## ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION Lecture 9: Uncertainty and Firms' Investment Decisions

Victor Aguirregabiria (University of Toronto)

March 11, 2021

Victor Aguirregabiria ()

Empirical IO

March 11, 2021 1 / 56

## Lecture 9: Uncertainty and Firms' Investment Decisions

• There is a **voluminous theoretical literature** on the impact of irreversibility (adjustment costs) and uncertainty on firm investment decisions.

Kydland and Prescott (1982); Abel (1983); Caballero (1991); Pindyck (1991, 1993); Dixit (1992); Abel and Eberly (1994); ...

• However, there is still very little micro-level empirical work using structural models to evaluate the effects of irreversibility and uncertainty on firms' investment and competition.

## Uncertainty and Firms' Investment Decisions

In this lecture, we will study two recent papers on this topic.

- 1. Collard-Wexler (ECMA, 2013): Demand Fluctuations in the Ready-Mix Concrete Industry
- Kalouptsidi (AER, 2014): Time to Build and Fluctuations in Bulk Shipping

# 1. Demand Fluctuations in the Ready-Mix Concrete Industry

Victor Aguirregabiria ()

< □ > < 同 > < 回 > < 回 > < 回

## Collard-Wexler (2013) - Outline

- 1. Motivation
- 2. Some features of the concrete industry
- 3 Data
- 4. Model
- 5. Estimation
- 6. Counterfactuals

3

(日) (同) (三) (三)

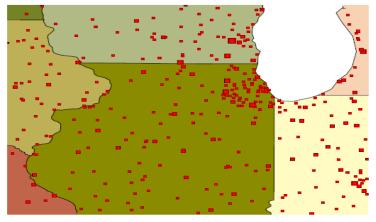
## Motivation

• How does **demand uncertainty** affect firms' investments, market structure, and welfare in an industry?

• In industries with substantial **sunk costs** in entry or investment decisions, uncertainty can generate substantial inaction and amplification of shocks.

• Since sunk costs are not proportional to firm size, uncertainty affects differently small and large firms. This affects market structure, competition, and welfare.

• In some industries (e.g., construction) **goverment activity contributes to demand uncertainty**. Room for policy improvements.


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

## Ready-Mix Concrete Industry

- Collard-Wexler studies this issue in the US concrete industry during **1976-1999**.
- Substantial demand uncertainty due to volatility of local construction industries.
- Substantial sunk costs and irreversibility in entry and investment decisions.
- Due to high transportation costs, competition is very local: oligopoly industries.

イロト イポト イヨト イヨト

## Location of Concrete plants: Midwest



Number of Concrete Plants in a Zip Code



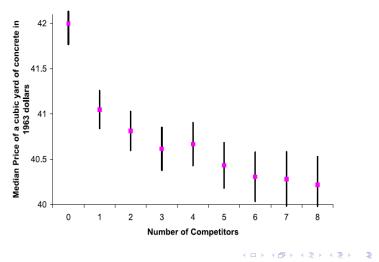
Image: A match a ma

## Local oligopoly competition

- Homogeneous product [Not accounting for spatial differentiation].
- Local market: County (approx. 3,100 counties).
- Most counties have fewer than 6 plants
- Market price at the county level declines with the number of plants though becomes quite flat for plants > 4.
- \* Note: This descriptive evidence quite likely underestimates true effect of competition on prices: more plants in markets with more demand.

