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a b s t r a c t

This paper studies the contribution of demand, costs, and strategic factors to the adoption of hub-and-
spoke networks in the US airline industry. Our results are based on the estimation of a dynamic game
of network competition using data from the Airline Origin and Destination Survey with information on
quantities, prices, and entry and exit decisions for every airline company in the routes between the
55 largest US cities. As methodological contributions of the paper, we propose and apply a method to
reduce the dimension of the state space in dynamic games, and a procedure to deal with the problem
of multiple equilibria when implementing counterfactual experiments. Our empirical results show that
the most important factor to explain the adoption of hub-and-spoke networks is that the sunk cost of
entry in a route declines importantly with the number of cities that the airline connects from the origin
and destination airports of the route. For some carriers, the entry deterrence motive is the second most
important factor to explain hub-and-spoke networks.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The US airline industry has undergone important transforma-
tions since the 1978 deregulation that removed restrictions on
the routes that airlines could operate and on the fares they could
charge.1 Soon after deregulation, most airline companies adopted
hub-and-spoke networks to organize their routes. In a hub-and-
spoke network, an airline concentrates most of its operations in
an airport called the hub such that all the other cities in the net-
work (the spokes) have non-stop flights only to the hub. Differ-
ent hypotheses have been suggested to explain airlines’ adoption
of hub-and-spoke networks. According to demand-side explana-
tions, some travelers value the services associated with the scale
of operation of an airline in the hub airport, e.g., more convenient

∗ Correspondence to: 150 St. George Street, Toronto, ON, M5S 3G7, Canada. Tel.:
+1 416 978 4358.

E-mail address: victor.aguirregabiria@utoronto.ca (V. Aguirregabiria).
1 Borenstein (1992), Morrison and Winston (1995), and Borenstein and Rose

(2007) provide excellent overviews of the US airline industry. For studies that
evaluate the effects of the deregulation, see Alam and Sickles (2000), Morrison and
Winston (2000), Kahn (2004), and Färe et al. (2007).
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check-in and landing facilities, higher flight frequency.2 According
to cost-side explanations, an airline can exploit economies of scale
and scope by concentrating most of its operations in a hub airport.
For instance, larger planes are cheaper to fly, on a per-passenger
basis, and airlines can exploit these economies of scale by seating in
a single plane, flying to the hub city, passengers with different final
destinations.3 There may be also economies of scope. Some costs
of operating a route, such as aircraft maintenance and labor costs,
may be common for different routes in the same airport.4 Another
hypothesis that has been suggested to explain hub-and-spoke net-
works is that it can be an effective strategy to deter the entry of
competitors (see Hendricks et al., 1997). Themain argument is that
a hub-and-spoke airline is willing to operate non-stop flights be-
tween two cities even if profits from this city-pair are negative, as

2 Thewillingness to pay for these services can be offset by consumers’ preference
of non-stop flights over stop-flights.
3 These economies of scale can be offset by the larger distance traveled with the

hub-and-spoke system.
4 Some of these cost savings may not be only technological but they may be

linked to contractual arrangements between airports and airlines. Airports’ fees
may include discounts to those airlines that operate many routes in the airport.
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long as these losses are compensated by the positive profits from
other routes that have this city-pair as a segment. This willingness
to operate in a city-pair with negative profits may deter the entry
of airlines that do not have hub-and-spoke networks or that have
smaller networks.5

This paper develops an estimable dynamic game of airlines
network competition that incorporates the demand, cost, and
strategic factors described above. We estimate this model and use
it to measure the contribution of each of these factors to explain
hub-and-spoke networks. To our knowledge, this is the first study
that estimates a dynamic game of network competition. In our
model, airline companies decide every period the city-pairs where
they operate non-stop flights, and the fares for each route-product
they serve. The structure of ourmodel is similar to the one in awell-
known class of models of industry dynamics studied by Ericson
and Pakes (1995). In particular, we have that: (i) direct strategic
interactions between firms occur only through the effect of prices
on demand; (ii) price competition is static; and (iii) a firm’s entry
decisions in city-pairs is dynamic or forward looking and it affects
other firms’ profits only indirectly through its effect on equilibrium
prices.

The model is estimated using data from the Airline Origin and
Destination Survey of the US Bureau of Transportation Statistics
(BTS). We use information on quantities, prices, and route entry
and exit decisions for every airline company in the routes between
the 55 largest US cities (1485 city-pairs). To answer our empirical
questions on the sources of hub-and-spoke networks, we need to
measure airline costs at the route level. Though there is plenty
of public information available on the balance sheets and costs
of airline companies, this information is not at the airline–route
level or even at the airline–airport level. Our approach to estimate
the demand and cost parameters of the model is based on the
principle of revealed preference. Under the assumption that airlines
maximize expected profits, an airline’s decision to operate or not
in a route reveals information on costs at the airline–route level.
We use information on airlines entry–exit decisions in city-pairs
to estimate these costs.

This paper builds on and extends two important papers in the
Industrial Organization of the airlines industry: the theoretical
literature on airline network competition, especially the work of
Hendricks et al. (1995, 1997, 1999); and the empirical literature
on structural models of competition in the airline industry, in
particular the work of Reiss and Spiller (1989), Berry (1990, 1992),
Berry et al. (2006), and Ciliberto and Tamer (2009). We extend the
static duopoly game of network competition in Hendricks et al.
(1999) to a dynamic framework with incomplete information, and
N firms. Berry (1990) and Berry et al. (2006) estimate structural
models of demand and price competition with a differentiated
product and obtain estimates of the effects of hubs on marginal
costs and consumers’ demand. Berry (1992) and Ciliberto and
Tamer (2009) estimate static models of entry that provide
measures of the effects of hubs on fixed operating costs. Our
paper extends this previous literature in two important aspects.
First, our model endogenizes the existence of hubs and, more

5 Consider a hub airline who is a monopolist in the market-route between its
hub-city and a spoke-city. A non-hub carrier is considering to enter in this route.
Suppose that the size of this market-route is such that a monopolist gets positive
profits but under duopoly both firms suffer losses. For the hub carrier, conceding
this market to the new entrant implies that it will also stop operating in other
connecting markets and, as a consequence of that, its profits will fall. The hub
operator’s optimal response to the opponent’s entry is to stay in the spoke market.
Therefore, the (subgame perfect) equilibrium strategy of the potential entrant is not
to enter. Hendricks et al. (1999) extend this model to endogenize the choice of hub
versus non-hub carrier. See also Oum et al. (1995) for a similar type of argument
that can explain the choice of a hub–spoke network for strategic reasons.
generally, the structure of airlines’ networks. Treating hub size as
a variable that is endogenously determined in the equilibrium of
the model is important for some predictions and counterfactual
experiments using these structural models. Second, our model is
dynamic. A dynamic model is necessary to distinguish between
fixed costs and sunk entry costs (which have different implications
on market structure), and to study the hypothesis that hub-and-
spoke networks deter entry of competitors.

The paper presents also two methodological contributions to
the recent literature on the econometrics of dynamic discrete
games.6 First, we propose a method to reduce the dimension of
the state space in dynamic games. Ourmethod extends to dynamic
games the inclusive-values approach in Hendel and Nevo (2006)
and Nevo and Rossi (2008). The main contribution of our approach
to model inclusive-values is that we endogenize the transition
probabilities of the inclusive-values such that we can use the
estimated model to make counterfactual experiments that take
into account how these transition probabilities depend on the
strategies of all the players, and therefore how they change in
the counterfactual scenario. Second, we implement the procedure
proposed in Aguirregabiria (in press) to deal with multiple
equilibria when conducting counterfactual experiments with the
estimated model. Under the assumption that the equilibrium
selection mechanism is a smooth function of the structural
parameters, we show how to obtain an approximation to the
counterfactual equilibrium.

Our empirical results show that an airline’s scale of operation
in an airport (as measured by the number of cities that the
airline connects from that airport) has a statistically significant
effect on travelers’ willingness to pay, on unit (per-passenger)
costs, on fixed operating costs, and on the cost of starting a new
route (i.e., route entry costs). Nevertheless, the most substantial
impact is on the cost of entry in a route. Given the estimated
model, we implement counterfactual experiments to decompose
the contribution of demand, costs, and strategic interactions to
each airline’s propensity to use a hub-and-spoke network. These
experiments show that eliminating the effect of the number of
connections in an airport on route entry costs would reduce very
substantially airlines’ propensity to hubbing. We also find that, for
some of the larger carriers, strategic entry deterrence is the second
most important factor to explain hub-and-spoke networks.

The rest of the paper is organized as follows. Section 2
presents our model and assumptions, as well as our approach
to reduce the state space of the dynamic game. The data set
and the construction of our working sample are described in
Section 3. Section 4 discusses the estimation procedure and
presents the estimation results. Section 5 describes our procedure
to implement counterfactual experiments and our results from
these experiments. We summarize and conclude in Section 6.

2. Model

2.1. Framework

The industry is configured by N airline companies and C cities
or metropolitan areas. We assume that each city has only one
airport. Airlines and airports are exogenously given in our model.
An airline’s network is the set of city-pairs that the airline connects
via non-stop flights. From the point of view of an airline’s entry
and exit decisions, a market in this industry is a not directional city-
pair, i.e., if an airline operates flights from A to B, then it should
operate flights from B to A. Therefore, there are M ≡ C(C − 1)/2

6 See Aguirregabiria and Mira (2007), Bajari et al. (2007), and Pakes et al. (2007)
for recent contributions to this literature.
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markets or city-pairs. Travelers are concerned about routes. A route
is a directional round-trip between two cities, e.g., a round-trip
from Chicago to Los Angeles. The number of all possible routes
is C(C − 1) = 2M . We index time by t , airlines by i, city-pairs
by m, and routes by r . Let ximt ∈ {0, 1} be the binary indicator
of the event ‘‘airline i operates non-stop flights in city-pair m at
period t ’’. The network or route map of airline i at period t can
be represented using the vector of M binary indicators xit ≡

{ximt :m = 1, 2, . . . ,M}. This network describes implicitly all the
routes that the airline serves, either with non-stop or with stop
flights. We use L(xit) to represent the set with all routes associated
with network xit .7 The vector xt ≡ {xit : i = 1, 2, . . . ,N}, that
belongs to the set X ≡ {0, 1}NM , denotes the whole industry
network.

Every period (quarter) t , airlines compete in prices taking as
given the current industry network xt and the value of exogenous
variables that affect demand and costs and that we represent with
the vector zt ∈ Z . Each airline chooses prices for all the routes
in its route-set L(xit). Price competition determines current profits
for every airline and route. Section 2.2 presents the details of our
model of consumer demand and price competition. Every quarter,
airlines also choose their networks for next period.We assume that
it takes one quarter to build up the inputs needed to start operating
non-stop flights between two cities. Fixed costs and startup costs
are paid at quarter t but entry–exit decisions are not effective until
quarter t + 1. We represent this network choice using the vector
ait ≡ {aimt :m = 1, 2, . . . ,M}, where aimt is a binary indicator for
the decision ‘‘airline i will operate non-stop flights in city-pair m
at period t + 1’’. By definition, we have that xi,t+1 = ait , but it is
convenient to use different letters to distinguish state and decision
variables. An airline’s total profit is:

Πit =


r∈L(xit )

Rir(xt , zt) −

M
m=1

aimtFimt (1)

Rir(xt , zt) is the variable profit of airline i that results from
equilibrium price competition in route r at period t . Fimt represents
the sum of fixed costs and entry costs for airline i in city-pair m
and quarter t . Section 2.3 describes our assumptions on fixed costs
and entry costs. We anticipate here two important features. First,
fixed and entry costs depend on the airline’s scale of operation in
the airports of the city-pair, as measured by the number of other
non-stop connections that the airline has in the two cities. This cost
structure implies that markets are interconnected through hub-
size effects. A second feature in the specification of the cost Fimt
is that it depends on a shock εimt that is private information of
the airline at period t . We assume that the vector with the shocks
of airline i at every market, εit ≡ {εimt : m = 1, 2, . . . ,M}, is
independently and identically distributed over airlines and over
time with distribution function Gε .8

Airlines are forward-looking, maximize intertemporal profits,
and take into account the implications of their current network

7 For instance, consider an industry with four cities, say A, B, C , and D. The
industry has 6 city-pairs that we represent as AB, AC , AD, BC , BD, and CD.
The number of possible routes is 12. Suppose that airline i’s network is xit ≡

{xiABt , xiACt , xiADt , xiBCt , xiBDt , xiCDt } = {1, 1, 0, 0, 0, 0}. Then, this airline is active in
city-pairs AB and AC , and it serves six routes, the non-stop routes AB, BA, AC , and
CA, and the stop routes BC and CB.
8 There are two main reasons why we incorporate private information shocks.

