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Introduction

Dynamic Games: Introduction

• In oligopoly industries, firms compete in investment decisions that:
- have returns in the future (forward-looking);
- involve substantial uncertainty;
- have important effects on competitors ‘profits (competition / game)

• Some examples are:
- Investment in R&D, innovation.
- Investment in capacity, physical capital.
- Product design / quality
- Market entry / exit ...
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Introduction

Dynamic Games: Introduction [2]

• Measuring and understanding the dynamic strategic interactions
between firms decisions is important to understand the forces behind the
evolution of an industry or to evaluate policies.

• Investment costs, uncertainty, and competition effects play an important
role in these decisions.

• Estimation of these parameters is necessary to answer some empirical
questions.

• Empirical dynamic games provide a framework to estimate these
parameters and perform policy analysis.
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Examples of Empirical Applications

Examples of Empirical Applications

• Competition in RD and product innovation
- Intel and AMD: Goettler and Gordon (JPE, 2011).
- Incumbents & new entrants (hard drive industry): Igami (JPE,

2017).

• Regulation and industry dynamics
- Environmental regulations, entry-exit and capacity in cement

industry: Ryan (ECMA, 2012).
- Land use regulation and entry-exit in the hotel industry: Suzuki

(IER; 2013).
- Subsidies to entry in small markets of the dentist industry: Dunne et

al. (RAND, 2013).
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Examples of Empirical Applications

Examples of Empirical Applications [2]

• Product Design, Preemption, and Cannibalization
- Choice of format of radio stations: Sweeting (ECMA, 2013).
- Hub-and-spoke networks and entry deterrrence in the airline

industry: Aguirregabiria and Ho (JoE, 2012).
- Cannibalization and preemption strategies in fast-food industry:

Igami and Yang (QE, 2016).

• Product Design, Preemption, and Cannibalization
- Concrete industry: Collard-Wexler (ECMA, 2013).
- Shipping industry: Kalouptsidi (AER, 2014).

• Dynamic price competition
- Price adjustment costs: Kano (IJIO, 2013)
- Frictions (adjustment costs) both in demand and supplu: Mysliwski,

Sanches, Silva & Srisuma (WP, 2020)
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Examples of Empirical Applications

Examples of Empirical Applications [3]

• Dynamic effects of mergers
- Dynamic response after airline mergers: Benkard, Bodoh-Creed, and

Lazarev (WP, 2010)
- Endogenous mergers: Jeziorski (RAND, 2014).

• Exploitation of a common natural resource
- Fishing: Huang and Smith (AER, 2014).

• Dynamic Search Matching
- NYC Taxi industry: Buchholz (WP, 2018)
- World trade and transoceanic shipping industry: Brancaccio,

Kalouptsidi, and Papageorgiou (ECMA, 2020).
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Structure of dynamic games of oligopoly competition

Dynamic Games: Basic Structure

• Time is discrete and indexed by t.

• The game is played by N firms that we index by i .

• Following the standard structure in the Ericson-Pakes (1995)
framework, firms compete in two different dimensions: a static dimension
and a dynamic dimension.

• For instance: given the state of the industry at period t firms compete
in prices (static competition), and decide the quality of their products
(dynamic investment decision).
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Structure of dynamic games of oligopoly competition

Dynamic Games: Basic Structure (2)

• The investment decision can be an entry/exit decision, a choice of
capacity, investment in equipment, R&D, product quality, other product
characteristics, etc.

• The action is taken to maximize the expected and discounted flow of
profits in the market,

Et (∑∞
s=0 δs Πit+s )

δ ∈ (0, 1) is the discount factor, and Πit is firm i’s profit at period t.
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Structure of dynamic games of oligopoly competition

Decision variable

• ait ∈ {−A, ..., −1, 0, 1, ...,A} = firm i ′s investment at period t.

• As an example, I use here a model of competition in product quality
that is similar to Pakes & Mcguire (RAND, 1996).

• kit = Stock of product quality of firm i at the beginning of period t.{
kit = 0 : firm i is not active in the market

kit = k > 0 : firm i is active with a product of quality k .

