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A bivariate simultaneous discrete response model which is a stochastic representation ofequilibria in
a two-person discrete game is studied. The presence of multiple equilibria in the underlying discrete game
maps into a region for the exogenous variables where the model predicts a nonunique outcome. This is
an example of an incomplete econometric structure. Economists using this model have made simplifying
assumptions to avoid multiplicity. I make a distinction between incoherent models and incomplete models,
and then analyse the model in the presence of multiple equilibria, showing that the model contains enough
information to identify the parameters of interest and to obtain a well defined semiparametric estimator. I
also show that the latter is consistent and .;nnormal. Moreover, by exploiting the presence of multiplicity,
one is able to obtain a more efficient estimator than the existing methods.

1. INTRODUCTION

This paper studies a bivariate simultaneous response model which is a stochastic representation
of equilibria in a two-person discrete game. Multiplicity of equilibria in the underlying game
maps into regions for the exogenous variables where the econometric model predicts more than
one outcome. This is an incomplete econometric model. 1 This class of econometric models
provides inequality restrictions on moment conditions that are functions of the underlying
parameters of interest. To avoid multiplicity, economists studying these models have made
simplifying assumptions which either change the outcome space or impose ad hoc selection
mechanisms in regions of multiplicity. I study this model in the presence of multiplicity, showing
that the parameters of interest can be point identified. Using restrictions on the probability of the
nonunique outcomes, I also develop a maximum likelihood estimator demonstrating its parameter
consistency and -Jfi normality. More importantly, I show that one can exploit multiplicity to
garner efficiency gains.

I study the following parametrization of a bivariate discrete game

TABLE I

Y1 = 0
Y1 = I

Discrete game with stochastic paYoff
Y2=0 Y2=1

0, 0 0, x2fh - U2

1. For a definition of an incomplete response model, see Section 2 below.
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which maps directly into the econometric model

y; = xlfh + Y2~1 + Ul

Y~ = x2{32 + Yl~2 + U2
(1)

{
1 if Y~ > 0

Yj = ° h J
---: for j = 1, 2ot erwise

where x = (Xl, X2) E ~d represents a vector of observed exogenous variables, U = (u 1, U2) is
a random vector of latent variables with conditional distribution Fu that represents unobserved
(to the econometrician) profits, and {3 = ({31, {32, ~1, ~2) are parameters of interest.

This is a well-known econometric model that has been studied widely in econometrics. For
example, it is the same model used in Bresnahan and Reiss (1991) and considered in important
work by Heckman (1978) on models with structural shift parameters, Blundell and Smith (1993,
1994) on female labour supply and Schmidt (1981) on simultaneity in bivariate econometric
models. For a more extensive list of references to model (1) above, see Chapter 5 of Maddala
(1983). One can assume that the incremental utility for a player playing one when the other
player moves from playing a zero to a one (the ~ 's) depends on observable characteristics. For
simplicity, the parametrization I use treats the ~'s as fixed2 parameters to be estimated.' Given
the response functions in (1) above, we have

Pr[(O, O)lx] = Pr(Ul < -xl{31; U2 < -x2{32)

Pr[(1, l)lx] = Pr (Ul ::: -xl{31 - ~1; U2 ~ -x2{32 - ~2)

Pr[(O, l)lx] = Pr(ul < -xl{31 - ~1; U2 ::: -x2{32)

Pr[(1, O)/x] = Pr(Ul ::: -xl{31; U2 < -x2{32 - ~2).

For example, assuming that the incremental payoffs ~ 1 and ~2 are negative, it is easy to
see that

Pr[(O, O)/x] + Pr[(O, 1)lx] +Pr[(1, O)lx] + Pr[(1, 1)lx] > 1.

This is an example of an incoherent econometric model. Economists using these models have
imposed the well-known "coherency" condition ~ ~ x ~i = °which is a necessary and sufficient
condition for the probability of the four outcomes to sum to one (Heckman, 1978). Unfortunately,
imposing this condition eliminates the simultaneity, an essential feature the model is trying to
capture. Schmidt (1981) raises the question of whether "economists should even consider these
type of systems" to model simultaneity because the coherency conditions render the models
recursive. Tracing back the source of the "coherency" problem, I find that the econometric
structure above is a particular case of a well-defined incomplete discrete econometric model.
The above model arises as a result of a particular economic optimization problem involving two
decision makers where the presence of multiple equilibria in the underlying game maps into
a well-defined incomplete econometric structure which provides upper and lower probabilities
for the (0, 1) and (1,0) outcomes, and exact probabilities for the (1, 1) and (0,0) outcomes (in
the case where ~1, ~2 are negative, the other cases are similar). As in Figure 1, we have the

2. I treat the case where the ~'s are negative for simplicity. The case for when the ~'s are positive is similar. In
Section 3, I also discuss the cases where the ~ 's have different signs.