First, including private information shocks guarantees that the game has at least
one equilibrium in pure strategies (see Doraszelski and Satterthwaite, 2010).
And second, private information state variables, independently distributed across
players and over time, are convenient econometric errors because they can explain
part of the heterogeneity in players’ actions without generating endogeneity
problems.
choices on future profits and on the future reaction of competitors.
Airlines also take into account that operating non-stop flights in a
city-pair have implications on the firm’s profits in many different
routes, i.e., route network effects. We assume that airlines’ strate-
gies depend only on payoff-relevant state variables, i.e., Markov
perfect equilibrium assumption. An airline’s payoff-relevant infor-
mation at quarter t is {xt , zt , εit}. Let σ ≡ {σi(xt , zt , εit): i =

1, 2, . . . ,N} be a vector of strategy functions, one for each airline.
A Markov Perfect Equilibrium (MPE) in this game is a vector of
strategy functionsσ such that each airline’s strategymaximizes the
value of the airline for each possible state (xt , zt , εit) and taking as
given other airlines’ strategies.

Let V σ
i (xt , zt , εit) represent the value function for airline i given

that the other companies behave according to their respective
strategies in σ, and given that airline i uses his best response
strategy. By the principle of optimality, this value function is
implicitly defined as the unique solution to the following Bellman
equation:

V σ
i (xt , zt , εit) = max

ait


Πi (ait , xt , zt , εit)

+ βE

V σ
i (xt+1, zt+1, εit+1)|xt , zt , ait


(2)

whereΠi (ait , xt , zt , εit) is the profit function, andβ ∈ (0, 1) is the
discount factor. The set of strategies σ is a MPE if, for every airline
i and every state (xt , zt , εit), we have that:

σi(xt , zt , εit) = argmax
ait


Πi (ait , xt , zt , εit)

+ βE

V σ
i (xt+1, zt+1, εit+1)|xt , zt , ait


. (3)

That is, every airline is using its best response to the other
airlines’ strategies. An equilibrium in this dynamic game provides
a description of the dynamics of airlines’ route networks and,
combined with the equilibrium in price competition, of the
dynamics of prices and quantities for every route between the C
cities.

2.2. Consumer demand and price competition

Consider a route, defined as a directional round-trip between
two cities. Let Hrt be the number of travelers in route r at quarter
t . Each traveler demands only one trip per period, and can select
between several differentiated products. We index products by j.
These products can be described in terms of five characteristics:
(i) the route, that we represent as rj or simply r , and includes
features such as the distance between the two cities, and the origin
and destination airports; (ii) the airline, that we represent as ij or
simply i; (iii) the binary indicator for non-stop flight, dj; (iv) the
scale of operation or ‘‘hub size’’ of the airline in the origin and
destination airports of the route, HUBO

irt and HUBD
irt , respectively;

and (v) other product characteristics valued by travelers but
unobserved to us as researchers, that we represent as ξ

(3)
jt .9

The indirect utility of a traveler who purchases product j at
period t is Ujt = bjt − pjt + vjt , where pjt is the price of the
product, bjt is the ‘‘quality’’ or willingness to pay for the product of
the average consumer in themarket, and vjt is a consumer-specific
component that captures consumer heterogeneity in preferences.
The value j = 0 of the product index represents the choice of the

9 We do not model explicitly other forms of product differentiation, such as
flights frequency or service quality. In our model, consumers’ valuation of these
other forms of product differentiation are embedded in the airline fixed-effects and
the airport fixed-effects that we include in the demand estimation.
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outside alternative,that in this case corresponds to the traveler’s
decision of not traveling by air. Quality and price of the outside
alternative are normalized to zero.10

Product quality bjt depends on the product characteristics that
we havementioned above.We consider the following specification
of product quality:

bjt = α1 dj + α2 HUBO
irt + α3 HUBD

irt + α4 DISTr

+ ξ
(1)
i + ξ

(2)
rt + ξ

(3)
jt (4)

α1–α4 are parameters. The parameter α1 associated with the
indicator of non-stop flight measures the utility premium for non-
stop flights for the average traveler. DISTr is the distance between
the origin and destination cities of route r and it is a proxy of
the value of air transportation relative to the outside alternative,
i.e., air traveling may be a more attractive transportation mode
for longer distances. ξ

(1)
i is an airline fixed-effect that captures

between-airlines differences in quality which are constant over
time and across routes. ξ (2)

rt represents the interaction of (origin
and destination) city dummies and time dummies. These dummies
account for demand shocks that are common for all the products
in the same city, e.g., quality and congestion of the city airport(s),
seasonal effects. ξ

(3)
jt is a demand shock that is product specific.

The ‘‘hub size’’ variables HUBO
irt and HUBD

irt capture consumer
willingness to pay for the services associated with the scale of
operation of an airline in an airport. Our measure of the hub-size
of an airline in an airport is equal to the number of cities that the
airline serves from this airport (see Section 3 for more details).

A consumer purchases product j if and only if the utility Ujt is
greater than the utilities of any other product available for route
r , including the outside alternative. This condition characterizes
the unit demand of an individual consumer. To obtain aggregate
demand, qjt , we have to integrate individual demands over the
consumer-idiosyncratic variables vjt . The form of the aggregate
demand depends on the probability distribution of this consumer
heterogeneity. We consider a nested logit model with two nests.
The first nest represents the decision of which airline (or outside
alternative) to patronize. The second nest consists of the choice of
stop versus non-stop flight. We have that vjt = σ1v

(1)
irt + σ2v

(2)
jt ,

where v
(1)
irt and v

(2)
jt are independent Type I extreme value random

variables, and σ1 and σ2 are parameters, with σ1 ≥ σ2.11 Let sjt be
themarket share of product j in route r , i.e., sjt ≡ qjt/Hrt . And let s∗jt
be the market share of product j within the products of airline i in
route r , i.e., s∗jt ≡ sjt/


j′∈Jirt

sj′t , where Jirt is the set of products of
airline i in route r at period t .12 Aproperty of the nested logitmodel

10 Therefore, bjt should be interpreted as willingness to pay relative to the value
of the outside alternative.
11 A random coefficients model would be a more flexible specification of the
demand system. See Berry et al. (2006) and Berry and Jia (2009) for applications of
random coefficients demand models for the airline industry. The main reason why
we have used a simpler specification, such as the nested logit, is the computational
cost in the solution of the Nash–Bertrand equilibrium. For the estimation of the
dynamic game of entry–exit, we need to calculate the equilibrium of the pricing
game not only for the route-level market structures (i.e., configuration of active
products in a route) that we observe in the data, but also for every possible
counterfactual route-level market structure. For each route, there are millions of
possible market structures. Therefore, we need a model of price of competition
that provides flexible enough price elasticities, but also that is simple enough such
that we can compute very quickly a Nash–Bertrand equilibrium. In this context, we
believe that the nested logit model provides a good compromise between flexibility
and computational cost.
12 In ourmodel, the set of products that an airline provides in a route can take four
possible values: no products; only non-stop flights; only stop flights; and both stop
and non-stop flights.
is that the demand system can be represented using the following
closed-form demand equations13:

ln

sjt


− ln (s0t) =

bjt − pjt
σ1

+


1 −

σ2

σ1


ln


s∗jt


(5)

where s0t is the share of the outside alternative in route r , i.e.,

s0t ≡ 1 −

N
i=1


j∈Jirt

sjt .

Travelers’ demand and airlines’ price competition in this model
are static.14 The variable profit of airline i in route r is Rirt =

j∈Jirt
(pjt − cjt)qjt , where cjt is the unit cost or cost per passenger

of product j, that is assumed constant with respect to the
quantity sold. Our specification of this marginal cost has the same
components as product quality:

cjt = δ1 dj + δ2 HUBO
irt + δ3 HUBD

irt + δ4 DISTr

+ ω
(1)
i + ω

(2)
rt + ω

(3)
jt (6)

δ1–δ4 are parameters. ω(1)
i is an airline fixed-effect that captures

between-airlines differences in marginal costs. ω
(2)
rt captures

between-cities differences inmarginal costswhich are common for
all the airlines. ω(3)

jt is a shock in the marginal cost that is product
specific.

Given quality indexes {bjt} and marginal costs {cjt} for all the
products available in route r at period t , airlines compete in prices
a la Nash. The Nash–Bertrand equilibrium is characterized by the
system of price equations pjt − cjt = σ1(1 − s̄jt)−1, where s̄jt has
been defined in footnote 13 above.15

2.3. Fixed costs and route entry costs

The sum of fixed costs and startup or entry costs of airline i at
city-pairm is:

Fimt = FCimt + εimt + (1 − ximt)ECimt (7)

where FCimt + εimt and ECimt represent fixed costs and entry costs,
respectively, of operating non-stop flights in city-pairm. The fixed
cost FCimt + εimt is paid only if the airline decides to operate in
city-pairm next period, i.e., if aimt = 1. The entry cost ECimt is paid
only when the airline is not active in market m at period t but it
decides to operate in the market next period, i.e., if ximt = 0 and
aimt = 1. The terms {FCimt} and {ECimt} are common knowledge
for all the airlines. The component εimt is private information
of the airline. This private information shock is assumed to be
independently and identically distributed over firms, markets, and
time. Our specification of the common knowledge components of
fixed costs and entry costs is similar to the one of marginal costs

13 The nested logit model implies the following relationships. Define ejt ≡

Ijt exp{(bjt − pjt )/σ1}, where Ijt is the indicator of the event ‘‘product j is available
in route r at period t ’’. Then, sjt = s∗jt s̄j where s∗jt = ejt/


j′∈Jirt

ej′ t , and s̄jt =

(


j′∈Jirt
ej′ t )σ2/σ1 [1 +

N
i′=1

(


j′∈Ji′ rt
ej′ t )σ2/σ1 ]

−1 .

14 Capacity constraints and intertemporal price discrimination may generate
dynamics in the pricing strategies of airlines. However, this type of pricing dynamics
is short-run and at the level of individual flights. Therefore, we expect that these
factors should play a very minor role in the configuration and in the dynamics of
airlines’ networks.
15 See page 251 in Anderson et al. (1992).
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and consumers’ willingness to pay:

FCimt = γ FC
1 + γ FC

2 HUBimt + γ FC
3 DISTm + γ FC

4i + γ FC
5c

ECimt = ηEC
1 + ηEC

2 HUBimt + ηEC
3 DISTm + ηEC

4i + ηEC
5c

(8)

γ ′s and η′s are parameters.HUBimt represents the average hub-size
of airline i in the airports of city-pair m. {γ FC

4i , ηEC
4i } and {γ FC

4c , ηEC
4c }

are airline and city fixed-effects, respectively.16

2.4. Reducing the dimensionality of the dynamic game

From a computational point of view, the solution and the es-
timation of the dynamic game of network competition in Sec-
tions 2.1–2.3 is extremely challenging. Solving the dynamic game
requires one to ‘integrate’ value functions over the space of the
state variables {xt , zt}. Given the number of cities and airlines in
our empirical analysis,17 we have that the dimension of the space
of the industry network xt is |X | = 2NM

≃ 1010,000. Solving ex-
actly for an equilibrium of a dynamic game with this state space
is intractable. To deal with this computational complexity, we
introduce several simplifying assumptions that reduce very sig-
nificantly the dimension of the dynamic game and make its solu-
tion and estimationmanageable.Wemake twomain assumptions:
(1) an airline’s choice of network is decentralized in terms of
the separate decisions of the airline’s local managers (Assump-
tions NET-1 and NET-2); and (2) the state variables in the deci-
sion problem of a local manager can be aggregated into a vector
of inclusive-values that belongs to a space with a much smaller di-
mension than the original state space (Assumption NET-3).

Suppose that every airline has M local managers, one for each
city-pair. A local manager decides whether or not to operate non-
stop flights in his local market, i.e., local manager (i,m) chooses
variable aimt . We assume that a local manager is concerned with
the maximization of the expected discounted value of the firm’s
profits from a particular local sub-network of the airline.

Assumption NET-1. The local manager (i,m) chooses aimt ∈

{0, 1} to maximize the expected and discounted value of the
stream of local-market profits, Et(


∞

s=1 βsΠ∗

im,t+s), where Π∗

imt ≡

R∗

imt − aimt (FCimt + εimt + (1 − ximt)ECimt), and R∗

imt is the sum of
airline i ’s variable profits over all the non-stop and one-stop routes
that include city-pairm as a segment:

R∗

imt ≡


r

1 {m ∈ Mr}


j∈Jirt

(pjt − cjt)qjt


(9)

where 1 {.} is the indicator function, and Mr is the set of city-pairs
that are segments of route r .18

We assume that R∗

imt is the variable profit that local manager
(i,m) is concerned with. To illustrate this concept, consider as
an example the local manager of American Airlines in the city-
pair Boston–Chicago. The variable profit R∗

imt of this local manager
consists of the profits from all routes and products that include
Boston–Chicago as a segment. The following table includes all
these routes and products.