(日) (周) (三) (三)

## Empirical distribution: number of plants, 1976-1999


#### TABLE I

#### MOST COUNTIES IN THE UNITED STATES ARE SERVED BY FEWER THAN SIX READY-MIX CONCRETE PLANTS

| Number of Concrete Plants | Number of Counties/Years | Percent |  |
|---------------------------|--------------------------|---------|--|
| 0                         | 22,502                   | 30%     |  |
| 1                         | 23,276                   | 31%     |  |
| 2                         | 12,688                   | 17%     |  |
| 3                         | 6373                     | 9%      |  |
| 4                         | 3256                     | 4%      |  |
| 5                         | 1966                     | 3%      |  |
| 6                         | 1172                     | 2%      |  |
| More than 6               | 3205                     | 4%      |  |
| Total                     | 74,438                   |         |  |

| Victor | Aguirregabiria |  |
|--------|----------------|--|
|        |                |  |

## Median price and number of plants in county



Price and Competition

## Demand and uncertainty

- C-W measures (annual) demand using employment in the construction industry at the county level.
- Substantial volatility of demand.
- Approx. 50% of demand for concrete comes from the government: e.g., construction and repairing roads.
- Demand from government is particularly uncertain.

イロト 不得下 イヨト イヨト

## Sunk Costs of Entry

- Based interviews to managers, the entry cost of a new plant is between **\$3M and \$4M**.
- Land, the Plant itself, and Trucks for distribution to clients.
- **Upon exit**, investments in land and trucks are quite reversible liquid secondary markets with small transaction costs.
- **Upon exit**, investments in the plant itself are almost completely lost just scrap metal.
- Sunk costs are substantial.

(日) (周) (三) (三)

## Data

- From the **Longitudinal Business Database (LBD)** of the US Census Bureau: 1976-1999 (24 years).
- Information on NAICS industry, geographic location, entry, exit, employment, and salary. But not on sales, materials, or capital.
- Merge with the **Annual Survey of Manufacturers (ASM)** with information at the plant level on inputs, outputs, and assets.

イロト 不得下 イヨト イヨト 二日

## Data

- From the **Longitudinal Business Database (LBD)** of the US Census Bureau: 1976-1999 (24 years).
- Information on NAICS industry, geographic location, entry, exit, employment, and salary. But not on sales, materials, or capital.
- Merge with the **Annual Survey of Manufacturers (ASM)** with information at the plant level on inputs, outputs, and assets.

イロト 不得下 イヨト イヨト 二日

## Heterogeneity in plant size

• C-W measures plant size using employment (better measured than capital, and available for all plants).

- Average plant (in 1997): 26 workers; \$3.4M in sales.
- Distribution of plant size is very skewed:

| <pre># of employees</pre> | % of plants |
|---------------------------|-------------|
| 1 employee                | 5%          |
| $\leq$ 8 employees        | 28%         |
| $\leq$ 18 employees       | 66%         |
| > 80 employees            | 5%          |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

## Model: State and decision variables

- Class of dynamic game of oligopoly competition that we have seen in class. I keep the same notation as in previous classes.
- $k_{it}$  = endogenous state variable that represents firm size:

$$k_{it} \in \{0, 1, 2, 3\}$$

- 0 =out of the market;
- 1 =active *small*, with less than 8 workers;
- 2 =active *medium*, with 8 to 17 workers;
- 3 =active *large*, with more than 17 workers.

## Model: State and decision variables [2]

- $d_t$  = state of demand. Follows a Markov process with transition  $F_d(d_{t+1}|d_t)$ .
- The vector of observable / common knowledge state variables is:

$$\mathbf{x}_{t} = (k_{1t}, k_{2t}, ..., k_{Nt}, d_{t})$$

•  $a_{it} = k_{i,t+1}$  = choice of firm size for next period (and implicitly, entry and exit).

## **Profit Function**

- If  $a_{it} = 0$  (inactive): Profit = 0.
- For  $a_{it} = a > 0$ :

$$\Pi_{it}(\mathbf{a}) = \theta_1(\mathbf{a}) + \theta_2(\mathbf{a}) \ d_t + \theta_3(\mathbf{a}) \ g\left(\sum_{j \neq i} \mathbf{a}_{jt}\right)$$
$$+ \sum_{k=0}^3 \mathbb{1}\{k_{it} = k\} \ \theta_4(\mathbf{a}, k)$$

- $\theta_3(3)$  capture competition effects.
- $\theta_4(a, k)$  is the cost of switching from size k to size a. When k = 0, these are entry costs.

