ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION

Lecture 2: Market Entry: Incomplete Information

Victor Aguirregabiria (University of Toronto)

January 21, 2021

Lecture 2: Empirical entry models of incomplete information

Lecture 2: Empirical entry models of incomplete information

Outline

- 1. Model
- 2. Identification
- 3. Estimation
- 4. Empirical application: Supermarkets' choice of pricing strategy Ellickson & Misra (2008)

(日) (同) (三) (三)

1. Model

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Entry models with incomplete information

• A market with N potential entrants. If firm i is active in the market $(a_{im} = 1)$, its profit is:

$$\Pi_{\textit{im}} = x_{\textit{im}} \; eta_{\textit{i}} + \omega_{\textit{im}} + arepsilon_{\textit{im}} + \sum_{j
eq i} \delta_{\textit{ij}} \; m{a}_{\textit{jm}}$$

- $\mathbf{x}_m = (x_{1m}, x_{2m}, ..., x_{Nm})$ is common knowledge to firms and observable to the researcher.
- $\omega_m = (\omega_{1m}, \omega_{2m}, ..., \omega_{Nm})$ is is common knowledge to firms but unobservable to the researcher.
- ε_{im} is private information of firm *i*, independent across firms, independent of (\mathbf{x}_m, ω_m) , and unobservable to the researcher. For concreteness, $\varepsilon_{im} \sim iid N(0, 1)$.

Bayesian Nash Equilibrium (BNE)

- The information of firm *i* is $(\mathbf{x}_m, \omega_m, \varepsilon_{im})$.
- A player's strategy depends on the variables in his information set.
- Let $\alpha_i(\mathbf{x}_m, \omega_m, \varepsilon_{im})$ be a strategy function for firm *i* such that $\alpha_i : X \times \Omega \times \mathbb{R} \to \{0, 1\}.$
- A Bayesian Nash Equilibrium (BNE) is an N-tuple of strategy functions $\{\alpha_i(.) : i = 1, 2, ..., N\}$ such that $\alpha_i(\mathbf{x}_m, \omega_m, \varepsilon_{im}) = 1$ iff:

$$\begin{aligned} & x_{im} \ \beta_i + \omega_{im} + \varepsilon_{im} \\ & + \sum_{j \neq i} \delta_{ij} \left[\int \alpha_j(\mathbf{x}_m, \omega_m, \varepsilon_{jm}) \ d\Phi_j(\varepsilon_{jm}) \right] \ge 0 \end{aligned}$$

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の Q @

Conditional choice probabilities (CCPs)

- It is convenient to represent players's strategies and a BNE in terms of **Choice Probabilities.**
- Given a strategy function $\alpha_i(\mathbf{x}_m, \omega_m, \varepsilon_{im})$, the associated choice probability is the result of integration this strategy function over the distribution of the player's private information

$$P_i(\mathbf{x}_m, \omega_m) \equiv \int \alpha_i(\mathbf{x}_m, \omega_m, \varepsilon_{im}) \ d\Phi_i(\varepsilon_{im})$$

• It represents the expected behavior of player *i* from the point of view of the other players who do not know the private information ε_{im} .

(日) (周) (三) (三)

BNE in terms of CCPs

• Firm *i*'s expected profit is:

$$\Pi_{im}^{e} = x_{im} \ \beta_{i} + \omega_{im} + \varepsilon_{im} + \sum_{j \neq i} \delta_{ij} \ P_{j}(\mathbf{x}_{m}, \omega_{m})$$

• Firm *i*'s best response is:

$$\{\mathbf{a}_{im} = 1\} \Leftrightarrow \left\{ \varepsilon_{im} < \mathbf{x}_{im} \ \beta_i + \omega_{im} + \sum_{j \neq i} \delta_{ij} \ \mathcal{P}_j(\mathbf{x}_m, \omega_m) \right\}$$

• And firm i's best response probability function is:

$$P_i(\mathbf{x}_m, \omega_m) = \Phi\left(x_{im} \beta_i + \omega_m + \sum_{j \neq i} \delta_{ij} P_j(\mathbf{x}_m, \omega_m)\right)$$

3

(日) (同) (三) (三)

BNE in terms of CCPs [2]

Given (x_m, ω_m), a Bayesian Nash equilibrium (BNE) is a vector of probabilities P(x_m, ω_m) ≡ {P_i(x_m, ω_m) : i = 1, 2, ..., N} that solves the fixed point problem:

Model

$$P_i(\mathbf{x}_m, \omega_m) = \Phi\left(x_{im} \ \beta_i + \omega_m + \sum_{j \neq i} \delta_{ij} \ P_j(\mathbf{x}_m, \omega_m)\right)$$

- In a BNE, firms' beliefs about their opponents' entry probabilities are the opponents' best responses to their own beliefs.
- By Brower FP Theorem, the model has at least one BNE.
- The equilibrium may not be unique.

