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Solution Methods

MPE in vector form (pseudo code)

• Suppose that xt is discrete: xt ∈ {x1, x2, ..., x |X |}.

• The primitives of the model are:

[1] Vectors of payoffs: Πi (ai , a−i )
with dimension |X | × 1, for every value of (ai , a−i ).

[2] Matrices of transition probabilities: F(ai , a−i )
with dimension |X | × |X |, for every value of (ai , a−i ).

[3] The discount factor δ.

[4] Distribution of εi (0), εi (1), ..., εi (J)
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Solution Methods

MPE in vector form [2]

• Let P ≡ {Pi (ai ) : for any i and ai} where Pi (ai ) is a vector of CCPs
with dimension |X | × 1.

• We can define the vectors of expected payoffs Π
P−i
i (ai ) and the

matrices of expected transition probabilities FP−ii (ai ):

Π
P−i
i (ai ) ≡ ∑

a−i
Pi (ai ) ∗ Πi (ai , a−i )

FP−ii (ai ) ≡ ∑
a−i

Pi (ai ) ∗ F(ai , a−i )

where ∗ represents the "element-by-element" or Hadamard product.
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Solution Methods

MPE in vector form [3]

• A MPE is a vector P ≡ {Pi (ai ) : for any i and ai} such that (Logit):

Pi (ai ) =
exp

{
Π
P−i
i (ai ) + δ FP−ii (ai ) V

P−i
i

}
∑a′ exp

{
Π
P−i
i (a′) + δ FP−ii (a′) VP−ii

}
• VP−ii = |X | × 1 vector solving the Bellman equation in vector form:

VP−ii = ln

(
∑
ai

exp
{

Π
P−i
i (ai ) + δ FP−ii (ai ) V

P−i
i

})

• Or in compact form, if Pi ≡ {Pi (ai ) : for any ai}:

Pi = BRi (P−i )

where BRi (.) is the best response function that gives firm i’s vector of
CCPs solving the DP problem given P−i .
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Solution Methods

Algorithm: Fixed Point Iterations in BR mapping

• Let P0 ≡ {P0i : for any i} be arbitrary vector of CCPs.

• At iteration n, for any player i :

Pni = BRi
(
Pn−1−i

)
• We check for convergence:

if
∥∥Pn −Pn−1∥∥ ≤ κ then Pn is a MPE

if
∥∥Pn −Pn−1∥∥ > κ then Proceed to iteration n+ 1

where κ is a predetermined constant small positive constant, e.g.,
κ = 10−6.

• Convergence? Not guaranteed. More on this later ...
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Solution Methods Solving Players’DP Problems

Solving Players’DP Problems

• Evaluation BRi (P−i ) for a value of P−i involves solving a DP problem
for player i .

• I describe here three standard algorithms to solve this DP problem.
[1] Value function iterations
[2] Newton-Kantorovich iterations
[3] Policy iterations

• For notational simplicity, I omit here the subindex i and superindex P−i ,
such that the (integrated) Bellman equation is:

V = Γ (V)

with

Γ (V) ≡ ln
(

∑
a
exp {Π(a) + δ F(a) V}

)
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Solution Methods Solving Players’DP Problems

Value function iterations

• Let V0 be an arbitrary vector of values.

• At iteration n:
Vn = Γ

(
Vn−1

)
• We check for convergence:

if
∥∥Vn −Vn−1∥∥ ≤ κ then Vn is the solution

if
∥∥Vn −Vn−1∥∥ > κ then Proceed to iteration n+ 1

where κ is a predetermined constant small positive constant, e.g.,
κ = 10−6.

• Since Γ (.) is a contraction mapping, convergence is guaranteed (to the
unique fixed point).
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Solution Methods Solving Players’DP Problems

Complexity (Computational Cost) of VF iterations

• The computational cost of an algorithm = Cost per iteration * Number
of iterations.

• Degree of complexity C (.) = Number of basic operations (sums,
products).

• Cost per iteration = evaluation of Γ
(
Vn−1

)
=

ln
(
∑a exp

{
Π(a) + δ F(a) Vn−1

})
.

Complexity = O
(
|X |2

)
• Number of iterations = O

(
1

1− β

)
.

Victor Aguirregabiria () Empirical IO February 25, 2021 10 / 42



Solution Methods Solving Players’DP Problems

Newton Iterations

• Define the function f (V) ≡ V− Γ (V).

