
Industrial Organization II (ECO 2901)
Winter 2021. Victor Aguirregabiria

Problem Set + Final Exam
Due on Monday, April 12, 2021 [before 11:59pm]

–––––––––––––––––––––––––––––––—
INSTRUCTIONS.
1. Write your answers electronically in a word processor.

2. For the answers that involve coding, include in the document the code that you have used

to obtain your empirical results, indicating the language of the code (e.g., R, Matlab, Julia,

Python) as well as the version of the software/compiler you have used.

3. Convert the document with your answers and code to PDF format and submit the PDF

online via Quercus.

4. You should submit your completed problem set before 11:59pm on Monday, April 12,

2021.

5. Problem sets should be written individually.

The total number of marks is 500.
– ––––––––––––––––––––––––––––––—

This problem set deals with the solution, estimation, and simulation, of a (single-
agent) dynamic structural model of firm investment, entry, and exit.

A. DATA
The Stata datafile data_mines_eco2901_2021.dta contains annual information on output

and inputs from 333 copper mines for the period 1992-2010 (19 years). It is a balanced

panel, though not all the mines are active every period. The following is a description of the

variables.
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Variable name Description

id : Mine identification number
mine : Name of the mine
year : Year [from 1992 to 2010]
country : Country where the mine is located
active : Binary indicator of the event “mine is active during the year”
prod_tot : Annual production of pure copper of the mine [in thousands of tonnes]
labor_n_tot : Total number of workers per year (annual equivalent)
cap_tot : Measure of capital [maximum production capacity of the mine]
lme_2010 : Price of copper at the London Metal Exchange market (deflated 2010)

Zero values for variables prod_tot, labor_n_tot, and cap_tot mean that the mine was

idle during that year —not actively extracting ore and producing copper. There are not

missing values in this panel.

B. MAIN FEATURES OF THE MODEL
We consider a relatively simple dynamic structural model of investment under uncertainty

for these mines. The following is a description of the model.

(i) Mines are indexed by i and time (years) by t. Variable kit represents the installed

capacity (or capital) of mine i at year t. Binary variable aactiveit represents if the mine is

active (producing) at year t (aactiveit = 1) or is inactive / not producing (aactiveit = 0). For an

inactive mine, current capacity kit is zero.

(ii) Every year t, the manager of a mine makes two decisions. She decides the amount of

output to produce and sell in the market, that we represent as qit. She also chooses investment

in capacity, closing (exit), and reopening (entry). Incumbent mines at year t (those with

positive capacity) decide whether to continue active (aactivei,t+1 = 1) or to temporarily close

(aactivei,t+1 = 0). If they choose to stay active, then they decide how much to invest or disinvest

in capacity (variable Iit). Mines that are temporarily closed decide whether to remain closed

(aactivei,t+1 = 0) or to reopen (aactivei,t+1 = 0). If they decide to reopen, then they choose the amount

of investment Iit.

(iii) There is a one year time-to-build in investment, entry, and exit decisions. That is, these

decisions at year t are not effective until year t+ 1. The transition rule for capacity is:

ki,t+1 = aactivei,t+1 (kit + Iit) (1)
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(iv) The choice of output is a static decision.1 Copper is an homogenous product (a com-

modity) and we assume that all the mines are price takers in the international metal market

(e.g., in the London Metal Exchange)2. The price in the metal exchange is pt. From the

point of view of a mine, this price is an exogenous state variable that follows a first order

Markov process.

(v) Investment, closing, and reopening are dynamic and forward-looking decisions. A mine

makes these decisions to maximize its expected and discounted stream of profits Et(
∑∞

s=0 β
s

Πi,t+1), where β ∈ (0, 1) is the discount factor.

(vi) The profit function of a mine is Πit = pt qit − V Cit(qit) − ICit(Iit, kit) − ECit − XCit,
where V Cit(qit) is the variable cost function, ICit is the investment cost function, ECit is

the reopening cost, and XCit is the closing cost. We specify these functions below.