イロト 不得 トイヨト イヨト 二日

Comment

- The first applications of entry models with incomplete information assumed that the only unobservables for the researcher where the private information variables ε_{im} . That is, they assume that $\omega_m = 0$.
- This restriction simplifies very substantially the identification and estimation of this type of models.
- However, it is quite unrealistic and it can be easily rejected by the data. This restriction implies that:

$$\Pr(a_{1m}, a_{2m}, ..., a_{Nm} \mid x_m) = \prod_{i=1}^{N} \Pr(a_{im} \mid x_m)$$

• Ignoring ω_m can induce substantial biases in the estimation of the parameters δ that measure players' strategic interactions.

イロト 不得下 イヨト イヨト

2. Identification

3

イロト イヨト イヨト イヨト

Identification: Assumptions

• Suppose that we have a random sample of markets and we observe:

{
$$\mathbf{x}_m, a_{im} : m = 1, 2, ..., M; i = 1, 2, ..., N$$
}

- Assumption 1: ω_m is independent of \mathbf{x}_m and it has a finite mixture distribution: $\omega_m \in \{c_1, c_2, ..., c_L\}$ with $\Pr(\omega_m = c_k) \equiv \lambda_k$.
- Assumption 2: $\{P_i^0(\mathbf{x}_m, \omega_m)\}$ is such that two markets, *m* and *m'*, with the same common knowledge variables (\mathbf{x}_m, ω_m) select the same type of equilibrium.
- Under these assumptions, and standard rank conditions, we can identify the model parameters θ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Identification: Step 1

- The proof of identification proceeds in two steps.
- First, we show that the probabilities $P_i^0(\mathbf{x},\omega)$ are nonparametrically identified.
- This is obvious in the model with $\omega_m = \omega$ no common knowledge unobserved heterogeneity because:

$$P_i^0(\mathbf{x}) = \mathbb{E}(a_{im} \mid \mathbf{x}_m = \mathbf{x})$$

In the model with ω_m = ω, the nonparametric identification of P⁰_i(x, ω) is based on the identification of nonparametric finite mixture model.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Identification: Step 1 (Nonparametric finite mixture)

- With common knowledge unobs, ω_m, the estimation of choice probabilities is more complicated. But there are many recent results (Hall & Zhou, 2003, Kasahara & Shimotsu, 2009, 2013).
- The model is:

$$\Pr(\mathbf{a}_m = \mathbf{a} \mid \mathbf{x}_m = \mathbf{x}) = \sum_{k=1}^{L} \lambda_k \left[\prod_{i=1}^{N} \mathcal{P}_i^0(\mathbf{x}, \mathbf{c}_k) \right]$$

- Different results show the NP identification of $\lambda'_k s$ and $P_i^0(x, c_k)$'s.
- The key identification assumption is the independence of players' a_{im} conditional on (**x**_m, ω_m).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Identification: Step 2

• Given $P_i^0(\mathbf{x}_m, \omega)$ for every market *m* and type ω , we can represent our model as a linear regression-like model:

$$\Phi^{-1}\left(\mathsf{P}_{i}^{0}(\mathbf{x}_{m})\right) = x_{im} \ \beta_{i} + \sum_{j \neq i} \delta_{ij} \ \mathsf{P}_{j}^{0}(\mathbf{x}_{m})$$

• Define $Y_{im} \equiv \Phi^{-1} \left(P_i^0(\mathbf{x}_m) \right)$; $Z_{im} \equiv (x_{im}, P_j^0(\mathbf{x}_m) : j \neq i)$; and $\theta_i \equiv (\beta_i, \delta_{ij} : j \neq i)$. Then,

$$Y_{im} = Z_{im} \; heta_i + e_{im}$$

• θ_i is identified iff $\mathbb{E}(Z'_{im}Z_{im})$ has full column rank. For this, we need exclusion restrictions, i.e., player specific variables in x_{im} . [or functional form identification].

3. Estimation

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Maximum likelihood estimation

• Suppose that the only unobservables for the researcher are the private information variables ε_{im} .

(1)

• If the model had unique equilibrium, then we could estimate θ by MLE:

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{m=1}^{M} \sum_{i=1}^{N} a_{im} \ln P_i(\mathbf{x}_m, \theta) + (1 - a_{im}) \ln(1 - P_i(\mathbf{x}_m, \theta))$$

where $P_i(\mathbf{x}_m, \theta)$ is the unique equilibrium probability of player *i* given (\mathbf{x}_m, θ) .

