ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION

Lecture 3: Market entry and spatial competition

Victor Aguirregabiria (University of Toronto)

January 28, 2021

Lecture 3: Models of Firms' Spatial Location: Outline

- 1. Introduction
- 2. Models with single-store (product) firms
- **3.** Models with multiple-store (product) firms

1. Firms' Spatial Location Introduction

3 / 44

Firms' Spatial Location: Introduction

- Consider the decision of a firm (e.g., coffee shop, restaurant, supermarket) of where to open a new store within a city.
- Different factors can play an important role:
 - Demand: what is the consumer traffic at different locations;
 - Rental prices
 - Location of competitors
 - Location of its own existing stores (cannibalization)
- Geographic distance can be an important source of product differentiation. Ceteris paribus, a firm's profit increases with its distance to competitors.

Space: Beyond geographic location of stores

- Models for the geographic location of stores can be applied to study firms' decisions on product design.
- We need to replace geographic space with the space of product characteristics, and define the relevant distance in that space.
- Similar factors play an important role in firms' product location decisions:
 - Consumer demand at different locations.
 - Cost of entry in a bundle of characteristics.
 - Location of competitors in the product space.
 - Cannibalization of own preexisting products.

Empirical questions

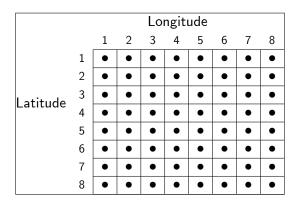
- How do profits increase with distance to competitors?
- Cannibalization: to what extend a multi-product firm is concerned with competition between its own products?
- **Economies of scope**: Do the costs of a new store/product decline with the number of other stores/products the firm has?
- Economies of density: Do the costs of a new store/product decline with the spatial proximity to other stores/products the firm has?
- Effect on competition of a change in the geography of the city,
 e.g., new neighborhoods. Similarly, effect of an expansion in the space of technologically feasible product characteristics.

2. Models of Firms' Spatial Location: Single product (store) firms

Space of feasible store locations (the city)

- From a geographical point of view, a market (city) is a set, for instance **a rectangle**, in the space \mathbb{R}^2 .
- Suppose that we divide this city/rectangle into L small squares, each one with its center.
- Each of these squares is a submarket (or neighborhood, or location).
- A market/city can have hundreds or thousands of these submarkets/locations.
- We index these locations by $\ell = \in \{1, 2, ..., L\}$

The city: space of feasible store locations



Space of feasible store (product) locations

- Each location has some exogenous characteristics that can affect demand and costs of a firm in that location:
 - Population; demographics; rental prices.
- Exogenous characteristics of location ℓ : vector \mathbf{x}_{ℓ} .
- Therefore, we can see a city as a landscape of the characteristics \mathbf{x}_{ℓ} over the L locations.

Product Space instead of Geographic Space

- ullet In a model of geographic location, $\ell \in \mathbb{R}^2$ (longitude, latitude).
- We can extend this mode to allow ℓ to have K dimensions: $\ell \in \mathbb{R}^K$.
- These K dimensions correspond to K observable characteristics of a product.
 - E.g., for automobiles, horse power, max speed, fuel consumption, etc.
- ullet The space of feasible locations is a finite set within \mathbb{R}^K .
- ullet We index these product locations by $\ell \in \{1,2,...,L\}$

Model: Firms

- There are *N* potential entrants in this industry and city: e.g., supermarkets in Toronto.
- In the simpler version of the model, each potential entrant has only one possible store: no multi-store firms (no chains).
- For the moment, we consider this simpler version.
- Let a_i represent the entry / location decision of firm i.

$$a_i \in \{0, 1, ..., L\}$$

- a_i = 0 represents "no entry";
- $a_i = \ell > 0$ represents entry in location ℓ .