16 More precisely, in the specification of FCimt and ECimt we include a dummy for
each city in city-pairm.
17 We consider N = 22 airlines, C = 55 cities, and M = 1485 city-pairs.
18 For computational simplicity, our definition of R∗

imt includes only non-stop
and one-stop routes. However, this restriction has a negligible incidence in our
empirical results because routes with more than one stop represent a very small
fraction of tickets and of total revenue in our data.
Routes and products in the variable profit of a local manager in the
city-pair Boston–Chicago
Routes Products

Boston → Chicago (1 route)

non-stop Boston → Chicago (1 product)
one-stop Boston → City X

→ Chicago (C − 2 products)

Chicago → Boston (1 route)

non-stop Chicago → Boston (1 product)
one-stop Chicago → City X

→ Boston (C − 2 products)

Boston → City X (C − 2 routes)

one-stop Boston → Chicago
→ City X(C − 2 products)

City X→ Boston (C − 2 routes)

one-stop City X → Chicago
→ Boston (C − 2 products)

Chicago → City X (C − 2 routes)

one-stop Chicago → Boston
→ City X(C − 2 products)

City X→ Chicago (C − 2 routes)

one-stop City X → Boston
→ Chicago (C − 2 products)

Total of 4C − 6 = 214 routes Total of 6C − 10 = 320 products

Given that the number of cities in our application is C = 55, the
number of routes included in the variable profit of a local-manager
is 214. It is important to emphasize that an airline’s variable profit
in a route is the result of the Nash–Bertrand equilibrium described
in Section 2.2, and it depends on which airlines are active in the
route. Therefore, the variable profit of a local-manager depends
on the incumbent status of every airline at many different city-
pairs. For instance, if Southwest decides to enter in the local-
marketMadison–Chicago, this decision has a negative effect on the
profit of the Boston–Chicago local manager of American Airlines.
This is because AA will see reduced its profit from the routes
Madison–Boston and Boston–Madison with stop at Chicago.

Assumption NET-2. The shock {εimt} is private information of
local manager (i,m). This shock is unknown to the local managers
of airline i at city-pairs other thanm.

Assumptions NET-1 and NET-2 establish a degree of decentral-
ization in airline’s network choice. It is important to note that,
given our definition of the variable profits R∗

imt , this decentralized
decision-making can generate equilibria with the entry deterrence
property studied by Hendricks et al. (1997). In particular, every lo-
cal manager takes into account that exit from his city-pair market
eliminates profits from every product that includes this city-pair
as a segment. This complementarity between profits of different
routes may imply that a hub–spoke network is an effective strat-
egy to deter the entry of competitors.

Assumptions NET-1 and NET-2 simplify the computation
of players’ best responses. However, the state space of the
decision problem of a local manager is still X × Z , and solving
exactly a dynamic programming problem in this state space is
computationally intractable. To deal with this issue, we impose
restrictions on the formof players’ strategies in this dynamic game.
We assume that the strategy function of a player, say localmanager
(i,m), depends on the state variables {xt , zt} only through a vector
wimt that aggregates the information in {xt , zt} and has a much
smaller set of possible values. More specifically, the strategy of
local-manager (i,m) depends on εimt and on the vector of payoff-
relevant variables

wimt ≡

ximt , R∗

imt ,HUBimt , nmt ,HUBmt


∈ W (10)
where nmt is the number of incumbent airlines at city-pair m and
period t; HUBmt is the average hub-size of all the active airlines at
city-pair m and period t; and the variables ximt , R∗

imt , and HUBimt
have been defined above.
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Assumption NET-3. The strategy of a local-manager, say (i,m), is
a function σim(wimt , εimt) fromW × R into {0, 1}.

Each localmanager has his ‘‘own’’ vector of state variables,wimt .
Then, apparently, it might look like that each manager is solving
a single-agent dynamic decision problem, and that the model
does not incorporate dynamic strategic interactions. However, the
vector of state variables of a local manager depends on previous
period entry and exit decisions of other local managers. For
instance, the vector of state variables wimt includes the variable
profit of this local manager at period t , i.e., R∗

imt . This variable profit
depends on which airlines are operating at each of the 214 routes
involved in the definition of R∗

imt . Therefore, R
∗

imt depends on the
entry and exit decisions of many different local managers at period
t − 1. Other components of the state vector wimt , such as the
number of airlines operating in city-pair m (nmt ), or the average
hub-size of the active airlines in the city-pair (HUBmt ), also depend
on the entry–exit decisions of many local managers at t − 1.

Let σ ≡ {σim(wimt , εimt): i = 1, 2, . . . ,N;m = 1, 2, . . . ,M}

be a vector of strategy functions, one for each local-manager. And
let P = {Pim(w): for every i,m, and w ∈ W } be the vector
of conditional choice probabilities (CCPs) associated with σ, where
Pim(w) is the probability that local-manager (i,m) is active in the
market givenwimt = w:

Pim(w) ≡ Pr (σim(wimt , εimt) = 1|wimt = w) . (11)

Given the vector of CCPs P, let f Pim(wimt+1|aimt ,wimt) be theMarkov
transition probability function of the vector {wimt} induced by
the vector of strategy functions P. The transition probability
function f Pim captures the dynamic strategic interactions between
the local managers of this dynamic game. We now describe the
structure of this transition probability function f Pim. It is important
to emphasize that this function depends on players’ strategies and
therefore it is not a primitive of the model but an equilibrium
outcome. The variables in the vector wimt are deterministic
functions of the state variables in the original problem, xt . That is,
wimt = (ximt , R∗

imt ,HUBimt , nmt ,HUBmt), where: nmt ≡
N

j=1 xjmt ;
HUBimt =


m′∈Cm ximt , with Cm being the set of city-pairs with

a common city with market m; HUBmt = N−1 N
j=1 HUBjmt ; and

R∗

imt is the sum of the Bertrand equilibrium profits from different
routes, which is a function of xt . We use the vector valued function
wim(.) to represent in a more compact form the relation between
wimt and the state vector xt , i.e.,wimt = wim(xt).More precisely,we
assume that the variablesR∗

imt ,HUBimt , andHUBmt in the vectorwimt
are discrete, and the vector valued function wim(.) incorporates
also this discretization. We assume that the discrete model is the
‘‘true’’ model. Let {w(k): k = 1, 2, . . . , K} be the set of values
that define the discrete space of wimt . For any vector of values
(w(k′), a,w(k)) in the discrete space of (wimt+1, aimt ,wimt), the
probability f Pim(w(k′)|a,w(k)) is definedby the following expression:

f Pim

w(k′)|a,w(k)


=


xt+1

1

wim(xt+1) = w(k′)


× Pr


xt+1 | aimt = a,wimt = w(k); P


. (12)

Taking into account that xt+1 = at = (aimt , a(−im)t), where a(−im)t
is the vector with the actions of all the local managers other than
(i,m), we have that:

f Pim

w(k′)|a,w(k)


=


a(−im)t

1

wim(a, a(−im)t) = w(k′)


× Pr


a(−im)t |wimt = w(k); P


(13)

where Pr(a−(im)t |wimt , P) is the probability distribution of other
players’ actions given their strategies in the vector P and from the
point of view of player (i,m) who observes only wimt . Therefore,
to obtain the transition probabilities f Pim we should calculate the
distribution of Pr(a−(im)t |wimt , P) that comes from the ergodic
distribution of the state variables xt induced by the CCPs in P.
Computing exactly the transition probabilities {f Pim} is not trivial,
and in fact it suffers of a curse of dimensionality. To deal with
this computational problem, we use Monte Carlo simulation to
approximate the transition probability functions {f Pim}.We describe
the details of our Monte Carlo simulator in the Appendix.

The best response of a local-manager is the solution of a
dynamic programming problem.We assume that εimt has a logistic
distribution with dispersion parameter σε . Let V P

im(wimt) be the
(integrated) value function in the dynamic programming problem
that defines the best response of player (i,m). This value function
is the unique solution to the (integrated) Bellman equation V =

Γ P
im(V ), where Γ P

im(.) is the following Bellman operator:

Γ P
im(V )(wimt) ≡


max
a∈{0,1}


Π∗

imt(a) − aεimt

+ β

w′

V (w′)f Pim(w′
|a,wimt)


dGε(εimt)

= σε ln

 
a∈{0,1}

exp


Π∗

imt(a) + β

w′

V (w′)f Pim(w′
|a,wimt)

σε



(14)

with Π∗

imt(a) ≡ R∗

imt − a (FCimt + (1 − ximt)ECimt).Then, given the
value function V P

im, the best response of a local manager can be
described as follows: {aimt = 1} if and only if

εimt ≤ −FCimt − (1 − ximt)ECimt

+ β

w′

V P
im(w′)


f Pim(w′

|1,wimt) − f Pim(w′
|0,wimt)


. (15)

The best response probability function is just the best response
function integrated over the distribution of the private information
shock εimt and it is equal to the equation given in Box I. A
Markov Perfect Equilibrium (MPE) in our dynamic gameof network
competition is a vector of CCPs, P = {Pim(w) for every i,m,w},
such that Pim(w) is a best response (see Box II).

2.5. An alternative representation of the equilibrium mapping

As described in previous section, a MPE of our dynamic game
can be described as a vector P of conditional choice probabilities
(CCPs) that solves the equilibrium fixed point problem P =

Ψ (P), where Ψ is the best response probability mapping that we
have defined in Eq. (16). Following the Representation Lemma in
Aguirregabiria and Mira (2007, page 11), we can represent a MPE
of our dynamic game as a fixed point of an alternative mapping
that is more convenient for estimation. In order to describe this
representation, it is useful to write the current profit of a local
manager, Πimt , as follows:

Πimt = (1 − aimt) zimt(0)θ + aimtzimt(1)θ − aimtεimt (18)

θ is a column vector with dimension 157 × 1 that contains the
structural parameters characterizing fixed and entry costs19:

θ ≡

1, γ FC

1 , γ FC
2 , γ FC

3 , {γ FC
4i }, {γ FC

5c }

ηEC
1 , ηEC

2 , ηEC
3 , {ηEC

4i }, {η
EC
5c }

′
(19)

19 The dimension 157×1 comes from (22 airlines−1)∗2+(55 cities−1)∗2+7 =

157.
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6)
Λ

−FCimt − (1 − ximt)ECimt + β

w′

V P
im(w′)


f Pim(w′

|1,wimt) − f Pim(w′
|0,wimt)


σε

 (1

where Λ(.) is the logistic function exp(.)[1 + exp(.)]−1.

Box I.
7)
Pim(w) = Λ

−FCim(w) − (1 − xim)ECim(w) + β

w′

V P
im(w′)


f Pim(w′

|1,w) − f Pim(w′
|0,w)


σε

 (1

Box II.
where {γ FC
4i } and {ηEC

4i } represent airline fixed-effects in fixed costs
and entry costs, respectively, and {γ FC

5c } and {γ EC
5c } represent city

fixed-effects. zim(0,wimt) and zimt(1,wimt) are row vectors with
dimension 1 × 157 and with the following definitions:

zimt(0,wimt) ≡ (Rimt , 0156)

zimt(1,wimt) ≡

Rimt , 1,HUBimt ,DISTm ,

AIRDUMi, CITYDUMm

× (1 − ximt) ∗

1,HUBimt ,DISTm,

AIRDUMi, CITYDUMm]


(20)

AIRDUMi and CITYDUMm are vectors of airline dummies and city
dummies, respectively.20

We can represent a MPE in this model as a vector of CCPs
P = {Pim(w): for every local manager (i,m) and every state
w} that solves the fixed point problem P = Ψ (θ, P), where
Ψ (θ, P) is the vector valued best responsemapping {Λ(z P

im(w) θ
σε

+ePim(w)): for every local manager (i,m) and every state w}, and
Λ() is the CDF of the logistic distribution. The vector z P

im(w) is
equal toz P

imt(1,w) −z P
imt(0,w), wherez P

imt(a,w) represents the
expected and discounted sum of current and future z vectors
{zimt+j(aimt+j,wimt+j): j = 0, 1, 2, . . .} which may occur along
all possible histories originating from the choice of aimt = a in
state wimt = w, if all the players, including local manager (i,m),
behave in the future according to their choice probabilities in P.
Similarly,e P

imt is equal toe P
imt(1,w) −ePimt(0,w), wheree P

imt(a,w)

has the same definition as z P
imt(a,w) but for the expected and

discounted sum of the stream {aimt+jεimt/σε: j = 1, 2, . . .} instead
of zimt+j(aimt+j,wimt+j). More formally,

z P
im(a,w) = zim(a,w)

+ β


wimt+1

f w,P
im (wimt+1|a,w)V P

z,im(wimt+1)

e P
imt(a,w) = β


wimt+1

f w,P
im (wimt+1|a,w)

× V P
e,im(wimt+1).