イロト 不得下 イヨト イヨト 二日

- Discount factor  $\beta$  is fixed at 0.95.
- Two-step method, similar to the 2-step PML that we have seen in class.

• A Fixed-effects to deal with county time-invariant unobserved heterogeneity. Since T = 24 is relatively large, the bias on the estimated market FEs might be small (?)

(日) (周) (三) (三)



- To have parameters in dollar amount, C-W uses the information from interview to managers: entry cost to medium size,  $\theta(2,0)$ , is 2M. Based on this, all parameters are translated into .
- This normalization does not affect the parameters estimates. However, it does affect some counterfactual experiments.
- Remember that average annual sales revenue of a plant: \$3.4M.

## [3]

#### ESTIMATES FOR THE DYNAMIC MODEL OF ENTRY, EXIT, AND INVESTMENT<sup>a</sup>

|                  |        | Coeff. | S.E.* |
|------------------|--------|--------|-------|
| Fixed Cost       | Small  | -139   | (6)   |
|                  | Medium | -244   | (10)  |
|                  | Large  | -285   | (6)   |
| Log Construction | Small  | 20     | (1)   |
| Employment       | Medium | 35     | (2)   |
| 1 2              | Large  | 45     | (1)   |
| 1st Competitor   | Small  | -48    | (4)   |
|                  | Medium | -58    | (5)   |
|                  | Large  | -63    | (6)   |
| Log Competitors  | Small  | -17    | (3)   |
| (Above 1)        | Medium | -44    | (4)   |
|                  | Large  | -48    | (3)   |

| Victor A | Aguirrega | hiria i |  |
|----------|-----------|---------|--|
|          |           |         |  |

イロト イポト イヨト イヨト

22 / 56

3

| [4] |  |
|-----|--|
|     |  |

| Transition Costs                       |              |       |                  |
|----------------------------------------|--------------|-------|------------------|
| $Out \rightarrow Small$                |              | -1002 | (11)             |
| $Out \rightarrow Medium^{\dagger}$     |              | -2000 | (107)            |
| $Out \rightarrow Large$                |              | -1771 | (53)             |
| $Small \rightarrow Medium$             |              | -332  | (7)              |
| Small, Past Medium $\rightarrow$ Med   | lium         | -772  | (32)             |
| Small, Past Large $\rightarrow$ Mediu  | m            | -325  | (8)              |
| $Small \rightarrow Large$              |              | -1809 | (73)             |
| Small, Past Medium $\rightarrow$ Large | ge           | -608  | (19)             |
| Small, Past Large $\rightarrow$ Large  | -            | -343  | (16)             |
| Medium → Small                         |              | -107  | (6)              |
| Medium, Past Large → Sma               | all          | -314  | (6)              |
| Medium $\rightarrow$ Large             |              | 101   | (14)             |
| Medium, Past Large $\rightarrow$ Larg  | ge           | -43   | (7)              |
| Large $\rightarrow$ Small              | -            | -254  | (7)              |
| $Large \rightarrow Medium$             |              | -403  | (6)              |
| Standard Deviation of Shock            |              | 133   |                  |
|                                        |              |       | <                |
| Victor Aguirregabiria ()               | Empirical IO | March | 11, 2021 23 / 56 |

• **Fixed cost:** \$244,000 for a medium-sized. Increases with size but less than proportionally.

[5]

#### • Competition effects:

- First competitor reduces profits by \$58,000, for medium plant.
- Doubling number of competitors reduces profits by \$44,000 per year.

#### • Switching costs.

- Entry costs (\$2M for medium) are very large relative to the annual profit.

- Increasing the size of a plant is also very costly: 1.8M from small to large.

- It is cheaper to enter as a small plant and grow to a large plant in the next period (80% of plants enter as small plants).

- There are also substantial cost of adjusting size down.

