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Introduction

Introduction

Firms are heterogeneous in their ability to acquire and process
information.

The implications of firms’heterogeneous expectations on firms’
performance and market outcomes have been long recognized in
economics, at least since the work of Herbert Simon (1958, 1959).

However, the assumption of rational expectations has been the status
quo to represent agents’beliefs in many areas in economics, and in
particular in IO.

It has not been until recently that firms’biased beliefs has received
substantial attention in structural models in empirical IO.
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Introduction

Aguirregabiria & Magesan (REStud, 2020)

[1] Present a dynamic game of oligopoly competition that allows
for biased beliefs and learning, but it is agnostic about the source of
biased beliefs and the form of learning (if any).

[2] Study nonparametric identification of firms’belief functions
and structural parameters in the profit function.

[3] Application to market entry and geographic expansion of
McDonalds and Burger King during the early years of this industry in
Britain.
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Model

Model: Dynamic Game

N firms indexed by i . Every period t, each firm takes an action
ait ∈ {0, 1, ..., J}.

One-period profit function is:

Πit = πit (ait , a−it , xt ) + εit (xit )

xt = vector of common knowledge state vars. with transition prob.

ft (xt+1 | ait , a−it , xt )

ε′its are private info of player i and unobservable to researcher. It is
i.i.d. over time and players.
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Model

Maintain some assumptions from MPE

ASSUMPTION 1 (Payoff relevant state variables): Players’
strategy functions depend only on payoff relevant state variables: xt
and εit .

ASSUMPTION 2 (Maximization of intertemporal payoffs):
Players are forward looking and maximize expected intertemporal
payoffs.

ASSUMPTION 3 (Rational beliefs on own future behavior):
Players have rational expectations on their own behavior in the future.

We relax the assumption that firms have unbiased or equilibrium
beliefs on other players’behaviour,
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Model

Strategies, Choice Probabilities, and Beliefs

Let σit (xt , εit ) be the strategy function for player i at period t.

Pit (ai |xt ) ≡ Pr(σit (xt , εit ) = ai |xt ) choice probability of player i .

B (t)it+s (a−i |xt+s ) beliefs of player i at period t about the behavior of
other players at period t + s.

The model allows the belief functions B (t)it+s to vary freely both over t
(i.e., over the period when these beliefs are formed) and over t + s
(i.e., over the period of the other players’behavior).

In particular, the model allows players to update their beliefs and
learn (or not) over time t.
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Model

Sequence of Beliefs B (t)it+s

Beliefs Period of the opponents’behavior (t + s)
formed (t) t + s = 1 t + s = 2 t + s = 3 ... t + s = T

t = 1 B (1)i1 B (1)i2 B (1)i3 ... B (1)iT

t = 2 - B (2)i2 B (2)i3 ... B (2)iT

...
...

...
...

...
...

t = T - - - ... B (T )iT
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Model

Best Response Functions

Given her beliefs at period t, Bi (t) =
{
B (t)i ,t+s : s ≥ 0

}
, a player best

response at period t is the solution of a single-agent Dynamic
Programming problem.

At period t, the DP problem can be described in terms of: (1) a
sequence of expected one-period payoff functions:

π
B(t)
it+s (ait+s , xt+s ) ≡∑

a−i
B (t)it+s (a−i |xt+s ) πit+s (ait+s , a−i , xt+s )

And (2) a sequence of transition probability functions:

f B(t)it+s (xt+s+1|ait+s , xt+s ) ≡∑
a−i
B (t)it+s (a−i |xt+s ) ft+s (xt+s+1|ait+s , a−i , xt+s )
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Model

Best Response Functions (2)

The solution of this DP problem implies the vector of conditional
choice value functions at period t:

vB(t)it (xt ) =
{
vB(t)it (ai , xt ) : ai = 0, 1, ..., J

}
And the best response choice probabilities:

Pit (ai |xt ) = Pr
(
vB(t)it (ai , xt ) + εit (ai ) ≥ vB(t)it (a′i , xt ) + εit (a′i ) ∀a′i

)
For instance, in a logit model:

Pit (ai |xt ) =
exp

{
vB(t)it (ai , xt )

}
∑J
j=0 exp

{
vB(t)it (j , xt )

}
Victor Aguirregabiria () Empirical IO April 1, 2021 11 / 39



Model

Structure of the conditional choice values

By definition the values vB(t)it (ai , xt ) have the following structure:

vB(t)it (ai , xt ) = B(t)it (xt )
′

[
π it (ait , xt ) + c

B(t)
(>t)

it (ait , xt )

]

B(t)it (xt ) = vector of beliefs [B (t)it (a−i |xt ) for any value a−i ].