(21)

The matrix of valuations VP
z,im ≡ {V P

z,im(w):w ∈ W } is equal
to (I − βFw,P

im )−1((1 − Pim) ∗ Zim(0) + Pim ∗ Zim(1)), where
Pim is the column vector of choice probabilities {Pim(w):w ∈

W }; Zim(a) is the matrix {zim(a,w):w ∈ W }; and Fw,P
im is a

20 AIRDUMi is a vector of dimension 1×21 (the number of airlinesminus one)with
a 1 at the position of airline i and zeros elsewhere. Similarly, CITYDUMm is a vector
of dimension 1 × 54 (the number of cities minus one) with 1′s at the positions of
the two cities in marketm and zeros elsewhere.
W × W matrix of transition probabilities with elements (1 −

Pim(w))f Pim(wimt+1|0,w) + Pim(w)f Pim(wimt+1|1,w). Similarly, the
vector of valuations VP

e,im ≡ {V P
e,im(w):w ∈ X} is equal to (I −

βFPim)−1Pim ∗ eim, where eim is aW × 1 with elements E(εimt/σε|w,
aimt = 1 is the optimal choice). Given that εimt has a logistic
distribution, the elements of eim are equal to Euler − ln Pim(w),
where Euler represents Euler’s constant.

For a fixed value of P, the evaluation of the mapping Ψ (θ, P)
for multiple values of θ is computationally simple because the
values {z P

im(w)} and {ePim(w)} are fixed and they should not be
recomputed. The evaluation of the mapping Ψ (θ, P) for multiple
values of P is significantly more costly because the values {z P

im(w)}

and {ePim(w)} should be recalculated. The most costly tasks in
recalculating these values are the computation of the transition
probabilities f Pim and of the inversematrices (I−βFPim)−1. Note that
we have to calculate these functions and matrices for every local
manager (i,m).21

For the computation of the values z P
im(w) and ePim(w) we

discretize the vector of state variables wimt = (ximt , Rimt ,HUBimt ,
nmt ,HUBmt). The incumbent status ximt is already a binary variable.
The number of incumbents, nmt , is discretized in 5 values:
{0, 1, 2, 3, 4} where nmt = 4 represents four or more incumbents.
We discretize HUBimt and HUBmt using a uniform grid of 6
points in the interval [0, 54]. Similarly, we discretize ln(Rimt)
using a uniform grid of 11 points in the interval [0, 20]. These
discretizations imply that our state space for wimt has 2 ∗ 11 ∗ 6 ∗

5 ∗ 6 = 3960 cells.

3. Data and descriptive statistics

3.1. Construction of the working sample

We use data from the Airline Origin and Destination Survey
(DB1B) collected by the Office of Airline Information of the Bureau
of Transportation Statistics. The DB1B survey is a 10% sample of
airline tickets from the large certified carriers in US. The frequency
is quarterly. A record in this survey represents a ticket. Each
record or ticket contains information on the carrier, the origin and
destination airports, miles flown, the type of ticket (i.e., round-trip
or one-way), the total itinerary fare, and the number of coupons.22
The raw data set contains millions of tickets for each quarter. For
instance, the number of records in the fourth quarter of 2004 is

21 However, we do not need to keep the probabilities f Pim and Pim , and the matrix
(I − βFPim)−1 in memory once we have calculated z̃Pimt and ẽPimt for a local manager.
Therefore, the memory requirements of this method are only of the order of
magnitude of our sample size.
22 This dataset does not contain information on the flight number, the day orweek
of the flight, or ticket restrictions such as 7 or 14 days purchase in advance.
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Table 1
Cities, airports and population.

City, State Airports City pop. City, state Airports City pop.

New York–Newark–Jersey LGA, JFK, EWR 8623,609 Las Vegas, NV LAS 534,847
Los Angeles, CA LAX, BUR 3845,541 Portland, OR PDX 533,492
Chicago, IL ORD, MDW 2862,244 Oklahoma City, OK OKC 528,042
Dallas, TXa DAL, DFW 2418,608 Tucson, AZ TUS 512,023
Phoenix–Tempe–Mesa, AZ PHX 2091,086 Albuquerque, NM ABQ 484,246
Houston, TX HOU, IAH, EFD 2012,626 Long Beach, CA LGB 475,782
Philadelphia, PA PHL 1470,151 New Orleans, LA MSY 462,269
San Diego, CA SAN 1263,756 Cleveland, OH CLE 458,684
San Antonio,TX SAT 1236,249 Sacramento, CA SMF 454,330
San Jose, CA SJC 904,522 Kansas City, MO MCI 444,387
Detroit, MI DTW 900,198 Atlanta, GA ATL 419,122
Denver–Aurora, CO DEN 848,678 Omaha, NE OMA 409,416
Indianapolis, IN IND 784,242 Oakland, CA OAK 397,976
Jacksonville, FL JAX 777,704 Tulsa, OK TUL 383,764
San Francisco, CA SFO 744,230 Miami, FL MIA 379,724
Columbus, OH CMH 730,008 Colorado Spr, CO COS 369,363
Austin, TX AUS 681,804 Wichita, KS ICT 353,823
Memphis, TN MEM 671,929 St Louis, MO STL 343,279
Minneapolis–St. Paul, MN MSP 650,906 Santa Ana, CA SNA 342,715
Baltimore, MD BWI 636,251 Raleigh–Durham, NC RDU 326,653
Charlotte, NC CLT 594,359 Pittsburg, PA PIT 322,450
El Paso, TX ELP 592,099 Tampa, FL TPA 321,772
Milwaukee, WI MKE 583,624 Cincinnati, OH CVG 314,154
Seattle, WA SEA 571,480 Ontario, CA ONT 288,384
Boston, MA BOS 569,165 Buffalo, NY BUF 282,864
Louisville, KY SDF 556,332 Lexington, KY LEX 266,358
Washington, DC DCA, IAD 553,523 Norfolk, VA ORF 236,587
Nashville, TN BNA 546,719
a Dallas–Arlington–Fort Worth–Plano, TX.
8,458,753. To construct our working sample, we have used the
DB1B dataset over the four quarters of 2004. We describe here the
criteria to construct ourworking sample, aswell as similarities and
differences with related studies that have used the same database.
(a) Definition of a market and a product. From the point of view of
airlines’ entry and exit decisions, amarket is a non-directional city-
pair. For the model of demand and price competition, a route is a
directional round-trip between anorigin city and adestination city.
These definitions are the same as in Berry (1992) and Berry et al.
(2006), among others, and similar to the ones used by Borenstein
(1989) or Ciliberto and Tamer (2009) with the only difference that
they consider airport-pairs instead of city-pairs.23

(b) Selection of markets. We started selecting the 75 largest
US cities in 2004 based on population estimates from the
Bureau of Statistics.24 For each city, we consider all the airports
which are classified as primary airports by the Federal Aviation
Administration. Some of the 75 cities belong to the same
metropolitan area and share the same airports. We group these
cities. Finally, we have 55 metropolitan areas (‘cities’) and 63
airports. Table 1 presents the list of ‘cities’ with their airports and
population.25 As measure of market size we use total population
in the cities of the origin and destination airports. The number of
possible city-pairs is M = (55 ∗ 54)/2 = 1485. Table 2 presents

23 In these models, selecting the city (versus the airport) as the geographic
unit for the definition of markets and products has its relative advantages and
limitations. Byusing cities,we implicitly assumeperfect substitution in demandand
supply between two routes with the same cities but different airports. In contrast,
using airports as geographic unit restricts, sometimes too much, the degree of
substitution between airports within the same city.
24 The Population Estimates Program of the US Bureau of Statistics produces
annually population estimates based upon the last decennial census and up-to-date
demographic information. We use the data from the category ‘‘Cities and towns’’.
25 Our selection criterion is similar to Berry (1992)who selects the 50 largest cities,
and uses city-pair as definition ofmarket. Ciliberto and Tamer (2009) select airport-
pairs within the 150 largest Metropolitan Statistical Areas. Borenstein (1989)
considers airport-pairs within the 200 largest airports.
Table 2
Ranking of city-pairs by number of passengers (round-trip, non-stop) in 2004.
Source: DB1B Database.

City pair Total

1 Chicago New York 1412,670
2 Los Angeles New York 1124,690
3 Atlanta New York 1100,530
4 Los Angeles Oakland 1080,100
5 Las Vegas Los Angeles 1030,170
6 Chicago Las Vegas 909,270
7 Las Vegas New York 806,230
8 Chicago Los Angeles 786,300
9 Dallas Houston 779,330

10 New York San Francisco 729,680
11 Boston New York 720,460
12 New York Tampa 713,380
13 Chicago Phoenix 706,950
14 New York Washington 680,580
15 Los Angeles Phoenix 648,510
16 Miami New York 637,850
17 Los Angeles Sacramento 575,520
18 Atlanta Chicago 570,500
19 Los Angeles San Jose 556,850
20 Dallas New York 555,420

the top 20 city-pairs by annual number of round-trip non-stop
passengers in 2004 according to DB1B.
(c) Airlines. Theremay bemore than one airline involved in a ticket.
The DB1B distinguishes three types of carriers: operating carrier,
ticketing carrier, and reporting carrier. The operating carrier is an
airlinewhose aircraft and flight crew are used in air transportation.
The ticketing carrier is the airline that issued the air ticket. And the
reporting carrier is the one that submits the ticket information to
the Office of Airline Information.26 In our dataset, more than 70%
of the tickets have the same airline as the operating, ticketing, and
reporting carrier. For the construction of our working sample, we

26 According to the directives of the Bureau of Transportation Statistics (Number
224 of the Accounting and Reporting Directives), the first operating carrier is
responsible for submitting the applicable survey data as reporting carrier.
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Table 3
Airlines ranking by #passengers and #city-pairs in 2004.

Airline (code) #Passengersa (in
thousands)

#City-pairsb
(maximum = 1485)

1 Southwest (WN) 25,026 373
2 American (AA)c 20,064 233
3 United (UA)d 15,851 199
4 Delta (DL)e 14,402 198
5 Continental (CO)f 10,084 142
6 Northwest (NW)g 9,517 183
7 US Airways (US) 7,515 150
8 America West (HP)h 6,745 113
9 Alaska (AS) 3,886 32

10 ATA (TZ) 2,608 33
11 JetBlue (B6) 2,458 22
12 Frontier (F9) 2,220 48
13 AirTran (FL) 2,090 35
14 Mesa (YV)i 1,554 88
15 Midwest (YX) 1,081 33
16 Trans States (AX) 541 29
17 Reno Air (QX) 528 15
18 Spirit (NK) 498 9
19 Sun Country (SY) 366 11
20 PSA (16) 84 27
21 Ryan International (RD) 78 2
22 Allegiant (G4) 67 3
a Annual number of passengers in 2004 for our selected markets.
b An airline is active in a city-pair if it has at least 20 passengers/week in non-stop

flights. This column refers to 2004-Q4.
c American (AA) + American Eagle (MQ) + Executive (OW).
d United (UA) + Air Wisconsin (ZW).
e Delta (DL) + Comair (OH) + Atlantic Southwest (EV).
f Continental (CO) + Expressjet (RU).
g Northwest (NW) + Mesaba (XJ).
h On 2005, America West merged with US Airways.
i Mesa (YV) + Freedom (F8).

use the reporting carrier to identify the airline and assume that
this carrier pays the cost of operating the flight and receives the
revenue for providing this service.

According to DB1B, there are 31 carriers operating in our
selected markets in 2004. However, not all these airlines can
be considered as independent because some of them belong
to the same corporation or have very exclusive code-sharing
agreements.27 We take this into account to aggregate these 31
carriers into 22 airlines that we treat as separate firms in our
analysis. Table 3 presents our list of 22 airlines. The footnotes in
that table explain how some of these airlines are a combination
of the original carriers. The table also reports for each airline the
annual number of passengers in 2004, and the number of city-
pairs with non-stop flights for our selected 55 cities. Southwest
is the company that flies more passengers (more than 25 million
passengers) and that serves more city-pairs with non-stop flights
(373 out of amaximumof 1485). American,United, andDelta follow
in the ranking, in this order, but they serve significantly fewer city-
pairs than Southwest.
(d) Selection of tickets. We apply several selection filters on tickets
in the DB1B database. We eliminate all those tickets with some of
the following characteristics: one-way tickets, and tickets that are
neither one-way nor round-trip; more than 6 coupons (a coupon
is equivalent to a segment or boarding pass); foreign carriers;
and tickets with fare credibility question by the Department of
Transportation.
(e)Definition of active carrier in a route-product.Weconsider that an
airline is active in a city-pair if during the quarter the airline has at
least 20 passengers per week (260 per quarter) in non-stop flights
for that city-pair.

