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INFERENCE OF SIGNS OF INTERACTION EFFECTS IN
SIMULTANEOUS GAMES WITH INCOMPLETE INFORMATION

By AUREO DE PAULA AND XUN TANG!

This paper studies the inference of interaction effects in discrete simultaneous games
with incomplete information. We propose a test for the signs of state-dependent inter-
action effects that does not require parametric specifications of players’ payoffs, the
distributions of their private signals, or the equilibrium selection mechanism. The test
relies on the commonly invoked assumption that players’ private signals are indepen-
dent conditional on observed states. The procedure is valid in (but does not rely on) the
presence of multiple equilibria in the data-generating process (DGP). As a by-product,
we propose a formal test for multiple equilibria in the DGP. We also implement the test
using data on radio programming of commercial breaks in the United States, and in-
fer stations’ incentives to synchronize their commercial breaks. Our results support the
earlier finding by Sweeting (2009) that stations have stronger incentives to coordinate
and air commercials at the same time during rush hours and in smaller markets.

KEYWORDS: Multiple equilibria, identification, Bayesian games, multiple testing.

1. INTRODUCTION

STRATEGIC INTERACTION EFFECTS occur when a player’s action choice affects
not only his or her own payoff but also those of other players. In simultane-
ous discrete games of incomplete information, each person has a private sig-
nal about his or her payoff, while the joint distribution of such private sig-
nals is common knowledge among all players.” In a Bayesian Nash equilib-
rium (BNE), individuals act to maximize their expected payoffs given their
knowledge of these distributions and the payoff structure. Such models have
found applications in a variety of empirical contexts where players are uncer-
tain about their competitors’ payoffs given their own information. These in-

'We thank Andres Aradillas-Lopez, Federico Bugni, Ivan Canay, Andrew Chesher, Steve
Durlauf, George Deltas, Yanqin Fan, Hanming Fang, Paul Grieco, Phil Haile, Jim Heckman,
Bo Honoré, Jean-Francois Houde, Steffen Huck, John Kennan, Ivana Komunjer, Tong Li, Chuck
Manski, Salvador Navarro, Aviv Nevo, Rob Porter, Seth Richards, Adam Rosen, Andres Santos,
Frank Schorfheide, Azeem Shaikh, Matt Shum, Kevin Song, Yixiao Sun, Elie Tamer, Yuanyuan
Wan, Haiqing Xu, and participants at various conferences and seminars for helpful comments.
We also thank the editor, Jean-Marc Robin, and three anonymous referees for their recommen-
dations. We owe special thanks to Andrew Sweeting for kindly providing us with the data and for
helpful suggestions.

2Recent work by Grieco (2010) studied a class of games with flexible information structures
that also subsume games with complete information where players know each other’s payoffs
for sure. In a similar spirit, Navarro and Takahashi (2009) suggested a test for the information
structure that, among other things, relies on a degenerate equilibrium selection rule and indepen-
dence between residuals and observed covariates. Other papers have also dealt with unobserved
heterogeneity across games which is observed by players but not econometricians (e.g., Sweeting
(2009), Aguirregabiria and Mira (2007), and Arcidiacono and Miller (2010), these last two in a
dynamic setting).
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clude, for example, airing commercials at radio stations (Sweeting (2009)) and
peer effects in recommendations by financial analysts (Bajari, Hong, Krainer,
and Nekipelov (2010)).

Earlier works have studied the identification and estimation of these games
using a wide spectrum of restrictions. These include (but are not limited to) the
independence of private signals from observable covariates, parametric spec-
ification of relevant distributions or utility functions, or constraints on the set
of Bayesian Nash equilibria. In comparison, we focus on inference of the signs
of interaction effects, which are allowed to be individual-specific and state-
dependent, under a minimal set of nonparametric restrictions on private sig-
nals and payoff structures. Our choice of focus is motivated by two consid-
erations. First, signs of interaction effects alone may have important policy
implications. For example, if agents have an incentive to coordinate on a par-
ticular action, then interventions that induce a subset of participants to choose
a certain action should at the same time also incentivize other players to act
accordingly. Second, while point identification and estimation of the full struc-
ture of such games inevitably hinge on parametric restrictions, inference on
signs of interaction effects can be done under minimal nonparametric restric-
tions on the structure. Such inference is valid even in the presence of multiple
equilibria and does not invoke any assumptions on the equilibrium selection
mechanism in the data-generating process. This is particularly notable, since
almost all previous work has relied on stringent assumptions about equilibrium
selection or multiplicity to attain identification (e.g., the single-equilibrium as-
sumption in Bajari et al. (2010) and Tang (2010), equilibrium uniqueness in
Seim (2006) or Aradillas-Lopez (2010), the restriction to monotone, threshold-
crossing Bayesian Nash equilibria of Wan and Xu (2010), or the symmetry of
equilibria and payoff functions, and parametrization of equilibrium selection
mechanisms as in Sweeting (2009)).?

The intuition that multiple equilibria can be helpful in identifying model
primitives appears, for example, in Manski (1993)* and in Sweeting (2009).
We show formally how the multiplicity in the data can be exploited to infer
the signs of strategic interactions. If players’ private signals are independent of
each other given observed covariates, then their chosen actions must be un-
correlated in any single equilibrium. On the other hand, if multiple equilibria
exist in the data, then the joint distribution of actions observed is a mixture
of those implied in each single equilibrium. This leads to correlations between

3As indicated in Berry and Tamer (2007), another possibility is to resort to partial identi-
fication. Examples of such a strategy in games of complete and incomplete information are
Beresteanu, Molchanov, and Molinari (2009), Ciliberto and Tamer (2009), Galichon and Henry
(2009), Grieco (2010), and earlier references cited in Berry and Tamer (2007). Also in games of
complete information, Bjorn and Vuong (1984) parameterized the equilibrium selection mecha-
nism.

4“The prospects for identification may improve if f(-, -) is nonlinear in a manner that generates
multiple social equilibria” (Manski (1993, p. 539)).
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the players’ actions observed from data. We show further in Section 3 that
signs of correlations between players’ actions are determined by the signs of
the strategic interaction effects. As a by-product, the correlations also allow
us to identify the existence of multiple equilibria in the data (see below). The
assumption of conditional independence of private information is commonly
maintained in the literature on estimation and inference in static games with
incomplete information and social interaction models (see, e.g., Seim (2006),
Aradillas-Lopez (2010), Berry and Tamer (2007), Bajari et al. (2010), Bajari,
Hahn, Hong, and Ridder (2011), Brock and Durlauf (2007), Sweeting (2009),
and Tang (2010)).” The assumption can also be found in the literature on the
estimation of dynamic games with incomplete information.

We also generalize these arguments for identifying the signs of interaction
effects to allow for the possibility that in the data there is only a unique equi-
librium for a given state. The idea relies on the following simple intuition. Sup-
pose that for some player i there exists a subvector of state variables that affect
other players’ payoffs or private signals but not his or her own. Then the sign
of the correlation between actions chosen by i and others across different re-
alizations of such “excluded” states must be solely determined by how others’
actions affect i’s payoffs, provided the private signals are independent given
observed states. Such exclusion restrictions on state variables arise naturally in
many applications and have been used before in similar contexts.

Another contribution of this paper is to introduce a formal test for the pres-
ence of multiple equilibria in the data-generating process. Testing for multiple
equilibria is of practical importance in empirical research, because existing es-
timation methods often rely on the occurrence of a single equilibrium in the
data. The test we propose is a natural outcome of the logic used in our infer-
ence of the signs of interaction effects. An innovation of our test for multiple
equilibria is to use a stepwise multiple testing procedure proposed by Romano
and Wolf (2005) to infer whether each individual player has different strategies
across the multiple equilibria in the data-generating process. This is partic-
ularly interesting for structural estimation of games involving three or more
players, in which a subset of players may stick to the same strategy across mul-
tiple equilibria. Semiparametric methods based on the assumption of a unique
equilibrium can still be applied to consistently estimate payoff parameters for
those players who do not use different strategies across multiple equilibria.
Hence, it is useful to infer the identity of such players from observed distri-
butions of actions. Our test is known to effectively control the probability of
rejecting at least one of the true single null hypotheses.