Model: Profit function

- What is the profit of firm i if it opens a store in location ℓ ?
- In principle, we could consider a model of consumer choice of where to purchase (e.g., logit), a model of price competition between active firms; obtain the Bertrand equilibrium of that game, and the corresponding equilibrium profits (see Aguirregabiria & Vicentini, JIE 2016).
- This approach requires having data on prices and quantities at every location [or/and the repeated solution of the equilibria of a complex two-stage game].
- Instead, Seim (2006) considers a convenient shortcut.
- Her model does not specify (explicitly) consumer choices and price competition, but it incorporates the idea that geographic distance to competitors (spatial differentiation) can increase a firm's profit.

Model: Profit function [2]

- Suppose that we draw a circle of radius d around the center point of location ℓ , e.g., a radius of 1km.
- From the point of view of a store located at ℓ , we can divide its competitors in two groups:
 - Close competitors: within the circle of radius d.
 - Far away competitors: outside the circle of radius d.
- Let $N_{\ell}(close)$ and $N_{\ell}(far)$ be the number of close and far away competitors relative to location ℓ .
- We can consider a profit function that depends on:

$$\gamma_{\mathit{close}} \; \mathit{N}_{\ell}(\mathit{close}) + \gamma_{\mathit{far}} \; \mathit{N}_{\ell}(\mathit{far})$$

• γ_{close} and γ_{far} are parameters. We expect $\gamma_{close} < \gamma_{far} < 0$. The difference $\gamma_{far} - \gamma_{close}$ tell us how a firm's increase with spatial differentiation.

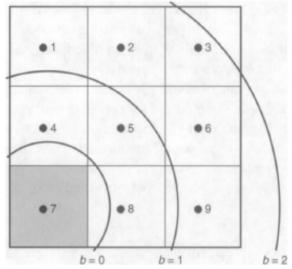
Model: Profit function [3]

- We can generalized this idea to allow for multiple bands or radii around the center of a location ℓ .
- Let $d_1 < d_2 < ... < d_B$ be B different radii of increasing magnitude, e.g., $d_1 = 0.2$ km, $d_2 = 0.5$ km, ..., $d_{10} = 20$ km.
- We can construct the number of firms within the bands defined by these radii:
 - $N_\ell(1)=$ Number firms within the circle of radius d_1 $N_\ell(2)=$ Number firms within band defined by d_1 & d_2

...

 $N_{\ell}(B) =$ Number firms within band defined by $d_{B-1} \& d_B$ $N_{\ell}(B+1) =$ Number firms outside circle with radius d_B .

FIGURE 1
IMPACT ON PROFITS OF COMPETITORS' LOCATIONS: ILLUSTRATION



Model: Profit function [4]

• Profit of an active firm at location ℓ is:

$$\Pi_{i\ell} = \mathsf{x}_\ell \; \beta + \xi_\ell + \sum_{b=1}^B \gamma_b \; \mathsf{N}_\ell(b) + \varepsilon_{i\ell}$$

• We expect:

$$\gamma_1 < \gamma_2 < ... < \gamma_B < 0$$

- ξ_ℓ represents attributes of location ℓ which are known to firms but unobserved to the researcher.
- ε_{i1} , ε_{i2} , ..., ε_{iL} are private information of firm i assumed iid over firms and locations with extreme value distribution.

Profit function - Space of product characteristics

- We can apply this approach to the model of spatial location in product space.
- Now we have that $\ell \in \mathbb{R}^K$ is the vector of observable characteristics of hypothetical product ℓ .
- Given the B radii $d_1 < d_2 < ... < d_B$, we can define:

$$N_\ell(b) \equiv ext{Number of existing products with} \ ext{with characteristics } \ell' ext{ such that} \ d_{b-1} < \|\ell' - \ell\| \leq d_b$$

• Profit of an active firm at location ℓ is:

$$\Pi_{i\ell} = \mathsf{x}_\ell \; \beta + \xi_\ell + \sum_{b=1}^B \gamma_b \; \mathsf{N}_\ell(b) + \varepsilon_{i\ell}$$