27 Code sharing is a practice where a flight operated by an airline is jointly
marketed as a flight for one or more other airlines.
(f) Construction of quantity and price data. A ticket/record in the
DB1B database may correspond to more than one passenger. The
DB1B-Ticket dataset reports the number of passengers in a ticket.
Our quantitymeasure for product j at quarter t , qjt , is the number of
passengers in the DB1B survey at quarter t that corresponds to the
airline, route, and value of the non-stop flight indicator associated
to product j. The DB1B-Ticket dataset reports the total itinerary
fare. We construct the price variable pjt (measured in dollars-per-
passenger) as the ratio between the sum of fares from all those
tickets that belong to product j and the number of passengers qjt .
(g) Measure of the scale of operation (hub size) of an airline in a
city. For each city and airline, we construct two measures of the
scale of operation or hub-size of the airline in the city. The first
measure is the number of destinations that the airline connects
with this city using non-stop flights. This hub size measure is the
one included in the cost functions. The secondmeasure of hub size
follows Berry (1990) and Berry et al. (2006), and it is the sum of
the population in the cities that the airline connects with nonstop
flights from this city. The reason to weigh connections by city
population is that more populated cities are typically more valued
by consumers and therefore this hub measure takes into account
this higher willingness to pay.

(h) Airlines’ hubs.We define the first hubof airline i, denoted as h(1)
it ,

as the city with the largest number of non-stop connections in the
network of airline i, as represented by the vector xit . Similarly, we
define the k-th hubof airline i, denoted as h(k)

it , as the city with the
k-th largest number of non-stop connections in the network of that
airline.28

(i) ‘Hubbing’ concentration ratio. To measure the propensity of an
airline to use a hub-and-spoke network we use the following
’hubbing’ concentration ratio, CR(1). This ratio measures the degree
of concentration of non-stop flights of an airline in its first hub.
More specifically, CR(1)

it is the ratio between the number of non-
stop connections of airline i that include its first hub over the
total number of non-stop connections of the airline, i.e., CR(1)

it ≡

[
M

m=1 ximt1{h
(1)
i is in city-pair m}]/[

M
m=1 ximt ]. For a pure hub-

and-spoke network with a single hub, this concentration ratio is
equal to 1. At the other extreme, for a pure point-to-point network
connecting C cities, this ratio is equal to 2/C .29 Similarly, we
can define the ‘hubbing’ concentration ratio of order 2, CR(2), that
represents the ratio between the number of non-stop connections
in hubs 1 and 2 over the total number of non-stop connections
of the airline. For an airline with a network characterized by two
hubs-and-spokes, we have that CR(1) is greater or equal than 0.5
and lower than 1, and CR(2) is equal to one. In general, the larger
these concentrations ratios the stronger is the propensity of an
airline to concentrate its operation using hub-and-spoke networks.

Our working dataset for the estimation of the entry–exit game
is a balanced panel of 32,670 local managers (i.e., 22 airlines times
1485 city-pairs) and 3 quarters, which make 98,010 observations.
The dataset on prices and quantities for the estimation of demand
and variable costs is an unbalanced panel of 2970 routes, 22
airlines, and 4 quarters, and the number of observations is 85,497.

3.2. Descriptive statistics

Table 4 presents the first and second hubs of each airline in
2004, with their respective numbers of non-stop connections. We

28 In principle, the ranking of hubs of an airline can change over time. However,
during our sample period, all the airlines have maintained their first and second
hubs.
29 The total number of non-stop connections in a point-to-point network with C
cities is 1+2+3+· · ·+(C−1) = C(C−1)/2. The number of non-stop connections
for any city is C − 1. Therefore, CR(1)

= (C − 1)/[C(C − 1)/2] = 2/C .
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Table 4
Airlines, their hubs, and ‘hubbing’ concentration ratios.

Airline (code) Name and hub size Concentration Name and hub size Concentration
1st largest huba ratio (%) CR-1 2nd largest huba ratio (%) CR-2

1 Southwest (WN) Las Vegas (35) 9.3 Phoenix (33) 18.2
2 American (AA) Dallas (52) 22.3 Chicago (46) 42.0
3 United (UA) Chicago (50) 25.1 Denver (41) 45.7
4 Delta (DL) Atlanta (53) 26.7 Cincinnati (42) 48.0
5 Continental (CO) Houston (52) 36.6 New York (45) 68.3
6 Northwest (NW) Minneapolis (47) 25.6 Detroit (43) 49.2
7 US Airways (US) Charlotte (35) 23.3 Philadelphia (33) 45.3
8 America West (HP) Phoenix (40) 35.4 Las Vegas (28) 60.2
9 Alaska (AS) Seattle (18) 56.2 Portland (10) 87.5

10 ATA (TZ) Chicago (16) 48.4 Indianapolis (6) 66.6
11 JetBlue (B6) New York (13) 59.0 Long Beach (4) 77.3
12 Frontier (F9) Denver (27) 56.2 Los Angeles (5) 66.6
13 AirTran (FL) Atlanta (24) 68.5 Dallas (4) 80.0
14 Mesa (YV) Phoenix (19) 21.6 Washington DC(14) 37.5
15 Midwest (YX) Milwaukee (24) 72.7 Kansas City (7) 93.9
16 Trans States (AX) St Louis (18) 62.0 Pittsburgh (7) 93.9
17 Reno Air (QX) Portland (8) 53.3 Denver (7) 100.0
18 Spirit (NK) Detroit (5) 55.5 Chicago (2) 77.7
19 Sun Country (SY) Minneapolis (11) 100.0 (0) 100.0
20 PSA (16) Charlotte (8) 29.6 Philadelphia (5) 48.1
21 Ryan Intl. (RD) Atlanta (2) 100.0 (0) 100.0
22 Allegiant (G4) Las Vegas (3) 100.0 (0) 100.0
a The hub-size of a city is the number of non-stop connections of the airline from that city.
also report the hubbing concentration ratiosof order 1 and 2. Pure
single hub-and-spoke networks are rare, and they are observed
only in small carriers.30 Southwest, the leader in number of
passengers and non-stop connections, has hubbing concentration
ratios (9.3% and 18.2%) that are significantly smaller than those
of any other airline, and very close to those of a pure point-to-
point network. Among the largest carriers, the ones with largest
hub-and-spoke ratios are Continental (36.6% and 68.3%), Delta
(26.7% and 48.0%), and Northwest (25.6% and 49.2%). The largest
airlines’ hubs are Delta at Atlanta with 53 connections (out of 54),
Continental at Houston with 52, and American at Dallas also with
52 connections.

Fig. 1 presents curves with the hubbing concentration ratios
of order 1–20 for three large carriers: Southwest, American, and
Continental. These curves provide a closer look at the degree of
concentration of the number of connections of an airline. The three
airlines present very different degrees of hubbing. Continental can
be described as a combination of 5 hubs that account for all the
connections of this airline. In contrast, we need 10 hubs and 20
hubs to account for all the connections of American and Southwest,
respectively.

Table 5 presents different statistics that describe market
structure and its dynamics. The first panel (panel 5.1) presents
the distribution of the 1485 city-pairs by the number of airlines
with non-stop flights. More than one-third of these city-pairs do
not have direct (non-stop) flights. Typically, these are pairs of
small cities which are far away of each other (e.g., Tulsa, OK and
Ontario, CA). Almost one-third of the city-pairs have only one
airline providing non-stop service, and approximately 17% of the
city pairs have two airlines. The average number of airlines with
non-stop flights permarket is only 1.4. Therefore, from the point of
view of non-stop services, these markets are highly concentrated.
This pattern is also illustrated by the value of the Herfindahl
index in panel 5.2. Panel 5.3 presents the number of ‘‘monopoly’’

30 The only carriers with pure hub-and-spoke networks are Sun Country at
Minneapolis (11 connections), Ryan at Atlanta (2 connections), and Allegiant at Las
Vegas (3 connections).
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Fig. 1. Curves with hubbing concentration ratios of order 1–20.

markets for the largest carriers.31 Southwest, with approximately
150 city-pairs, accounts for a large portion of monopoly markets,
followed by Northwest and Delta with approximately 65 and 58
monopoly markets, respectively. Note that Delta and Northwest
are only 4th and 6th, respectively, in the ranking of number of
passengers and number of city-pairs, but they are 2nd and 3rd in
the ranking of monopoly markets, far away of American or United
that have monopolies in only 28 and 17 city-pairs, respectively.
One of our goals in the estimation of our structural model is to
explain these significant differences in airlines’ ability to avoid
direct competition.

Panels 5.4 and 5.5 present the distribution of city-pairs by
number of new entrants and by number of exits, respectively.
It is interesting that, even with the quarterly frequency of our
data, there is substantial amount of entry and exit in these city-
pairs. The average number of entrants per city-pair-quarter is 0.17

31 These airlines are not really monopolies in the routes between these city-
pairs because they may be competing with other airlines that provide stop flights.
However, given that stop and non-stop flights are not perfect substitutes, these
measures of market structure are relevant and potentially related to firms’ profits.
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Table 5
Descriptive statistics of market structure of 1485 city-pairs (markets). Period 2004-Q1–2004-Q4.

2004-Q1 2004-Q2 2004-Q3 2004-Q4 All quarters

(5.1) Distribution of city-pairs by # of airlines with non-stop flights

City-pairs with 0 airlines 35.79% 35.12% 35.72% 35.12% 35.44%
City-pairs with 1 airline 30.11% 29.09% 28.76% 28.28% 29.06%
City-pairs with 2 airlines 17.46% 16.71% 17.52% 18.06% 17.44%
City-pairs with 3 airlines 9.20% 10.83% 9.47% 9.88% 9.84%
City-pairs with 4 or more airlines 7.43% 8.25% 8.53% 8.67% 8.22%

(5.2) Herfindahl index

Herfindahl index (median) 5344 5386 5286 5317 5338

(5.3) Number of ‘‘monopoly’’ markets by airline

Southwest 146 153 149 157
Northwest 65 63 67 69
Delta 58 57 57 56
American 31 34 33 28
Continental 31 26 28 24
United 21 14 13 17

(5.4) Distribution of city-pairs by number of new entrants

City-pairs with 0 entrants – 82.61% 86.60% 84.78% 84.66%
City-pairs with 1 entrant – 14.48% 12.31% 13.33% 13.37%
City-pairs with 2 entrants – 2.44% 0.95% 1.69% 1.69%
City-pairs with 3 entrants – 0.47% 0.14% 0.20% 0.27%

(5.5) distribution of city-pairs by number of exits

City-pairs with 0 exits – 87.89% 85.12% 86.54% 86.51%
City-pairs with 1 exit – 10.55% 13.13% 11.77% 11.82%
City-pairs with 2 exits – 1.35% 1.56% 1.15% 1.35%
City-pairs with more 3 or 4 exits – 0.21% 0.21% 0.54% 0.32%
and the average number of exits is 0.12. As shown in Section 4,
this significant turnover provides useful information to identify
separately fixed costs and entry costs parameters.

Table 6 presents the transition matrix for the number of active
(non-stop) airlines in a city-pair. We only report the transition
matrix from the second to the third quarter of 2004, as the
transition matrices for the other quarters are very similar. There
is significant persistence inmarket structure, especially inmarkets
with zero incumbents or inmonopolymarkets. Nevertheless, there
is a non-negligible amount of transition dynamics.

4. Estimation of the structural model

Our approach to estimate the structural model proceeds in
three steps. First, we estimate the parameters in the demand
system using information on prices, quantities and product
characteristics. In a second step, we estimate the parameters in
the marginal cost function using the Nash–Bertrand equilibrium
conditions. Given these estimates of variable profits, we estimate
the parameters in fixed costs and entry costs using the dynamic
game of network competition.

4.1. Estimation of the demand system

The demand model can be represented using the linear-in-
parameters system of equations:

ln

sjt


− ln (s0t) = Wjtα +


−1
σ1


pjt

+


1 −

σ2

σ1


ln


s∗jt


+ ξ

(3)
jt (22)

where Wjt is a vector of regressors that, according to our demand
model in Eq. (4), includes a dummy for nonstop-flight, hub-
size variables, route distance, airline dummies, and city dummies
interacted with time dummies. An important econometric issue
in the estimation of this demand system is the endogeneity of
prices and conditional market shares ln


s∗jt


. In equilibrium, prices

depend on product characteristics (observable and unobservable).
Therefore, the regressor pjt is correlated with the error term
ξ

(3)
jt . For the same reason, the regressor ln


s∗jt


is also correlated

with ξ
(3)
jt . In our model, there is another potential problem of

endogeneity in the estimation of this demand system. Hub-size
variables HUBO

irt and HUBD
irt (included in the vector Wjt ) depend on

the airline’s entry–exit decisions at city-pairs that share either the
origin city or the destination city of the route in product j. And
these entry–exit decisions depend on unobserved demand shocks
ξ (3) at many different routes, included the shock ξ (3) of product j.
Therefore, hub-size variablesHUBO

irt andHUBD
irt maybe endogenous

regressors in our demand system.
We start the description of our approach for the estimation

of demand by providing sufficient conditions for independence
between the contemporaneous values of hub-size variables and
the error term. The following assumption, together with the
assumption of time-to-build in airlines’ entry decisions, implies
this independence.32

Assumption ID-ξ . Product-specific demand shocks {ξ
(3)
jt } are

independently distributed over time.