For a parametric model with state-independent interaction effects, Sweeting
(2009) proposed two procedures to check for multiple symmetric equilibria

°In a subsection, Aradillas-Lopez (2010) suggested an estimation procedure to handle cases in
which the assumption is violated, but relies on the assumption that a single equilibrium is played
in the data. Another exception is Wan and Xu (2010), who nevertheless also require that a unique
(monotone) Bayesian Nash equilibrium be played in the data.
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in the data. The first is based on calculating the percentage of pairs of play-
ers whose actions are correlated. The other is a test of the null of a unique
BNE against the alternative of exactly two BNE in the data using maximum
likelihood estimates. In comparison, we develop stronger and new results by
extending this intuition in a more general context. The most important distinc-
tion is that our test can be applied in cases where asymmetric equilibria may
arise due to heterogeneities in players’ payoffs, and individual-specific interac-
tion effects may depend on the states in unrestricted ways. Our test addresses
several additional subtle issues. First, our test for multiple BNE in the data
is based on testing whether each individual’s action is correlated with an ag-
gregate measure of competitors’ actions. Therefore, our test has power under
alternatives in which multiple BNE exist in the data with only a small number
of players using different strategies across the multiple equilibria. Second, our
approach does not require knowledge of the number of equilibria under the
alternative. Third, as mentioned before, our procedure can be used to infer
the exact identities of players who adopt multiple equilibrium strategies in the
data.’

We apply our methodology to investigate radio stations’ incentives to coor-
dinate on commercial breaks using the data from Sweeting (2009). Relaxing
the parametric and symmetry assumptions in Sweeting’s paper, we confirm his
findings that incentives to coordinate are stronger during rush hour and in
smaller markets.

The paper proceeds as follows. We present our basic model and empirical
characterization in the next section. In Section 3, we present the main results
on the identification of the sign of interaction effects. Section 4 outlines general
testing procedures for inference. Monte Carlo experiments and an application
to the timing of radio commercials are presented in Sections 5 and 6. Section 7
concludes.

2. THE MODEL AND EMPIRICAL CONTEXT

We consider a simultaneous discrete game with incomplete information in-
volving N players. Each player i chooses an action D; from two alternatives
{1,0}. A vector of states X € R¥ is common knowledge among all players.
A vector of private information (or “types/signals”) e = (&;);<y € R" is such
that ¢; is only observed by player i. Throughout the paper, we use uppercase
letters for random variables and lowercase for their realized values. We use
Oy to denote the support of any generic random vector R = (R, R,), and let
Fr and Fg, r, denote, respectively, the marginal and conditional distributions
in the data-generating process (DGP). Conditional on a given state X = x,

8In the working paper version (De Paula and Tang (2011)), we also showed that our test can be
extended to allow for correlated private signals if researchers know a priori groups of observed
games within which the same equilibrium is played.
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private information ¢ is jointly distributed according to the cumulative distri-
bution function (CDF) F,x(:|x). The payoff for player i from choosing action
Lis Ui(X, &) = ui(X) + (3, D))8:(X) — &;, while the return from the other
action Uy;(X, ;) is normalized to 0. Intuitively, u;(X) specifies a base return
from action 1 for player i. Meanwhile 6;(X) captures interaction effects on i’s
payoff due to another player j who chooses 1. The return functions (u;, §,)Y,
and the distribution of private information F,x are common knowledge among
all players. We maintain the following identifying restrictions on F, x through-
out.

ASSUMPTION 1: Conditional on any x € Oy, F,x(-|x) = [[,_y Feyx(:|x) and
has positive density over RN,

Assumption 1 requires that the &;’s be mutually independent conditional
on X = x. It allows X to be correlated with private information of the play-
ers, as is plausible in empirical applications. This conditional independence
restriction is commonly used in the estimation literature for both static and
dynamic games with incomplete information. A pure strategy for player i in
this Bayesian game is a mapping s, : {2x ,, — {0, 1}. Letting S;(X, &;) denote an
equilibrium strategy for player i, the equilibrium behavior prescribes

1, if ui(X) 4+ 8:X) Y "EIS;(X, £)|X, ] — &> 0,
Si(X, &)= i
0, otherwise.

Under Assumption 1, E[S;(X, €))|X = x, &] = E[S;(X, ¢)|X = x] = p;(x),
and a Bayesian Nash equilibrium (BNE) in pure strategies (given state x) can
be characterized by a profile of choice probabilities p(x) = [p(x), ..., py(x)]
such that for all x € 2y,

(1) pi(x) =Fgx_« (u,—(x) + 6;(x) ij(x)> foralli=1,...,N,
i

where p;(x) is player i’s probability of choosing action 1 conditional on the
state x and F,, y is the marginal distribution of &; conditional on X. Let L, ,
denote the set of BNE (as summarized by solutions in p in (1)) for a given x
and structure 6 = {(u;, 6;)i=1,..~, Fex}. The existence of pure-strategy BNE for
any given x follows from Brouwer’s fixed point theorem and the continuity of
F,, x under Assumption 1. In general there may be multiple BNE, depending
on the specifications of F,x, u;, and §;.

The model specification rules out general heterogeneous interaction effects
that may vary with the identities of each pair of competing players (e.g., 6;).
Nonetheless, we can extend our inference approach to allow players’ payoffs
to be affected by competitors’ decisions in general forms that are known to
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researchers (see discussions in Section 3 and the Supplemental Material (de
Paula and Tang (2012))). This would be the case, for example, if payoffs depend
on the proportion (instead of the sum) of agents taking an action, or on the
action of at least one other person but not on the action of additional agents
beyond that (i.e., f;(x, D_;) = max;.(D))), or even if it changes only when all
competitors take a particular action (i.e., f;(x, D_;) = min;;(D,)).

This model differs qualitatively from the social interaction model studied
in Brock and Durlauf (2007) and that in Sweeting (2009) in that it allows for
asymmetry in players’ payoff functions and equilibria. Thus, even when payoffs
are symmetric, we allow for asymmetric BNE where the implied choice prob-
abilities could vary across players, and multiple asymmetric BNE can arise re-
gardless of the signs of interaction effects. This makes detecting multiple BNE
and signs of interaction effects both more interesting and more challenging.

We assume econometricians have access to a large cross section of indepen-
dent games between N players. In each game, they observe choices of actions
by all players and realized states x, but do not observe (&;);<y or know the form
of (u;, 8;);<y and F,x. Our analysis posits (i) that the structure ((u;, 8;);<y
and F,x) is fixed across all games observed and (ii) that the choice data ob-
served are generated by players following the pure strategies prescribed by
BNE. Econometricians are interested in learning (at least some features of)
the structure (u;, 8;);<y and F,x from the observable joint distribution of X
and (D,);y.

Suppose the choices observed in the data are known to be generated from a
single BNE in the DGP for all x € 2. This may arise because either (a) the
solution to (1) is unique or (b) the system of equations in (1) admits multi-
ple solutions but the equilibrium selection in the DGP is degenerate in one
of the multiple solutions. Then (1) offers a link between observable condi-
tional choice patterns and structural elements (u;, 6;);<n, F¢x. Estimation can
then be done under various restrictions on u, 8, and F,x (see Aradillas-Lopez
(2010), Berry and Tamer (2007), Bajari et al. (2010), and Tang (2010) for more
details). We say there are multiple BNE in DGP if there are several solutions
to (1) and the equilibrium selection mechanism in the data is not degenerate
at any one of them.

This link between observed choice patterns and structural elements may
nonetheless break down when there are multiple equilibria in the data-
generating process. To see this, let A, , be an equilibrium selection mechanism
(i.e., a distribution over L, ,) in the data-generating process that may depend
on x and 6, but is independent of the vector of private information (g;);<y.
That A depends on x but not realizations of ¢; captures the idea that only infor-
mation commonly known to all players may plausibly affect which equilibrium
is played in the data-generating process (see Myerson (1991, pp. 371-372)).

To simplify the notation, we drop subscripts 6 from A, , and L, , in the sub-
sequent sections when there is no ambiguity. For any x such that £, is not a
singleton, the conditional choice probability observed in the data is a mixture
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of the conditional choice probabilities implied by each pure-strategy BNE in
L. Thatis, p;(x)= [ ‘. pidA,.(p'), where p#(x) is the actual marginal proba-
bility that i chooses 1 conditional on x observed from data and p’ = ( pﬁ)isN isa
generic element in the set of possible BNE L,, with / indexing the equilibria in
L, and p! denoting the marginal probability for i to choose 1 given x (and the
structure 6) implied in equilibrium /. While, by definition, the fixed point char-
acterization in (1) holds for every single BNE p' € L,, it does not necessarily
hold for the vector of mixture marginals p* = (p});-y observed.

3. IDENTIFYING SIGNS OF INTERACTION EFFECTS
3.1. The Basic Idea

We now show how to detect the presence of multiple BNE in the data-
generating process and identify signs of interaction effects §,;(x) for any i given
any x. The sign reveals the nature of strategic incentives among players. Com-
pared with earlier works, our sign identification has several innovations and
contributions. First, our test does not invoke any parametric restrictions on
players’ preferences or distributions of private information. Second, it allows
the strategic incentives (as captured by the sign of §;) to be a function of
states x. Third, our approach is robust to the presence of multiple BNE. In
fact, while the existence of multiple BNE at first precludes complete identifi-
cation of the structure, it does help identify the sign of interaction effects.