B(t)
(>t) = beliefs formed at t on rivals’behavior at t + s > t.

π it (ait , xt ) = vector of payoffs [πit (ait , a−i , xt ) for any value a−i ].

c
B(t)
(>t)

it (ait , xt ) = vector of continuation values [c
B(t)
(>t)

it (ait , a−i , xt )
for any value a−i ] with:

c
B(t)
(>t)

it (ait , a−i , xt ) = β ∑V
B(t)
(>t)

it+1 (xt+1) ft (xt+1|ait , a−i , xt )
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Identification of Beliefs

Data

Random sample of M markets, indexed by m, where we observe

{aimt , xmt : i = 1, 2, ...,N; t = 1, 2, ...,T data}

N and T data are small and M is large.

The payoff functions πit (ait , a−it , xt ) and the beliefs functions
B (t)it+s (a−i |xt+s ) are nonparametrically specified.

The distribution of the unobservables Λ is assumed known.

I focus here in a model with two players, i and j , but the paper results
can be extended to N players.
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Identification of Beliefs

Inversion of CCPs

The model is described by the conditions:

Pit (ai |xt ) = Λ
(
ai ; v

B(t)
it (xt )

)
The CCPs Pit (ai |xt ) are identified using data from M markets.

Hotz-Miller inversion theorem implies that we can invert the best
response mapping to obtain value differences
ṽB(t)it (ai , xt ) ≡ vB(t)it (ai , xt )− vB(t)it (0, xt ) as functions of CCPs:

ṽB(t)it (ai , xt ) = Λ−1 (ai ;Pit (xt ))

The identification problem is to obtain beliefs and payoff functions
given that Λ−1 (ai ;Pit (xt )) are known.

Victor Aguirregabiria () Empirical IO April 1, 2021 15 / 39



Identification of Beliefs

Structure of the restrictions

Value differences ṽB(t)it (ai , xt ) are:

ṽB(t)it (ai , xt ) = B(t)it (xt )
′

[
π̃ it (ait , xt ) + c̃

B(t)
(>t)

it (ait , xt )

]

π̃ it (ait , xt ) = vector of payoff differences
[πit (ait , a−i , xt )− πit (0, a−i , xt ) for any value a−i ].

c̃
B(t)
(>t)

it (ait , xt ) = vector of differences of continuation values

[c̃
B(t)
(>t)

it (ait , a−i , xt )− c̃
B(t)
(>t)

it (0, a−i , xt ) for any value a−i ].
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Identification of Beliefs

Identification Assumptions

ASSUMPTION ID-1. A player has the same beliefs in markets with
the same x variables.

B (t)imt+s (.|x) = B
(t)
it+s (.|x) for any market m

ASSUMPTION ID-2 (Static Exclusion Restriction):
xt = (sit , sjt ,wt ) such that sit enters in the payoff function of player i
but not in the payoff of the other player.

πit (ait , ajt , sit , sjt ,wt ) = πit (ait , ajt , sit ,wt )

ASSUMPTION ID-3 (Dynamic Exclusion Restriction): The
transition probability of the state variable sit is such that the value of
sit+1 does not depend on (sit , sjt ):

ft (sit+1 | ait , sit , sjt ,wt ) = ft (sit+1 | ait ,wt )
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Identification of Beliefs

Static Exclusion Restriction (ID-2)

The exclusion restriction ID-2 appears naturally in many applications
of dynamic games of oligopoly competition.

Incumbent status, capacity, capital stock, or product quality of a firm
at period t − 1 are state variables that enter in a firm’s payoff
function at period t because there are investment and adjustment
costs that depend on these lagged variables.