Assumption ID-ξ establishes that after controlling for airline fixed
effects {ξ

(2)
i } and for city-dummies interacted with time-dummies

{ξ
(2)
ct }, the remaining error term or unobserved demand of a

product does not have any dependence over time. Remember that
we have also assumed that an airline’s network at quarter t (that
determines the value of hub-size variables HUBO

irt and HUBD
irt ) is

chosen at quarter t − 1, before demand shocks at quarter t are

32 Sweeting (2011) considers a similar identifying assumption in the estimation
of a demand system of radio listeners in the context of a dynamic oligopoly model
of the commercial radio industry.
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Table 6
Transition probability matrix of market structure (quarter 2–3)a .

# Airlines in Q2 # Airlines in Q3 Total # city-pairs
0 1 2 3 4 >4

0 93.8% 5.8% 0.4% – – – 516 (100%)
1 9.1% 79.5% 11.2% 0.2% – – 430 (100%)
2 0.8% 19.9% 68.4% 10.1% 0.8% – 247 (100%)
3 0.2% 3.8% 20.2% 52.3% 19.2% 4.3% 160 (100%)
4 – 1.6% 6.4% 31.7% 46.0% 14.3% 63 (100%)
>4 – – – 5.1% 33.9% 61.0% 59 (100%)

Total # city-pairs 525 425 259 140 73 53 1475
a An entry in this matrix, say entry for row r and column c , represents the frequency ratio between the number of city-pairs with r incumbents in quarter Q2 and c in

quarter Q3 and the total number of city-pairs with r incumbents in quarter Q2, i.e., # city-pairs with r incumbents in quarter Q2 and c incumbents in quarter Q3
# city-pairs with r incumbents in quarter Q2 .
Table 7
Demand estimation. Data: 85,497 observations. 2004-Q1 to 2004-Q4.

Variable OLS IV
Estimate (S.E.) Estimate (S.E.)

FARE (in $100) [Parameter −1
σ1

] −0.329 (0.085) −1.366 (0.110)
[Implied estimate of σ1 (in $100)] 3.039 (0.785) 0.732 (0.059)

ln(s∗) [Parameter 1 −
σ2
σ1

] 0.488 (0.093) 0.634 (0.115)
[Implied estimate of σ2 (in $100)] 1.557 (0.460) 0.268 (0.034)

Non-stop dummy 1.217 (0.058) 2.080 (0.084)

Hub size-origin (in million people) 0.032 (0.005) 0.027 (0.006)

Hub size-destination (in million people) 0.041 (0.005) 0.036 (0.006)

Distance (in thousand miles) 0.098 (0.011) 0.228 (0.017)

Airline dummies YES YES
City dummies × time dummies YES YES
Test of residual serial correlation
m1 ∼ N(0, 1) (p-value) 0.303 (0.762) 0.510 (0.610)

Note: All the estimations include airline dummies, and city dummies × time dummies. Standard errors in parentheses. Standard errors are robust of heteroscedasticity and
serial correlation.
known. This time-to-build assumption together with assumption
ID-ξ implies that regressors HUBO

irt and HUBD
irt are independent of

the error term ξ
(3)
jt . Note that Assumption ID-ξ is testable using our

model and data. Given residuals {ξ̂
(3)
jt } from the GMMestimation of

the demand system, we can construct a statistic of residual serial
correlation that can be used to test Assumption ID-ξ as a null
hypothesis.

Assumption ID-ξ has another important implication in the
estimation of the demand system. Following the seminal work by
Berry (1994) and Berry et al. (1995), the most common method
for the estimation of demand of differentiated products is a GMM
where the instrumental variables for Eq. (22) are the exogenous
observable characteristics of the other products in the same route.
In our model, these observable product characteristics are the
hub-sizes and the non-stop-flight dummies of the other products
competing in the same route. Assumption ID-ξ implies that the
hub-sizes of other airlines at quarter t (that are determined in
quarter t − 1) are independent of the demand shock ξ

(3)
jt and are

valid instruments for price pjt and market share ln

s∗jt


.

Table 7 presents our estimates of the demand system. Our set of
instrumental variables consists of: the average value of hub-sizes
of all the other carriers active in the route; the average value of
hub-sizes of all the legacy carriers active in the route; the average
value of the non-stop dummy for all the other carriers in the route;
and the dummy for the presence of Southwest. Standard errors are
robust of heteroscedasticity and serial correlation. To illustrate the
endogeneity problem, we report both OLS and IV estimates. The
IV estimate of the coefficient for the FARE variable is significantly
smaller than the OLS estimate. This result is consistent with the
endogeneity of prices in the OLS estimation. The test of first order
serial correlation of the residuals cannot reject the null hypothesis
of no serial correlation. This result supports Assumption ID-ξ and
the exogeneity of the hub-size variables.

We can obtain dollar amount estimates of the willingness-to-
pay for different product characteristics by dividing the coefficient
of a product characteristic by the coefficient of the FARE variable.
We find that the willingness-to-pay for a non-stop flight is $152
more than for a stop-flight. The estimated effects of the hub-
size variables seem also plausible. Expanding the hub-size in the
origin airport in one million people would increase consumers
willingness to pay in $1.97. The same increase in hub-size at the
destination airport raises consumer willingness to pay by $2.63.
Finally, longer distance makes consumer more inclined to use
airplane transportation than other transportation modes.

4.2. Estimation of variable costs

Given our estimates of demand parameters and the Nash–
Bertrand equilibrium condition for prices, we can obtain estimates
ofmarginal costs as ĉjt = pjt−σ̂1(1−s̄jt)−1.We use these estimates
of marginal costs as the dependent variable in the regression
equation for the estimation of the marginal cost function in (6).
This regression equation is ĉjt = Wjt δ + ω

(3)
jt , where the vector of

regressors Wjt has the same definition as in the demand equation
above, except that now the hub size variables are measured in
number of connections and not in terms of population in the
connected cities.

For the same reason as in the estimation of demand, the hub-
size variables included in Wjt are potentially correlated with the
error term in the marginal cost equation, ω

(3)
jt . We consider a

similar identification assumption as in the estimation of demand.
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Table 8
Marginal cost estimation. Data: 85,497 observations. 2004-Q1–2004-Q4. Dep.
variable: marginal cost estimate (in $100).

Variable Estimate (S.E.)

Non-stop dummy 0.006 (0.010)
Hub size-origin (in # connections) −0.023 (0.009)
Hub size-destination (in # connections) −0.016 (0.009)

Distance (in thousand miles) 5.355 (0.015)

Airline dummies YES
City dummies × time dummies YES
Test of residual serial correlation
m1 ∼ N(0, 1) (p-value) 0.761 (0.446)

Note: All the estimations include airline dummies and city dummies × time
dummies. Standard errors, in parentheses, are robust of heteroscedasticity and
serial correlation.

Assumption ID-ω. Product-specific shocks in marginal cost
{ω

(3)
jt } are independently distributed over time.

Assumption ID-ω, together with the time-to-build assumption
in airlines’ choice of network, implies that hub-size variables
are exogenous regressors in the marginal cost function. Under
this assumption, the vector of parameters δ can be estimated
consistently by OLS.

Table 8 presents OLS estimates of the marginal cost function.
Standard errors are robust of heteroscedasticity and serial
correlation. We cannot reject the null hypothesis of no serial
correlation in the residuals of the marginal cost equation. As for
the values of the estimated parameters, ‘Distance’ between the
origin and destination cities is the explanatory variable with the
strongest and most significant effect. An increase of distance by
100 miles implies that the marginal cost per passenger goes up by
$53.4. Ceteris paribus, the marginal cost of a non-stop flight is $12
larger than the marginal cost of a stop-flight, but this difference is
not statistically significant. The airline scale of operation (or hub-
size) at the origin and destination airports reduces marginal costs.
However, this effect is small. An increase of one connection in
the hub-size of the origin airport (destination airport) reduces
marginal cost (per passenger) by $2.3 ($1.6).

4.3. Estimation of the dynamic game

4.3.1. Estimators
For the asymptotics of the estimators in our application, we

assume that the number ofmarkets or city-pairsM goes to infinity,
and the number of airlines N and time periods T are fixed.33 For
notational simplicity, we use θ to represent θσε . For arbitrary
values of θ and P, define the likelihood function:

Q (θ, P) ≡


m,i,t

aimt lnΛ
z P

im(wimt)θ +ePim(wimt)


+ (1 − aimt) lnΛ

−z P

im(wimt)θ −ePim(wimt)

. (23)

For given P, this is the log-likelihood function of a standard logit
model where the parameter of one of the explanatory variables

33 The number of city-pairsM is equal to C(C −1)where C is the number of cities.
Therefore, when we assume thatM → ∞we are also assuming that the number of
cities goes to infinity. Our specification of demand and cost functions include city
fixed effects. Therefore, apparentlywemay have an incidental parameters problem,
i.e., the number of parameters of themodel increases with sample sizeM . However,
note that the number of city fixed-effect parameters per observation is C

M =
1

C−1 ,
that goes to zero as C → ∞. That is, to estimate the fixed effect of a city, we can
average observations over all the other cities such that we can apply standard law
of large numbers and central limit theorems to prove consistency and asymptotic
normality of fixed-effect estimators.
(i.e., the parameter associated toePim(wimt)) is restricted to be one.
Let θ0 be the true value of θ in the population, and let P0 be the
true equilibrium in the population. The vector P0 is an equilibrium
associated with θ0: i.e., in vector form, P0 = Ψ (θ0, P0). A two-
step estimator of θ is defined as a pair (θ̂, P̂) such that P̂ is a
nonparametric consistent estimator of P0 and θ̂ maximizes the
pseudo likelihood Q (θ, P̂). The main advantage of this estimator is
its simplicity. Given P̂ and the constructed variablesz P̂

im(wimt) andeP̂im(wimt), the vector of parameters θ0 is estimated using a standard
logit model.

The two-step method has two important limitations that are
relevant in our application. First, for the consistency of this
method, the initial nonparametric estimator of P0 should be
consistent. However, consistent nonparametric estimation of P0
may not be possible in dynamic models with serially correlated or
time invariant unobserved heterogeneity. That is the case in this
empirical application. Our model allows for time-invariant airline
and city heterogeneity in costs. Given our parametric specification
of the profit function, where airline and city fixed-effects enter in
an additively separable form, we can estimate airline and city fixed
effects consistently in our parametric model by simply including
airline dummies and city dummies in the vector of explanatory
variables zimt . However, the nonparametric specification of P0
does not take into account this structure of the profit function.
In the nonparametric estimation, every local manager (i,m) has
its own unrestricted CCP function Pim(w). Since we only have 3
quarters/observations for each local manager, it is obvious that
we cannot claim to have consistent nonparametric estimates of
the CCP functions Pim(·). Therefore, the two-step estimator of θ0
is inconsistent. Second, even if the model did not have unobserved
heterogeneity and we could have a nonparametric estimator of P0,
this estimator would be very imprecise, and this noisy estimation
of CCPs implies large biases in the two-step estimator of the
structural parameters.

The Nested Pseudo Likelihood (NPL) estimator (Aguirregabiria
and Mira, 2007) deals with these limitations of the two-step
method. The NPL mapping ϕ(·) is the composition of the
equilibrium or best response mapping Ψ (θ, P) and the mapping
that provides the pseudo maximum likelihood estimator of θ for a
given arbitrary vector of CCPsP. That is, theNPLmapping is defined
as ϕ(P) ≡ Ψ


θ̂ (P), P


where θ̂ (P) ≡ argmaxθ Q (θ, P). An NPL

fixed point is a vector of probabilities P̂ that solves the fixed point
problem P̂ = ϕ(P̂). We can also define an NPL fixed point as a pair
(θ̂, P̂) that satisfies the following two conditions: (a) θ̂ maximizes
the pseudo likelihood Q (θ, P̂) given P̂; and (b) P̂ is an equilibrium
associated to θ̂. The NPL estimator is defined as the NPL fixed
point with the maximum value of the pseudo likelihood function.
This estimator is consistent under standard regularity conditions
(Aguirregabiria and Mira, 2007, Proposition 2), and it does not rely
on the existence of an initial consistent nonparametric estimator
of CCPs.

To compute theNPL fixed pointwe can use successive iterations
in the NPL mapping ϕ(·). That is, we can generate a sequence
of vectors {θ̂

K
, P̂K : K ≥ 1} such that: (a) P̂0 is an initial vector

of CCPs, and it is not necessarily a consistent estimator of P0;
(b) at every iteration K ≥ 1, we update θ using the pseudo
maximum likelihood θ̂

K
= θ̂ (P̂K−1) ≡ argmaxθ∈Θ Q (θ, P̂K−1);

and (c) at every iteration K ≥ 1, we update P using the NPL
iteration P̂K

= ϕ(P̂K−1) ≡ Ψ


θ̂
K
, P̂K−1


. This algorithm, upon

convergence, finds an NPL fixed point. In case there are multiple
NPL fixed points, the researcher needs to start the NPL algorithm
from different CCP’s and selects the fixed point with the largest



V. Aguirregabiria, C.-Y. Ho / Journal of Econometrics 168 (2012) 156–173 169
value of the likelihood function. This situation is similar to using a
gradient algorithm, designed to find a local root, in order to obtain
an estimatorwhich is defined as a global root. Of course, this global
search aspect of themethodmakes it significantlymore costly than
just finding one NPL fixed point. Note, however, that this global
search can be parallelized in a computer with multiple processors.
Finally, it is also important to note that this algorithm finds the
consistent estimator only if the equilibrium that generates the
data is Lyapunov stable such that the NPL mapping ϕ(·) is also
Lyapunov stable around the true equilibrium in the population. See
Kasahara and Shimotsu (2009) and Aguirregabiria andNevo (2010)
for discussions of this issue.