3. In Example 1 on page 151 I study the parametrization of a bivariate discrete game that results from a Coumot
duopoly where the ~'s become functions of the fundamental parameters of the demand equation in the model. In that
case, it would not make sense to talk about identifying and estimating the ~ 's. One can focus on estimating the fi's which
could represent, for example, the impact of an exogenous change in firm profit on the likelihood of the firm entering a
market (see Example 1 for more detail).
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(2)

FIGURE 1

Incomplete model with multiple equilibria

following restrictions on the (0, 1) and (1,0) outcomes:

P3(X, fJ) .s Pr[(O, l)lx] ~ P4(X, fJ)

where

P3(X, fJ) = Pr(Ul < -xlfJl - ~l; U2 > -x2fJ2 - ~2)

+ Pr (UI < -XIfJI; -x2fJ2 < U2 < -X2fJ2 - ~2)

P4(X, fJ) = Pr(Ul < -XIfJI - ~I; U2 > -x2fJ2).

Traditionally, economists using simultaneous discrete response models make simplifying
assumptions to respond to the nonuniqueness problem without invoking the coherency condition.
For example, Bjorn and Vuong (1985) and Kooreman (1994) assume a unique outcome is
chosen with known probability A in the region of incompleteness. This type of assumption
changes the model in an ad hoc way that might lead to inconsistent estimates. Another practice
is to treat the multiple outcomes as one event and hence changing the model into one that
predicts the joint equilibria (Bresnahan and Reiss, 1990, 1991). Transforming the model into
one that predicts the joint outcome [(0, 1), or, (1,0)] clearly involves a loss of information,
narrowing down the class of models that could be examined and limiting the ability of the
researcher to predict (Bresnahan and Reiss, 1990). This paper contributes to the literature on
inference in nonlinear simultaneous equations model and to a growing literature on inference in
models with social interactions by studying a model with two decision makers. To that extent,
the paper makes several contributions. First, I make a distinction in Section 2 below between
incoherent and incomplete models by showing that an otherwise incoherent model contains
information on the parameters of interest. This clarifies the misconception that incoherent
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150 REVIEW OF ECONOMIC STUDIES

models are not useful for inference. Second, using a parametrization of the game above that
corresponds to the well-known simultaneous equations model with discrete outcomes, I show
in Section 3 how this model can be used to study simultaneity. In particular, I improve on
the existing empirical games literature by showing in Section 4 that one can exploit the
inequality restrictions in the model to garner efficiency gains using a maximum likelihood based
estimator. This framework also allows for sharper prediction by providing tighter upper and lower
probabilities on the outcomes (see page 159 for more details on this point). Fourth I show how
parameters of interest can still be identified in cases where no existing methods can be used. The
estimator introduced in Manski and Tamer (2002) can then be used to estimate the parameters.

2. COHERENCY AND IDENTIFICATION

In the econometrics literature, a model is known to be coherent if it admits "a well defined
reduced form" (see Gourieroux, Lafont and Monfort, 1981). This is equivalent to the model
predicting a unique value for the dependent variables (or endogenous variables) given values
of the exogenous variables both observed and unobserved. Coherency conditions appear under
the names of logical consistency conditions (Maddala, 1983), internal consistency conditions
(Schmidt, 1981), principal conditions (Heckman (1978), Gourieroux et al. (1981)) among others
and are conditions that guarantee a well-defined likelihood for the endogenous variables given
the exogenous ones. On the other hand, in this paper, I make a distinction between incoher­
ent economic models and incomplete econometric models. When faced with an "incoherent"
model, one often needs to trace back the source of the incoherency. One type of incoherency for
example originates in the underlying economic model where the agent's optimal decision rule is
not well-defined, or is "logically inconsistent". In particular, coherency rules in this case repre­
sent conditions for a well-defined optimization problem where the existence of an equilibrium
is guaranteed. In demand systems with rationing, concavity of the expenditure function maps
directly into the coherency conditions which are similar in effect to the Slutzky conditions (see
for example, Wales and Woodland (1983), Van Soest and Kooreman (1990)). When mapped into
an econometric framework, the economic coherency conditions often represent sufficient condi­
tions for the statistical model to have a well-defined likelihood. These are the coherency condi­
tions. On the other hand, as in Manski (1988), a "complete" econometric response model "asserts
that a random variable y is a function of a random pair (x, u) where x is observable and u is not".
An "incomplete" econometric model is one where the relationship from (x, u) to Y is a corre­
spondence and not a function. For example, a selection problem in an underlying well-defined
economic model, multiple equilibria, or censoring of regressors or outcomes map into an econo­
metric structure with a non-unique predicted outcome distribution. This incompleteness is often
the result of the unwillingness to impose strong (and sometimes untestable) assumptions. More­
over, incomplete models can often be written in terms of inequality restrictions on regressions.

With minimal assumptions, incomplete models in general contain information about the
parameters of interest. Heuristically, in a model defined in terms of inequality restrictions on
regressions, the identified features of the model is the set of parameter values that satisfy the
inequality restrictions. It is possible that this set of inequality restrictions is satisfied uniquely by
the true parameter of interest. In this case we say that the parameter is point identified. Hence,
incompleteness and identification are logically distinct features of an econometric model: the
former is a property of the model that usually predicts a nonunique conditional distribution for
the outcome, while the latter asks what features of the model can be consistently estimated.

Next, I highlight the ideas of incompleteness and identification in two examples where
the incompleteness is a result of the multiple equilibria in the underlying game. I then provide
conditions for the model in (1) above to be point identified. For other examples of models where
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TABLE 2

Payoffs in a Coumot model

151

No entry

Enter

No entry

0,0

Enter

the incompleteness is a result of interval observations on a regressor or outcome (see Manski and
Tamer, 2002).