A firm’s payoff πit depends also on the competitors’values of these
variables at period t, but it does not depend on the competitors’
values of these variables at t − 1.

Importantly, the assumption does not mean that player i does not
condition her behavior on those excluded variables. Each player
conditions his behavior on all the (common knowledge) state variables
that affect the payoff of a player in the game, even if these variables
are excluded from his own payoff.
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Identification of Beliefs

Dynamic Exclusion Restriction (ID-3)

ft (sit+1 | ait , sit , sjt ,wt ) = ft (sit+1 | ait ,wt )

An important class of models that satisfies this condition is when
sit = ai ,t−1, such that the transition rule is simply:

sit+1 = ait

Many dynamic games of oligopoly competition belong to this class,
e.g., market entry/exit, technology adoption, and some dynamic
games of quality or capacity competition, among others.
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Identification of Beliefs

Example: Quality competition

Quality ladder dynamic game (Pakes and McGuire, 1994).

sit is the firm’s quality at t − 1.

The decision variable ait is the firm’s quality at period t, such that:

sit+1 = ait

The model is dynamic because the payoff function includes a cost of
adjusting quality that depends on ait − sit :

ACi (ait − sit )

Given competitors quality at period t, ajt , firm i’s profit does not
depend on competitors’qualities at t − 1.
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Identification of Beliefs

Role of the Exclusion restrictions

ln
(
Pit (ai |sit , s−it )
Pit (0 |sit , s−it )

)
= B(t)it (sit , s−it )

′

[
π̃ it (ait , sit ) + c̃

B(t)
(>t)

it (ait , sit )

]
Under the two exclusion restrictions, the state variables s−it (the
competitors sj ) do not enter in the payoffs π̃ it (ait , sit ) and on the

continuation values c̃
B(t)
(>t)

it (ait , sit ).

Note: Though c̃
B(t)
(>t)

it (ait , sit ) depends on beliefs, these are beliefs at
periods t + s > t and therefore depend on (sit+s , s−it+s ) for
t + s > t.

Therefore, the dependence of ln
(
Pit (ai |sit , s−it )
Pit (0 |sit , s−it )

)
with respect to

s−it captures the dependence of beliefs B
(t)
it (sit , s−it ) with respect to

s−it .
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Identification of Beliefs

Identification of Beliefs

For any player i , any period t in the data, any value of (a−i , sit ), and
any combination of three values s−it , say (s

(a)
−i , s

(b)
−i , s

(c )
−i ), the

following function of beliefs is identified:

B (t)it (a−i | sit , s
(c )
−i )− B

(t)
it (a−i | sit , s

(a)
−i )

B (t)it (a−i | sit , s
(b)
−i )− B

(t)
it (a−i | sit , s

(a)
−i )
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Identification of Beliefs

Identification of Beliefs [2]

For instance, in a binary choice logit with two-players:

B (t)it (1 | sit , s
(c )
−i )− B

(t)
it (1 | sit , s

(a)
−i )

B (t)it (1 | sit , s
(b)
−i )− B

(t)
it (1 | sit , s

(a)
−i )

=

ln

Pit (1 | sit , s
(c )
−i )

Pit (0 | sit , s(c )−i )

−ln
Pit (1 | sit , s

(a)
−i )

Pit (0 | sit , s(a)−i )


ln

Pit (1 | sit , s
(b)
−i )

Pit (0 | sit , s(b)−i )

−ln
Pit (1 | sit , s

(a)
−i )

Pit (0 | sit , s(a)−i )


Note that we cannot identify beliefs about competitors’behavior at
future periods: B (t)it+s for s > 0. However, B

(t)
it can provide substantial

information about learning.
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Monte Carlo Experiments

Monte Carlo Experiments

Main purposes of these experiments:

[1] To assess the power of our identification assumptions in small
samples. What is the cost, in terms of precision of our estimates, of
relaxing the assumption of unbiased beliefs?

[2] Evaluate the bias induced by imposing the assumption of
equilibrium beliefs when this assumption does not hold in the DGP.

[3] Evaluate the power of test of non-equilibrium beliefs.
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Monte Carlo Experiments

Monte Carlo Experiments: Model

Dynamic game of market entry and exit.