・ロン ・四と ・ヨン

## Goodness of fit

#### MODEL FIT

| Moments                     | I<br>Real Data<br>(1976–1999) |        | II<br>Simulated Data<br>Using Model $\hat{\theta}^{a}$ |         |
|-----------------------------|-------------------------------|--------|--------------------------------------------------------|---------|
| Plant-Level Moments         |                               |        |                                                        |         |
| Share of Small Plants       | 48%                           | (1%)   | 53%                                                    | (1%)    |
| Share of Medium Plants      | 27%                           | (0%)   | 23%                                                    | (1%)    |
| Share of Large Plants       | 25%                           | (1%)   | 24%                                                    | (1%)    |
| Entry Rate                  | 5.8%                          | (0.0%) | 2.9%                                                   | (0.2%)  |
| Exit Rate                   | 5.4%                          | (0.0%) | 2.9%                                                   | (0.2%)  |
| Ramping Up Rate             | 10%                           | (0.1%) | 10%                                                    | (0.3%)  |
| Ramping Down Rate           | 9%                            | (0.1%) | 10%                                                    | (0.5%)  |
| Market-Level Moments        |                               |        |                                                        |         |
| Number of Plants per Market | 2.0                           | (0.2)  | 2.0                                                    | (0.4)   |
| No Plants in Market         | 2%                            | (0%)   | 4%                                                     | (1%)    |
| Monopoly Market             | 46%                           | (1%)   | 43%                                                    | (1%)    |
| Duopoly                     | 26%                           | (1%)   | 29%                                                    | (1%)    |
| More Than 2 Plants          | 26%                           | (1%)   | 24%                                                    | (1%)    |
|                             |                               |        | → E → + E                                              | er e 🤊  |
| Victor Aguirregabiria ()    | Empirical IO                  |        | March 11,                                              | 2021 25 |

## Counterfactuals: Effect of demand uncertainty

• Three experiments that modify the stochastic process of demand, and more precisely, demand uncertainty.

• Experiment 1. 5 Years Smoothing. Demand is constant over 5 years window (at its realized mean value over the 5 years). This reduces demand uncertainty.

• Experiment 2. Constant demand. Extreme version of the counterfactual. Completely eliminates uncertainty.

• Experiment 3. Plants believe demand is constant, though demand follows its true process in the data.

• Experiment 3 help us to distinguish the part of Experiment 2 that comes from beliefs and eliminating uncertainty – versus the change in the realization of demand.

Victor Aguirregabiria ()

## Counterfactuals: Caveat

• Contrary to what is claimed in this paper, Fixed Cost, Entry Cost, and Exit Cost are not separately identified (see Aguirregabiria & Suzuki, 2014; Kalouptsidi, Scott, & Souza-Rodrigues, 2019, 2020).

• For this reason, as many other papers, the author "normalizes" the Exit Cost to zero.

• This normalization is innocuous for some counterfactuals (e.g., additive change in profit) but not for others.

• In particular, this normalization – if not true – generates inconsistent counterfactuals associated to a change in the transition of the state variables. This is exactly the type of counterfactual in this paper.

• These counterfactuals are correct only under the assumption that the scrap value is actually zero.

Victor Aguirregabiria ()