(vii) The state variables in the dynamic programming (DP) decision problem of a mine are

(pt, kit, ωit) where pt is the price of copper in the international market, kit is the the mine’s

capacity or capital stock at year t, and ωit is a total factor productivity (TFP) shock.

(viii) It will be convenient to represent capacity and investment decisions using variables in

logarithms. Define lkit ≡ ln(1+kit) and ainvestit ≡ ln(1+Iit/(1+kit)). Using these definitions,

it is straightforward to show that the transition rule ki,t+1 = aactivei,t+1 (kit + Iit) is equivalent

to the transition rule:

lki,t+1 = aactivei,t+1

(
lkit + ainvestit

)
(2)

(ix)Amine’s production technology can be described by a Cobb-Douglas production function

in labor, capital, and TFP: qit = `α`it k
αk
it ωit, where α` and αk are parameters.3 Capital and

TFP are fixed inputs, and labor is the only variable input. Let w` be the price of labor.4

Then, it is straightforward to show that the variable cost function is:

V Cit(qit) = w`

[
qit

kαkit ωit

]1/α`
(3)

1The amount of reserves of a mine is a non-renewable asset. The choice of output implies a depletion in
this amount of reserves. Therefore, there is a relevant dynamic aspect in the output choice of a mine. Here,
for simplicity, we ignore this depletion effect. A possible interpretation of this assumption is that all these
mines have very large reserves relative to their production capacities.

2There is empirical evidence that some copper companies have market power. In this problem set we
abstract from this relevant aspect. We also ignore the ownership structure of the mines and treat them as
if each mine were an independent firm.

3In this problem set, we abstract from other inputs which are observable in the original dataset and
important in this industry, such as electricity, fuel, materials, reserves, and ore grade. For this problem set,
we want to keep the dynamic programming problem as simple and parsimonious as possible.

4Here we also abstract from heterogeneity across firms or over time in the price of labor.
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(x) Specification of investment, reopening, and closing costs.
ICit = θIC+1{ainvestit > 0}ainvestit + θIC−1{ainvestit < 0}(−ainvestit ) + εICit (ainvestit )

ECit = θEC + εECit

XCit = θXC0 + θXC1 lkit + εXCit

(4)

where θIC+, θIC−, θEC , θXC0 , and θXC1 are parameters, and εICit (a), εECit , ε
XC
it are unobservable

state variables that are i.i.d. over mines, time, and choice alternatives, and they have a

extreme value type I distribution.

C. ROAD MAP.
The final goal of this problem set is to obtain estimates of the structural parameters in

the Investment Cost, Reopening Cost, and Closing Cost functions. With this goal in mind,

we proceed as follows. In Question 1, we derive a simple expression for a mine’s variable
profit function that comes from the combination of a Cobb-Douglas production function

and an assumption of perfect competition in the copper international market. In Question
2, we construct the variables that we will use in our empirical analysis and present some
figures and descriptive statistics. In Question 3, we obtain reduced form estimates of

the transition probability functions of the exogenous state variables (tfp and price) and of

the conditional choice probabilities (CCPs) for the investment, entry, and exit decisions

conditional on the state variables. In Questions 4 and 5, we use these reduced form
estimates to construct a matrix of transition probabilities for the vector of state variables and

a matrix of choice probabilities for the decision variables conditional on the state variables.

In Question 6, we use these matrices and a value for the time discount factor parameter to
construct vectors of present values for each component of the profit function. In Question
7, we use these estimated present values to obtain estimates of the structural parameters
in the investment cost function. In Question 8, we implement a simple (but imperfect)
counterfactual experiment that tries to measure the effect of price uncertainty on mines’

investment decisions.

– – – – – – – – – – – – – – – – – – – – -

QUESTION 1 [40 points]. Derive the following equations under the condition that a
mine is a price taker in the international copper market (perfect competition), labor is the

only variable input, and capital/capacity is a fixed input.