We first show how to detect multiple BNE in the data using observed distri-
butions. Define

yf(x)EE,<ZD,

J#i

X = X) =Y pi),
J#L

where E,; denotes the expectation with respect to the distribution of (D;);<x
induced in the equilibrium p’ € L,. Define sign(a)tobe 1 ifa > 0, —1 if a <0,
and 0 if a = 0. For any player i € {1,..., N}, let y/(x) denote the condi-
tional expectation of the product D;(3_.; D;) given x observed in the data.
Thatis, ¥, (x) = [, Pi(x)yi(x)dA(p'), where A, denotes the equilibrium-
selection mechanism in the DGP. Let p;(x) be the actual probability that i
chooses 1 given x observed in the data (i.e., pi(x) = fp,dx pi(x)dA.(p"))and
let yi(x)=) j2i Pj(x). Let L7 denote the subset of £, that occurs in the DGP
with positive probability (£} = {p': A,(p') > 0}). Multiple BNE exist in the
DGP if £} is not a singleton.

PROPOSITION 1: Suppose Assumption 1 holds. (i) For any given x, multiple
BNE exist in the data-generating process if and only if y¥(x) # pi(x)y:(x) at
least for some i. (ii) For all i and x such that y:(x) # pi(x)y;(x),

) sign(y;'(x) — p;(x)y; (x)) = sign(8;(x)).
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PROOF: Under Assumption 1, D; must be independent of } _ ; D; condi-
tional on x in every single BNE p’in L,.

Sufficiency of (i). Suppose there is a unique BNE in the data-generating pro-
cess; that is, £ is a singleton {p'}. Then pi(x) = pi(x), y;(x) = > iz pi(x),
and ¥;(x) = pi(x) > iz p'(x) for all i in state x. Hence ¥;(x) = pj(x)y; (x) for
all i.

Necessity of (i). Suppose L; , is not a singleton in state x. Then there exist at

least some i and p', p* € L} such that p! # p*. Also note that for such a player
i, 8;(x) must necessarily be nonzero. By definition,

3) Ai(x) =y (x) — pi(x)y](x)

=/ pﬁ(x)yf(x)dAx—/ pﬁ(x)dAx/ Yi(x)dA,.
plect plect plecy

X

Suppose 6;(x) > 0. The equilibrium characterization in (1) implies that
there exists a strictly increasing function A, such that y!(x) = h;(pl(x)) =
(F;illX(pf(x)) — u;(x))/8;(x) for each single p' in £, 4.7 Thus for x given, (3)
can be written as

Yi(x) = pi(x)vi(x)

1 1 1
_ f hi(2)z d A (2) — / 2d A (2) / hi(2) dAa(2),
0 0 0

where z = pl(x) and /L’X is a distribution of p'(x) induced by the equilibrium
selection mechanism A, defined on £,. Thus (3) takes the simple form of the
covariance of a random variable z and a strictly increasing function of itself:
cov(Z, h(Z)) = E[(Z — E(2)) (hi(Z) — E(h(Z)))]
=E[(Z —E(Z2))(h(Z) — hi(E(2Z)))]
+E[(Z —E(2))(h(E(Z)) —E(h(Z)))]
—E[(Z —E(Z2))(h(Z) — h(E(Z)))].
Because #; is strictly increasing in [0, 1] for given x, we have z; > z, = h;(z;) >
hi(z,). Consequently, (z — E(Z))(h;(z) — h;(E(Z))) > 0 for any zjé E(2),
and the covariance is strictly positive, provided the distribution A;, is not

degenerate on L£}. Hence y;(x) — pf(x)y;(x) > 0 if multiple BNE exist in
the data-generating process in state x. The case with §;(x) < 0 is proved by

"The form of &; may depend on 6 and x in general. We suppress this dependence for notational
ease.



INTERACTION EFFECTS IN SIMULTANEOUS GAMES 151

symmetric arguments. The proof of (ii) is already included in the proof of (i)
above. Q.E.D.

Part (i) of Proposition 1 can be exploited to devise a Wald test for multi-
ple BNE under any given x in the DGP. We describe the test and discuss its
asymptotic properties in the Supplemental Material. Part (ii) of the proposi-
tion suggests the sign of §;(x) can be recovered from observed distributions
provided i actively switches between multiple equilibrium strategies under x in
DGP.

In some empirical contexts, players’ actions may have heterogeneous im-
pacts on each others’ payoffs. Our arguments in Proposition 1 can be ex-
tended as long as econometricians know the role of these heterogeneities
in strategic interactions. More specifically, we allow Uy;(X, &) = u;(X) +
0:(X) fi(X,D_;) — &;, where f;(X, D_;) is a known function that summarizes
how individual actions affect interaction effects and 6;(x) is a baseline effect
whose sign is to be inferred. We provide further details in the Supplemental
Material.

3.2. Allowing for Unique BNE

The result in part (ii) of Proposition 1 shows that the sign of interaction
effects for i under x can be recovered provided that there exist multiple BNE at
x in the DGP and that i follows different strategies across these equilibria. This
result does not warrant the identification of sign(6;(x)) for all (i, x), because
there can exist players who employ the same strategies across all equilibria
under x. This could happen when there is a unique BNE under state x. It could
also occur if the game involves three or more players and, for some player i,
all of the multiple BNE under x prescribe the same strategy. (That is, there
is i with p! = p? for all p! in L7 4, so that ¥7(x) = p;(x)y;(x).) The following
example illustrates this possibility.

EXAMPLE 1—A Player Who Follows the Same Strategy in Multiple BNE:
Consider a simple 3-by-2 game with N = 3, where the identities of all three
players are observable in data. Suppress the dependence on x for notational
ease. Let u; = 0.5, u, = u; =0.3611, §; = —1, and &, ~ N (0.10, 0.25%) for all i.
Then there exist at least two distinct BNE:

p* with p{=0.0611, p5=0.7756, p35=0.0107;
p” with p?=0.0611, p5=0.0107, p?=0.7756.
In these two BNE (p“ and p®), Player 1 chooses alternative 1 with the same

probability in both BNE, while both players 2 and 3 play strategies that imply
different choice probabilities in equilibrium (i.e., p? # p? for i =2, 3).
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This issue can be solved if, for the (i, x) considered, the signs or the mag-
nitudes of the interaction effects are known to remain the same over a set of
covariate realizations (for example, because of parameter constancy or, more
generally, exclusion restrictions). In such cases, the researcher can pool infor-
mation from games with heterogeneous covariates to help identify the signs of
interaction effects for such a (i, x). We consider these two scenarios for the
rest of this subsection.

Aggregating Data From Games With the Same Sign of §;(x)

Consider a simplified case where strategic interaction effects have the same
sign for all x € 2 for some i. Then sign(5;(-)) is identified if and only if the set
of states where i uses multiple BNE strategies in the DGP has a positive mea-
sure under Fy. To see this, note that 8;(x) > (<) 0if ¥/ (x) — pi(x)y;(x) > (<)
0. Furthermore, if §;,(x) > (<) 0 and multiple equilibria are played in the DGP
under x, then y;(x) — pi(x)y;(x) > (<) 0. It then follows that if the set of x
under which i adopts multiple BNE strategies occurs with positive probability,
then the sign of E[y/(X) — pi(X)y;(X)] is the same as the sign of §;(-). On
the other hand, if i sticks to a single BNE strategy for (Fx-almost) every x, then
Yi(x) = pi(x)y}(x) Fy almost everywhere and E[y(X) — p/(X)y/(X)]=0.
The following corollary formalizes and generalizes this idea.

COROLLARY 1: Suppose Assumption 1 holds and there is a known set w; such
that sign(8;(-)) remains the same for all x € w;. Then (i) sign(8;(-)) is recovered
on w; as the sign of E[y;(X) — p; (X)v{(X)|X € ;] if

@) Pr{x € w; i follows multiple BNE strategies at x} > 0
and (ii) the condition in (4) holds if and only if
E[¥/ (X)X € 0] #E[p; (X)y] (X)X € w;].

Corollary 1 shows that sign(8;(x)) can be identified even when there is a
unique BNE at x, as long as i employs multiple BNE strategies with positive
probability over a set of x” with sign(6;(x)) = sign(5;(x")). The corollary is a
straightforward consequence of Proposition 1.