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ 釣りで

Model: Expected Profit

- The game is of incomplete information. Firms do not know the actual numbers $N_{\ell}(1), ..., N_{\ell}(B)$. Instead, a firm has beliefs for the probability that any other firm decides to enter in a location ℓ .
- Let $\mathbf{P} \equiv \{P_{\ell} : \ell = 1, 2, ..., L\}$ be these beliefs.
- Given **P**, the expected number of firms in band b around ℓ is:

$$\mathbb{E}\left[N_{\ell}(b)\right] \equiv N_{\ell}^{e}(b; \mathbf{P}) = \sum_{\ell'=1}^{L} 1\left\{d_{b-1} < \left\|\ell' - \ell\right\| \le d_{b}\right\} \ N \ P_{\ell'}$$

• Given that a firm has beliefs ${\bf P}$, the firm's expected profit of entry in a location ℓ is:

$$\Pi_{i\ell}^e = x_\ell \ \beta + \xi_\ell + \sum_{b=1}^B \gamma_b \ N_\ell^e(b; \mathbf{P}) + \varepsilon_{i\ell}$$

and
$$\Pi_i(a_i = 0) = 0$$
.

◆ロト ◆回ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕 Q で

Model: Bayesian Nash Equilibrium

• A (symmetric) BNE is an equilibrium strategy $\sigma(\varepsilon_i)$ from $\mathbb{R}^{L+1} \to \{0, 1, ..., L\}$ such that:

$$\sigma(\varepsilon_i) = \ell \quad \Leftrightarrow \quad \Pi_{i\ell}^e > \Pi_{i\ell'}^e \text{ for any } \ell' \neq \ell$$

• Integrating strategies over ε_i , we can represent a BNE as a vector $\mathbf{P} = \{P_\ell : \ell = 1, 2, ..., L\}$ such that:

$$P_{\ell} = \frac{\exp\left\{x_{\ell} \ \beta + \xi_{\ell} + \sum_{b=1}^{B} \gamma_{b} \ N_{\ell}^{e}(b; \mathbf{P})\right\}}{1 + \sum_{j=1}^{L} \exp\left\{x_{j} \ \beta + \xi_{j} + \sum_{b=1}^{B} \gamma_{b} \ N_{j}^{e}(b; \mathbf{P})\right\}}$$

 This system of L equations with L unknowns is continuous on compact space. By Brower's Theorem, the model has at least one equilibrium.

Model: Equilibrium (3)

- In equilibrium, a change in x_{ℓ} in a single location affects the entry probabilities $P_{\ell'}$ at every location ℓ' in the city.
- Example: Policy that encourages entry in location 1.
 - Direct substitution effect: Keeping all $N_\ell^e(b; \mathbf{P})$ constants, the increase in $x_1\beta$ generates a substitution from other locations into location 1.
 - Indirect equilibrium effect: the increase in P_1 implies an increase in the expected number of competitors $N_\ell^e(b; \mathbf{P})$ at every location ℓ and band b that includes location 1; implies a reduction in entry probabilities in locations ℓ nearby location 1.
 - "Bullwhip" shape of the effect at different locations.

Data and Estimation

 We have data from an industry (e.g., supermarkets) in a city (or one network). We observe:

Data =
$$\{x_{\ell}, n_{\ell} : \ell = 1, 2, ..., L\}$$

Given these data, we can construct shares: s_{ℓ} : $\ell = 1, 2, ..., L$:

$$s_\ell = rac{n_\ell}{N}$$
 and $s_0 = rac{N - n_1 - ... - n_L}{N}$

• We distinguish three cases for the estimation of the model:

Case 1: City/industry with Large N (such that $s_{\ell} > 0$ at every ℓ).

Case 2: City/industry with Small N ($s_{\ell} = 0$ for some ℓ).

Case 3: *M* cities with $M \to \infty$. Small *N*.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Estimation: One City; Large N

In general, the model implies that:

$$\ln\left(\frac{P_{\ell}}{P_0}\right) = x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_b \ N_{\ell}^{e}(b; \mathbf{P}) + \xi_{\ell}$$

• With large N (as $N \to \infty$) we have that for every location ℓ and band b:

$$s_\ell = P_\ell + o_p(1)$$
 and $N_\ell^e(b; \mathbf{P}) = N_\ell^e(b; \mathbf{s}) + o_p(1)$

• Therefore (up to an $o_p(1)$ estimation error), we have the equation:

$$\ln\left(\frac{s_{\ell}}{s_0}\right) = x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_b \ N_{\ell}^{e}(b; \mathbf{s}) + \xi_{\ell}$$

• This is a linear regression model with regressors x_ℓ , $N_\ell^e(1)$, ..., $N_\ell(B)$, and error term ξ_ℓ .