(A) [20 points] Obtain the expression for the optimal amount of output qit as a function
of the state variables (pt, kit, ωit).
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(B) [20 points] Suppose that α` = αk = 0.5. Particularize the result in Question 1(A)

to these values of α` and αk. Plug this expression of the equilibrium value of qit into the

variable profit pt qit − V Cit(qit) to obtain the following expression for the indirect profit
function:

V P (pt, kit, ωit) =
1

4w`
kit (pt ωit)

2 (5)

– – – – – – – – – – – – – – – – – – – – -

QUESTION 2 [50 points]. In the dataset, variable prod_tot is qit; labor_n_tot is `it;
cap_tot is kit; and lme_2010 is pt.

Question 2(A) [25 points] Construct the following variables.
(i) invest. It represents the variable Iit, and is equal to Iit = ki,t+1 − kit. Note that this
variable takes missing values at the last year of the sample (year 2010) for every mine.

(ii) a_invest. It represents the variable ainvestit ≡ ln(1 + Iit/(1 + kit)).

(iii) active_next. It represents next year value of the binary variable active. Therefore,

(active=1 & active_next=0)means the closing of a mine, and (active=0 & active_next=1)

means the reopening of a mine.

(iv) tfp. It represents the variable ωit. It is equal to ωit = qit/
√
`it kit. This variable

contains missing values at every observation where the mine is not active (such that `it =

kit = 0).

(v) lkdisc. It is a discretized version of variable ln(1 + kit). We consider the following

discretization: lkdisc = round(ln(1+cap_tot),0.1). This implies that 0.1 units increase

in variable lkdisc is equivalent to 10% increase in capacity.

(vi) adisc. It is a discretization of variable a_invest (or ainvestit ). We construct this

variable as follows: adiscit = lkdisci,t+1−lkdiscit.
(vii) tfpdisc. It is a discretized version of TFP. We consider the following discretization:

tfpdisc = round(tfp,0.1).

(viii) lpdisc. It is a discretized version of the logarithm of price, ln(lme). We consider

the following discretization: lpdisc = round(ln(lme_2010),0.1). This implies that one

0.1 units increase in variable lpdisc is equivalent to 10% increase in price.

Question 2(B) [25 points]
(i) Present a table with means and standard deviations of the variables lkdisc, adisc,

tfpdisc, lpdisc, active, and active_next.

(ii) Present table with transition probabilities from active to active_next.

(iii) Present figures with the histograms of the variables lkdisc and tfpdisc for the sub-

sample of observations where the active=1.
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(iv) Present a figure with the histogram of variable adisc for the subsample of observations

where the active_next=1.

(v) Present a figure with the time series of lpdisc.

*** For the rest of this problem set, we use only the discrete variables lkdisc, adisc,

tfpdisc, lpdisc, active, and active_next.

– – – – – – – – – – – – – – – – – – – – -

QUESTION 3 [50 points]. Obtain estimates for the following reduced form equations.

Interpret the results.

(A) [10 points] Logit model for the stay/closing decision: dependent variable active_next;
explanatory variables lkdisc, tfpdisc, and lpdisc; using the subsample of observations

with active=1.

(B) [10 points] Logit model for the reopening decision: dependent variable active_next;
explanatory variable lpdisc; using the subsample of observations with active=0.

(C) [10 points] A linear regression model for the adisc investment decision using the sub-
sample of observations with active=1 and active_next=1 and with explanatory variables

lkdisc, tfpdisc, and lpdisc.

And a different linear regression model for the adisc investment decision using the sub-

sample of observations with active=0 and active_next=1 and with explanatory variable

lpdisc.

(D) [10 points] Linear AR(1) for the stochastic process of tfp: dependent variable tfpdisc;
explanatory variable the lagged value of tfpdisc; using the subsample of observations with

active=1 and active[t-1]=1.

(E) [10 points] Linear AR(1) for the stochastic process of log-price: dependent variable
lpdisc; explanatory variable the lagged value of lpdisc.