• Solving for a fixed point of Γ is equivalent to finding a zero (a root) of f .

• We use Newton’s method to find a root of f .

• Applying Mean Value Theorem to f (V) around V0 [Of (V) represents
the Jacobian matrix of f ]:

f (V) ' f (V0) +Of (V∗)
[
V−V0

]

• Making f (V) = 0 and solving for V:

V = V0 + [Of (V∗)]−1 f (V0)
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Solution Methods Solving Players’DP Problems

Newton iterations [2]

• Let V0 be an arbitrary vector of values.

• At iteration n:

Vn = Vn−1 +
[
Of (Vn−1)

]−1
f (Vn−1)

• We check for convergence:
if
∥∥Vn −Vn−1∥∥ ≤ κ then Vn is the solution

if
∥∥Vn −Vn−1∥∥ > κ then Proceed to iteration n+ 1

where κ is a predetermined constant small positive constant, e.g.,
κ = 10−6.

• Convergence is guaranteed (to the unique fixed point).
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Solution Methods Solving Players’DP Problems

Newton iterations [3]

• What is the form of the Jacobian matrix Of (V) in this model?

• Simple to prove for the Logit model but can be generalized to any other
distribution:

Of (V) = I− δ F(V)

with
F(V) ≡∑

a
P(a;V) ∗ F(a)

and

P(a;V) =
exp {Π(a) + δ F(a) V}

∑a′ exp {Π(a′) + δ F(a′) V}
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Solution Methods Solving Players’DP Problems

Complexity of Newton iterations

Vn = Vn−1 +
[
I− δ ∑

a
P(a;Vn−1) ∗ F(a)

]−1 [
Vn−1 − Γ

(
Vn−1

)]
• Cost per iteration = Main cost comes from inversion of matrix I− δ
F(Vn−1)

Complexity = O
(
|X |3

)
• Number of iterations = Substantially smaller than for VF iterations
(faster convergence).

• For moderate dimension of |X | —a few thousand cells —Newton’s is
faster than VF.

• But for larger dimensions of |X |, the O
(
|X |3

)
in Newton’s dominates

the O
(
|X |2

)
in VF such that VF becomes faster.
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Solution Methods Solving Players’DP Problems

Policy Function Iterations

• The PF algorithm consists in iterating in the "Policy Function" (PF)
which is a fixed point mapping in the space of the vector of CCPs.

• The solution to the DP can be described as:

P = ϕ (P)

• ϕ (P) ≡ {ϕ (a;P) : for any a} is the PF, defined as:

ϕ (a;P) =
exp {Π(a) + δ F(a) υ (P)}

∑a′ exp {Π(a′) + δ F(a′) υ (P)}

• υ (P) is the Valuation Operator. It give the vector of present values in
the firm behaves according to the vector of CCPs P. It consists of the
calculation of present values.

υ (P) =
[
I− δ ∑a P(a) ∗ F(a)

]−1 [
∑a P(a) ∗Π(a)

]
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Solution Methods Solving Players’DP Problems

Policy Function Iterations [2]

• Let P0 be an arbitrary vector of CCPs.

• At iteration n, for any a:

Pn(a) =
exp

{
Π(a) + δ F(a) υ

(
Pn−1

)}
∑a′ exp {Π(a′) + δ F(a′) υ (Pn−1)}

• We check for convergence:
if
∥∥Pn −Pn−1∥∥ ≤ κ then Pn is the solution

if
∥∥Pn −Pn−1∥∥ > κ then Proceed to iteration n+ 1

• Convergence is guaranteed (to the unique fixed point).
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Solution Methods Solving Players’DP Problems

Policy Function Iterations

• For this model, it is possible to show Newton Iterations and Policy
function Iterations are equivalent algorithms.

• Let V0 be the initial vector for the Newton’s algorithm. Suppose that we
initialize the PF algorithm with P0 such that P0(a) =
exp{Π(a)+δ F(a) V0}

∑a′ exp{Π(a′)+δ F(a′) V0} . Then, the two algorithms generate the same

sequences of {Vn : n ≥ 1} and {Pn : n ≥ 1}.