Victor Aguirregabiria ()

Empirical IO

January 28, 2021

24 / 44

One City; Large N: OLS

$$\ln\left(\frac{s_\ell}{s_0}\right) = x_\ell \ \beta + \sum_{b=1}^B \gamma_b \ N_\ell^e(b; \mathbf{s}) + \xi_\ell$$

Remember that:

$$\mathcal{N}^{\mathsf{e}}_{\ell}(b;\mathbf{s}) \equiv \sum_{\ell'=1}^{L} \mathbb{1}\left\{d_{b-1} < \left\|\ell' - \ell \right\| \leq d_{b}
ight\} \; \mathcal{N}_{\mathcal{S}_{\ell'}}$$

where $s_{\ell'}$ are endogenous variables.

- ullet Regressors $N_\ell^e(b;\mathbf{s})$ are endogenous: OLS estimator is inconsistent.
- Because positive spatial correlation $\xi's$, we expect: $cov(N_\ell^e(1;\mathbf{s}),\xi_\ell)>cov(N_\ell^e(2;\mathbf{s}),\xi_\ell)>...>0$
- This implies that OLS estimator is upward biased: $bias(\gamma_1) > bias(\gamma_2) > ... > 0$

One City; Large N: IV

$$\ln\left(\frac{s_{\ell}}{s_0}\right) = x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_b \ N_{\ell}^{e}(b; \mathbf{s}) + \xi_{\ell}$$

- Model implies instruments for the endogenous regressors.
- Market characteristics $x_{\ell'}$ in locations ℓ' other than ℓ do not enter in the equation for location ℓ but affect the values $N_{\ell}^{e}(b; \mathbf{s})$.
- Let $\overline{x}_{\ell}(b)$ be the mean value of $x_{\ell'}$ in those locations ℓ' that belong to the band b around location ℓ .
- We can use $\overline{x}_\ell(b)$ as an instrument for $N_\ell^e(b;\mathbf{s})$.

One City; Large N

- This regression-like approach has two important advantages.
- [1] **Dealing with endogeneity.** We can deal with endogeneity using a standard IV method.
- [2] **Computational simplicity.** For the estimation of the structural parameters, we don't need to solve for an equilibrium of the model even once.

One City; Small N

- With small N, we cannot use this simple regression-like approach.
- Now, $s_\ell=\frac{n_\ell}{N}$ is zero for many (most) locations ℓ . Furthermore, $s_\ell=\frac{n_\ell}{N}$ is no longer $P_\ell+o_p(1)$.
- We can use a MLE but a key issue is how to deal with the endogeneity problem associated with the unobservables ξ_{ℓ} .
- We first describe the MLE under the assumption of $\xi_\ell=0$ (no unobserved location heterogeneity, other than the idiosyncratic $\varepsilon_i's$) and then we relax this assumption.

One City; Small N and epsi = 0

- Seim (2006) uses a Maximum Likelihood method implemented using a Nested Fixed Point (NFXP) algorithm.
- The application of this algorithm requires that the models has a unique equilibrium for every possible value of the structural parameters.
- Haiqing Xu (IER, 2018) proves that a sufficient condition for this model to have unique equilibrium is that $\left|\sum_{b=1}^{B}\gamma_{b}\right|<\frac{1}{N}$.
- Therefore, the MLE NFXP method needs to impose the restriction $\left|\sum_{b=1}^{B}\gamma_{b}\right|<\frac{1}{N}$ at each iteration of the algorithm in the search for the ML estimate.