π1mt (1, a2mt , xmt ) = α1 − δ1 a2mt − (1− a1mt−1) θEC1

π2mt (1, a1mt , xmt ) = α2 − δ2 a1mt − θS S2m − (1− a2mt−1) θEC2

S2m has a discrete uniform distribution with support {−2,−1, 0, 1, 2}.
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Monte Carlo Experiments

Monte Carlo Experiments: Design

Table 3
Summary of DGPs in the Monte Carlo Experiments

For all the experiments: α = 2.4; δ = 3.0; θEC = 0.5; β = 0.95
S2m ∼ Uniform {−2,−1, 0,+1,+2}
M = 2, 000; T = 5; MC rep = 10, 000

Experiment 1U: θS = −0.5; Unbiased beliefs
Experiment 1B: θS = −0.5; Biased beliefs
Experiment 2U: θS = −1.0; Unbiased beliefs
Experiment 2B: θS = −1.0; Biased beliefs
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Monte Carlo Experiments

MCs: Cost of Relaxing Equil Beliefs

Monte Carlo Experiment 1U
Estimation WITH Estimation WITHOUT

equil. rest. equil. rest.

Parameter Bias Std Bias Std

(True value) (%) (%) (%) (%)

Payoffs

α (2.4) -0.0992 0.2208 0.1412 0.3702
(4.13) (9.20) (5.88) (15.42)

δ (3.0) -0.1004 0.2349 0.1448 0.3763
(3.35) (7.83) (4.83) (12.54)

θEC (0.5) -0.0021 0.0665 -0.0760 0.1118
(0.42) (13.30) (15.20) (22.35)
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Monte Carlo Experiments

MCs: Benefits of Relaxing Equil Beliefs

Monte Carlo Experiment 1B
Estimation WITH Estimation WITHOUT

equil. rest. equil. rest.

Parameter Bias Std Bias Std

(True value) (%) (%) (%) (%)

Payoffs

α (2.4) -0.3332 0.2666 -0.0081 0.2829
(13.88) (11.11) (0.34) (11.79)

δ (3.0) 0.2979 0.2746 0.1543 0.3071
(9.93) (9.15) (5.14) (10.24)

θEC (0.5) -0.3277 0.0778 0.0134 0.1482
(65.55) (15.56) (2.68) (29.63)
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Empirical Application

EMPIRICAL APPLICATION

Dynamic game of store location by McDonalds (MD) and Burger King
(BK) using data for United Kingdom during the period 1990-1995.

Panel of 422 local markets (districts) and six years, 1990-1995.

Information on the number of stores of McDonalds (MD) and Burger
King (BK) in United Kingdom.

Information on local market characteristics such as population,
density, income per capita, age distribution, average rent, local retail
taxes, and distance to the headquarters of each firm in UK.
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Empirical Application

Table 1
Evolution of the Number of Stores & Markets
Data: 422 markets, 2 firms, 5 years = 4,220 observations

Burger King McDonalds
1991 1992 1993 1994 1995 1991 1992 1993 1994 1995

# Markets 98 104 118 131 150 213 220 237 248 254

∆# Markets 17 6 14 13 19 7 7 17 11 6

# of stores 115 128 153 181 222 316 344 382 421 447

∆# of stores 36 13 25 28 41 35 28 38 39 26

stores 1.17 1.23 1.30 1.38 1.48 1.49 1.56 1.61 1.70 1.76

per market
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Empirical Application

Model

kimt ∈ {0, 1, ..., |K|} number of stores of firm i in market m at period
t − 1.

aimt ∈ {0, 1} decision of firm i to open a new store.

aimt + kimt = # stores of firm i at period t.

Simt = Distance of the centroid of marker m to the centroid of the
closest market where firm i had stores at year t − 1.