• Similarly, let P0 be the initial vector for the PF algorithm. Suppose that
we initialize Newton’s algorithm with V0 such that V0 = υ(P0). Then,
the two algorithms generate the same sequences of {Vn : n ≥ 1} and
{Pn : n ≥ 1}.
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Solution Methods Solving Players’DP Problems

Curse of Dimensionality

• With any of these algorithms, the computation time for solving the DP
problem increases with |X | at a rate between |X |2 and |X |3.

• This can become very large (months, years) when |X | in the
hundred-thousands or millions, which are common dimensions in some
empirical applications.

• Approximate Dynamic Programming (ADP) provides different
techniques to approximate the solution.

[1] Monte Carlo simulation to approximate the valuation operator
υ (P).

[2] Projection methods to represent P or/and V as polynomial (or
sieve) function and iterate in the smaller dimension space of the
coeffi cients of the polynomial.
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Solution Methods Solving Players’DP Problems

Linear in Parameters Payoff functions

• For the discussion of identification and estimation, it is convenient to
focus in models where players’payoff functions are linear in parameters:

πi (ai , a−i , x) = h(ai , a−i , x) θi

where h(ai , a−i , x) is a vector of functions known to the researcher and θi
is the vector of unknown structural parameters for the researcher.

• Most empirical applications of dynamic games in IO have this structure.

• In general, any payoff function can be approximated arbitrarily well by a
function h(ai , a−i , x) θi , where h(ai , a−i , x) is the vector of basis
functions, e.g., terms of a polynomial, sieves.
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Solution Methods Solving Players’DP Problems

Linear in Parameters Payoff functions [2]

• This form of the payoff function implies that:

ΠP−i
i (ai , x) = hP−i (ai , x) θi

with hP−i (ai , x) ≡ ∑a−i

[
∏j 6=i Pj (aj |x)

]
h(ai , a−i , x).

• Such that:
Π
P−i
i (ai ) = HP−i (ai ) θi

with HP−i (ai ) being the matrix with elements hP−i (ai , x).

• And the Valuation Operator becomes:

υi (P) = H̃i (P) θi

with

H̃i (P) =
[
I− δ ∑ai

Pi (ai ) ∗ FP−i (ai )
]−1 [

∑ai
P(ai ) ∗HP−i (ai )

]
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Solution Methods Solving Players’DP Problems

Linear in Parameters Valuation Operator

υi (P) = υHi (P) θi

with

υHi (P) =
[
I− δ ∑ai

Pi (ai ) ∗ FP−i (ai )
]−1 [

∑ai
P(ai ) ∗HP−i (ai )

]
• The linearity in θi of the valuation operator is a property that is
particularly convenient (computationally) for the estimation of the model.

• The computation of υHi (P) is costly because it involves the inversion of
a large matrix. But we will need to calculate it only once (or a few times).

• For different trial values of θi in the search for the estimates, the
valuation operator υHi (P) θi is recalculated using a fixed υHi (P) (P).
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Solution Methods Solving Players’DP Problems

Policy Function

• In the MPE, we have that:

Pi = Ψi (P,θi )

• Ψi (P,θi ) ≡ {Ψi (ai ;P,θi ) : for any ai} is the PF, defined as:

Ψi (ȧi ;P,θi ) =
exp

{
HP−i (ai )θi + δ FP−i (ai ) υHi (P) θi

}
∑a′i

exp {HP−i (a′i )θi + δ FP−i (a′i ) υHi (P) θi}

• Or in a more compact form:

Ψi (ai ;P,θi ) =
exp

{
H̃i (ai ;P) θi

}
∑a′i

exp
{
H̃i (a′i ;P) θi

}
with H̃i (ai ;P) ≡ HP−i (ai ) + δ FP−i (ai ) υHi (P).
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Data & Identification Data

Data

• Suppose that we have a random sample of M local markets, indexed by
m, over T periods of time, where we observe:

Data = {amt , xmt : m = 1, 2, ...,M; t = 1, 2, ...,T}

• We want to use these data to estimate the model parameters in the
population that has generated this data: θ0 = {θ0i : i ∈ I}.

• For the moment, we consider that the industry and the data are such
that:

(a) each firm is observed making decisions in every of the M markets;
(b) the researcher knows all the payoff relevant market characteristics

that are common knowledge to the firms, x.

Victor Aguirregabiria () Empirical IO February 25, 2021 24 / 42



Data & Identification Data

Data [2]

• Under condition (a) we can allow for rich firm heterogeneity that is fixed
across markets and time by estimating firm-specific structural parameters,
θi .