Aggregating Data From Games With the Same Size of 6;(x)

So far, identification of 8;(x) has relied on the existence of multiple BNE.
For the rest of this section, we consider a DGP where the BNE adopted at each
x may be unique. We show that sign(8;(x)) can still be recovered in this case if
an exclusion restriction holds. This strategy is also invoked in similar contexts
in the literature. To understand this exclusion restriction, consider a game that
involves N firms which make simultaneous entry or exit decisions. The vector
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of states X includes a subvector X, that consists of market- or sectorwide fac-
tors that affect the demand for firm products. X also includes mutually exclu-
sive subvectors (X;);-y with X; capturing firm-specific factors that only affect
the profits for firm i but none of its rivals. For example, X; may include labor
costs or local regulations that pertain to the geographic location of i. The vec-
tor of private information (¢;);<y may well capture all other firm-specific profit
factors (such as idiosyncratic costs) that are unobservable to opponents and
econometricians. If rivals’ idiosyncratic factors (such as labor costs) have no

bearing on firm i’s profits in addition to X, and X, i, then F,, x = F,,x,, where
X; = (X,, X;). For each (i, x), we refer to the set Y;(x;) = {x": x. = x;} as the
equivalence class for i at x. We state the exclusion restriction assumption as
follows.

ASSUMPTION 2: For all i, there exists a strict subvector of X (denoted X;) such
that u;(x) = u;(x;), 8;(x) = 6;(x;), and F,,x_ = F,, x,—x, for all x.

The main idea for identifying sign(8;(x)) (even when i only has a unique
BNE strategy at each realization x) is based on three observations: (a) Player
i can adopt different BNE strategies as u;(x’), 8]-(x’),FE].‘ x—v vary over the
equivalence class Y;(x;). (b) By assumption, the ith equation characterizing
equilibrium in (1) is the same for all x" in Y;(x;). (c) Opponents’ choice proba-
bilities affect i’s choice probability across different x’ in Y;(x;) only via the sign
of the strategic interaction effect for i, which is the same for all x’ in Y;(x;)
under the exclusion restriction in Assumption 2. Consequently, if in response
to her opponents’ equilibrium strategies, i is induced to adopt different BNE
strategies across games with different states in the equivalence class for x, then
the sign of the correlation between actions by i and competitors across these
games identifies sign(§;(x)) just as in our previous analysis.

Let A} be the probability distribution over equilibrium choice probability
proﬁles in the equivalence class for x;. It is obtained by integrating the equilib-
rium selection mechanism A, across the states in Y;(x;) with respect to condi-
tional distribution Fy xey,,. That is, for any 4 C [0, 1,

A (A) = / AL N A dFxprerico (),
(LT NA£D)

where A, denotes the equilibrium selection probabilities defined in Section 2.
It is easy to verify that A} is a well defined distribution. Let its support be
denoted by L .

The key condition for identifying 8;(x) is that player i adopts varying strate-
gies across BNE in different games whose states belong to the equivalence class
for i at x. Formally, the distribution A is nondegenerate in i’s dimension if
Pt € [0, 1] such that the support L: C{pel0,1]V: p; = t}. We give a simple il-
lustration of Assumption 2 and the nondegeneracy condition in Design 2 of the
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Monte Carlo section (Section 5). We also discuss this assumption in greater de-
tail following Proposition 2. Let g index independent games observed in data,
and let D, , denote the decision made by i in game g. Define

Vi(x;) = IE|:Di,g (ZDLg) ’Xg € Yi(xi)i|

J#i
—E[D; | X, € Y,-(x)]E[ZD,-,g‘Xg € n(x,)].
J#i

PROPOSITION 2: Suppose Assumptions 1 and 2 hold. Then (i) at any x,
sign(8;(x)) = sign(¥;(x;)) for all i if Aj;l_ is nondegenerate in i’s dimension and
(ii) A}, is nondegenerate in i’s dimension if and only if ¥;(x;) # 0.

PROOF: Consider any pair of (i, x) such that Ajl_ is not degenerate. The
equations in (1) and Assumption 2 imply that there exists a function 4; such
that y!(z) = h;(pli(2)) for all z € Y;(x;) and p' € L, where h;(-) = (F_,(-) —
u;(x))/6;(x). The function h; summarizes the interdependence between i’s
BNE strategies and those for j # i. If A} is nondegenerate in i’s dimension,
then

&) Vi(x;) = / E[Di(ZD])’P’ Xe Yi(xi)] A},
PELE,

J#i

- < | EDipxe Yl-(x»JdA;,.)
PELE,
peﬁf{i i
= / pi(ij) dA;, — / pidA;, / (Zm) dA,
PELY it PELY PELY \ iy

J#i J#i

where p € [0, 1]¥ denotes a generic characterization of BNE on the support
L . The first equality follows from the definition of A7 , and the second equal—
1ty ‘follows from independence between D; and (D)) ;i condltlonal on the equl—
librium played and on states being in the equlvalence class. Because #,(-) is the
same for all x € Y;(x;) due to Assumption 2, (5) can be written as

1 1 1
© = [ phpoak, - [ pads, [ meodk,
0 0 0

where /iji is the marginal distribution of p; according to the joint distribu-
tion Aj;l_. Finally, note that 4;(-) is increasing (or decreasing) over [0, N — 1] if
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8;(x) > 0 (or < 0) for x € Y;(x;). Hence the same argument as in Proposition 1
shows that for all (i, x), ¥;(x;) > 0 (or < 0) if 6;(x) > 0 (or < 0) and A* IS non-
degenerate in i’s dimension. It also follows 1mmed1ately from (6) that if Al is
degenerate in i’s dimension, then V;(x;) = QE D.

That the distribution A} is nondegenerate in i’s dimension is a weak restric-
tion glven Assumption 2. For this to hold, it is necessary that 6;(x) # 0 and
(u;, 6, ,/.‘ x) for j # i vary over states in the equivalence class for i. The non-
degeneracy can fail in cases such as when player i does not interact with rivals
at all at x (8;(x) = 0).® Part (ii) of Proposition 2 suggests an immediate test
for the nondegeneracy condition using observed distributions of states and ac-
tions. The example below shows how the nondegeneracy condition can hold
for all (i, x) under fairly intuitive restrictions.

EXAMPLE 2—Nondegeneracy for All i, x: Consider a 2-by-2 entry or exit
game with incomplete information between firms 1 and 2 with state vector X
which can be partitioned as (5(0, X 1 X’z), where f(o are market-level factors
that affect profitability of the firms, and X, and X, are firm-level character-
istics for firms 1 and 2, respectively. Suppose 6;(x) # 0 for all i, x, and that
Assumptions 1 and 2 hold with X; = (XO,X 1) and X, = (XO,XZ) Assume
further that the interaction effects and the distribution of private information

only depend on market-level factors X, (6i(x;) =6:(Xp) and F, x,—y, = F, %=x,

for both i and all x;). Then for i = 1, 2, the probability of entering (choosing
action 1) in a BNE is given by

Pi(x) = Fp5, (ui(x;) + 8;(Xo) p3-i(x)).

Assume for any x; = (X, X;) that there exists a set of X, (denoted @,) that
occurs with positive probability and leads to different baseline profits. That is,
Pr{)z'z € @y|x1} > 0 and uy(Xy, X2) # us(Xo, X5) for all X, # X, in w,. It then
follows that for any pair of states x = (X, X1, X,) and x' = (X, X1, X5), Aj;l is
nondegenerate in player 1’s dimension for any x,.” Swapping 1 with 2 and re-
peating the arguments above shows that A} can be nondegenerate in player
2’s dimension for any x,.

We conclude our discussion by noting that the exclusion restriction in As-
sumption 2 is stronger than necessary for identifying sign(6;(x)). In particular,

8When §;(x) # 0, this condition can also fail if best responses for j # i change over the equiv-
alence class for i at x in very peculiar ways so that the solution for p;(-) in (1) for x € ¥;(x;)
remains the same.

°To see this, note that F, ‘XU_XO(ul()EO, X1) + 81(Xy)t) as a function of ¢ over [0, 1] remains the
same for x and x’, while ng\xn—xo(uz(ioy X2) + 62(Xo)t) # FSZ‘;(O:);O(MZ(EO, X5) + 6,(X¢)t) for all
te[0,1].



156 A. DE PAULA AND X. TANG

if no variables are excluded for individual i and the equivalence class for i at x
is a singleton, then the nondegeneracy of A% on i’s dimension will amount to
the existence of multiple BNE strategies at state x.

4. TESTING MULTIPLE BNE AND INFERRING INTERACTION SIGNS

When equilibrium choice probabilities are the same for all players in a game,
the average choice in this particular game is an unbiased estimator for the
choice probabilities within a particular symmetric equilibrium (e.g., Brock and
Durlauf (2007, p. 58)). However, asymmetric BNE where players have differ-
ent choice probabilities in one equilibrium may arise. This happens, for ex-
ample, even when payoffs and distributions are homogeneous but the (com-
mon) &(-) is negative. When the game has asymmetric equilibria or there is
a small number of players, the choice probabilities are not reliably estimated
by averaging choice within a game. Nevertheless, if the same equilibrium is
played across games, the data can be pooled across those games to estimate
the choice probabilities. Hence, testing for multiple equilibria is of interest in
its own right.