2.1. l?xar.n]7le 1

In this example, I consider a simple firm entry problem studied by Bresnahan and Reiss (1990,
1991). In a Cournot model," consider the linear demand ji = a - bq while firms 1 and 2
have stochastic payoffs Hi = ]7qi + Xif3i - u, for i = 1, 2, where Xi represent exogenous
determinants of firm profits that are observed and u, represent exogenous mean zero unobserved
(by the econometrician) random variables. Moreover assume that firms earn zero profits for
producing no output and that the joint distribution of (u I, U2) is known up to a finite-dimensional
parameter. Firm payoffs are given in Table 2. One important purpose of the exercise is to predict
the effect of an exogenous increase/decrease in Xl or X2 on the likelihood for firm 1 or 2 to
exit/enter the market given that the response functions in the payoff table above are invariant
to the exogenous policy change in the x's. To estimate this effect, one needs an estimate of the
fundamental parameters f31 and f32. The above table maps directly into the parametrization in (1)

above with ~l = ~2 = - ~~~. Given downward sloping demand (b > 0), the game admits
(Enter, No entry) and (No entry, Enters as the multiple equilibria of the game if the u's have
rich enough support. By looking at markets with no entrants and at duopoly markets, it is easy to

see that the model above point identifies (f, f31, f32) given enough variation in the x's (more on
identification in Section 3 below). Even though one can estimate the identified features (including
the f3's) of the above model using maximum likelihood.' by looking at data from duopoly or
no entrant markets, the framework presented in this paper is able to exploit the presence of
multiple equilibria to estimate (f3I, f32) more efficiently and hence obtain sharper estimates for
the given exogenous impacts." Moreover, we can obtain sharper upper and lower probabilities
for the events7 Pr(Firrn 1 is a monopolistixi ; X2) and Pr(Firrn 2 is a duopolistixi ;xz).

2.2. Example 2

This case draws on an example by Jovanovic (1989). Let the payoff function of two players be
defined in the following way:

{
BIY2 - UI if y, = 1

n I (YI , Yz, Ut> = 0 if YI = 0

4. I am very grateful to a reviewer whose comments clarified important features of this example which helped
improve the paper.

5. The parameters a2 and b are not separately point identified in this model; however, we know that b > 0 and
that a2 = K x b where K is a constant that can be consistently estimated.

6. One can add to the above game observed exogenous determinants of market demand z (similar to the x's).
This essentially makes the parameter a a function of the observed variables z. In this case, we can still point identify (up
to scale) coefficients that represent exogenous determinants of firm profit that are excluded from the z's.

7. This is in contrast to the existing methods in estimating entry models where one is only able to obtain the
probability that one firm is serving a given market which would imply the trivial bound on the outcome of interest.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/70/1/147/1560993 by U

niversity of Toronto user on 07 January 2019



152 REVIEW OF ECONOMIC STUDIES

(3)

{
(h YI - U2 ifY2 = 1

TI2(YI,Y2, U2) = ° if Y2 = 0.

This is the payoff function for a two-player game where Yi E {O, 1} is player i's action set,
and u, rv U (0, 1) is the player's type. I assume that players' types are common knowledge
between the two players, but the econometrician knows only that they are uniformly distributed.
One can think of the above as a technology adoption game for complementary products. Firm 1
would provide technology 1 (software) only if firm 2 provides technology 2 (hardware) where
u; represents investment by firm i, To map this into our framework, notice that the only two
Nash-equilibria are 0, 1) and (0,0) (either hardware and software are provided or none is):

( ) _{0'1) ifuI<elandu2<e2
YI, Y2 NE - (0,0) all u, E [0,1]

where (el, e2) E e c R2+.The players' strategies (Yi E {O, 1}, i = 1,2) are perfectly correlated
and are denoted by Y = YI = Y2. This means that the only possible equilibria of the game are
that both firms provide the complementary goods or neither does. Given the parameter space e
and the distribution Fu of U = (UI, U2), the stochastic game admits multiple equilibria. The
incompleteness in this model is a direct result of the presence of multiple equilibria in the game.
For example, if 0,1) ::::: (el, e2), the model cannot predict a unique outcome for any value of
(UI, U2) E (0, 1) x (0, 1). This implies that

°::::: Prey = 1) ::::: 1.

As a result, for (el, e2) :::: (1, 1), the model will not provide any information about the parameters
(el, e2).

If on the other hand el = e2 = e < 1, then for (UI, U2) E (0, e) x (0, e), the model predicts
Y = 1 or Y = 0. This implies that

°S Pr(y = 1) ::::: e
2

.

Using this restriction, we are not able to point identify this model since the inequality above
holds for all e' such that e2 ::::: e/2 s 1. However, if I make a random sample assumption I could
use the empirical analogue Pr(Y = 1) of Prey = 1) to get that

Pr(y = 1) ::::: e2
::::: 1.

The above is a nontrivial bound.