• However, when the model has multiple equilibria, the (standard) likelihood is not a function but a correspondence.

イロト イポト イヨト イヨト

Maximum likelihood estimation

- We still can define the MLE in a model with multiple equilibria.
- For any (θ, P) , define the **extended likelihood function** is:

$$Q(\theta, P) = \sum_{m=1}^{M} \sum_{i=1}^{N} a_{im} \ln \Phi \left(x_{im} \beta_i + P_{-i}(\mathbf{x}_m) \delta_i \right)$$

+
$$(1 - a_{im}) \ln \Phi (-x_{im} \beta_i - P_{-i}(\mathbf{x}_m) \delta_i)$$

(2)

where $P_{-i}(\mathbf{x}_m) = \{P_j(\mathbf{x}_m) : j \neq i\}$ and $\delta_i = \{\delta_{ij} : j \neq i\}$.

• This is a well-defined **function** for any values of (θ, P) .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Estimation

Maximum likelihood estimation

• The MLE is defined as:

$$(\widehat{\theta}_{MLE}, \widehat{P}_{MLE}) = \arg \max_{\theta, P} \begin{cases} \max_{P} Q(\theta, P) \\ \text{subject to:} \\ P_i(x_m) = \Phi \left(x_{im} \ \beta_i + P_{-i}(\mathbf{x}_m) \ \delta_i \right) \text{ for even} \end{cases}$$

(3)

- This estimator has all the good properties of MLE under standard regularity conditions.
- However, it can be very difficult to implement in practice.
- It requires optimization with respect to *P* which is a high dimensional vector. Many local maxima.
- Judd and Su (2012). MPEC method.

Two-step Pseudo ML estimation

• Let **P**⁰ be the vector of choice probabilities (for each *i* and *x_m*) in the population.

(1)

- It is possible to show that the true θ^0 uniquely maximizes $Q_{\infty}(\theta, \mathbf{P}^0)$.
- The two-step Pseudo ML estimator of θ^0 is defined as the sample counterpart of θ^0 .
- That is:

$$\hat{ heta} = rg\max Q_{\mathcal{M}}(heta, \widehat{\mathbf{P}^0})$$

where $\widehat{\mathbf{P}^0}$ is a consistent nonparametric estimator of P^0 .

Two-step Pseudo ML estimation

 The first-step can be just a Nadaraya-Watson Kernel estimator of the choice probabilities: P
_i(x).

(2)

• The second step is just a standard Probit model with likelihood:

$$\sum_{m=1}^{M} \sum_{i=1}^{N} a_{im} \ln \Phi \left(x_{im} \beta_i + \sum_{j \neq i} \delta_{ij} \ \widehat{P}_j(x_m) \right) \\ + (1 - a_{im}) \ln \Phi \left(- x_{im} \beta_i - \sum_{j \neq i} \delta_{ij} \ \widehat{P}_j(x_m) \right)$$

• It can be generalized to deal with unobserved heterogeneity ω_m .

< ロ > < 同 > < 三 > < 三

K-Step Estimator

- The first-step nonparametric estimator can have large variance and finite sample bias because the curse of dimensionality in NP estimation.
- This translates into the two-step estimator of θ that can have also large variance and finite sample bias.
- The K-step estimator is a solution to this problem.
- Let $\hat{\theta}_i^{(1)}$ be the two-step estimator.
- Given $\hat{\theta}_i^{(1)}$ and $\widehat{P^{(0)}}$, we can construct new choice probabilities, $\widehat{P^{(1)}}$, that now are parametric and exploit part of the structure of the model:

$$\widehat{P^{(1)}}(\mathbf{x}_m) = \Phi\left(x_i \ \hat{\beta}_i^{(1)} + \sum_{j \neq i} \hat{\delta}_{ij}^{(1)} \ \widehat{P^{(0)}}(\mathbf{x}_m)\right)$$

• Under some regularity conditions (Kasahara & Shimotsu, 2009), $\widehat{P^{(1)}}$ has smaller variance and finite sample bias than $\widehat{P^{(0)}}_{\mathbb{P}}$.