– – – – – – – – – – – – – – – – – – – – -

QUESTION 4 [90 points]. Given the reduced form estimates in Question 3, obtain the

following matrices of transition probabilities and conditional choice probabilities. For Ques-

tion 4(A), I provide a detailed explanation for the construction of the transition probability.

The construction of the other probabilities should apply the same procedure.

(A) [20 points] Transition probability matrix for tfpdisc (Ftfp).
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• Let Ktfp be the number of possible values that tfpdisc can take: according to my

results, Ktfp = 10, with values in the uniform grid {0.0, 0.1, 0.2, ..., 0.9}. Let tfpvals be
the Ktfp × 1 vector with the values in the support of variable tfpdisc.

• Let thres be a (Ktfp − 1)× 1 vector with the following "threshold" values:

thres[1]=(tfpvals[1]+tfpvals[2])/2;
thres[2]=(tfpvals[2]+tfpvals[3])/2;
...
thres[Ktfp-1]=(tfpvals[Ktfp-1]+tfpvals[Ktfp])/2;

• The matrix of transition probabilities Ftfp has dimension Ktfp × Ktfp. Element

Ftfp[row, col] in this matrix is equal to Pr(tfpdisct+1 = tfpvals[col] | tfpdisct =

tfpvals[row]).

• How do we obtain these probabilities? We apply a popular method proposed by George
Tauchen (Economics Letters, 1986). Let β̂0 and β̂1 be the estimated intercept and slope in

the reduced-form regression in Question 3(D). And let σ̂ be the estimate of the standard

deviation of the residuals in that regression. We assume logistic distribution for the shock

in the AR(1) process. Then:

Ftfp[row, col] =



Λ
(
thres[1]-β̂0−β̂1 tfpvals[row]

σ̂

)
if col = 1

Λ
(
thres[col]-β̂0−β̂1 tfpvals[row]

σ̂

)
−Λ

(
thres[col-1]-β̂0−β̂1 tfpvals[row]

σ̂

) if 2 ≤ col ≤ Ktfp − 1

1− Λ
(
thres[Ktfp−1]-β̂0−β̂1 tfpvals[row]

σ̂

)
if col = Ktfp

(6)

where Λ(.) is the CDF of a logistic random variable, i.e., the logistic function Λ(u) = eu/(1+

eu).

• If the implementation is correct, the sum of elements in a row should be equal to one.

Check this in your code.

(B) [20 points] Transition probability matrix for lpdisc (Fprice). This matrix has dimen-

sion Kprice ×Kprice. According to my results the support set for lpdisc is a uniform grid

of points between 4.5 and 5.9 with step equal to 0.1, such that Kprice = 15.

(C) [30 points] Conditional choice probability matrix for investment in capacity adisc
(Padisc).conditional on all the state variables (lkdisc, lpdisc, tfpdisc). This matrix

has dimension Kx×Kadisc, with Kx = Klk ∗Kprice ∗Ktfp. According to my results, lkdisc

has 74 points of support (i.e., a uniform grid between 0.0 and 7.3 with step 0.1). This means

that the whole vector of state variables (lkdisc, lpdisc, tfpdisc) has a support set with
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Kx = 74∗15∗10 = 11, 100 points. The investment decision variable adisc has Kadisc = 121

points of support (i.e., a uniform grid between −6.0 and +6.0 with step 0.1). Therefore,

matrix Padisc has dimension 11100× 121.

(D) [10 points] Conditional choice probability vector for the closing decision, active_next=0
given that active=1 (Pexit). This vector has dimension Kx × 1. Note that for this vector

of CCPs you do not have to use Tauchen’s method. The Logit model provides the exit

probabilities for every possible value of the state variables.