• kit evolves endogenously according to transition rule (more later). For
instance:

ki ,t+1 = kit + ait − ξ i ,t+1

• Consumer demand and the firm’s costs (variable and fixed) depend on
the quality stock.
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Structure of dynamic games of oligopoly competition

State variables

• At every period t the industry can be described in terms of three sets of
state variables affecting firms’profits: kt , zt , εt .

• Endogenous (common knowledge) state variables:

kt = (k1t , k2t , ..., kNt )

• Exogenous common knowledge state variables:

zt affecting demand and/or costs.

• Exogenous private information state variables affecting costs:

εt = (ε1t , ε2t , ..., εNt )
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Structure of dynamic games of oligopoly competition

Profit function

• The profits of firm i at time t are given by

Πit = VPit − FCit − ICit

VPit represents variable profit;
FCit is the fixed cost of operating;
ICit is an investment / entry-exit / adjustment cost

• The specification of VPit can be more or less structural.

• VPit may come from a static Bertrand equilibrium:
Goettler and Gordon (2011); Aguirregabiria and Ho (2012).
• VPit may come from a static Cournot equilibrium:
Ryan (2012); Igami (2017);
• VPit may have a reduced form specification:
Suzuki (2013); Dunne et al. (2013); Igami and Yang (2016).
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Structure of dynamic games of oligopoly competition

Timing of the model: Time-to-Build or Not

• Every period t a firm makes two decisions: one static or not
forward-looking (e.g., price, quantity) and one dynamic or
forward-looking (investment decision).

• We distinguish two timing assumptions depending on whether there is
time-to-build or not in the efect of investment on profits.

• With time-to-build, variable profit depends on kit but not on ait .

• Without time-to-build, variable profit depends on kit + ait .
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Structure of dynamic games of oligopoly competition

Variable profit function (without time-to-build)

• The variable profit VPit is:

VPit = (pit − ci (kit + ait ,zt )) qit

pit and qit are the price and the quantity sold by firm i .

• The quantity is given by the Logit demand:

qit =
Ht 1{kit + ait > 0} exp{zitβz + βk (kit + ait )− α pit}

1+∑N
j=1 1{kjt + ajt > 0} exp{zjtβz + βk (kjt + ajt )− α pjt}

• Bertrand equilibrium implies the "indirect" variable profit function:

θVPi (kt + at , zt ) = (p∗i [kt + at , zt ]− ci [kit + ait ,zt ]) q∗i [kt + at , zt ]
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Structure of dynamic games of oligopoly competition

Fixed cost

• The fixed cost is paid every period that the firm is active in the market:

FCit = θFCi (kit + ait , zt ) + εFCit (ait )

• θFCi (kit + ait , zt ) is "mean value" of the fixed cost of firm i .

• εFCit (ait ) are zero-mean shocks that are private information of firm i .
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Structure of dynamic games of oligopoly competition

Fixed cost (2)

• There are two main reasons why we incorporate private information
shocks in the model.

• [1] As shown in Doraszelski and Satterthwaite (2012), it is a way to
guarantee that the dynamic game has at least one equilibrium in pure
strategies.

• [2] They are convenient econometric errors. If private information shocks
are independent over time and over players, and unobserved to the
researcher, they can ’explain’players heterogeneous behavior without
generating endogeneity problems.
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Structure of dynamic games of oligopoly competition

Investment / Adjustment costs

• There are costs of adjusting the level of quality:

ICit = θACi (ait , kit , zt ) + εACit (ait )

• θACi (ait , kit , zt ) is the adjustment cost function, such that:
θACi (0, kit , zt ) = 0
θACi (∆, kit , zt ) > 0 if ∆ 6= 0
If kit = 0, this AC is the cost of market entry.
If kit > 0 & kit + ait = 0, this AC is the cost of market exit

• εACit (ait ) is a private information shock in the investment cost
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Structure of dynamic games of oligopoly competition

Profit function

• In summary, the profit function has the following structure:

Πit = πi (ait , a−it , kt , zt )− εit (ait )

where:

πi (ait , a−it , kt , zt ) = θVPi (kt + at , zt )
− θFCi (ait , kit , zt )− θACi (ait , kit , zt )

and:
εit (ait ) = εFCit (ait ) + εACit (ait )
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Structure of dynamic games of oligopoly competition

Evolution of the state variables

• (1) Exogenous common knowledge state variables: follow an
exogenous Markov process with transition probability function Fz (zt+1|zt ).