3. BIVARIATE DISCRETE RESPONSE MODEL: IDENTIFICATION

In this section I shall examine identification of the bivariate simultaneous model defined in 0)
above. To recap, the model in which we are interested is

Y; = xI!31 + Y2~1 + UI

Y~ = x2!32 + YI~2 + U2

._{1 if Yj > ° ._
YJ - ° h . for J - 1, 2.ot erwrse

The set of endogenous variables Y consists of Y = {CO, 0), (1,1),0,0), (0, 1)}.
It is easy to see that if the u's in (3) have large enough support, the theoretical game in

Table 1 above always admits multiple equilibria. For example, if the ~ 's are both negative, and
for -xi!3i ::::: u, S -xi!3i -!3.i (i = 1,2) the econometric model predicts either (0,1) or 0,0)
which are the multiple equilibria of the underlying game.
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TAMER BIVARIATE MODEL WITH MULTIPLE EQUILIBRIA 153

In the case above where the A's are negative the model provides the following inequality
restrictions on conditional regressions:

Pl(X, {3) = Pr[(O, O)lx] = Pr(Ul < -xl{31; U2 < -x2{32)

P2(X, {3) = Pr[(l, 1)lx] = Pr(Ul ::: -xl{31 - /).1; U2 ::: -X2{32 - /).2)

P3(X, {3) :s Pr[(O, 1)lx] :s P4(X, {3) (4)

where P3 and P4 are defined in (2) above. The objective now becomes what identified features
of the econometric model above defined in terms of inequality (and equality) restrictions can be
consistently estimated.

3.1. Identification when /).1 X/).2 > °
In this section, I study the case where the shift parameters are negative. The case when the
shift parameters are both positive is symmetric. I begin with three assumptions. The first is the
sampling assumption, the second assumption requires that the joint distribution of the unobserved
terms is known up to a finite-dimensional parameter, and the third assumption requires that the
shift parameters are negative.

Assumption 1. We have an iid sample {(Yli, Y2i), Xli, X2;} such that °< Pr[(Yl, Y2)1
(Xl, X2)] < 1 for all (Y, Xl, X2) E Y X Rdl X R d

2 where X = (Xl, X2) E Rd and Y =
{CO, 0), (1, 1), (0, 1), (0, I)}.

Assumption 2. Let U = (u 1, U2) be a random vector independent ofX with a known joint
conditional distribution Fu that is absolutely continuous with mean °and unknown covariance
matrix Q.

Assumption 3. /).1 and /).2 are negative.

This is an important assumption that will determine which of the four outcomes are
observationally equivalent in a region of the exogenous variables. If /).1 and /).2 are both negative,
the model provides exact probabilities for the (0, 0) and (1, 1) outcomes and upper/lower
probabilities for the (1,0) and (0, 1) outcomes. On the other hand if /).1 and /).2 are both positive,
the model provides exact probabilities for the (0, 1) and (1,0) outcomes and upper/lower
probabilities for the (1, 1) and (0, 0) outcomes. For the cases where /).1 x /).2 < °the
model provides upper/lower probabilities for every outcome. This case is examined in the next
section. From the model above at the true parameter value {3, one obtains the restrictions on the
conditional distribution of the outcomes given the observables described in (4) above. This is an
incomplete discrete model. The next theorem shows that this incompleteness will not present any
problems for identification. Since this is a threshold crossing model, we normalize the variances
in Q of uland U2 to be one. We focus on the identification of the parameter {3 in the next theorem
that presents sufficient point identification conditions.

Theorem 1. Let Assumptions 1-3 hold. Moreover, assume that for i = 1 or i = 2, there
exists a regressor Xik with {3ik ::j:. °such that Xik ¢ X3-i and such that the distribution ofx.; I X-ik
has an everywhere positive Lebesgue density where X-ik = (Xii, ... , Xik-l, Xik+l, ... , Xidj)'
Then the parameter vector {3 = ({31, {32, ~1, ~2) is identified if the matrices Xl and X2 have full
column rank.
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154 REVIEW OF ECONOMIC STUDIES

ProofofTheorem 1. Without loss of generality let Xik = Xlk and f3lk > 0. Let (bl, bz) be
such that (bl, b2) =I- (f3I, f32). Let blk > 0. By the support condition on Xlk, as Xlk increases to
minus infinity given X-lk, we get that both xlf31 and xlbl go to minus infinity. Let xi be such
that

xi f32 =I- xib2.

The existence of such an xi is guaranteed by the full rank condition on X2. Hence by
Assumption 2

Pr[(O,O)IXI,X2] =Pr[ul ~ -xlf3l,u2 ~ -xi/h] =l-Pr[UI ~ -xlbl,U2 ~ -Xib2]

since

Pr [UI ~ -xlf3l, U2 ~ -xif32] ~ Pr [U2 ~ -xif32] =I- Pr [U2 ~ -Xib2]

~ Pr [UI ~ -xlbl, U2 ~ -Xib2]

for -Xl f31, -Xlbi » 0. This implies that f32 is identified. As for f31, let Xl be such that
xlf31 =I- xlbl. The existence of such an Xl is guaranteed by the full rank condition on Xl. Hence
we also have

Pr[(O, O)IXI, X2] = Pr[UI ~ -xlf3l, U2 ~ -x2f32] =I- Pr[ul ~ -xlbl, U2 ~ -x2f32].

As for the case when bu. < °(we still have f3lk > 0), it is easy to see that given X-Ik. as Xlk
increases, Xlf31 increases while Xlb, decreases which implies that blk is identified relative to f3lk
using arguments similar to the above. This implies that f31 and f32 are identified. In particular the
constant terms are also identified. Repeating the above analysis while replacing (0, 0) with (1, 1)
and Xif3i with Xif3i + D..i will yield identification of the constant term which implies that D..i is
identified. II

Comments on Theorem 1:

• I require that a continuous regressor be included in either Xl or X2. This is a sufficient
condition for point identification. All one needs is the support of X to be rich enough to
identify the parameters.