• Condition (b) rules out the existence of unobserved market
heterogeneity. Though it is a convenient assumption, it is also unrealistic
for most applications in empirical IO. Later I present estimation methods
that relax conditions (a) and (b) and deal with unobserved market and
firm heterogeneity.
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Data & Identification Identification

Identification

• A significant part of this literature has considered the following
identification assumptions.

Assumption (ID 1): Single equilibrium in the data. Every observation
in the sample comes from the same Markov Perfect Equilibrium, i.e., for
any observation (m, t), P0mt = P0.

Assumption (ID 2): No unobserved common-knowledge variables.
The only unobservables for the econometrician are the private information
shocks εimt and the structural parameters θ.

Victor Aguirregabiria () Empirical IO February 25, 2021 26 / 42



Data & Identification Identification

Identification

• Under assumptions ID-1 & ID-2, the equilibrium that has generated the
data, P0, can be estimated consistently and nonparametrically from the
data. For any (i , ai , x):

P0i (ai |x) = Pr(aimt = ai | xmt = x)

• Given that P0 is identified, we have also identification of expected
present values Π̃

P 0−i
i (ai ) at the "true" equilibrium in the population.

• We can invert the best response function to have:

ln
(
P0i (ai )
P0i (0)

)
=
[
H̃i (ai ;P0)− H̃i (0;P0)

]
θ0i
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Data & Identification Identification

Identification (2)

ln
(
P0i (ai )
P0i (0)

)
=
[
H̃i (ai ;P0)− H̃i (0;P0)

]
θ0i

• These equilibrium conditions identify θ0i .

• Matrix H̃i (ai ;P0)− H̃i (0;P0) is full-column rank if and only if
HP

0
−i
i (ai )−H

P 0−i
i (0) which in turn is an implication of the specification of

the elements in vector hi (ai , a−i , x).
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Estimation Methods

Estimation

We consider the following estimators:

1. MLE

2. Two-step estimator Pseudo MLE

3. Recursive K-step Pseudo MLE
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Estimation Methods

Pseudo Likelihood Function

In models with multiple equilibria, it is convenient to define an
extended or pseudo likelihood function that depends both on θ
and P.

Q(θ,P) =
M
∑
m=1

N
∑
i=1

T
∑
t=1
lnΨi (aimt |xmt ,P,θi )

where Ψi (aimt |xmt ,P,θi ) is the Policy Function of best response
function:

Ψi (aimt |xmt ,P,θi ) =
exp

{
H̃i (aimt , xmt ;P) θi

}
∑a′i

exp
{
H̃i (a′i , xmt ;P) θi

}
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Estimation Methods Maximum Likelihood Estimator

Maximum Likelihood Estimator

It is defined as:(
θ̂MLE ,P̂MLE

)
= argmax

θ,P
Q(θ,P)

subject to: Pi = Ψi (P,θi ) for any i

It has all the nice properties of MLE, but it is can be computationally
very costly to implement when |X | is large —as large as a few
thousand states.

This is because it requires the computation of the valuation operator
υHi (P) for many trial values of P.
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Estimation Methods Two-step Pseudo MLE

Two-step Pseudo MLE

In a first step, we obtain nonparametric estimates of the CCPs (e.g.,
frequency estimator, kernel estimator, sieve estimator). Let P̂0 be this
NP estimator.

Then, in a second step we estimate θ as:

θ̂ = argmax
θ

Q(θ,P̂0)

This estimator is root-M consistent and asymptotically normal under
the standard regularity conditions. It is not effi cient because it does
not impose the equilibrium constraints (only asymptotically).
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Estimation Methods Two-step Pseudo MLE

Two-step Pseudo MLE [2]

The most attractive feature of this two-step method is its
computational simplicity.

In the likelihood function Q(θ,P̂0), the probabilities
Ψi (aimt |xmt ,P,θi ) have the same structure as standard logit or
probits, with indexes that are linear θi . Globally concave likelihood in
θi .

We need to calculate the valuation operator υHi (P) only once for
each player.

The main limitation of these two-step methods is that they can have
large finite sample bias.