Victor Aguirregabiria ()

[2]

K-Step Estimator

• Given the new estimator $P^{(1)}$, we can obtain a new estimator of θ :

$$\widehat{ heta}^{(2)} \;\;=\;\; rg\max_{ heta} {oldsymbol{\mathcal{Q}}}_{{\mathcal{M}}}(heta, \widehat{{oldsymbol{\mathcal{P}}}^{(1)}})$$

with
$$Q_M(\theta, \widehat{P^{(1)}}) = \sum_{m=1}^M \sum_{i=1}^N a_{im} \ln \Phi\left(x_{im}\beta_i + \sum_{j \neq i} \delta_{ij} \ \widehat{P}_j^{(1)}(x_m)\right) + (1 - a_{im}) \ln \Phi\left(-x_{im}\beta_i - \sum_{j \neq i} \delta_{ij} \ \widehat{P}_j^{(1)}(x_m)\right)$$

- We can also apply this procedure recursively to define a *K step* estimator.
- Under some regularity conditions (Kasahara & Shimotsu, 2009), $\widehat{\theta^{(K)}}$ with K > 1 has smaller variance and finite sample bias than $\widehat{\theta^{(1)}}$.

4. Empirical Application: Supermarkets Pricing Strategies

• • • • • • • • • • • •

Empirical Application

- Ellickson & Misra (Marketing Science, 2008): Supermarkets competition in pricing strategies.
- Supermarket firms position themselves as **either everyday low prices** (EDLP) or **temporary sales promotions** (PROMO).
- It is a form of **product differentiation**. PROMO can be more attractive to customers with:
 - low shopping/search costs: visit stores more frequently;
 - low storage costs: buy for inventory when prices are low.
- A firm's optimal pricing format can vary across markets:
 - The composition of consumers in that market.
 - The pricing strategy of competitors.

イロト 不得 トイヨト イヨト 二日

Empirical Questions

- How supermarket pricing strategies depend on:
- [1] **Demand** Composition of local consumers (e.g., income, age, etc).
- [2] Costs Firm's characteristics (e.g., size, vertical relations).
- [2] **Competition** Pricing strategies of their rivals.
 - Strategic complementarity of substitutability in the choice of pricing strategy?
 - * If choice of pricing as entry model: substitutability.
 - * If choice of pricing as choice of price level: complementarity.

Summary of Empirical Results

[1] Consumer demographics play a significant role in the choice of local pricing strategies

* EDLP is favored in low income, racially diverse markets; * PROMO targets the rich.

[2] Larger stores and vertically integrated chains are significantly more likely to adopt EDLP.

[3] Evidence of **strategic complementarity** in pricing format.

[3] is kind of surprising. It could have to do with different average prices associated with the two pricing strategies (which is also consistent with result [1]).

(日) (周) (三) (三)

- N_m supermarket chains in market m.
- $a_{im} \in \{EDLP, PROMO, HYBRID\}$ is pricing mode of *i* in market *m*.
- Expected Profit function of choosing *a* for chain *i* in market *m*:

$$\pi^{e}_{im}(\mathbf{a}) = \mathbf{x}_{m} \ \beta_{\mathbf{a}} + \delta^{EDLP}_{\mathbf{a}} \ p^{EDLP}_{im} + \delta^{PROMO}_{\mathbf{a}} \ p^{PROMO}_{im} + \omega_{im,\mathbf{a}} + \varepsilon_{im,\mathbf{a}}$$
with:

$$p_{im}^{EDLP} = \frac{1}{N_m - 1} \sum_{j \neq i} \Pr(\mathbf{a}_{jm} = EDLP \mid \mathbf{x}_m, \boldsymbol{\omega}_m)$$
$$p_{im}^{PROMO} = \frac{1}{N_m - 1} \sum_{j \neq i} \Pr(\mathbf{a}_{jm} = PROMO \mid \mathbf{x}_m, \boldsymbol{\omega}_m)$$

3

(日) (同) (三) (三)

[2]

$$\pi^{e}_{im}(\mathbf{a}) = \mathbf{x}_{m} \ \beta_{\mathbf{a}} + \delta^{EDLP}_{\mathbf{a}} \ p^{EDLP}_{im} + \delta^{PROMO}_{\mathbf{a}} \ p^{PROMO}_{im} + \omega_{im,\mathbf{a}} + \varepsilon_{im,\mathbf{a}}$$

- Note that the parameters β_a , δ_a^{EDLP} , δ_a^{PROMO} vary across choice alternatives, *a*.
- They are identified only relative to a baseline alternative.
- They choose PROMO as the baseline, such that the estimates are for:

$$\begin{array}{ll} \beta_{EDLP} = \beta_{PROMO}, & \delta_{EDLP}^{EDLP} = \delta_{PROMO}^{EDLP}, & \delta_{EDLP}^{PROMO} = \delta_{PROMO}^{PROMO}, \\ \beta_{HYBRID} = \beta_{PROMO}, & \delta_{HYBRID}^{EDLP} = \delta_{PROMO}^{EDLP}, & \delta_{HYBRID}^{PROMO} = \delta_{PROMO}^{PROMO} \end{array}$$