## Demand uncertainty & Turnover

#### DEMAND SMOOTHING, TURNOVER, AND SIZE CHANGING

|                          | Unsmoothed Demand $(\hat{D}^{\mu})$ | 5 Years of<br>Smoothing | Constant<br>Demand | Firms Believe<br>Demand is Constant |
|--------------------------|-------------------------------------|-------------------------|--------------------|-------------------------------------|
| Turnover                 |                                     |                         |                    |                                     |
| Entry Rate               | 2.7%                                | 2.2%                    | 2.2%               | 4.1%                                |
| Exit Rate                | 2.9%                                | 2.0%                    | 2.1%               | 4.5%                                |
| Change in Size Rate      | 20%                                 | 18%                     | 17%                | 18%                                 |
| Investment               |                                     |                         |                    |                                     |
| Sunk Entry Costs         |                                     |                         |                    |                                     |
| per Year (in Million \$) | 132                                 | 137                     | 107                | 155                                 |
| Size Changing Costs      |                                     |                         |                    |                                     |
| per Year (in Million \$) | 307                                 | 496                     | 407                | 337                                 |
| Total Plants             | 3643                                | 5433                    | 4264               | 3879                                |
|                          |                                     |                         | <                  | <                                   |
| Victor Aguirregabiria () | Empiri                              | cal IO                  |                    | March 11, 2021 28                   |

56

## Demand uncertainty & Turnover

- **Turnover:** Eliminating demand volatility has a modest effect on turnover. Most of turnover is due to firms' idiosyncratic shocks.
- **Turnover. Pure effect of Beliefs.** Beliefs of high uncertainty, reduce the response to demand shocks (generate inaction) and reduce turnover. [see last column].

[2]

• Aggregate adjustment costs. Two effects: (i) cost per firm; and (ii) change in the number of firms.

(日) (周) (三) (三)

## Demand uncertainty & Market Structure

#### DEMAND SMOOTHING AND INDUSTRY COMPOSITION

|                                 | Unsmoothed<br>Demand | Constant<br>Demand | 5 Years<br>of Smoothing |
|---------------------------------|----------------------|--------------------|-------------------------|
| Total Plants                    | 3645                 | 4264               | 5433                    |
| Fixed Costs                     |                      |                    |                         |
| (per Period in Millions of \$)  | 717                  | 878                | 1109                    |
| Industry Composition            |                      |                    |                         |
| Small Plants                    | 54%                  | 48%                | 49%                     |
| Medium Plants                   | 23%                  | 23%                | 24%                     |
| Big Plants                      | 23%                  | 29%                | 28%                     |
| Market Structure                |                      |                    |                         |
| Markets With no Plants          | 5%                   | 8%                 | 1%                      |
| Markets With 1 Plant            | 43%                  | 36%                | 25%                     |
| Market With 2 Plants            | 28%                  | 24%                | 29%                     |
| Markets With More Than 2 Plants | 25%                  | 32%                | 46%                     |

3

(日) (同) (三) (三)

#### Counterfactuals

## Demand uncertainty & Market Structure

- **Number of plants:** Reducing demand uncertainty increases importantly the number of plants in markets.
- Size distribution. Small changes. A small increase in the share of large plants.
- This result is generated by the **level of irreversibility in the different investment decisions**.
- Sunk entry costs are very sizeable: reducing uncertainty has a large effect on entry.
  - The irreversibility of investments to grow (decline) in size are small.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

## Demand uncertainty, Profits, and Welfare

WELFARE EFFECTS OF DEMAND-SMOOTHING POLICIES<sup>a</sup>

 Change in Net Present Value of

 Consumer Surplus
 \$860 Million

 Producer Surplus for Incumbents
 -\$609 Million

 Producer Surplus for Potential Entrants
 -\$36 Billion

<sup>a</sup>Numbers in this table refer to the difference in the net present value of surplus (using a 5% discount rate) between five years of smoothing and unsmoothed demand, averaged between 25 and 50 years after the policies were put into place, using 1976 as an initial state.

< ロト < 同ト < ヨト < ヨト

#### Counterfactuals

## Demand uncertainty, Profits, and Welfare

- Reducing demand uncertainty increases the number of plants, reduces price, and has a positive effect of consumer surplus.
- The effect of uncertainty on firm value is ambiguous: it can be positive or negative, depending on whether the value function is concave or convex in demand.
- In this application, the value function turns out to be convex in demand such that reducing uncertainty reduces firms' value.