The NP estimator of P0 can be very imprecise (curse of
dimensionality in the NP estimation) and this implies large finite
sample bias in the two-step estimator of θ.
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Estimation Methods Recursive K-step estimator

Recursive K-step estimator

K-step extension of the 2-step estimator. Given an initial consistent

(NP) estimator P̂0, the sequence of estimators {θ̂K , P̂K : K ≥ 1} is
defined as:

θ̂K+1 = argmax
θ

Q
(

θ,P̂K
)

where:

P̂Ki = Ψi

(
P̂K−1i ,θ̂K

)
for any player i

Aguirregabiria and Mira (2002, 2007) and Kasahara and Shimotsu
(2008) show that this recursive estimator can reduce very significantly
the bias of two-step estimator.

Pesendorfer & Schmidt-Dengler (2010) show that this procedure may
not converge to a consistent estimator, when the equilibrium in the
DGP is not stable.
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Counterfactual Experiments with Multiple Equilibria
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Counterfactual Experiments with Multiple Equilibria

Counterfactual Experiments (1)

One of the most attractive features of structural models is that they
can be used to predict the effects of new policies or changes in
parameters (counterfactuals).

However, this a challenging exercise in a model with multiple
equilibria.

The data can identify the "factual" equilibrium. However, under the
counterfactual scenario, which of the multiple equilibria we should
choose?
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Counterfactual Experiments with Multiple Equilibria

Counterfactual Experiments (2)

Different approaches have been implemented in practice.

For instance:

(i) Select the equilibrium to which we converge by iterating in
the (counterfactual) equilibrium mapping starting with the
factual estimated equilibrium P̂

(ii) Select the equilibrium with maximum total profits (or
alternatively, with maximum welfare).

(iii) Homotopy method to select the same type of equilibrium as
the factual.
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Counterfactual Experiments with Multiple Equilibria

Counterfactuals: Homotopy method [1]

Let π(θ) be the (unique) selected equilibrium, for given θ, if we
apply the "true" selection mechanism.

Let θ0 and P0 be the the population values. Let (θ̂0, P̂0) be our
consistent estimator.

We do not know the function π(θ). All what we know is that the
point (θ̂0, P̂0) belongs to the graph of this function π: P̂0 = π(θ̂0)

Let θ∗ be the vector of parameters under a counterfactual scenario.

We want to know the counterfactual equilibrium π(θ∗).
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Counterfactual Experiments with Multiple Equilibria

Counterfactuals: Homotopy method [2]

The only additional assumption that we make is the following.

Continuity Assumption (CA). π(θ) is continuously
differentiable in a neighborhood of θ̂0 that includes θ∗.

The CA involves several implicit assumption.

- Ψ() is continuously differentiable (we were already assuming this).
- The equilibrium selection is continuous in θ.
- θ∗ is not "too far away" from θ̂0 such that when we move

continuously from θ̂0 to θ∗, the equilibrium type of P̂0 does not disappear.
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Counterfactual Experiments with Multiple Equilibria

Counterfactuals: Homotopy method [3]

A Taylor approximation to π(θ∗) around our estimator θ̂0 implies
that:

π(θ∗) = π
(

θ̂0
)
+

∂π
(

θ̂0
)

∂θ′

(
θ∗ − θ̂0

)
+O

(∥∥∥θ∗ − θ̂0

∥∥∥2)

= P̂0 +
∂π
(

θ̂0
)

∂θ′

(
θ∗ − θ̂0

)
+O

(∥∥∥θ∗ − θ̂0

∥∥∥2)

To get a first-order approximation to π(θ∗) we need to know

∂π
(

θ̂0
)

∂θ′
.
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Counterfactual Experiments with Multiple Equilibria

Counterfactuals: Homotopy method [4]

We know that π
(

θ̂0
)
= Ψ(θ̂0, P̂0), and this implies that:

∂π
(

θ̂0
)

∂θ′
=

(
I − ∂Ψ(θ̂0, P̂0)

∂P′

)−1
∂Ψ(θ̂0, P̂0)

∂θ′

Then, π(θ∗) =

P̂0+

(
I − ∂Ψ(θ̂0, P̂0)

∂P′

)−1
∂Ψ(θ̂0, P̂0)

∂θ′

(
θ∗ − θ̂0

)
+O

(∥∥∥θ∗ − θ̂0

∥∥∥2)

Therefore, P̂0 +
(
I − ∂Ψ(θ̂0,P̂0)

∂P′

)−1
∂Ψ(θ̂0,P̂0)

∂θ′

(
θ∗ − θ̂0

)
is a first-order

approximation to the counterfactual equilibrium P∗.
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