• In Assumption 2, I require that the joint distribution Fu be known. This is not needed for
identification." Moreover, it is possible to weaken the independence assumption between
the error vector U and the X at the expense of strong assumptions on the conditional
distribution of U given x.

• The parameter vector f3 is identified up to scale given the threshold crossing nature of the
model. One can then assume that UI and U2 have unit variances. As far as identification
of the rest of the parameters present in the matrix Q, those will depend on the specific
bivariate distribution of (UI, U2). The identification strategy of these parameters is similar
to that used for identifying f3 mainly that these parameters should be point identified with
rich enough support on the x's. In addition to using the outcome probabilities, one can
also use the conditional distribution of YI given Y2 (and vice versa) as a function of X and
(f3, Q) to identify the parameters.

• Without imposing the rich support conditions above, the model still provides information
about the parameters of interest. The identified feature of the model, which would
be a set in general (this set would shrink to a point under the conditions in the
theorem) can be estimated using the modified minimum distance estimator introduced

8. I thank a referee for this insight.
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(5)

in Manski and Tamer (2002). This estimator was proved to consistently set-estimate the
identified feature of an incomplete model that is based on inequality restrictions on
regressions.

Moreover, the above model identifies upper and lower probabilities on the outcomes
Pr[(O, 1)lxI, X2] and Pr[(1, O)IXI,X2]. Given that fJ can be consistently estimated and the
incomplete model defined in (4) above, we have

P3(X, fJ) ~ Pr[(O, 1)lxI, X2] ~ P4(X, fJ).

The upper and lower probabilities on the (1, 0) outcome are similar. The bound on the conditional
probabilities provided by the incomplete model are usually much tighter than the ones obtained
from models that treat the (0, 1) and (1, 0) outcomes as one event. The bound provided by these
models on the (0, 1) outcome is

°~ Pr[(O, 1)lx] ~ 1 - PI(X, fJ) - P2(X, fJ).

A note on mixed strategy equilibria. In the above, we have implicitly assumed away
mixed strategy equilibria in the underlying game. For a payoff structure such that -Xi fJi ~ u; ~
-XifJi - D..i (i = 1,2), (0, 1) and (1, 0) are the multiple equilibria of the game. If we allow
mixed strategies then there is a positive probability that the other two outcomes (1, 1) and (0,0)
will appear (part of a coordination failure for example by the two players). In this case'' the
restrictions provided by the model will be

PI(X, fJ) ~ Pr[(I, 1) I x] ~ PI (X, fJ) + Psquare(X, fJ)

P2(X, fJ) ~ Pr[(O, 0) I x] ~ P2(X, fJ) + Psquare(X, fJ)

P3(X, fJ) ~ Pr[(O, 1)lx] ~ P4(X, fJ)

where

Psquare(X, fJ) = Pr[-xlfJl ~ UI :s -XlfJl - D..I; -X2fJ2 ~ ua :s -X2fJ2 - D..2Ix].

Identification in this model is similar to identification in the next section.

A note on identification when At x A2 -c O. I consider the case when D..I > °and
D..2 < 0, the other case is symmetric.

Assumption 4. D..I > °and D.. 2 < 0.

It is easy to see that for some values of the exogenous variables, either of the four outcomes
is likely. This is illustrated in Figure 2.

In the underlying game, for example, there is no equilibrium in pure strategies in the
region of multiplicity: each player is indifferent between choosing 1 or °given that the other
is randomizing. This maps into the model having the following restrictions:

PI (x, fJ) ~ Pr [(1, 1)lx] .s PI (X, fJ) + Psquare(X, fJ)

P2(X, fJ) ~ Pr [(0, 0) Ix] ~ P2(X, fJ) + Psquare (X, fJ)

P~(x, fJ) ~ Pr [(1, O)lx] ~ P~(X, fJ) + Psquare(X, fJ)

9. There areother mixed strategy equilibria that canappear in thesetof games above. Those equilibria depend
ona particular value for (u 1, Uz) and hence have probability zero given Assumption 2.
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(6)

FIGURE Z

Incomplete bivariate model for the case where ~ 1 > 0, ~2 < 0

where PI and Pi are the same as above and

P~(x, fJ) = Pr[UI ~ -xlfJl; U2 < -xzfJz - ~2]

Psquare(x, fJ) = Pr[ -xlfJl - ~l :s UI :s -xlfJl; -x2fJ2 :s U2 :s -x2fJ2 - ~2].

The restrictions provided by the model are in terms of upper and lower probabilities. The
next theorem provides sufficient conditions under which the true parameter vector is identified.
I require the existence of one continuous regressor with an everywhere positive Lebesgue density
(continuous regressor on JR). Heuristically what a continuous regressor allows us to do is by
looking at the conditional probability of the (0, 0) outcome and for any b #- fJ we will be able to
find a set with positive probability X' such that for all x' E X' the lower bound P2(x', fJ) at fJ is
greater than the upper bound P2(X', b) + Psquare(x', b) at b.

