of the likelihood is continuously differ-
entiable at the true parameters θ0�P0) and the generalized information matrix
equality holds (see McFadden and Newey (1994, p. 2163)): i.e., we have that
E((qm − P0)∇θs

′
m) = 0 and E((qm − P0)∇Ps

′
m) = I, where I is the identity ma-

trix. Therefore,(
1√
M

M∑
m=1

∇θsm

)
−ΩθP

(
1√
M

M∑
m=1

(qm − P0)

)
(A.2)

→d N(0�Ωθθ +ΩθPΣΩ
′
θP)�

The first order conditions that define this estimator are ∇θQM(P̂
0� θ̂FU) = 0.

A mean value theorem between (θ0�P0) and (θ̂2S� P̂
0), together with consis-

tency of (θ̂2S� P̂
0), implies that

0 = ∇θQM(P
0� θ0)+ ∇θθQM(P

0� θ0)(θ̂2S − θ0)(A.3)

+ ∇θPQM(P
0� θ0)(P̂0 − P0)+ op(1)�

By the central limit theorem and the information matrix inequality, we have that
∇θθQM(P

0� θ0)→p −Ωθθ and ∇θPQM(P
0� θ0) →p −ΩθP . Then

√
M(θ̂2S − θ0)(A.4)

=Ω−1
θθ

{
−ΩθP

(
1√
M

M∑
m=1

(qm − P0)

)
+
(

1√
M

M∑
m=1

∇θsm

)}
+ op(M

−1/2)�

By the Mann–Wald theorem,
√
M(θ̂2S − θ0) converges in distribution to a vec-

tor of normal random variables with zero means and variance matrix:

V2S =Ω−1
θθ (Ωθθ +ΩθPΣΩ

′
θP)Ω

−1
θθ =Ω−1

θθ +Ω−1
θθΩθPΣΩ

′
θPΩ

−1
θθ �(A.5)
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Asymptotic Distribution of the NPL Estimator. The marginal conditions that
define the NPL estimator are

(1/M)

M∑
m=1

∇θsm(θ̂� P̂)= 0�(A.6)

P̂ −Ψ(θ̂� P̂)= 0�

A stochastic mean value theorem between (θ0�P0) and (θ̂� P̂), together with
consistency of (θ̂� P̂) implies that

(1/
√
M)

M∑
m=1

∇θsm −Ωθθ

√
M(θ̂− θ0)−ΩθP

√
M(P̂ − P0)= op(

√
M)�(A.7)

(I − ∇PΨ)
√
M(P̂ − P0)− ∇θΨ

√
M(θ̂− θ0)= op(

√
M)�

Solving the second set of equations into the first set, we get

[Ωθθ +ΩθP(I − ∇PΨ)−1∇θΨ ]√M(θ̂− θ0)(A.8)

= (1/
√
M)

M∑
m=1

∇θsm + op(
√
M)�

By the Mann–Wald theorem, we have that
√
M(θ̂− θ0)→d N(0� VNPL), where

VNPL = [Ωθθ +ΩθP(I − ∇PΨ)−1∇θΨ ]−1(A.9)

×Ωθθ[Ωθθ + ∇θΨ
′(I − ∇PΨ

′)−1Ω′
θP]−1�

Relative Efficiency of NPL and Infeasible Two-Step PML. The asymptotic
variance of the infeasible two-step PML is Ω−1

θθ . Taking into account that
ΩθP = ∇θΨ

′ diag(P0)−1∇PΨ , we can write the variance of the NPL estimator
as

VNPL = [(I + ∇θΨ
′S∇θΨΩ−1

θθ )Ωθθ(I +Ω−1
θθ ∇θΨ

′S′∇θΨ)
]−1

�(A.10)

where S ≡ (I −∇PΨ
′)−1∇PΨ diag(P0)−1. Then Ω−1

θθ −VNPL is positive definite if

�= (I + ∇θΨ
′S∇θΨΩ−1

θθ )Ωθθ(I +Ω−1
θθ ∇θΨ

′S′∇θΨ)−Ωθθ(A.11)

is positive definite. Operating in the previous expression, we can get that

�= ∇θΨ
′(S + S′)∇θΨ + (∇θΨ

′S∇θΨ)Ω−1
θθ (∇θΨ

′S∇θΨ)′�(A.12)
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It is clear that � is positive definite if S is positive definite. Because diag(P0)−1

is a positive definite diagonal matrix, � is positive definite if (I −∇PΨ
′)−1∇PΨ

′

is positive definite. Finally, a sufficient condition for (I − ∇PΨ
′)−1∇PΨ

′

to be positive definite is that all the eigenvalues of ∇PΨ
′ are between

0 and 1. Q.E.D.
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