One City; Small N; and epsi = 0 [2]

- Let θ be the vector of structural parameters.
- Let $\mathbf{P}(\theta)$ be the vector of equilibrium probabilities associated with θ .
- That is, $\mathbf{P}(\theta) = \{P_{\ell}(\theta): \ell=1,2,...,L\}$ and this vector solves the system of equations:

$$P_{\ell}(\theta) = \frac{\exp\left\{x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_{b} \ \textit{N}_{\ell}^{\textit{e}}(b; \mathbf{P}(\theta))\right\}}{1 + \sum_{j=1}^{L} \exp\left\{x_{j} \ \beta + \sum_{b=1}^{B} \gamma_{b} \ \textit{N}_{j}^{\textit{e}}(b; \mathbf{P}(\theta))\right\}}$$

- Under the condition $\left|\sum_{b=1}^{B} \gamma_b\right| < \frac{1}{N}$, we have that $\mathbf{P}(\theta)$ is a function of θ , and it is continuously differentiable.
- However, we do not have a closed-form expression for $\mathbf{P}(\theta)$. For each trial value of θ , we need to use an algorithm (e.g., fixed point; Newton's) to compute the corresponding equilibrium $\mathbf{P}(\theta)$.

One City; Small N and epsi = 0 [3]

According to the model,

$$[n_1, n_2, ..., n_L] \sim \textit{Multinomial}(N; P_1(\theta), P_2(\theta), ..., P_L(\theta))$$

Therefore, the likelihood function is:

$$\mathcal{L}(\theta) = \prod_{\ell=0}^{L} P_{\ell}(\theta)^{n_{\ell}}$$

or

$$\ln \mathcal{L}(heta) = \sum\limits_{\ell=0}^L n_\ell \; \ln P_\ell(heta)$$

One City; Small N; and epsi = 0 [4]

- We can estimate θ by MLE using the **Nested Fixed Point algorithm**.
- We maximize $\ln \mathcal{L}(\theta)$ using a Newton's or **BHHH** iterative method:

$$\widehat{\boldsymbol{\theta}}_{k+1} = \widehat{\boldsymbol{\theta}}_k - \left[\sum_{\ell=0}^L \frac{\partial \ln P_\ell(\widehat{\boldsymbol{\theta}}_k)}{\partial \boldsymbol{\theta}} \frac{\partial \ln P_\ell(\widehat{\boldsymbol{\theta}}_k)}{\partial \boldsymbol{\theta}'} \right]^{-1} \left[\sum_{\ell=0}^L n_\ell \frac{\partial \ln P_\ell(\widehat{\boldsymbol{\theta}}_k)}{\partial \boldsymbol{\theta}} \right]$$

- At each iteration k, given $\widehat{\theta}_k$ we compute the equilibrium $\mathbf{P}(\widehat{\theta}_k)$.
- When L is large, the computation of an equilibrium can be computational demanding.
- To deal with this computational cost **Haiqing Xu (IER, 2018)** proposes approximating the equilibrium by using L local equilibria, on for each location. The local equilibrium at location ℓ is obtained using only its nearest neighbors.

One City; Small N and Unobserved Location Heter.

- Now, the equilibrium vector depends on the vector of unobservables $\boldsymbol{\xi} = (\xi_1, \xi_2, ..., \xi_L)$. We have $\mathbf{P}(\theta; \boldsymbol{\xi})$.
- The log-likelihood function is integrated over the distribution of ξ :

$$\ln \mathcal{L}(\theta) = \sum_{\ell=0}^{L} n_{\ell} \ln \Pr(n_{\ell}|\theta)$$

$$= \sum_{\ell=0}^{L} n_{\ell} \ln \left[\int P_{\ell}(\theta; \xi) f(\xi) d\xi \right]$$

- Since L is large, the dimension of ξ and the integral is large. Very demanding computational problem.
- Monte Carlo simulation is a common approach to compute an approximation to $I = \int P_{\ell}(\theta; \xi) \ f(\xi) \ d\xi$:

$$I \simeq \frac{1}{R} \sum_{r=1}^{R} P_{\ell}(\theta; \boldsymbol{\xi}^{(r)})$$

1 → 4 🗗 → 4 🖹 → 1 € →

M Cities; Large M; Small N

- Now, we have M cities and for each city m we observe $\{x_{m\ell}, n_{m\ell} : \ell = 1, 2, ..., L_m\}$.
- The log-likelihood function is: **without** $\xi's$:

$$\ln \mathcal{L}(\theta) = \sum\limits_{m=0}^{M} \sum\limits_{\ell=0}^{L_m} n_{m\ell} \, \ln P_{m\ell}(\theta)$$

- The estimation is the same as before, but for each trial value of θ we need to compute M equilibria, one for each city.
- With $\xi's$, the estimation is similar as described above for one single network, but again with as many equilibria as cities and values of ξ per city.