Theorem 2. Given Assumptions 2 and 4 above, and assume that there exists at least
one regressor Xik where k E {1, ... , di} fJik #- 0, for i = 1, 2, such that Xlk #- X2k
whose conditional distribution given X-ik has everywhere positive Lebesgue density where
X-ik = (Xii, ... , Xik-l, Xik+ I, ... , Xid), then the parameter vector fJ is identified.

As we can see here, in the case where the model only delivers upper/lower probabilities for every
outcome the parameters of interest are still identified.

One way to estimate the identified features of the model defined in terms of the inequality
restrictions in (5) above is to use a modified minimum distance estimator similar to the one used
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in Manski and Tamer (2002). Heuristically, for a given parameter in the parameter space, define a
loss function that is positive only if the inequalities in (5) are not satisfied and zero otherwise; this
can be made operational if we replace every conditional probability by its empirical counterpart.
If the true parameter satisfies the inequalities uniquely for all values of the regressors then with
support restrictions on the regressors one can consistently estimate the parameter of interest. For
more details about this estimation strategy refer to Manski and Tamer (2002).

4. BIVARIATE DISCRETE RESPONSE MODEL: EFFICIENCY GAINS WITH MULTIPLE
EQUILIBRIA

In this section I formulate an estimator that exploits the presence of multiple equilibria in the case
where the shift parameters have the same sign. In particular, I study the case where /:).1 and /:).z are
negative (the other case is symmetric). More importantly, I show that there are efficiency gains
in exploiting multiplicity. In particular, as compared with the limited maximum likelihood (ML)
estimator that treats the outcomes (1, 0) and (0, 1) as one event, the semiparametric maximum
likelihood estimator (SML) introduced below is shown to be more efficient.

The ML estimator (AI < 0 and A2 < 0). I define here a maximum likelihood estimator
that can be used to consistently estimate the parameter f3. This inference strategy in models with
multiple equilibria whereby the likelihood is written in terms of features of the model that are
uniquely predicted is used in Bresnahan and Reiss (1990, 1991) and Berry (1992). Consider
the model where we have three outcomes (0, 0), (1, 1) and (1, 0) or (0, 1). Given the outcome
probabilities in (4), the log-likelihood is

LML(b) = L:;=l [YilYi2 log(Pl (Xi, b» + (1 - Yil)(1 - Yi2) 10g(P2(xi, b»

«(1 - Yil)Yi2 + Yil (1 - YiZ» 10g(1 - PI (Xi, b) - PZ(Xi, b»] (7)

where the functions PI and P2 are defined in (4) above. Using the usual MLE techniques the
covariance matrix of the above-modified likelihood is

[
a P1a p { ap2ap~ (aPl + apZ)(aPl + ap2),]-1

QML = E + + ---------
PI P2 1 - PI - P2

where aPI and a P2 are the derivative vectors of the functions PI (x, b) and P2(x, b) respectively,
with respect to b evaluated at the true parameter value f3.

The SML estimator (AI < 0 and A2 < 0). To define this estimator, I replace the
predicted probability of the (0, 1) outcome with its empirical counterpart. I have thus replaced
the part of the model that is incomplete by a function which represents the population frequency
of the (0, 1) event. Define the function H (.) as follows:

H(x) = Pr[(O, l)lx].

In the case where the function H (.) is known, a way to estimate f3 given the above assumptions is
to use the method of maximum likelihood. The logarithm of the likelihood function of the model
will be

1 L:nL(f3; H) = - . [YilYiZlog(Pl (Xi, {3» + (1 - Yil)(1 - YiZ) 10g(P2(Xi, {3»
N 1=1

+ (1 - YidYi2 log(H(xi» + Yil (1 - YiZ) 10g(1 - PI (Xi, {3) - P2(Xi, {3) - H(Xi»].
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Since the function H (.) is unknown, I replace it by Hn (.) a function that locally approximates
it. The resulting log-likelihood function becomes a semiparametric quasi-likelihood. For b =j:. fJ,
I have to make sure that the function Hn(·) lies in the interval [P3(X, b), P4(X, b)] otherwise we
might get a negative value for the probability of the (1, 0) outcome. Hence I trim the estimated
function Hn (.) by replacing it with

Htn(x, b) = min{P4(x, b), max{P3(x, b), Hn(x)}} (8)

where Htn(x, fJ) - Hn(x) = op(l) for large enough n. Since P3(X, b) and P4(X, b) are known
functions of x and b, the constrained function Htn is easily updated at each iteration of the
optimization procedure. Another way to do this is to maximize the likelihood!" over a subset of
the parameter space where P3(X, b) ~ Hn(x) ~ P4(X, b). Moreover, one needs to restrict the
parameter space to make sure that !::i.I and !::i.2 are negative.

The SML estimator ~(Htn) maximizes the following quasi-likelihood:

L(b; Htn) = L~=I [YilYi2 Iog(PI (Xi, b»

+ (l - YiI)(l - Yi2)log(P2(Xi, b» + (l - Yil)Yi2 log(Htn(Xi, b)

+ Yil(l - Yi2) log(l - PI (Xi, b) - P2(Xi, b) - Htn(Xi, b»]. (9)

Throughout, the following notation is used: Hi = H(Xi), Htni = Htn(Xi, fJ), Hit», b) =
min{P4(X, b), max{P3(X, b), H(x)}}, H, = H(x, fJ) = H and Pi = Pi(X, fJ) for i = 1, ... ,4.
In the Appendix, I study the large sample behaviour of the SML estimator where I state the
conditions and lemmas needed. The proofs to the lemmas are also collected in the Appendix. In
particular, Theorem 5 shows that the SML estimator of fJ is consistent and normally distributed
with an asymptotic variance QSML given by

{ [
a PIa p{ ap2ap~ (aPI + ap2) (aPI + ap2)'] }-I

QSML = Ex + + ----------
PI P2 1 - PI - P2 - H

The function H (.) enters the above covariance matrix and represents the efficiency gains of the
SML estimator. The main result is summarized in the next theorem.