(E) [10 points] Conditional choice probability vector for the reopening decision, active_next=1
given that active=0 (Pentry). This vector has dimension Kx× 1. The Logit model provides

the reopening probabilities for every possible value of the state variables. Since the only

explanatory variable for the reopening position is lpdisc, this vector could have dimension

Kprice × 1. However, for later calculations, it is convenient to expand this vector for every

value of all the state variables.

– – – – – – – – – – – – – – – – – – – – -

QUESTION 5 [60 points].

(A) [40 points] Using the matrices Ftfp, Fprice, and Padisc, and vectors Pentry and Pexit

that you have obtained in Question 4, obtain the transition matrix of the vector of state

variables that is induced by the choice probabilities in Padisc, Pentry, and Pexit.

Hint. Let me provide some details on this matrix and its calculation. Let Fx be this

matrix that has dimension Kx ×Kx, with Kx = Klk ∗Kprice ∗Ktfp. Element Fx[row, col] in

this matrix is the probability:

Fx[row, col] = Pr


(lkdisct+1, lpdisct+1, tfpdisct+1) =
(lkval[col], lpval[col], tfpval[col])

| (lkdisct, lpdisct, tfpdisct) =
(lkval[row], lpval[row], tfpval[row])

 (7)

where (lkval[col], lpval[col], tfpval[col]) is the value in the support of the state variables

that corresponds to column "col", and similarly (lkval[row], lpval[row], tfpval[row]) is

the value in the support of the state variables that corresponds to row "row". The structure

in the transition probabilities of the state variables implies that:

Fx[row, col] = Pr
(
tfpdisct+1 = tfpval[col] | tfpdisct = tfpval[row]

)
Pr
(
lpdisct+1 = lpval[col] | lpdisct = lpval[row]

)
Pr

 lkdisct+1 = lkval[col]

| (lkdisct, lpdisct, tfpdisct) =
(lkval[row], lpval[row], tfpval[row])

 (8)
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and these probabilities can be obtained from Ftfp, Fprice, Padisc, Pentry and Pexit.

You can use loops to fill one by one the elements in matrix Fx. Alternatively, it is possible

to use matrix operations (Kronecker products combined with element-by-element products

and a couple of ’tricks’) to obtain directly Fx from Ftfp, Fprice, Padisc, Pentry and Pexit.

Using loops can be safer and easier to code, though the computation time will be longer.

(B) [20 points] Valuation matrix. Define the following matrix:

ΛPV = (I − β Fx)
−1 (9)

where I is the identity matrix, β is the time discount factor, and Fx is the transition matrix

that you have obtained above. Calculate matrix ΛPV using β = 0.95.

Matrix ΛPV is Present Value operator. More specifically, let Π be a Kx × 1 vector of

per-period profits for each possible value of the state variables. Then, by pre-multiplying Π

with matrix ΛPV we get a vector of present values:

PV = ΛPV Π (10)

Element PV[ row ] in vector PV give us the present value of the stream of current and future

profits in Π given that the current state is the one associated with the value of the state

variables in row "row".

To provide some intuition, consider first the scalar case. Let π be a constant per period

profit. Then, PV =
∑∞

t=0 β
t π is the present value of this permanent per-period profit over

an infinite horizon. It should be clear that PV = (1− β)−1π, and (1− β)−1 is a particular

case of matrix ΛPV when there is only one possible state. Note, that we can also define the

present value PV using the recursive expression PV = π+β PV . Now, consider the general

case with vector Π and matrix Fx. The recursive expression for the vector of present values

is:

PV = Π + β Fx PV (11)

Solving for PV in this recursive equation, we get:

PV = (I − β Fx)
−1 Π (12)

– – – – – – – – – – – – – – – – – – – – -

QUESTION 6 [40 points]. Vector with Present values of Variable profits. Let
(aactivei,t+1 , a

invest
it ) be the decision of mine i at year t. The profit function (without including

the unobservable state variables) can be represented as:

Πit = h(aactivei,t+1 , a
invest
it ; pt, kit, ωit)

′ θ (13)
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where:

θ = (θvp, θ
IC+, θIC−, θEC , θXC0 , θXC1 )′ (14)

with θvp = 1/4w`; and

h(aactivei,t+1 , a
invest
it ; pt, kit, ωit)

′ =

=
(
kit (pt ωit)

2 , 1{ainvestit > 0}ainvestit , IC−1{ainvestit < 0}(−ainvestit ),

1{aactivei,t+1 = 1 & kit = 0}, 1{aactivei,t+1 = 0 & kit > 0}, 1{aactivei,t+1 = 0 & kit > 0} ∗ lkit
) (15)

For some descriptions below, it will be convenient to represent the 6 elements of the vector

h() as h1it, h
2
it, ..., h

6
it.

(A) [20 points] For each of the 6 elements in the vector h(), construct a matrix with

dimensionKx×Ka with the value of that component for every value of the state variables and

the decision variables. That is, let H1 be the matrix for the first element, kit (pt ωit)
2. Each

row in this matrix corresponds to a particular value in the support of the state variables, and

each column corresponds to a particular value in the support of the decision variables. Then,

element H1[row, col] contains the value of kit (pt ωit)
2 when the value of the state variables

corresponds to the value of these variables in row "row", and the value of the decision

variables corresponds to the value of these variables in column "col". In this particular case,

because kit (pt ωit)
2 does not depend on the decision variables, all columns in H1 will be the

same.

(B) [20 points] Given the Present Value operator matrix ΛPV obtained in Question 5,

obtained the vector of present values for each of the 6 components in vector h(): that is,

PV1 = ΛPV H1, PV2 = ΛPV H2, ..., PV6 = ΛPV H6.

– – – – – – – – – – – – – – – – – – – – -

QUESTION 7 [100 points]. Estimation.

(A) [20 points] Given the data and the vectors of present values in Question 6, explain how
to obtain an estimator of the structural parameters in θ.

(B) [40 points] Present the code to implement that estimator.

(C) [20 points] Interpret the results: parameter estimates; economic interpretation; poten-
tial biases.

(D) [20 points] Used the estimated choice probabilities from the structural model to provide
measures of goodness of fit. More specifically, compare statistics on investment, entry, and

exit decisions from the raw data with those implied by the estimated structural model: e.g.,
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frequency of zeroes in investment, entry rate, exit rate, time series of aggregate capacity and

aggregate investment.

– – – – – – – – – – – – – – – – – – – – -

QUESTION 8 [70 points]. Counterfactuals.

Commodity markets are characterized by large volatility in prices. This is partly due to a

very inelastic aggregate supply in the short run that does not respond to transitory demand

shocks. Studying the contribution of these supply side frictions (adjustment costs in capacity)

to the volatility of prices would require a dynamic equilibrium model of supply and demand.

We leave these counterfactuals for the final exam. Instead, here we focus on the effect of the

volatility of prices on mines’investment decisions.

(A) [20 points] Suppose that the price were constant over time and equal to its median
value. We can represent this counterfactual as a new transition probability for price, say

F∗price, such that all the columns contain zeroes except the column for the median price that

is a column of ones. Given this counterfactual matrix, repeat the exercise in Questions 5

and 6 to obtain the valuation operator matrix and present values, and use the estimated

structural parameter to obtain new counterfactual choice probabilities for investment, entry,

and exit.

(B) [30 points] Used the counterfactual choice probabilities to generate the same statistics
than for the goodness-of-fit analysis in Question 7(D). Comment the results by comparing

factual and counterfactual statistics.

(C) [10 points] Explain why the counterfactual exercise in Questions 8(A)-(B) has some
limitations (Hint: in the valuation exercise we are using the same choice probabilities as in

the factual scenario). Explain how to implement a correct counterfactual experiment.

(D) [10 points] Suppose that you know (have estimated) the aggregate demand curve of
copper in the international market. Explain how you would implement a counterfactual

experiment that tries to evaluate how supply side frictions in investment affect the volatility

of prices.
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