# 2. Time to Build and Fluctuations in Bulk Shipping

Victor Aguirregabiria ()

Image: A math a math

## Kalouptsidi (2014) - Outline

- 1. Motivation
- 2. Some features of the Bulk Shipping industry
- 3 Data
- 4. Model
- 5. Estimation
- 6. Counterfactuals

3

(日) (同) (三) (三)

## Motivation

- In many industries, adjustment costs in capital investment take the form of **time to build**.
- Airlines or shipping firms face **lags of several years** between the order and the delivery of an aircraft / ship.
- Time to build, together with demand uncertainty, can generate inaction in investment as well as substantial deviations between optimal and actual capital stocks.
- Almost no micro empirical studies of the effects of time to build.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

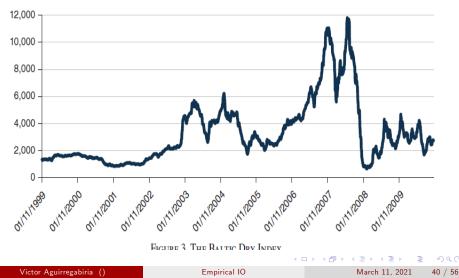
# Bulk Shipping vessels



# Bulk Shipping vessels

- Designed to carry a homogeneous unpacked dry or liquid cargo; mostly raw materials, e.g. , iron, steel, coal, grain, sugar.
- The entire cargo usually belongs to one shipper [in contrast to Containers shipping vessels].
- Operate like taxis: no scheduled itineraries, but individual contracts.
- Shipping services are largely perceived as homogeneous.

イロト 不得下 イヨト イヨト 二日


# Some features of Bulk Shipping industry

- Entry occurs when shipowner buys a new ship from a shipyard.
- Building of new ships is characterized by significant construction lags.
- Because shipyards have binding capacity, the average **time to build varies over time**.
- : e.g., it increased linearly from 6 quarters in 2001 to 12 quarters in 2008.
- Exit occurs when shipowner scraps its ship.
- Volatility in shipping demand combined with the inelastic supply leads to volatile shipping prices

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

# Volatility in shipping prices

#### Bulk shipping freight rate index



## Model: State variables

- Within the class of dynamic games that we have seen in class.
- A firm is a shipowner. The state variables are:
  - the age of the own ship:  $k_{it} \in \{0, 1, ..., K\}$ ;
- the age distribution of all the ships:  $\mathbf{s}_t \in \{s_t^0, s_t^1, ..., s_t^K\}$ , where  $s_t^k =$  number of ships with age k.
  - the backlog of deliveries from shipyards:  $\mathbf{b}_t \in \{b_t^1, b_t^2, ..., b_t^T\}$ , where  $b_t^q$  = number of ships to be delivered at period t + q.
  - the aggregate demand of shipping services:  $d_t$

- ロ ト - 4 同 ト - 4 回 ト - - - 回

# Model: Profit function

- Flow profit (without entry or exit costs) of a ship age k:  $\pi_k(\mathbf{s}_t, d_t)$ .
- Scrap value: Private information:  $\phi$  drawn from distribution  $F_{\phi}$ .

• Entry cost: All potential entrants have the same entry cost:  $\kappa(S_t^1, S_t^2, S_t^3, B_t, d_t)$ .

• Time to build: All the new entrants at time t receive the same time to build:  $T_t = T(S_t^1, S_t^2, S_t^3, B_t, d_t)$ .

• In these functions:

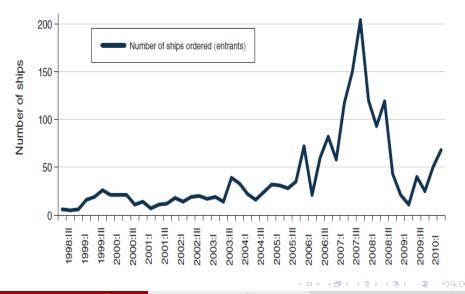
 $S_t^1 = \#$  young competitors;  $S_t^3 = \#$  mid-age competitors;  $S_t^3 = \#$  old competitors.