Additionally, most of the known methods for semiparametric estimation of
incomplete information games (without explicitly specifying an equilibrium se-
lection rule) have relied on the existence of a single equilibrium in the data
(e.g., Aradillas-Lopez (2010), Bajari et al. (2010), and Tang (2010)).!° Hence it
is imperative to devise a formal test for the assumption of unique equilibrium
in the data-generating process.

We focus on an empirical context where researchers observe states and
decisions from a large cross section of independent games (indexed by g =
1,..., G) drawn from the same DGP characterized by (u;, 6;);<y, Fsx. Con-
sider the null hypothesis that a unique BNE exists in the DGP under state x.
By Proposition 1, the null of a unique BNE in the DGP is equivalently formu-
lated as

(7N Hy:Ai(x)=0 Vi<N.

We confront this null hypothesis with the alternative that
®) H,:3Jist Aj(x)#0,

where

Ai(x) =5/ (x) — pi(x)y](x) = Z{E[D,D,-IX] — E(D;|x)E(Dj|x)}.
i#i

OFor an illustration of how misspecification of the equilibrium selection rule can affect infer-
ence in a complete information game with a small number of players, see Honoré and de Paula
(2010).
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It follows from Section 3 that A;(x) # 0 if and only if i adopts multiple strate-
gies with positive probability at x. In the Supplemental Material, we propose
a simple Wald test that can be used to test the joint null in (7) at x. We also
note that the parameter A;(x) can be easily adapted to accommodate general
(known) f;(x, D_;) as indicated previously.

A failure to reject the null of a unique equilibrium in the DGP suggests
the equilibrium conditions in (1) can be used for estimation under additional
identifying assumptions on u, §, and F,,."" If the null of a unique BNE is re-
jected, then finding out which of the N single nulls in (7) are responsible for
the rejection is helpful. We further motivate and address this question using a
multiple-testing procedure in Section 4.1 below.

Finally, note that with N =2, multiple BNE exist at x only if signs of indi-
vidual interaction effects are the same for both players. In this case, both play-
ers adopt strategies that imply distinct conditional choice probabilities across
these BNE. Testing for multiple equilibria and inference of signs of interaction
effects uses sample correlation of actions between the two players (given X).
In this case, inference of multiple BNE and signs of interaction effects will be
based on a scalar statistic 7 = T,; = T;,; as defined later in this section.

4.1. Inference of Players With Multiple Equilibrium Strategies

With N > 3, while a subset of the players may employ different strategies
across multiple BNE in the DGP, others might stick to the same strategy in
all games observed in the data (see Example 1). Finding out the set of play-
ers who adopt multiple strategies has important implications for identifying
and estimating players’ payoffs. Semiparametric estimation of Bayesian games
typically refrains from parametric restrictions on primitives or the equilibrium
selection mechanism at the cost of assuming that there is only a unique DGP
for all x in the data. The applicability of these robust estimation approaches
hinges on this single-equilibrium assumption.'* While a simple test of the joint
null (7) using Wald statistics helps detect the existence of multiple BNE, it
does not specitfy any rules for deciding which players employ different strate-
gies across multiple BNE.

Since we would like to detect which players employ different strategies
across BNE and make inference on the signs of those players’ interaction ef-
fects, we resort to the statistical literature on multiple comparisons (for a re-
cent survey, see Lehmann and Romano (2005, Chapter 9)). This literature con-
siders decision strategies that aggregate the tests for the individual hypotheses

'Tn implementation, sampling errors from such a pre-test for unique equilibrium should ide-
ally be accounted for in deriving distributional properties.

21t should be noted that “social interaction” models do not rely on this assumption, but require
the number of agents in each game to be large so that within (symmetric) equilibrium choice
probabilities can be consistently estimated from average choices in each game.
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corresponding to each i given x:

H!:Ai(x) =0,
H!:Ai(x)#0.

Given individual test statistics for each of the i < N hypotheses, our objective
is to define a decision rule that controls the familywise error (FWE), rate, or the
probability of rejecting at least one of the true null hypotheses. That is,

FWEp = Prp{reject at least one H? :A;(x) = 0where i € Iy(P)},

where the subscript P indicates the DGP and Ij(P) C {1, ..., N} is the set of
indices i of true null hypotheses under P. A multiple-testing procedure asymp-
totically controls the FWE, at « if limsup,,_, . .. FWE, < « for any P.

We focus on a finite support {2y and we suppress x for notational ease when
there is no ambiguity. Sample analogs of expectations conditional on x are sim-
ply calculated as the sample averages across games with X = x. Whereas this is
easily done when {2y is discrete, a sample analog for a continuous X would in-
volve the aggregation of realizations at “nearby” observations via nonparamet-
ric techniques (e.g., kernel methods). Since covariates may induce a different
number of equilibria, in small samples the inference for a particular realization
in {2y may be contaminated by the uniqueness or multiplicity of solutions at
neighboring realizations. Note nevertheless that the identification arguments
do not require that {2y have finite support. A thorough analysis of this infer-
ence problem under continuous covariates is beyond the scope of this paper.

We focus on the case with N > 3. For any subset I C {1,...,N}, let
Dy =[lie;Dig> 1 = E(Dr1(X, = x)), and uy = Pr(X, = x).”* In addition,
p({x}) denotesa N = (N + (}) +1) vector that consists of uo({x}), u;({x}) and
w;;({x}) for all individual i and all pairs i # j. For example, with N =3 (and
omitting the argument {x}), u = (wo, &1, K2, U3, M12, M13, M23) . Define

fi({x) = (G)' Y Di1(X, € {x}),
8
(X)) = (G)' Y Dy 1(X, € {x)),
8
fo(xh) = (G)™ Y 1(X, € {xh),
4
fro((x]) = (Ro(xd), - X)), s (D), )

BIf wo({x}) = 1, an unconditional version of our procedure can be easily derived.
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where f1; is the vector of sample analogs for u. By the multivariate central

limit theorem, G2(fi({x}) — p({x})) —> N (05, Z({x})) as G — oo, where
0y is an N vector of zeros and ¥ is the corresponding variance—covariance
matrix. Define T ({x}) to be an N vector with its ith coordinate being

(Al ﬂi<{x}m,-({x}>>
T i = —~ — — .
oD ;(#«o({x}) (o (1x))?

By the delta method, we obtain that

G (To({x}) — A(x)) =5 N (O, VXD Z(xDV((x}))

as G — oo,

where A(x) = (A;(x))Y,. The Jacobian V({x}) isan N -by-]\7 matrix, with its ith
row Vi({x}) defined by the following table (where wn ({x}), Vion({x}) denote
the mth coordinates of two N vectors m({x}) and V;({x}), respectively, and

J, k# Q)

/‘L(m)({x}) I/i,(m)({x})

pa ) Lt + it
pi({x}): DI

i ({x)): — Ly

i ({x}) or ;i ({x}): MO(I(X])

ik ({x}): 0

We can estimate 3({x}), V({x}) consistently by replacing wo({x}), u;({x})
with the sample analogs described above. For the remainder of this subsection,
we omit the argument ({x}) for notational ease.

Well known methods that asymptotically control for the familywise error
rate include the Bonferroni and the Holm’s methods. Both methods can be
described in terms of the p-values for each of the individual hypotheses (in-
dexed by i) above. We denote these p-values by pg ;. The Bonferroni method
at level « rejects i if pg,; < a/N. The Holm’s procedure, which is less conser-
vative than the Bonferroni method, follows a stepwise strategy. (For notational
convenience, we suppress the dependence of the hypotheses and test statistics
on x.) The Holm’s procedure starts by ordering the p-values in ascending or-
der: pg.a) < P,y <+ < Pe.w)- Let H) :A; =0 denote the single hypothesis
corresponding to the kth smallest p-value (i.e., pg,;, = Ps, k). Holm’s step-
wise method proceeds as follows. In the first step, compare pg 1) with a/N.
If pG.ay > a/N, then accept all individual hypotheses and the procedure ends.
Otherwise, reject the individual null hypothesis H}Jl :A;, =0 and move on to
the second step. In the second step, the remaining N — 1 hypotheses are all



160 A. DE PAULA AND X. TANG

accepted if pg.2) > a/(N — 1). Otherwise reject H;]z : A;, =0 and continue to
the next step. More generally, compare pg ), with /(N — k + 1) in the kth
step. Accept all remaining N — (k — 1) hypotheses if pg ) > a/(N —k +1).
Otherwise, reject H;’k and move on to the next step. Continue doing so until all
remaining hypotheses are accepted or all hypotheses are rejected one by one
in N steps.