Theorem 3 (Efficiency Gains with Multiple Equilibria). The SML estimator defined
in (9) above is more efficient than the ML estimator defined in (7) ifPr[(0, 1) Ix] > 0.

Proof If H > 0, where H = Pr «0, 1)IX) , then

1 - PI - P2 - H < 1 - PI - P2

implying that

(a PI + a P2)(a PI + aP2)'

1 - PI - P2 - H
is positive semi-definite. This means that

(a PI + a P2)(a PI + aP2)'

1 - PI - P2

is positive semi-definite. 11

10. In practice, the estimation in the optimization routine needs to take into account the b in the likelihood as well
as in the function ihn. When defining the objective function for a given b, one checks whether the inequalities that define
fIn are binding and then replace tt; in the objective function and the score function appropriately.

11. Here we use the result that if A - B is positive definite then B-1 - A -1 is also positive definite.
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Comment on efficiency gain:

• There are two estimators for Pr[(O, 1)IX]. The first one isjust the function H(X). Another
one is 1-PI - P2- G (X) where G (X) = Pr[ (1, 0) IX]. Since as we saw above estimation of
this probability does not affect the asymptotic variance, one can combine the two estimators
in practice to produce a more efficient estimator. This will depend on the proportion in the
population of (0, 1) and (1,0).

This result means that sharper estimates of our parameters can be obtained in the presence
of multiple outcomes.

5. CONCLUSION

As discussed above, this paper analyses an incomplete bivariate discrete response model. The
latter is a stochastic representation of a simultaneous game, and hence the multiple equilibria in
the game maps into a region where the econometric model predicts a nonunique outcome. We
have shed a new light on the "coherency" issue by arguing that these (coherency) restrictions
should result only from conditions guaranteeing a well-defined economic optimization problem,
otherwise the model would be misspecified. Moreover what we have found is that a lot of
times the statistical coherency conditions or completeness conditions are not necessary for the
model to be estimable. In the model we analyse, the recursivity issue results from the presence
of multiple equilibria in the underlying game. We have shown how to obtain a conditions for
identification in the presence of multiplicity and how to use the empirical distribution of the
data to supplement the econometric model in the region of multiple outcomes, hence obtaining
"observable implications" on equilibrium selection (Jovanovic, 1989). Moreover for the case
where the model provides only bounds on the conditional probabilities, we show that the
parameter is still identified. Exploiting the presence of multiple equilibria, we show how to
obtain a consistent and n 1/2 normally distributed estimate that is more efficient than estimators
commonly used. The framework for estimation relied on the fact that the model provided exact
probability for two of the outcomes. In the case where the shift parameters have opposite signs,
one has to use a different estimation technique. A step in this direction would be an estimator
similar to the one used in Manski and Tamer (2002).

APPENDIX A

A.t. Identification

Identification Theorem 2. The following is a sketch of the proof. I show first that the coefficients on the
continuous regressors are identified. Let fJik be the coefficient that corresponds to the continuous regressor Xik for
i = 1,2. Let b be such that bik i= fJik. For given X-ik consider the following set:

{(Xlk, X2k) : -XIkblk - X-kb-Ik > -xlkfJIk - x-lkfJ-Ik - ~I;

-X2kb2 - X-2k b-2k > -x2kfJ2k - x-2kfJ-2k - ~2}'

Under the support conditions in the theorem, this set has positive probability. As a result, the lower bound for PI (x, fJ)

is higher than the upper bound for PI (x, b) implying that bik is identified relative to fJik'

Here I use the exclusion of a continuous regressor to show that the constant terms are identified. Without lack
of generality, suppose the vector Xi is composed of the continuous regressor Xii and a vector of ones (constant term)
for i = 1,2. We look first at the probability of (0, O)IX. The lower bound on this probability predicted by the model is
PI (x, fJ) = Pr[UI < -xllfJll - fJOI; U2 < -Xl2fJl2 - fJ02] and the upper is PI (x, fJ) + Psquare, where Psquare is defined
in (6) above. Let b be such that -b02 > -fJ02 (the case for -b02 < -fJ02 is similar). There exists a set of (XII, Xl2)

such that Prjzq < -XllfJll-boI;U2 < -xl2fJl2- b02] > PI(X,fJ)+Pr[UI > -xllfJll-fJOtl > PI(X,fJ)+Psquare.
Heuristically this is possible by driving (-xllfJll - fJOI, -Xl2fJI2 - fJ02) "far enough to the right" around the UI axis.
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The same argument applies to f30l by driving (-xllf311 - f3Ol, -X12f312 - 1302) far enough up the U2 axis. This implies
that the constant terms are identified.