• (2) Exogenous private information state variables. εit is i.i.d.
over time and independent across firms with CDF Gi .

• (3) Endogenous state variables: The form of the transition rule
depends on the application:
• Market entry: kit = ait−1, such that ki ,t+1 = ait
• Quality choice without depreciation: ki ,t+1 = kit + ait .
• Investment with deterministic depreciation: ki ,t+1 = λ(kit + ait )
• Investment with stochastic depreciation: ki ,t+1 = kit + ait − ξ i ,t+1
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Markov Perfect Equilibrium
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Markov Perfect Equilibrium

Markov Perfect Equilibrium

• Most dynamic IO model assume Markov Perfect Equilibrium (MPE),
(Maskin and Tirole, ECMA 1988).

• A key condition in this solution concept is that players’strategies are
functions of only payoff-relevant state variables. In this model, the
payoff-relevant state variables for firm i are (kt , zt , εit ).

• Why this restriction?
• Rationality: if other players have this type of strategies, a player
cannot make better by conditioning its behavior on non-payoff relevant
information (e.g., lagged values of the state variables)
• Dimensionality: It is convenient because it reduces the
dimensionality of the state space.

• It is straightforward to extend results below to an equilibrium concept
where strategy functions depend on (kt−1, zt−1), (kt−2, zt−2), ...
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Markov Perfect Equilibrium

Markov Perfect Equilibrium (2)

• We use xt to represent the vector of common knowledge state variables:

xt ≡ (kt , zt )

• Let α = {αi (xt , εit ) : i ∈ {1, 2, ...,N}} be a set of strategy functions,
one for each firm.

• A MPE is an N-tuple of strategy functions α such that every firm is
maximizing its value given the strategies of the other players.

• For given strategies of the other firms, the decision problem of a firm is
a single-agent dynamic programming (DP) problem.
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Markov Perfect Equilibrium

Markov Perfect Equilibrium (3)

• Let V α−i
i (xt , εit ) be the value function of the DP problem that describes

the best response of firm i to the strategies α−i of the other firms.

• This value function is the unique solution to the Bellman equation:

V α−i
i (xt , εit ) = max

ait


Πα−i
i (ait , xt )− εit (ait )

+δ
∫
V α−i
i (xt+1, εit+1) dGi (εit+1) F

α−i
i (xt+1|ait , xt )


• Πα−i

i (ait , xt ) = One-period profit given other firms’strategies.
• F α−i

i (xt+1|ait , xt ) = Transition prob. state variables given other firms’
strategies.
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Markov Perfect Equilibrium

Markov Perfect Equilibrium (4)

• The expected one-period profit Πα
i (ait , xt ) is:

Πα−i
i (ait , xt ) = ∑

a−it

[
∏
j 6=i
Pr (αj (xt , εjt ) = ajt | xt )

]
πi (ait , a−it , xt )

• And the expected transition of the state variables is:

F α−i
i (xt+1|ait , xt ) = Fz (zt+1|zt )

∑
a−it

[
∏
j 6=i
Pr (αj (xt , εjt ) = ajt |xt )

]
fk (kt+1|ait , a−it , kt )
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Markov Perfect Equilibrium

Markov Perfect Equilibrium (5)

• A Markov perfect equilibrium (MPE) is an N-tuple of strategy functions
α such that for any player i and for any (xt , εit )we have that:

αi (xt , εit ) = argmax
ait

{
vα−i
i (ait , xt )− εit (ait )

}
with

vα−i
i (ait , xt ) ≡ Πα−i

i (ait , xt ) + δ
∫
Ṽ α−i
i (xt+1) F

α−i
i (xt+1|ait , xt )

and Ṽ α−i
i (xt ) is the integrated value function. This function uniquely

solves the (integrated) Bellman equation:

Ṽ α−i
i (xt ) =

∫
max
ait

{
Πα−i
i (ait , xt )− εit (ait )

+δ
∫
Ṽ α−i
i (xt+1) F

α−i
i (xt+1|ait , xt )

}
dGi (εit )
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Markov Perfect Equilibrium Conditional Choice Probabilities

Conditional Choice Probabilities

• Given a strategy function αi (xt , εit ), we can define the corresponding
Conditional Choice Probability (CCP) function as :

Pi (a|x) ≡ Pr (αi (xt , εit ) = a | xt = x)

=
∫
1{αi (xt , εit ) = a} dGi (εit )

• Since choice probabilities are integrated over the continuous variables in
εit , they are lower dimensional objects than the strategies α.