Seim (2006) application: Main Results

- ullet Seim (2006) finds very significant results of spatial differentiation (γ parameters decline very significantly with distance)
- Market structure and spatial structure of stores under two different scenarios of city growth.
 - Growth in population but keeping city boundaries.
 - Growth in population and in city boundaries
- The model can be used to study how changes in the exogenous characteristics x_ℓ of a single location (e.g., new amenities, schools, new local regulations, transportation, developments) can affect the landscape of firms in a city.

3. Models of Firms' Spatial Location: Multi-product (store) firms

Model with Multi-Store Firms

- Consider the same spatial configuration as before, but now the N
 potential entrants can open as many stores as possible locations L.
- Now, the number of players N is very small (a few retail chains). For instance, two firms indexed by $i \in \{1, 2\}$.
- The decision variable for firm i:

$$\mathbf{a}_{i} = (a_{i1}, a_{i2}, ..., a_{iL})$$

where $a_{i\ell} = 1\{\text{Firm } i \text{ opens a store in location } \ell\} \in \{0, 1\}.$

Victor Aguirregabiria ()

Multi-Store Firms: Profit

- Now, the profit function should incorporate not only the competition effects from the stores of other firms but also the competition or/and spillover effects from the own stores.
- For instance (we can extend it to allow for B bands):

$$\Pi_{i} = \sum_{\ell=1}^{L} a_{i\ell} \left[x_{\ell} \beta_{i} + \xi_{\ell} + \theta_{i}^{COM} \left(\sum_{\ell'=1}^{L} \frac{a_{j\ell'}}{d_{\ell\ell'}} \right) + \theta_{i}^{CAN} \left(\sum_{\ell' \neq \ell'} \frac{a_{i\ell'}}{d_{\ell\ell'}} \right) + \varepsilon_{i\ell} \right]$$

where $d_{\ell\ell'}=$ distance between ℓ and ℓ' .

- θ_i^{COM} captures competition (if $\theta_i^{COM} < 0$) or spillovers (if $\theta_i^{COM} > 0$) from rivals.
- θ_i^{CAN} captures cannibalization (if $\theta_i^{CAN} < 0$) or economies of scope/density (if $\theta_i^{CAN} > 0$) from own stores.

Best responses

- The space of the vector $\mathbf{a}_i = (a_{i1}, a_{i2}, ..., a_{iL})$ has 2^L possible points.
- For instance, Jia (2008) studies competition between in entry/location between Walmart and Kmart in L=2,065 locations (US counties). This implies $2^L=2^{2065}\simeq 10^{621}$.
- The computation of an equilibrium in this model is computationally very costly.
- Researchers have consider different approaches to deal with this issue.
 - (a) Moment inequalities based on restrictions on the unobservables: Ellickson, Houghton, and Timmins (RAND, 2013)
 - (b) Lattice theory approach: Jia (Econometrica, 2008); Nishida (Marketing Science, 2014)

Ellickson, Houghton, and Timmins (2013)

 Consider a game between N multi-store firms but ignore for the moment cannibalization and economies of scope/density such that:

$$\Pi_i = \sum_{\ell=1}^L extbf{a}_{i\ell} \left[extbf{x}_\ell extbf{eta}_i + \sum_{j
eq i} \gamma_{ij} extbf{a}_{j\ell} + arepsilon_{i\ell}
ight]$$

- $\varepsilon_{i\ell} = \alpha_i + \xi_\ell$. They also assume complete They assume that: information.
- By revealed preference, the profit of the observed action of firm i, \mathbf{a}_i , should be larger than the profit of any alternative action, a':

$$\Pi_{i}\left(\mathbf{a}_{i}\right)-\Pi_{i}\left(\mathbf{a}_{i}^{\prime}\right)\geq0$$
 for any $\mathbf{a}_{i}^{\prime}\neq\mathbf{a}_{i}$

• EHT (2013) consider hypothetical choices a' that difference out the error term such that we do not need to integrate over a space of 2^{L} unobservables.