Firm i’s total profit function is equal to:

Πimt = VPimt − ECimt − FCimt
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Empirical Application

Model (2)

Variable profit function:

VPimt = (Wm γ) (aimt + kimt )
[

θVP0i + θVPcan,i (kimt + aimt )
+θVPcom,i (ajmt + kjmt )

]
Entry cost:

ECimt = 1{aimt > 0}
[
θEC0i + θECK ,i 1{kimt > 0}+ θECS ,i Simt + εit

]
Fixed cost:

FCimt = 1{(kimt + aimt ) > 0}
[

θFC0i + θFClin,i (kimt + aimt )
+θFCqua,i (kimt + aimt )

2

]
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Empirical Application

Tests of Unbiased Beliefs
Data: 422 markets, 5 years = 2,110 observations

BK: D̂ (p-value) 66.841 (0.00029)

MD: D̂ (p-value) 42.838 (0.09549)

We can reject hypothesis that BK beliefs are unbiased (p-value
0.00029).

Restriction is more clearly rejected for large values of the state
variable (distance to chain network) SMD .
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Empirical Application

Where to impose unbiased beliefs?

We propose three different criteria:
[1] Minimize distance ‖Bi − Pj‖
[2] Impose unbiased beliefs for smallest values of Sj .
[3] Most visited values of Sj .

In this empirical application, the three criteria have the same
implication: impose unbiased beliefs at the lowest values for the
distance Sj .
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Empirical Application

Estimation of Dynamic Game
Data: 422 markets, 2 firms, 5 years = 4,220 observations

β = 0.95 (not estimated)
Equilibrium Beliefs Biased Beliefs

BK MD BK MD

Var Profits:
θVP0 0.5413 0.8632 0.4017 0.8271

(0.1265)∗ (0.2284)∗ (0.2515)∗ (0.4278)∗

θVPcan cannibalization -0.2246 0.0705 -0.2062 0.0646

(0.0576)∗ (0.0304)∗ (0.1014)∗ (0.0710)

θVPcom competition -0.0541 -0.0876 -0.1133 -0.0856

(0.0226)∗ (0.0272) (0.0540)∗ (0.0570)

Log-Likelihood -848.4 -840.4
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Empirical Application

Estimation of Dynamic Game
Data: 422 markets, 2 firms, 5 years = 4,220 observations

β = 0.95 (not estimated)
Equilibrium Beliefs Biased Beliefs

BK MD BK MD

Fixed Costs:
θFC0 fixed 0.0350 0.0374 0.0423 0.0307

(0.0220) (0.0265) (0.0478) (0.0489)

θFClin linear in k 0.0687 0.0377 0.0829 0.0467

(0.0259)∗ (0.0181)∗ (0.0526)∗ (0.0291)

θFCqua quadratic in k -0.0057 0.0001 -0.0007 0.0002

(0.0061) (0.0163) (0.0186) (0.0198)
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Empirical Application

Estimation of Dynamic Game
Data: 422 markets, 2 firms, 5 years = 4,220 observations

β = 0.95 (not estimated)
Equilibrium Beliefs Biased Beliefs

BK MD BK MD

Entry Cost:
θEC0 fixed 0.2378 0.1887 0.2586 0.1739

(0.0709)∗ (0.0679)∗ (0.1282)∗ (0.0989)∗

θECK (K>0) -0.0609 -0.1070 -0.0415 -0.1190
(0.043) (0.0395)∗ (0.096) (0.0628)∗

θECS (linear in S) 0.0881 0.0952 0.1030 0.1180
(0.0368)∗ (0.0340)∗ (0.0541)∗ (0.0654)∗
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Empirical Application

Implications of biased beliefs on BK’s profits

We compare the value of BK’s profits during years 1991 to 1994 given
its actual entry decisions with this firm’s profits if its entry decisions
were based on unbiased beliefs on MD’s behaviour.

Having unbiased would increase BK’s total profits in UK by:
2.78% in 1991;
2.11% in 1992;
1.20% in 1993;
0.87% in 1994.

Biased beliefs occur in markets which are relatively far away from the
firm’s network of stores. These markets are relatively smaller, and
biased beliefs decline over time in the sample period as the result of
geographic expansion.
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Empirical Application

Summary and Conclusions

Strategic uncertainty can be important for competition in oligopoly
markets. Under these conditions, the assumption of equilibrium
beliefs can be too restrictive.

We present suffi cient conditions for the NP identification of
preferences and beliefs.

We apply these ideas to actual data and find that bias beliefs can be
useful to explain a puzzle in the data.
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