• For instance, when both ait and xt are discrete, CCPs can be described
as vectors in a finite dimensional Euclidean space.
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Markov Perfect Equilibrium Conditional Choice Probabilities

Conditional Choice Probabilities (2)

• There is a one-to-one relationship between a best-response strategy
functions αi (xt , εit ) and its CCP function Pi (.|xt ).

• It is obvious that given αi (xt , εit ) there is a unique Pi (.|xt ).

• The inverse relationship —given Pi (.|xt ) there is a unique best response
function αi (xt , εit ) — is a corollary of Hotz-Miller inversion Theorem.
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Markov Perfect Equilibrium Conditional Choice Probabilities

Conditional Choice Probabilities (3)

• Hotz-Miller inversion Theorem (Hotz & Miller, REStud, 1993).
"Let αi (xt , εit ) be a best response strategy and let Pi (a|x) be its
corresponding CCP such that:

Pi (a|x) =
∫
1{argmax

ait
[vα−i
i (ait , xt )− εit (ait )] = a} dGi (εit )

This mapping from the vector of conditional-choice values
{vα−i
i (a, xt ) : a ∈ A} into the vector of CCPs {Pi (a|xt ) : a ∈ A} is

invertible."

• Therefore, given Pi (.|xt ) we have a unique vα−i
i (., xt ), and then a

unique best response strategy function:

αi (xt , εit ) = argmax
ait
[vα−i
i (ait , xt )− εit (ait )]
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Markov Perfect Equilibrium Conditional Choice Probabilities

MPE as Fixed Point Mapping in CCPs

• We can use ΠP−i
i and FP−ii instead of Πα−i

i and F α−i
i to represent

expected profit and transition prob.

ΠP−i
i (ait , xt ) = ∑

a−it

[
∏
j 6=i
Pj (ajt | xt )

]
πi (ait , a−it , xt )

FP−ii (xt+1|ait , xt ) = Fz (zt+1|zt ) ∏
j 6=i
Pj (ajt | xt )

• We also define:

vP−ii (ait , xt ) ≡ ΠP−i
i (ait , xt ) + δ

∫
V P−ii (xt+1) F

P−i
i (xt+1|ait , xt )

• Where

Ṽ P−ii (xt ) =
∫
max
ait

 ΠP−i
i (ait , xt )− εit (ait )

+δ
∫
Ṽ P−ii (xt+1) F

P−i
i (xt+1|ait , xt )

 dGi (εit )
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Markov Perfect Equilibrium Conditional Choice Probabilities

MPE as Fixed Point Mapping in CCPs [2]

• A MPE is a vector of CCPs, P ≡ {Pi (a|x) : for any (i , a, x)}, such that:

Pi (a|x) = Pr
(
a = argmax

ai

{
vP−ii (ai , x)− εi (ai )

}
| x
)

• where

vP−ii (ait , xt ) ≡ ΠP−i
i (ait , xt ) + δ

∫
V P−ii (xt+1) F

P−i
i (xt+1|ait , xt )

• and

V P−ii (xt ) =
∫
max
ai
{vP−ii (ai , xt )− εit (ai )} dGi (εit )
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Markov Perfect Equilibrium Conditional Choice Probabilities

MPE in terms of CCPs: Example

• Suppose that vector εit’s are iid Extreme Value Type I.

• Then, a MPE is a vector P ≡ {Pi (a|x) : for any (i , a, x)}, such that:

Pi (a|x) =
exp

{
vP−ii (a, x)

}
∑a′ exp

{
vP−ii (a′, x)

}
• where

vP−ii (ait , xt ) ≡ ΠP−i
i (ait , xt ) + δ

∫
V P−ii (xt+1) F

P−i
i (xt+1|ait , xt )

• and V P−ii is the unique solution to the Bellman equation:

V P−ii (xt ) = ln

(
∑
ai

exp
{

ΠP−i
i (ait , xt ) + δ

∫
V P−ii (xt+1) F

P−i
i (xt+1|ait , xt )

})
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