 $B_t = \mathsf{Total} \; \mathsf{Backlog} = \sum_{q+1}^T b_t^q$ 

• World secondhand ship sale transactions. Date of transaction; name, age, and size of the ship sold; seller and buyer; price. [August 1998 to June 2010].

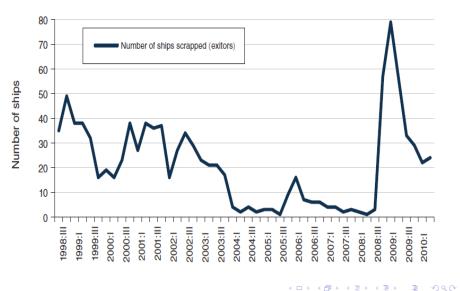
Data

• **Shipping voyage contracts**. Date of transaction; name and size of the ship; ship's price per trip. [January 2001 and June 2010]


• Quarterly time series for the orders of new ships (i.e., entrants), deliveries, demolitions (i.e., exitors), fleet, and total backlog.

• **Ship orderbook**. All ships under construction and delivery date. [2001 to 2010]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙


Data

#### New entrants



Data

#### Exits



Victor Aguirregabiria ()

March 11, 2021 45 / 56

Data

#### Incumbents

#### Handysize Fleet



#### Estimation Approach

• The econometric approach in this paper contains an interesting methodological innovation.

• On the one hand, it applies two-step CCP methods to estimate some parameters of the model – nothing new here.

• Interestingly, it also uses data on tansaction prices of ships in the second hand market.

• Under the assumption that the transaction price represents the value of the ship, MK uses these data to avoid the computation of (some) present values..

• The assumptions are that: ships are homogeneous (per size and age); the second hand market is very liquid, with many agents; and almost zero transaction costs. Then, the **secondhand transaction price must equal the value of the ship**.

Victor Aguirregabiria ()

## Estimated Demand Function (Isoelastic)

|                 | First stage, dep. variable $Q_t$ |           | Second stage, dep. variable $P_t$ |           |  |
|-----------------|----------------------------------|-----------|-----------------------------------|-----------|--|
|                 | Parameter                        | SE        | Parameter                         | SE        |  |
| const           | 2.01                             | (20)      | -7.601                            | (23.8)    |  |
| WIP             | -5.05                            | (3.4)*    | 9.501                             | (4.51)**  |  |
| agr raw mat P   | 1.291                            | (0.97)*   | 2.969                             | (1.32)**  |  |
| mineral P       | 0.394                            | (0.57)    | -1.658                            | (0.565)** |  |
| food P          | -0.548                           | (0.715)   | -0.346                            | (0.702)   |  |
| China steel     | 0.365                            | (0.716)   | 1.534                             | (0.592)** |  |
| Handymax        | -2.03                            | (2.12)    | -4.705                            | (1.324)** |  |
| fleet           | 0.0013                           | (0.0014)  |                                   | (0.597)   |  |
| mean age fl     | 0.287                            | (0.150)** |                                   | ( /       |  |
| std age fl      | 0.5823                           | (0.335)** |                                   |           |  |
| $\widehat{Q}_t$ |                                  | × /       | -0.162                            |           |  |

TABLE 5—INVERSE DEMAND CURVE FOR FREIGHT TRANSPORT: IV REGRESSION RESULTS

\*\* Cignificant at the 5 naroant lavel

< □ > < ---->

#### Time to Build Estimates

#### TABLE 6—TIME TO BUILD REGRESSION ESTIMATES

Data

|                 | Constant | $S^1$     | $S^2$     | $S^{3}$   | В            | d       |
|-----------------|----------|-----------|-----------|-----------|--------------|---------|
| Parameters      | 2.536    | -0.00082  | -0.00063  | 0.00011   | 1.93e - 005  | 0.0303  |
| Standard errors | (1.266)  | (0.00058) | (0.00036) | (0.00036) | (8.3e - 005) | (0.019) |

Notes: Standard errors based on 500 bootstrap samples. Coefficients joint significant at the 0.01 level.