To initialize the NPL iterations, we use a vector of CCPs
P̂0

= {P̂0
im(w): for every local manager (i,m)and every state w}

that comes from the estimation of a reduced form logit model
where the set of explanatory variables includes airline dummies,
city dummies, and a third order polynomial in wimt . To check
the sensitivity of the NPL fixed point to this initial value for
CCPs, we also calculate NPL fixed points starting with alternative
initial values. The alternative initial CCPs are chosen as P̂0

im(w) =

P̂ logit
im (w)1−λ Uim(w)λ, where P̂ logit

im (w) represents the estimated
probabilities from the reduced form logit model, λ ∈ (0, 1) is a
parameter that represents the magnitude of the perturbation, and
Uim(w) is an iid over (i,m,w) random draw from a Uniform (0,1)
distribution.34

4.3.2. Estimation results
Table 9 presents our estimation results for the dynamic game

of network competition. The quarterly discount factor, β , is fixed
at 0.99 (that implies an annual discount factor of 0.96). All the
estimated parameters are measured in thousands of dollars. As
explained above, the estimated model includes airlines and city
fixed effects both in the fixed cost and in the entry cost. We
report the average value of estimated fixed costs and entry costs,
averaged over all the local managers, as well as the effects of
hub-size and distance on these costs. The average estimated fixed
cost is $119,000, that represents 75% of the median value of
quarterly variable profit in the non-stop routes of a city-pair (that is
approximately $159,000 in our sample). This high value of the ratio
between fixed costs and variable profits shows very substantial
economies of scale in the airline industry. Fixed costs increase
significantlywith distance between the two cities: they increase by
$4.64 per mile. Hub-size has also a significant effect on fixed costs.
A unit increase in hub-size (i.e., an additional city with a non-stop
connection) implies a $1020 reduction in fixed costs, which seems
a non-negligible cost reduction. The average estimated entry
cost is $298,000, that represents 250% of the average estimated
(quarterly) fixed cost, 187% of the median variable profit, and 7.5
times the (quarterly) median operating profit (i.e., variable profit
minus fixed cost). Therefore, for the average local manager, it
takes almost two years of profits (7.5 quarters) to amortize the
initial investment or entry cost. These entry costs do not depend
significantly on flown distance. However, the effect of hub-size is

34 For our estimation of the dynamic game, we have used a machine with twelve
3.33 GHz Intel Xeon processors, and code written in GAUSS language version
10. Most of the CPU time of an iteration in the NPL mapping comes from the
computation of the present values {z P

imt } for each of the local managers. The
calculation of these present values for a single local-manager took only 0.8 s.
Without using parallel (multi-thread) programming, that calculation for all the local
managers took more than 5 h. However, the calculation of these present values can
be performed separately (in parallel) over local managers. In this context, parallel
computing yields very substantial savings of CPU time. Exploiting multi-thread
programming in GAUSS reduced CPU time of one NPL iteration frommore than 5 h
to less than 1 h. The total waiting time to calculate an NPL fixed point was always
lower than 20 h.
Table 9
Estimation of dynamic game of entry–exita . Data: 32,670 local managers × 3
quarters = 98,010 observations.

Estimates (in thousand $)
(Std. error)

Fixed costs (quarterly):
Average value of fixed costb 119.156
(in thousand dollars) (5.233)
γ FC
2 : effect of hub-size on fixed cost −1.022

(in thousand dollars per non-stop connection) (0.185)
γ FC
3 : effect of distance on fixed cost 4.046

(in thousand dollars per thousand miles) (0.319)

Entry costs:
Average value of entry costb 249.561
(in thousand dollars) (6.504)
ηFC
2 : effect of hub-size on entry cost −9.260

(in thousand dollars per non-stop connection) (0.140)
ηFC
3 : effect of distance on entry cost 0.008

(in thousand dollars per thousand miles) (0.007)

σε: standard deviation error term 8.402
(1.385)

β: discount factor (fixed) 0.99

Pseudo R-square 0.231
a All the estimations include airline dummies, and city dummies.
b Let FC imt be the estimated fixed cost for local manager (i,m) at quarter t .

According to our specification, FC imt = γ̂
FC
1 +γ̂

FC
2 HUBimt +γ̂

FC
3 DISTm + γ̂ FC

4i + γ̂
FC
5c .

The average value of estimated fixed cost is (MNT )−1 
i,m,t

FC imt . Similarly, the
average estimated entry cost is (MNT )−1 

i,m,t
EC imt , where EC imt is the estimated

entry cost for local manager (i,m) at quarter t .

very important. A unit increase in hub-size implies a reduction
of entry costs of more than $9,260. To have a better idea of the
magnitude of this effect, note that an airline with the minimum
hub-size in the city-pair (i.e., zero non-stop connections in the two
cities) has to pay an entry cost of $536,000, while an airline with
themaximumhub-size in the sample (i.e., 53 non-stop connections
in each city) pays only $45,000.

We have included airline and city fixed-effects in all our
estimations. Therefore, it seems plausible to claim that the
effects that we have estimated do not capture spuriously the
effects of unobserved heterogeneity in airline characteristics that
is invariant across markets and over time, or unobserved city
characteristics (e.g., better infrastructure and labor supply). The
type of omitted variables that might introduce biases in our
estimation results should have join variation over airlines and city-
pairs.

Using the estimated model, we have generated predictions
for several statistics that describe market structure. Table 10
reports predicted and actual values of the statistics.35 Overall,
the estimated model performs reasonably well. However, there
are some biases in the predictions. The model over-predicts
the proportion of markets with 1 and 2 incumbents, and it
under-predicts the proportion of markets without incumbents.
Interestingly, the model under-predicts the proportion of markets
where Southwest is a monopolist. According to our estimates,
Southwest has lower costs than any other airline, and this airline
can make positive profits in many markets where the rest of the
airlines would have losses. Despite this finding, our estimated
model fails to explain why Southwest is the only airline that
operates non-stop flights inmanymarkets. It seems that ourmodel

35 To obtain the predicted statistics, we have generated simulations of the
entry–exit decision variables {aimt } using the estimated CCPs evaluated at the actual
values of the vector of state variables in the sample {wimt }. Then, we have average
these simulated values of {aimt } over the Monte Carlo simulations and over the
sample.
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Table 10
Comparison of predicted and actual statistics of market structure of 1485 city-pairs. Period 2004-Q1–2004-Q4.

Actual Predicted
(Avg. all quarters) (Avg. all quarters)

Herfindahl index (median) 5338 4955

Distribution of city-pairs Markets with 0 airlines 35.4% 29.3%
by number of airlines Markets with 1 airline 29.1% 32.2%
with non-stop flights Markets with 2 airlines 17.4% 24.2%

Markets with 3 airlines 9.8% 8.0%
Markets with ≥4 airlines 8.2% 6.2%

Number (%) of ‘Monopoly’ Southwest 151 (43.4%) 149 (38.8%)
City-pairs for top 6 airlines Northwest 66 (18.9%) 81 (21.1%)

Delta 57 (16.4%) 75 (19.5%)
American 31 (8.9%) 28 (7.3%)
Continental 27 (7.7%) 27 (7.0%)
United 16 (4.6%) 24 (6.2%)

Distribution of city-pairs Markets with 0 entrants 84.7% 81.9%
by number of new entrants Markets with 1 entrant 13.4% 16.3%

Markets with 2 entrants 1.7% 1.6%
Markets with ≥3 entrants 0.3% 0.0%

Distribution of city-pairs Markets with 0 exits 86.5% 82.9%
by number of exits Markets with 1 exit 11.8% 14.6%

Markets with 2 exits 1.4% 1.4%
Markets with ≥3 exits 0.3% 0.0%
misses some aspects of the higher profitability associated with
this airline company. Finally, the model fits reasonably well the
distributions of the number of exits and entries, with just a small
over-prediction of the amount of market turnover.

5. Disentangling demand, cost and strategic factors

We use our estimated model to measure the contribution of
demand, cost and strategic factors to explain airlines’ propensity
to operate using hub-and-spoke networks. We measure how
different parameters of the model contribute to explain the
hubbing concentration ratiosthat we have defined in Section 3.1.
The main parameters of interest are the ones that measure the
effects of hub-size on demand (α2 and α3), variable costs (δ2 and
δ3), fixed costs (γ FC

2 ), and entry costs (ηEC
2 ). We implement four

experiments. In experiments 1–3, we shut down hub-size effects
in variable profits (experiment 1), fixed costs (experiment 2),
and entry costs (experiment 3).36 In experiment 4 we want to
measure the contribution of the entry deterrence motive. The
entry deterrence argument that we study in this paper is based
on the complementarity of the total variable profit function of
a hub-and-spoke airline with respect to the airline’s entry–exit
decisions at two city-pairs. Therefore, in experiment 4,we consider
a counterfactual model where the local manager of a city-pair AB
is only concerned with profits from non-stop routes AB and BA
but not with profits from other (one-stop) routes that contain AB
or BA as a segment. Under this scenario, local managers do not
internalize the complementarity between profits at different local
markets, and the entry deterrence motive is not present.37

36 The description of these experiments in terms of the counterfactual values of
structural parameters is the following: in experiment 1, α2 = α3 = δ2 = δ3 = 0;
in experiment 2, γ FC

2 = 0; and in experiment 3, ηEC
2 = 0.

37 To illustrate this point, suppose an industry with three cities (A, B, and C) and
consider the decision problem of the local manager of an airline at city-pair AB. The
total variable profit of this local manager is R∗

AB = xAB(Rns
AB + Rns

BA) + (xABxAC ) (Rs
AC +

Rs
CA) + (xABxBC ) (Rs

AB + Rs
BC ), where Rns

r and Rs
r represent variable profits in route r

for non-stop and stop flights, respectively. If (Rs
AC + Rs

CA) > 0, this profit function
is supermodular with respect to the airline’s entry decisions at city-pairs AB and
AC . Similarly, if (Rs

AB + Rs
BC ) > 0, the profit function is supermodular with respect

to entry decisions at city-pairs AB and BC . In our counterfactual experiment 4,
we shut down this complementarity and assume that this local manager is only
concerned with profits from routes AB and BA, such that its variable profit is R∗

AB =

xAB (Rns
AB + Rns

BA).
When implementing these counterfactual experiments, we
should deal with multiplicity of equilibria in the counterfactual
specification of the model. Here we implement an approach to
deal with this problem proposed in Aguirregabiria (in press).
The main advantages of this approach are its simplicity and its
minimum assumptions on the equilibrium selection mechanism.
An equilibrium associated with θ is a vector of choice probabilities
P that solves the fixed point problem P = Ψ (θ, P). For a
given value θ, the model may have multiple equilibria. The model
can be completed with an equilibrium selection mechanism. This
mechanism can be represented as a function that, for given θ,
selects one equilibriumwithin the set of equilibria associated with
θ. We use π(θ) to represent this (unique) selected equilibrium.
Our key assumption is that π(θ) is a smooth function of θ
in a neighborhood of our estimated value of this vector of
parameters. In other words, we assume that the equilibrium
selection mechanism does not ‘‘jump’’ between different types
of equilibrium when we move along the space of the structural
parameters.

Let θ0 be the true value of θ in the population under study.
Suppose that the data come from a unique equilibrium associated
with θ0. Let P0 be the equilibrium in the population. By definition,
P0 is such that P0 = Ψ (θ0, P0) and P0 = π(θ0). Let (θ̂0, P̂0)

be our consistent estimates of (θ0, P0).38 Let θ∗ be the vector of
parameters under a counterfactual scenario. We want to obtain
airlines’ equilibrium choice probabilities under θ∗. That is, we
want to know the counterfactual equilibrium π(θ∗). The key issue
to implement this experiment is that given θ∗ the model has
multiple equilibria, and we do not know the function π. Given our
assumptions, the mapping Ψ (θ, P) is continuously differentiable
in (θ, P). Our approach requires also the following assumption.

Assumption PRED. The equilibrium selection mechanism π(θ) is
a continuously differentiable function of θ around θ̂0.

Under this assumption, we can use a first order Taylor
expansion to obtain an approximation to the counterfactual

38 Note that we do not know the function π(θ). All what we know is that the point
(θ̂0, P̂0) belongs to the graph of this function π.