Though less conservative than the Bonferroni method, the Holm’s proce-
dure can still be improved if one takes into account the dependence between
individual test statistics. To achieve this, we follow recent contributions by
van der Laan, Dudoit, and Pollard (2004) and Romano and Wolf (2005)."* Or-
dering the test statistics in descending order,welet 7. 1) > Tg.2) = - - = T, v)-
In the kth step, a critical level ¢, is obtained and those hypotheses with
Ts.. > ¢, are rejected. Let R, be the number of hypotheses rejected after the
first kK — 1 steps (i.e., the number of hypotheses rejected at the beginning of the
kth step). As before, let Hg( denote the hypothesis whose test statistic is the
kthlargest (i.e., T, = T, «)). Ideally, we want to obtain ¢, such that

ca=c(l—a,P) =inf{y:PrP{]1£je§1§J T6.) — A,-j < y} >1-— a},

where all statements are implicitly conditional on X = x. Subsequently, c; is
defined as

ckEck(l—a,P)zinf{y:PrP{ max TG,(j)—Ail.gy}zl—a}

Ry+1<j<N

(also conditional on X = x). As pointed out in the references cited, because

P is unknown in practice, we replace P with the empirical distribution Pg and
define

©) &o=c(1—a,Po)

=inf{y:PrpG{ max Té,(j)—TG,(j)sy}zl—a},

Ry+1<j<N

where we follow Romano and Wolf (2005) and use T ;, to highlight that the

sampling distribution of the test statistics is under P (not P). The stepwise
multiple-testing procedure from Romano and Wolf (2005) is summarized in
the Supplemental Material. In addition to estimating ¢, via bootstrap, we also
consider an alternative approach that uses the fact that the test statistics have a
normal limiting distribution with a consistently estimable variance—covariance

4The following description closely follows the presentation in Romano and Wolf (2005). For
similar strategies that control generalizations of the familywise error rate, sce Romano and
Shaikh (2006). A recent application of such generalizations is Moon and Perron (2009).
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matrix.”® We summarize the two approaches for estimating ¢, in the Supple-
mental Material.

We can also use a studentized version of the multiple-testing method as rec-
ommended in Romano and Wolf (2005). Let 6, denote the estimates for the
standard deviation of the test statistic 75 . To do so, we need an analog of (9),

C;Zk Edk(l—a,pc)

- inf{y:PrpG{ max (T4, — To.) /55, < y} >1- a},

Ry+1<j<N
where oy, ; are the estimates for standard deviations of T, computed from
bootstrap samples. The procedure is described in the Supplemental Material.
In Section 5, we report the performance of three tests based on stepwise

multiple-testing procedures: (a) the nonstudentized test with ¢, computed
from parametric simulations; (b) the nonstudentized test with ¢, computed via

bootstrap; (c) the studentized test with dy computed via bootstrap. Because
our setting corresponds to the smooth function model with independent and
identically distributed (i.i.d.) data (Scenario 3.1 in Romano and Wolf (2005)),
both strategies yield consistent tests that asymptotically control the familywise
error rate at level «. This would obtain from a slight modification in Theo-
rem 3.1 in Romano and Wolf (2005) to accommodate two-sided hypotheses as
indicated in Section 5 of that paper.

4.2. Inference of Signs of Interaction Effects

This section proposes a simple test for the sign of interaction effects for a
player i in a given state x. It relies on the characterization in Proposition 2, and
holds when x induces multiple equilibria and choice probabilities vary across
equilibria or when there are excluded regressors as discussed in Section 3. We
focus on the simple case with discrete X where any x in the support can happen
with strictly positive probabilities. For any i, x, define

Yo = SR YY)
TG’I(Y;(X))_§</10()/;(X)) ([LO(Y,(X)))Z )7

which is analogous to the statistic defined in the previous subsection, but with
1(X € Yi(x)) in place of 1(X € {x}) when defining (,,. This statistic is an es-
timator for ¥; introduced in Proposition 2. When Y;(x) = {x}, this statistic
coincides with the statistic introduced in Section 4.1. For notational ease, we
drop the subscript i, x from the estimators when there is no ambiguity. Using

15See footnote 21 in Romano and Wolf (2005).
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the delta method and Slutsky’s theorem, it is straightforward to verify that
V() Vi)V (Yi(x)) /G)
x (To./(Y:(x)) — Wi(x)) > N'(0,1) as G — oo,

where IZ(Y[(x)) and 3(Yi(x)) are estimators for V;(Yi(x)) and 3(Yi(x)),
which themselves are defined analogously to the discussion in Section 4.1.
Testing the existence of multiple equilibria in the data and the sign of 8;(x)
amounts to testing the three hypotheses

H,:Vi(x)>0, Hy:Vi(x)=0, H_:V(x)<0.

Rejection of H, in favor of H, is indicative of multiple equilibria and a pos-
itive sign for §,(x). Analogously, rejection of H, in favor of H_ is indicative
of multiple equilibria and a negative sign for 8;(x). Acceptance of H, suggests
a unique equilibrium in the data and judgment on the sign of §;(x) is with-
held. Using the test statistic v/G(V;(Y;(x)) 2(Y;()Vi(Y;(x))) ™2 Tg,:(Y;(x)),
we can choose critical regions at the two tails, each resulting in the rejection of
H, in favor of either H, or H_."® Proofs of consistency and asymptotic levels
of the test follow from standard arguments. The player-specific sign tests can

also be aggregated according to the procedure in the previous subsection (see,
e.g., Shaffer (2006)).

5. MONTE CARLO SIMULATIONS

In this section, we explore Monte Carlo experiments to illustrate the strategy
presented in the previous section. The first design reproduces Example 1 and
displays multiple equilibria. We use it to analyze the inference procedure on
the existence of multiple equilibria and on the interaction signs when more
than one equilibrium exists. Design 2 displays only one equilibrium and we
use it to illustrate our procedure when multiple equilibria are absent but an
excluded variable exists.

DESIGN 1: We study the finite sample performance of the tests for multi-
ple equilibria in Section 4 using a simple design of a 3-by-2 game in Exam-
ple 1. The design is conditional on some state x and this dependence is sup-
pressed for notational convenience. For some fixed state, let the players’ base-
line payoffs be u; = 0.5 and u, = u; = 0.3611, respectively, and let §; = —1 and
i~ N(u=0.1, 0% =0.25%) for all i. Let A denote the probability with which
the first Bayesian Nash equilibrium in (4) shows up in the data-generating pro-
cess. We experiment with A = 0.1, 0.25, or 0.5 and sample sizes G = 1000 or
3000.

16This is a directional hypothesis test. For a recent survey, see Shaffer (2006).
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For any (A, G), we simulate a data set of players’ binary decisions by letting

Do =tfu = (X pt) = 1= ( ) ~ 0},

J# J#i

where, in each game g < G, W, is simulated from a Bernoulli distribution with
success probability A, &;, from N(0.1,0.25%) and p"s are propensity scores
in the two Bayesian Nash equilibria. For each (A, G), we simulate S = 1000
data sets. For each data set, we employ the stepwise multiple-testing proce-
dure as described in Section 4.2 and make a decision to reject or not to reject
the null hypothesis that there is a unique equilibrium in the data-generating
process. We experiment with three different approaches for choosing the crit-
ical level ¢, in Section 4.2: (i) simulation using estimated covariance matrix of
Tg, (ii) bootstrap, and (iii) studentized bootstrap (Algorithms 3.2 and 4.2 in
Romano and Wolf (2005)). For meaningful comparison between these three
approaches, we use the same number of simulated multivariate normal vec-
tors in (i) as the number of bootstrap samples drawn in (ii) and (iii) (which is
denoted by B). We experiment with B = 1000, 2000. In Table I, we report the
probability of rejecting at least one true null hypothesis (i.e., rejecting H, for
i =1) calculated from the S = 1000 simulated data sets in columns RP1, RP2,
and RP3, where RP denotes rejection probability.

Table II presents the tests of interaction signs for each of the three players.
Since player 1 has the same conditional choice probabilities in the two equi-
libria, the test withholds judgment for most of the simulations. It detects a
negative sign for the other two players.