- Suppose that the observe choice of firm i, \mathbf{a}_i , is such that $a_{i\ell}=1$ and $a_{i\ell'}=0$.
- Consider the hypothetical choice \mathbf{a}_i^* that consists in the relocation of a store from ℓ into ℓ' , such that $a_{i\ell}^*=0$ and $a_{i\ell'}^*=1$. Then:

$$\Pi_{i}\left(\mathbf{a}_{i}\right)-\Pi_{i}\left(\mathbf{a}_{i}^{*}\right)=$$

$$\left[x_{\ell}-x_{\ell'}
ight]eta_{i}+\sum_{j
eq i}\gamma_{ij}\left[\mathsf{a}_{j\ell}-\mathsf{a}_{j\ell'}
ight]+\left[\xi_{\ell}-\xi_{\ell'}
ight]\geq0$$

- Now, suppose that for a different firm, $k \neq i$, the observe choice, \mathbf{a}_k , is such that $a_{k\ell} = 0$ and $a_{k\ell'} = 1$.
- Consider the hypothetical choice \mathbf{a}_k^* that consists in the relocation of a store from ℓ' into ℓ , such that $a_{k\ell}^*=0$ and $a_{k\ell'}^*=1$.
- Then, for firm k we have:

$$\Pi_k\left(\mathbf{a}_k\right) - \Pi_k\left(\mathbf{a}_k^*\right) = \left[x_{\ell'} - x_{\ell}\right] eta_k + \sum_{j \neq k} \gamma_{kj} \left[\mathbf{a}_{j\ell'} - \mathbf{a}_{j\ell}\right] + \left[\xi_{\ell'} - \xi_{\ell}\right] \ge 0$$

• Adding the inequalities:

$$\left[x_{\ell}-x_{\ell'}
ight]eta_i + \sum_{j
eq i}\gamma_{ij}\left[a_{j\ell}-a_{j\ell'}
ight] + \left[\xi_{\ell}-\xi_{\ell'}
ight] \geq 0$$

$$\left[x_{\ell'}-x_{\ell}\right]\beta_k+\sum_{j\neq k}\gamma_{kj}\left[a_{j\ell'}-a_{j\ell}\right]+\left[\xi_{\ell'}-\xi_{\ell}\right]\geq 0$$

• We have:

$$\left[x_{\ell} - x_{\ell'}\right] \left[\beta_i - \beta_k\right] + \sum_{j \neq i} \gamma_{ij} \left[a_{j\ell} - a_{j\ell'}\right] + \sum_{j \neq k} \gamma_{kj} \left[a_{j\ell'} - a_{j\ell}\right] \ge 0$$

, Houghton, and Timmins [4]

 Using different pairs of locations and/or firms, we can construct many different inequalities like

$$\left[x_{\ell}-x_{\ell'}\right] \left[\beta_{i}-\beta_{k}\right] + \sum_{j\neq i} \gamma_{ij} \left[a_{j\ell}-a_{j\ell'}\right] + \sum_{j\neq k} \gamma_{kj} \left[a_{j\ell'}-a_{j\ell}\right] \geq 0$$

- Using these inequalities, we can estimate the parameters β and γ using a **Maximum Score estimator (MSE)** (Manski, 1975; Horowitz, 1992; Fox, 2010).
- If we describe these inequalities as $z_{ik\ell\ell'}\theta \geq 0$, the **score function** is

$$S(\theta) = \sum_{i,k,\ell,\ell'} 1\{z_{ik\ell\ell'}\theta \ge 0\}$$

- and the MSE is the value of θ that maximizes $S(\theta)$.
- EHT (RAND, 2013) apply this approach to study competition in entry/location between department store chains in US.