(日) (同) (三) (三)

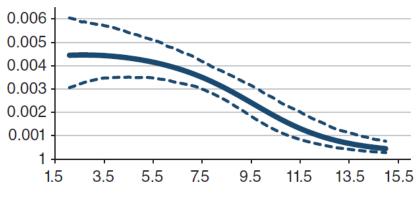
### Entry and Exit Estimates

#### TABLE 8—ENTRY AND EXIT REGRESSION ESTIMATES

Data

|                                               | Constant           | $S^1$                | $S^2$                 | $S^{3}$             | d                   |
|-----------------------------------------------|--------------------|----------------------|-----------------------|---------------------|---------------------|
| <i>Entry</i><br>Parameters<br>Standard errors | -8.425<br>(4.90)   | -0.0024<br>(0.0025)  | -0.00045<br>(0.00075) |                     | 0.934<br>(0.244)**  |
| <i>Exit</i><br>Parameters<br>Standard errors  | 22.728<br>(4.89)** | 0.0073<br>(0.0016)** | 0.00093<br>(0.00092)  | 0.00104<br>(0.0008) | -1.859<br>(0.242)** |

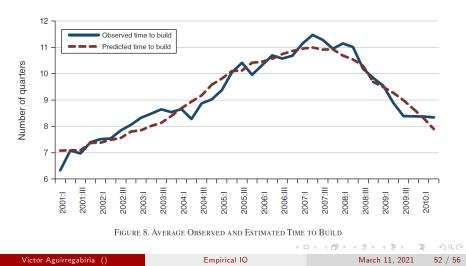
Victor Aguirregabiria ()


March 11, 2021 5

(日) (同) (三) (三)

50 / 56

#### Estimation of Scrap Value Distribution


Panel B. Scrap value density



Data

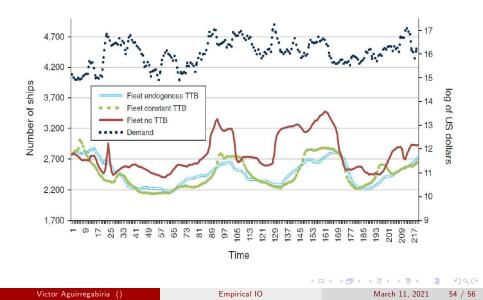
### Million US dollars

#### Estimates of Time to Build

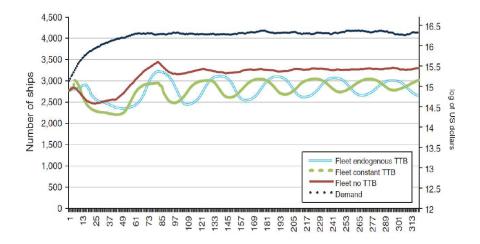


## Counterfactuals: Main empirical results

• Investment volatility is significantly higher as time to build declines.


Data

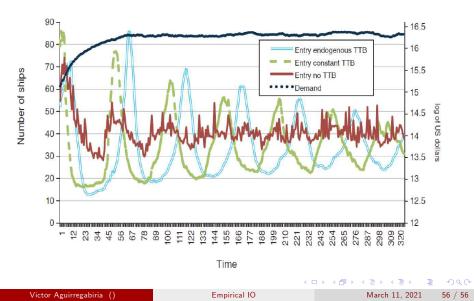
- The fleet is 45 percent more volatile under constant time to build and twice more volatile under no time to build.
- Entry is twice more volatile under constant time to build and seven times more volatile in the absence of time to build.
- The fleet is larger by about 15 percent in the absence of time to build.


(日) (周) (三) (三)

## Counterfactuals: Time to Build (in sample)

Data




### Counterfactuals: Time to Build (long run)



Data

## Counterfactuals: Time to Build (long run)

Data