DESIGN 2: In this design, we consider a 3-by-2-action game where As-
sumption 2 is satisfied. The baseline payoff for player i is u;(x;) =1 + x;,

TABLE I
FINITE SAMPLE PERFORMANCE: TESTS FOR MULTIPLE EQUILIBRIA®

B =1000 B =2000
G A RP1 RP2 RP3 RP1 RP2 RP3
1000 0.50 0.101 0.101 0.095 0.112 0.109 0.111
0.25 0.093 0.094 0.085 0.094 0.096 0.089
0.10 0.107 0.107 0.102 0.114 0.119 0.112
3000 0.50 0.108 0.109 0.105 0.087 0.089 0.083
0.25 0.096 0.097 0.094 0.102 0.105 0.103
0.10 0.093 0.090 0.092 0.111 0.107 0.108

4Design 1: Number of simulations S = 1000; G is the sample size; A specifies the probability that the first equi-
librium in Example 1 is chosen. RP1, RP2, and RP3 are rejection frequencies of the true null following three tests,
respectively: 1, the nonstudentized test with ¢; from parametric simulations; 2, the nonstudentized test with ¢; com-

puted via bootstrap; 3, the studentized test with d 1 computed via bootstrap. The target probability for FWE is o = 0.10.
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TABLE II
FINITE SAMPLE PERFORMANCE: TEST OF SIGNS OF INTERACTION EFFECTS?*

G A i=1 i=2 i=3

1000 0.50 [0.036, 0.076] [0.000, 1.000] [0.000, 1.000]
0.25 [0.035,0.072] [0.000, 1.000] [0.000, 1.000]
0.10 [0.040, 0.072] [0.000, 1.000] [0.000,1.000]

3000 0.50 [0.054, 0.067] [0.000, 1.000] [0.000, 1.000]
0.25 [0.048, 0.048] [0.000, 1.000] [0.000, 1.000]
0.10 [0.049, 0.053] [0.000, 1.000] [0.000, 1.000]

2Design 1: S is 1000; G is the sample size; A is the first equilibrium selection probability. The brackets include
[q+, q-1: q+ is the frequency of rejection of H(y in favor of H; g— is the frequency of rejection of Hyy in favor of H_.

where x; € {—1,2}, x, € {—1/2,3/2}, and x; € {—1, 3}. Covariate realizations
have the same probability. The state-dependent interaction effect for i is
0;(x;) = 6x;, where & is a parameter that controls the scale of the interac-
tion effect. The private information ¢; is uniformly distributed over (—c;, ¢;),
where ¢; = 2(1 + x; + |8x,])."” Table III lists the marginal choice probabilities,
or propensity scores, p;(x) = Pr(i chooses 1|x) in the unique Bayesian Nash
equilibria for each state x = (xy, x,, x3). It is easy to verify that the Bayesian
Nash equilibrium is unique for all x from Table III, since all ¢; are uniformly
distributed and all propensity scores are strictly between 0 and 1.

To illustrate the nondegeneracy condition of A* in Section 3.2, notice that
when x; = —1, the equivalence class is Y;(x;) = {(—1,-1/2, -1), (-1, —-1/2,
3), (-1,3/2,—-1), (—1,3/2,—1)}. In this case, because the equilibrium is
unique at each of these four points in 2y, A,(-) is a degenerate distri-

TABLE III

CONDITIONAL CHOICE PROBABILITIES IN BAYESIAN NASH EQUILIBRIA
(p1, P2, ps IN BRACKETS)

X1 X X3 6=0.8 §=0.9 6=1

-1 -1/2 -1 [0.3233,0.5603, 0.3233] [0.3060, 0.5561, 0.3060] [0.2895, 0.5526, 0.2895]

-1 -1/2 3 [0.2523,0.5288,0.7098] [0.2223,0.5196,0.7144] [0.1927,0.5111,0.7183]

-1 3/2 -1 [0.2998, 0.7012,0.2998] [0.2790, 0.7033, 0.2790] [0.2590, 0.7048, 0.2590]

-1 32 3 [0.2101,0.7262,0.7231] [0.1710, 0.7323,0.7300] [0.1316, 0.7376,0.7360]
2 —-1/2 -1 [0.7124,0.5286,0.2518] [0.7167,0.5194,0.2219] [0.7203, 0.5109, 0.1922]
2 =12 3 [0.7479,0.4754,0.7477] [0.7593,0.4541,0.7599] [0.7704,0.4322,0.7717]
2 3/2 -1 [0.7249, 0.7263,0.2098] [0.7313,0.7324,0.1707] [0.7369, 0.7376,0.1314]
2 32 3 [0.7738,0.7724,0.7754] [0.7927,0.7903,0.7955] [0.8126, 0.8090, 0.8166]

The parameter c; is chosen this way to ensure there is a unique Bayesian Nash equilibrium
under each state.
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TABLE IV
FINITE SAMPLE PERFORMANCE: TEST OF SIGNS OF INTERACTION EFFECTS?

G =5000 G =10,000
6=0.8 6=09 6=1.0 6=038 6=09 6=1.0
X, =-1 1[0.000,0.469] [0.001, 0.628] [0.000, 0.854] [0.000, 0.717] [0.000, 0.890] [0.000, 0.986]
X, =-1/210.003, 0.359] [0.000, 0.520] [0.000, 0.714] [0.000, 0.577] [0.000, 0.790] [0.000, 0.925]
X;=-1 [0.000, 0.483] [0.000, 0.643] [0.000, 0.834] [0.000, 0.702] [0.000, 0.888] [0.000, 0.986]
Xi=2 [0.323,0.004] [0.459, 0.000] [0.667, 0.000] [0.484, 0.000] [0.736, 0.000] [0.910, 0.000]
X, =3/2 [0.400,0.000] [0.617, 0.000] [0.817, 0.000] [0.665, 0.000] [0.867, 0.000] [0.979, 0.000]
X;=3 [0.300, 0.004] [0.496, 0.000] [0.735, 0.000] [0.545, 0.000] [0.764, 0.000] [0.930, 0.000]

Number of simulations § = 1000. The brackets include [¢+4, g—]: g+ is the frequency of rejection of Hyy in favor
of Hy; q— is the frequency of rejection of Hy in favor of H_.

bution that puts probability 1 on the unique equilibrium for each covari-
ate realization x. Accordingly, A* (p)=1 /4 if p € {(0.3233,0.5603, 0.3233),
(0.2523,0.5288,0.7098), (0. 2998 10.7013,0.2998), (0.2101,0.7262,0.7231)},
and is zero otherwise. The important implication is that for each one of these
realizations, player 1 adopts a different equilibrium strategy, which implies a
different conditional choice probability of choosing 1. As we vary the covari-
ates for the other players while fixing x; at —1, we are able to identify the sign
of &x;.

In Design 2, strategic interaction effects are state-dependent and individual-
specific. For player 1, states in the first four rows in Table III form an equiv-
alence class, while the other four rows form another equivalence class. We
simulate § = 1000 samples, each with sample size G = 5000. For each of these
samples, we calculate the test statistics ¥ as defined in Section 4 and apply the
following decision rule. If 7 ; < —1.64, then reject H, (no interaction effect)
in favor of H_ (negative interaction effect). If T ; > 1.64, then reject H, in
favor of H, (positive interaction effect). Otherwise, do not reject H,. Table IV
summarizes the finite sample performance of our test. The two entries [g,, g_]
in the brackets report percentages of tests in S = 1000 simulations where H,
is rejected in favor of H, (i.e., g, ) and the percentage of rejections in favor of
H_ (i.e. q-), respectively. Recall that the sign of interaction effects for 6,(x;)
is the same as the sign of x; in our design as 6 > 0.

6. EMPIRICAL ILLUSTRATION

In this section, we investigate how radio stations strategically allocate com-
mercial breaks during their programming schedule. The interaction effects on
the payoffs of broadcasting commercials (6(X)) can be either positive or neg-
ative. As explained by Sweeting (2009), if radio stations air commercials at the
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same time, listeners may be dissuaded from switching stations to avoid breaks,
and the audience for a particular station is not affected by the decision to
broadcast a commercial. On the other hand, if listeners have an outside option
(i.e., public radio, a CD, TV), synchronization by all stations risks ultimately
driving listeners away, reducing the audience for all radio stations. Alternating
commercial breaks would in this case be preferable (see Sweeting (2006) for a
simple model). Whereas advertisers would like stations to coordinate to pre-
clude consumers from avoiding the ads, radio stations may have an incentive
to alternate, as ratings are computed on average listenership, not audiences of
commercials. Lack of coordination by the radio stations would suggest that the
market does not align incentives of advertisers and radio stations.

Sweeting (2009) examined this question by estimating a parametric model.
His baseline specifications assumed (i) that stations care symmetrically about
their interactions with all other stations in the market and (ii) that symmet-
ric equilibria are played. Based on these assumptions, he found that stations
prefer to choose the same time for commercials during drive-time hours, with
stronger preferences in smaller markets. Our methodology allows us to test
whether Sweeting’s conclusions are robust to relaxing these possibly restrictive
assumptions in a nonparametric setting.

Because programmers have to allocate advertisements in real time (i.e., on
the spot) around the usual schedule of songs and news updates without inter-
rupting those pieces of programming, there is uncertainty as to when commer-
cial breaks can be aired. The exact sequence of songs and news updates is not
publicly distributed beforehand and, as Sweeting (2009, footnote 7) pointed
out, disc jockeys are given ample discretion over schedules. Therefore, we fol-
low Sweeting and assume that the unobserved component of the advertisement
timing decision is private information to each radio station.