3

(日) (周) (三) (三)

[3]

$$\pi^{e}_{\textit{im}}(\textit{a}) = \textit{x}_{\textit{m}} \ \beta_{\textit{a}} + \delta^{\textit{EDLP}}_{\textit{a}} \ p^{\textit{EDLP}}_{\textit{im}} + \delta^{\textit{PROMO}}_{\textit{a}} \ p^{\textit{PROMO}}_{\textit{im}} + \omega_{\textit{im,a}} + \varepsilon_{\textit{im,a}}$$

 Note that the model includes the common knowledge unobservables: ω_{im,EDLP}, ω_{im,PROMO}, ω_{im,HYBRID}.

$$oldsymbol{\omega}_{\mathit{im}} = \{ \omega_{\mathit{im},\mathit{EDLP}}, \; \omega_{\mathit{im},\mathit{PROMO}}, \; \omega_{\mathit{im},\mathit{HYBRID}}: ext{for every } i \}$$

- The CCPs that enter in best responses are $\Pr(a_{jm} = EDLP | \mathbf{x}_m, \boldsymbol{\omega}_m)$, conditional on $\boldsymbol{\omega}_m$.
- They apply a sequential K-step estimator that accounts for these unobservables.
- Next week, we will study sequential estimation methods that allow for these unobservables.

Victor Aguirregabiria ()

Data

• "Trade Dimensions" dataset.

Definition of local market:

- Statistical clustering method (K-means) based on latitude, longitude, and ZipCode information of the stores.

- Result of market definition (store clusters): Larger than a typical ZipCode, but significantly smaller than the average county. More than 8,000 markets over the whole US.

イロト 不得下 イヨト イヨト

Estimates

	EDLP			HYBRID		
	Estimate	Std. err	T-stat	Estimate	Std. err	T-stat
Effect						
Intercept	-1.5483	0.2426	-6.3821	2.1344	0.2192	9.7372
Strategy variables						
$\hat{\rho}_{-i \not e^m}^{\text{EDLP}}$	4.4279	0.1646	26.9010	-2.0924	0.1595	-13.1185
$\hat{\rho}_{-i_{c}m}^{PROMO}$	-3.7733	0.1501	-25.1386	-6.3518	0.1351	-47.0155
MSA characteristics						
Size ('000 sq. miles)	0.0394	0.0848	0.4645	-0.0566	0.0804	-0.7039
Density (pop 10,000 per sq. mile)	-0.0001	0.0002	-0.4587	0.0006	0.0002	2.9552
Avg. food expenditure (\$ '000)	-0.0375	0.0155	-2.4225	-0.0013	0.0141	-0.0904
Market variables						
Median household size	0.5566	0.1989	2,7983	0.2150	0.0900	2,3889
Median HH income	-0.0067	0.0019	-3.5385	0.0056	0.0017	3.2309
Proportion Black	0.6833	0.1528	4.4719	0.0139	0.1443	0.0963
Proportion Hispanic	0.5666	0.2184	2.5943	-0.0754	0.2033	-0.3708
Median vehicles in HH	-0.1610	0.0840	-1.9167	0.2263	0.1173	1.9292
Store characteristics						
Store size (sqft '000)	0.0109	0.0015	7.2485	0.0123	0.0014	8.8512
Vertically integrated	0.1528	0.0614	2.4898	0.0239	0.0550	0.4343
Chain characteristics						
Number of stores in chain	-0.0002	0.0001	-2.7692	0.0002	0.0001	3.5000
Chain effect	1.7278	0.0998	17.3176	2.8169	0.0820	34.3531
Chain/MSA effect	0.7992	0.0363	22.0408	0.9968	0.0278	35.8046

Victor Aguirregabiria ()

Empirical IO

January 21, 2021 31

31 / 32

Estimates

• Coefficients on consumer demographics

- Consumer demographics play a strong role in determining pricing strategy.

- EDLP is preferred in markets with poorer households.

• Firm and store characteristics

[2]

- Competition from a higher share of EDLP increases the probability of choosing EDLP.

- Strategic effects are quantitatively important: explain about 20% of the variation in EDLP profits.

• If pricing strategy is a form of **horizontal product differentiation**, we should not expect strategic complementarity. Alternative explanations:

- Vertical differentiation (not plausible; not everybody prefer $\ensuremath{\mathsf{PROMO}}$ to $\ensuremath{\mathsf{EDLP}}\xspace$)

- EDLP and PROMO involve different average price levels: 2000 Victor Aguirregabiria () Empirical IO January 21, 2021 32 / 32