V. Aguirregabiria, C.-Y. Ho / Journal of Econometrics 168 (2012) 156–173 171
choice probabilities π(θ∗) around our estimator θ̂0. This Taylor
approximation implies that:

π(θ∗) = π(θ̂0) +
∂π(θ̂0)

∂θ′
(θ∗

− θ̂0) + O(∥ θ∗
− θ̂0 ∥

2). (24)

We do not know the function π and, apparently, we do not know
the Jacobianmatrix ∂π(θ̂0)/∂θ′ that is necessary to implement the
Taylor approximation. However, the equilibrium condition can be
used to obtain this Jacobian matrix. We know that π(θ̂0) = P̂0 and
that π(θ̂0) = Ψ


θ̂0, π(θ̂0)


. Differentiating this last expression

with respect to θ and solving for ∂π(θ̂0)/∂θ′, we can represent this
Jacobian matrix in terms of Jacobians of Ψ (θ, P) evaluated at the
estimated values (θ̂0, P̂0). That is,

∂π(θ̂0)

∂θ′
=

I −
∂Ψ


θ̂0, P̂0


∂P′

−1
∂Ψ


θ̂0, P̂0


∂θ′

. (25)

Solving expression (25) into (24), we have that π(θ∗) = P̂∗
+ O(∥

θ∗
− θ̂0 ∥

2), where P̂∗ is our estimation or approximation to the
counterfactual π(θ∗), and it has the following expression:

P̂∗
≡ P̂0 +

I −
∂Ψ


θ̂0, P̂0


∂P′

−1
∂Ψ


θ̂0, P̂0


∂θ′

(θ∗
− θ̂0). (26)

Under the condition that ∥ θ∗
− θ̂0 ∥

2 is small, the vector P̂∗

provides a good approximation to the counterfactual equilibrium
π(θ∗). Note that all the elements involved in the definition of P̂∗

are known to the researcher.
To implement this method in our empirical application, we

have to deal with two important issues. The first issue is
computational. The dimension of the Jacobian matrix ∂Ψ /∂P′

is equal to the number of local managers (32,670) times the
number of states in the space of the state variables W (3960).
Calculating all the elements of this matrix, and then inverting
the matrix I − ∂Ψ /∂P′ would be extremely costly. To deal
with this problem we consider a Taylor approximation on a
player-by-player basis such that, for every local manager, we
approximate the |W | × 1 vector πim(θ∗) using P̂∗

im ≡ P̂0
im +

(I|W | − ∂Ψim(θ̂0, P̂0)/∂P′

im)−1 ∂Ψim(θ̂0, P̂0)/∂θ′ (θ∗
− θ̂0), where

Ψim represents the best response mapping of local manager (i,m).
In our logit model, it is possible to show that P̂∗

im has the following
simple closed-form expression39:

P̂∗

im = P̂0
im + P̂0

im ∗ (1 − P̂0
im) ∗ (z P̂0

im (θ∗
− θ̂0)) (27)

where ∗ is the Hadamard or element-by-element product, and 1 is
a column vector of ones. We call this method Taylor approximation
without strategic interactions because this method takes into
account how the change in θ affects the behavior of a player only
through the direct effect on his profit function but not the indirect
effect through the change in behavior of the competitors. A second
important issue is the accuracy of this Taylor approximation. Our
counterfactual experiments are far from being marginal changes
in the parameters. Therefore, the approximation error might be

39 To obtain this expression, first note that Proposition 2 in Aguirregabiria
and Mira (2002, p. 1526) implies that in equilibrium the Jacobian matrix
∂Ψim(θ̂, P̂)/∂P′

im is zero. Therefore, (I|W | − ∂Ψim(θ̂0, P̂0)/∂P′

im)−1
= I|W | . Second,

for the logistic function Λ, we have that ∂Λ(z P̂
imθ̂ + ẽP̂im)/∂θ′ is equal to P̂im ∗ (1 −

P̂im) ∗z P̂
im .
large. Furthermore, ignoring strategic interactions may introduce
an additional approximation error that can be significant in some
applications. To deal with this issue, we implement a second
method. This method requires the additional assumption that the
counterfactual equilibrium π(θ∗) is Lyapunov stable and that the
Taylor approximation P̂∗ is precise enough to lie in the dominion
of attraction of this stable equilibrium. Under this condition, if
we start with the Taylor approximation and then iterate in the
counterfactual equilibrium mapping (i.e., Pk+1 = Ψ (θ∗, Pk)),
then we should converge to the counterfactual equilibrium π(θ∗).
This is our second method to implement the counterfactual
experiments.40

Table 11 presents the results of our counterfactual experiments.
The top panel shows the results using the Taylor approximation
approach, and the bottom panel reports the results using the
second method. Though there are differences between the
magnitudes of the hubbing concentration ratios predicted by the
two methods, they provide very similar pictures of the main
implications. Hub-size effects on variable profits and fixed costs
explain only a small portion of the observed hubbing concentration
ratios. In contrast, hub-size effects on entry costs explain a very
significant part. For Continental, eliminating hub-size effects in
entry costs implies a reduction in CR-2 from 68.3% to 27.3% using
the first method and to 26.0% using the second method.

The entry deterrence motive explains a non-negligible part
of the hubbing concentration ratios of some airlines. For all
of the legacy airlines, eliminating the entry deterrence motive
implies a significant reduction in the concentration ratio CR-2. The
contribution of this factor is particularly important for Northwest
and Delta. Eliminating the entry deterrence motive reduces the
CR-2 of Northwest from 49.2% to 23.2%, and of Delta from 48.0%
to 22.1%. Interestingly, as shown in Table 5, Northwest and
Delta are the airlines with the second and third largest number
of ‘monopoly’ city-pairs. Southwest is, by far, the airline with
the smallest contribution of the entry deterrence motive. The
immediate explanation of this result is that Southwest prefers
not using a hub-and-spoke network but a network that is close
to point-to-point. Why does not Southwest use a hub-and-spoke
network? According to our estimates, Southwest is the airline with
the lowest values of the exogenous components of marginal cost,
fixed cost, and sunk entry cost (i.e., the components that do not
depend on hub size). Therefore, it seems that reducing costs by
increasing hub-size, or deterring entry by using a hub-and-spoke
network, is less attractive and profitable for Southwest than for
other airlines.

6. Conclusions

We have proposed and estimated a dynamic game of network
competition in the US airline industry. An attractive feature of
the model is that an equilibrium is relatively simple to compute,
and the estimated model can be used to analyze the effects of
alternative policies. As it is common in dynamic games, the model
has multiple equilibria and this is an important issue when using
the model to make predictions. We have implemented a simple
approach to deal with multiplicity of equilibria when using this
type of model to predict the effects of counterfactual experiments.

We use this model and methods to study the contribution of
demand, costs, and strategic factors to the adoption of hub-and-
spoke networks by companies in the US airline industry. Though
the scale of operation of an airline in an airport has statistically sig-

40 Note that the policy iterations Pk+1 = Ψ (θ∗, Pk) require recalculating the
transition probabilities f Pim using the simulation method that we describe in the
Appendix.
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Table 11
Counterfactual experiments: ‘Hubbing’ concentration ratios CR-2.

Method I: Taylor approximation without strategic interactions

Carrier Observed Experiment 1 Experiment 2 Experiment 3 Experiment 4
No hub-size effects No hub-size effects No hub-size effects No complementarity
in variable profits in fixed costs in entry costs between city-pairs

Southwest 18.2 17.3 15.6 8.9 16.0
American 42.0 39.1 36.5 17.6 29.8
United 45.7 42.5 39.3 17.8 32.0
Delta 48.0 43.7 34.0 18.7 25.0
Continental 68.3 62.1 58.0 27.3 43.0
Northwest 49.2 44.3 36.9 18.7 26.6
US Airways 45.3 41.7 39.0 18.1 34.4

Method II: policy iterations starting from Taylor approx.

Southwest 18.2 16.9 14.4 8.3 16.5
American 42.0 37.6 34.2 16.6 24.5
United 45.7 40.5 37.3 15.7 30.3
Delta 48.0 41.1 32.4 17.9 22.1
Continental 68.3 60.2 57.4 26.0 42.8
Northwest 49.2 40.8 35.0 17.2 23.2
US Airways 45.3 39.7 37.1 16.4 35.2

Experiment 1: counterfactual model: α2 = α3 = δ2 = δ3 = 0.
Experiment 2: counterfactual model: γ FC

2 = 0.
Experiment 3: counterfactual model: ηEC

2 = 0.
Experiment 4: counterfactual model: variable profit of local manager in city-pair AB includes only variable profits from non-stop routes AB and BA.
nificant effects on variable profits and fixed operating costs, these
effects seem to play a minor role in explaining airlines’ propen-
sity to ‘hubbing’. In contrast, our estimates of the effects of hub-
size on entry costs are very substantial. While airlines with a small
number connections in an airport have to pay a large sunk en-
try cost to operate an additional route (i.e., around half a million
dollars on average), airlines with many connections should pay
negligible entry costs for that additional route. Eliminating these
hub-size effects on entry costs reduces substantially airlines’
propensity to adopt hub-and-spoke networks. In our model, these
cost savings can be interpreted as either due to technological fac-
tors or to contractual agreements between airports and airlines. In-
vestigating the sources of these cost savings is an important topic
for further research. For some of the larger carriers, we also find
evidence consistentwith the hypothesis that a hub-and-spoke net-
works can deter entry of competitors in spoke markets. In this
paper, we do not model entry in the airline industry and the num-
ber of airlines is exogenous and fixed. However, the entry deter-
rence motive of hub-and-spoke networks applies also to potential
entrants in the industry. Investigating the importance of this addi-
tional entry deterrence motive is also a relevant research topic.
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Appendix. Monte Carlo simulator of the transition probabili-
ties f Pim

Let {(a(s),w(s)): s = 1, 2, . . . , S} be S independent random
draws from the ergodic distribution of (at ,wt). Each of these
random draws is generated as follows. We start with an arbitrary
value of x, say x0, and use the first order Markov structure of xt to
generate a T -periods history starting from x0. For T large enough,
the last period of this history, xT , provides a random draw from
the ergodic distribution of xt associated with P. Then, we apply the
vector valued functions wim(·) to obtainwimT = wim(xT ) for every
(i,m). The following is a more detailed description:

(i) Given x0, we apply the vector valued function wim(·) to
obtain wim0 = wim(x0) for every local-manager (i,m).
(ii) We generate a random draw of next period vector x1. That
is, for every local-manager (i,m), we generate a random draw
of next-period incumbent status using the formula xim1 =

1{uim1 ≤ Pim(wim0)}, where {uim1} are independent random
draws from a U(0, 1) distribution.

Given x1, we apply again steps (i) and (ii) to generate x2, and
so on T times until we generate xT and wT . We repeat this
procedure S times to generate S independent random draws:
{x(s), a(s),w(s): s = 1, 2, . . . , S}. We maintain the same set of
random draws {uimt} to calculate simulators of f Pim for different
values of the vector of CCPs P. Keeping the same random draws is
important to have that our simulator of f Pim is a continuous function
of P (see McFadden, 1989).

Let (w(k′), a,w(k)) be a value in the discrete space of (wimt+1,
aimt ,wimt). Given our random draws, we approximate the prob-
ability f Pim(w(k′)|a,w(k)), using the following L-Nearest-Neighbors
simulator,

f Pim 
w(k′)|a,w(k)


=

1
L

S
s=1

1

wim


a, a(s)

(−im)


= w(k′)


× 1


w(s)

im ∈ NNim(w(k))


(A.1)

where {a(s)
(−im),w

(s)
im } come from the S random draws {a(s),w(s)

},
and NNim(w) is the subset of L < S random draws of wim that are
closest tow. For the selection of these nearest neighborswe use the
following distance: for any pair of vectorswA

im andwB
im the distance

between them is


(wA
im − wB

im)′Ω−1
S (wA

im − wB
im), where ΩS is the

variance–covariancematrix ofwim based on the S randomdraws. If
L goes to infinity and L/S goes to zero as the number of simulations
S goes to infinity, then, for our discretemodel, the simulator in (A.1)
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is root-S consistent and the proof is based on the application of a
pretty standard Law of Large Numbers (see for instance Delgado
and Mora, 1995). In our estimations and numerical experiments,
we have used T = 50 and S = 200,000, and for the nearest
neighbors we have used L = 20.

Note that the conditions for the consistency of the simulator f Pim
in our model with a discrete state space are weaker than those in
a model with continuous state variables. Rust (1997) studies the
properties of Monte Carlo simulation methods in the problem of
approximating the solution of dynamic decision processes with
continuous state variables. In the continuous state case, to have a
root-S consistency simulator (and to obtain the self-approximating
property of the simulator) one needs stronger conditions than
in our discrete problem. In particular, in the continuous case
the integrand function should be continuous everywhere. For our
discrete model, we do not need a self-approximating simulator,
and we do not need the integrand function to be continuous
everywhere.
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