Warren (2001, p. 24) mentioned that airing commercials at a specific time
“can be done some of the time. But it can’t be done consistently by very many
stations. Few songs are 2:30 minutes long any more” (see also Gross (1988)).
Hence there is also little reason to believe that this scheduling uncertainty is
correlated given public information. This (private) payoff uncertainty to airing
a commercial at a specific time is captured in our model by ¢;.

Given that commercial break choices are made within the one hour pro-
gramming horizon in real time, whether to advertise close to the end of that
horizon will not be affected by continuation value considerations. Further-
more, the number of commercials already aired earlier may induce asymme-
tries in the payoff to broadcast a commercial at the last minutes of the hour,
which are captured by our specification. Data show that most commercials are
aired close to the end of the programming horizon (i.e., the hour), so our focus
on the end of the hour can also be justified as the relevant empirical focus.
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TABLE V
D; =1(:55)*
Rel. Freq. Abs. Freq.
1 27.79% 56,653
0 72.21% 21,803

aPercentage and number of players choosing :55 or not. D; is an
indicator of whether a commercial is played at :55 min.

The data sources are BIAfn’s MediaAccess Pro data base, Media base 24/7,
and the 2001 Census.”® Based on detailed information on airplay logs for
around the first five days of each month in 2001 (59 days in total), the data
report the decision of radio programmers to broadcast commercials at minute
:55 of four different hours of the day: noon-1 pm, 4-5 pm, 5-6 pm, and 9—
10 pm. We focus on the decision to broadcast commercials at minute :55 or not
since this is close to the end of the programming horizon as explained above."
Table V depicts the frequency of choices (airing a commercial at :55 or not).

We follow Sweeting (2009) and count music stations as players in the ge-
ographic market to which they hold licenses. The specific allocation is done
using BIAfn’s MediaAccess Pro data base. There are 6534 games at the noon-1
pm hour, 6562 games at the 4-5 pm hour, 6536 games at the 5-6 pm hour, and
6520 games during the 9-10 pm hour. Also available are variables regarding
market characteristics. We focus here on the market size obtained from 2001-
2002 population estimates for individuals aged 12+ reported in BIAfn (based
on Census data). For our analysis, we discretize this variable into terciles with
the first tercile corresponding to the largest markets.

To best illustrate our methodology, we focus on the three dominant radio
stations in each market according to measures of historical listernership. We
label players accordingly so that player 1 is the radio station with largest mar-
ket share, player 2 is the station with the second largest share, and player 3 is
the station with the third largest portion. The combined market share is on av-
erage 41% across all markets, justifying our focus on the strategic interactions
among the three largest players. We note that our approach can accommodate
a larger numbers of players, but we opt for three for illustrative purposes. For
example, payoffs can depend on the proportion of competitors choosing to play
commercials, not simply on their number (see previous discussion).

8We thank Andrew Sweeting for providing the data.

Y Alternatively, as in some of the specifications used by Sweeting (2009), if the private signal
variables follow an extreme value distribution, we can restrict our analysis to the choice between
:50 and :55 conditional on airing commercials at one of these times. Even though we do not
impose a particular distributional assumption, one can legitimize our procedure as an approxi-
mation to a multiple action problem with extreme value distributed &’s. We have also run our
procedures using this specification and obtain qualitatively similar results.
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TABLE VI
MULTIPLICITY TESTS (X = HOUR OF DAY)*

:55 min vs. not :55 min G

All hours Wald test 33.32* 26,152
RW 77 >T]>T) >0

Noon-1 pm Wald test 3.86 6534
RW T:>1T,>T, >0

4-5 pm Wald test 13.51* 6562
RW i >T) >T >0

5-6 pm Wald test 21.35* 6536
RW T/ >T]>T) >0

9-10 pm Wald test 4.23 6520
RW T, >T:>T,>0

4G is the number of games. The asterix () denotes that the Wald test statistic is
significant at 5%. The dagger () denotes the significant hypothesis at 5% FWE rate
using Romano and Wolf (2005) (RW). T} is the individual test statistic for player
(hypothesis) k. The number of bootstrap repetitions is 1000.

Table VI displays tests of multiplicity conditional on the various hours of the
day. We present test results using Wald statistics and the multiple comparison
procedure by Romano and Wolf (2005) (with 1000 bootstrap repetitions) at a
targeted 5% FWE rate. For the Romano—Wolf procedure, we show the order-
ing of the individual test statistics, whether they are positive or negative, and
which ones are rejected. Unconditionally and conditional on the 4-5 pm and 5—
6 pm hours, we reject the hypothesis of a unique equilibrium: in all three cases
this is indicative of a positive strategic interaction effect. We find evidence of
multiple equilibrium strategies (across equilibria) for all three players without
conditioning on any covariate and for the 4-5 pm and 5-6 pm hours of the
day. Using either procedure (Wald or Romano and Wolf), we are not able to
reject the null hypothesis of a unique equilibrium for the hours noon-1 pm
and 9-10 pm. This is in agreement with Sweeting’s findings and the fact that
larger interaction effects will more likely lead to multiple equilibria. Because
listeners are less likely to switch off the radio to an outside option during drive-
time hours, radio stations have stronger incentives to coordinate on commer-
cial breaks and retain listenership. In this case, radio stations’ incentives are
aligned with those of advertisers.

As Sweeting (2009) suggested, smaller markets may present stronger incen-
tives for coordination. Because smaller markets have fewer stations, coordina-
tion is easier. Furthermore, if the nondominant fringe of the market provides
more alternatives to listeners as would be the case in larger markets with more
stations outside the top three, the incentives for coordination are not as preva-
lent. To examine this, in Table VII, we present results by conditioning also on
terciles of market size. Evidence of multiplicity and positive interaction effects
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TABLE VII
:55 MIN VS. NOT :55 MIN (X = HOUR OF DAY, MARKET SIZE)?

. Hour of Day

Market Size

(tercile) Noon-1 pm 4-5pm 5-6 pm 9-10 pm

1 Wald test 0.77 4.94 3.22 2.27
RW T3>T2>0>T1 T2>T1>T3>0 T2>T1>T3>0 T1>T3>T2>0
G 2201 2201 2200 2199

2 Wald test 0.73 3.87 1.97 2.48
RW T.>T;>0>T, T:>0>T>1T, T,>Ti>T13>0 T.>T, >T3>0
G 2157 2220 2159 2153

3 Wald test 4.96 19.06* 26.07* 2.92
RW T>T>T >0 T,>T>T/>0 T/>T{>T/>0 Ti>T3>0>T,
G 2176 2141 2177 2168

4The asterix () denotes that Wald test statistic is significant at 5%. The dagger () denotes the significant hypoth-
esis at 5% FWE rate using Romano and Wolf (2005) (RW). T} is the individual test statistic for player (hypothesis) k.
The number of bootstrap repetitions is 1000.

for all players is salient in the smallest markets during the 4-5 pm and 5-6 pm
hours of the day but not for the other conditional specifications.

7. CONCLUSION

In this paper we have shown how a condition typically employed in the anal-
ysis of simultaneous games of incomplete information leads to a simple and
easily implementable test for the signs of interaction effects and the existence
of multiple equilibria in the data-generating process. Inference of the signs of
state-dependent and individual-specific interaction effects can be done under
minimal assumptions that require only the conditional independence of pri-
vate information and the existence of state variables that satisfy appropriate
exclusion restrictions. In addition, given that many of the suggested methods
for estimating and making inferences in such environments rely on the assump-
tion that only one equilibrium is played in the data, this finding is relevant for
the implementation of these techniques. Even when the conditional indepen-
dence of private signals is not in place, it is possible to identify the signs and
infer multiplicity if the researcher observes groups of games where players are
known to follow the same equilibrium strategies (see the working paper ver-
sion).

With discrete covariates, such inference is implementable using well known
results in multiple testing. When a continuous covariate is included, the testing
procedure should account for the boundaries between regions with a different
number of equilibria. We leave this for future research. Another interesting
direction for future research is the inference of interaction effects if strategic
dependence exists between games observed in data.
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Finally, the conditional independence assumption is also found in dynamic
games of incomplete information. In those settings, optimal decision rules in-
volve not only equilibrium beliefs, but also continuation value functions that
may change across equilibria. Although a detailed analysis is deferred to fu-
ture research, we conjecture that our results generalize to such games under
certain additional assumptions. In particular, the characterization of optimal
policy rules in that context suggests that the existence of a unique equilibrium
in the data can still be detected by the lack of correlation in actions across
players of a given game as presented in the current paper.’
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