As for the coefficients on discrete regressors and the shift parameters, one can use the same arguments as above.
For the shift parameters, one can use the probability of the (1, 1) outcome instead of (0,0). II

A.2. Consistency and normality proofs

I begin by stating the assumptions needed in the proofs. Then I introduce a semiparameteric maximum likelihood
estimator that uses a kernel method to approximate the conditional probability of the (0, I) outcome. I study the properties
of this estimator by establishing consistency and .jii normality, Throughout, I will use the following norm:

IIf11r = maxj<r IIf(j) II

where Ilfll is the usual sup norm, and f(j) denotes the j-th derivative and r an integer.

Assumptions

Assumption 5. The true parameters 13 = (131, 132, ~ 1, ~2) and Q lie in a compact set 9. Moreover, (13, Q) are
point identified.

Assumption 6. Let the density ofx f (x) defined on D C Rd be continuously differentiable oforder r such that

IIflir < 00 such that f(x) > OforallxinD.

Assumption 7. Assume that Pr[(O, 1) I x]

P4(x,f3),forallx E D.
H(x), where at the true parameter 13, P3(X, 13) ~ H(x) ~

Assumption 8. Assume that there exists a 8 > 0 such that f(x) > 8 for all xED, the support ofx.

Assumption 9. The function H (x) f (x) is continuously differentiable oforder r such that II H (x) f (x) II r < 00.

Assumption 10. K(·) is a Riemann integrable density in L 2(Rd ) (d > 2), differentiable oforder r, with bounded
I} 1, 11 1,

derivatives. Moreover, the kernel obeys f u 1 ... uJ K(u)du = Ofor 11 + ... + Is, < m, and f u 1 ... uJ K(u)du =j:. 0
for i, + ... + Is' = m.

Comment on assumptions above:

• In Assumption 5 I require that the parameters are point identified. One can also invoke the sufficient identification
conditions in Theorem 1 above.

• One could have replaced the probability of (1, 0) Ixby a function G (x) equally since the outcomes are symmetric.
I show that estimation of the function H (x) has no effect on the asymptotic distribution of fi and hence one can
exploit this symmetry in the problem at hand to obtain a more efficient estimator.

• Assumption 7 above is satisfied if the model is correctly specified and the random sample Assumption 1 holds.
• Assumption 8 is stronger than needed and it might restrict the use of regressors with infinite support. One could,

for example, use sophisticated trimming techniques either by basing the trimming on the magnitude of the density
of x like the ones used by Klein and Spady (1993) which then showed that the effect of this trimming is minimal
on parameter estimates.

The next lemma states results for rates of convergence of kernel estimators of conditional expectations. These
results are useful in the proofs below.

Lemma 4 (Lemma 8.10 Newey and McFadden (1994». Given Assumptions 6, 9,10, and h is such that h -+ 0,
and n 1-(2/p)hd lIn n -+ 00 then

II Hn(x) - H(x) II = Op[(ln(n)I/2(nhd+2r-2)-1/2 +hm ]

and
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Let the kernel estimator of the conditional probability H(.) be defined as

A 1 ",N (x - Xi)
Hn(x) = d A L..J·-I(1- Yil)Yi2 K -h-

nh fn(x) 1-

where in (X) is the density of x

in(X) = n~d L::I K(x ~Xi).

For a given parameter vector b, and as in (8) above let the trimmed function Htn(x, b)

Htn(x, b) = min{P4(x, b), max{Hn(x), P3(x, b)}}

where in the following H, (x, b) is the same as Htn(x, b) with H replaced with H. Also, I use H, and H to designate
H (x), and Pli to designate PI (Xi, fJ) and similarly for P2i, P3i and P4i' Also, let Hni designate tt;(Xi) and similarly
for Hi, The next theorem summarizes the results on the asymptotic distribution of the SML estimator.

as n ----+ 00.a.s.

Theorem 5 (SML Estimator). Given Assumptions 1-3 and 5-7 above and the conditions stated in Lemma 4,

A A P
fJn = argmaxp Ln[b; Htn(x, b)] ----+ fJ

Let the conditions in Lemmas 6 and 7 hold. Then, the asymptotic distribution of ..jii.(P - fJ) is N (0, Q), where

{[
aPI ap { ap2ap~ (aPI +ap2)(aPI +ap2),]}-I

Q=E --+--+ .
PI P2 1 - PI - P2 - H

Proof (Consistency Proof). Let

A 1 L:nL n(b; Htn) = - . [YiIYi210g(Pdxi, b) + (1 - Yil)(l - Yi2) log(P2(Xi, b»
N 1=1

+ (1 - Yil)Yi2 10g(Htn (Xi, b» + Yil (1 - Yi2) logfl - PI (Xi, b) - P2(Xi, b) - Htn(Xi, b».

Next, I show that the likelihood function evaluated at the estimated function Htn is close to the likelihood function
evaluated at H, (x, b) uniformly in b. This allows us to focus on consistency of the likelihood where I replace H with H:

A 11 ",n AILn[b; Htn(b)] - Ln[b; Ht(b)]1 = N L..Ji=I (1- Yil)Yi2[1og(Htn(Xi, b» -log(Ht(Xi, b»]

+ Yil (l - Yi2)[1og(1 - PI (Xi, b) - P2(Xi, b) - Htn(xi, b» -log(1 - PI (Xi, b) - P2(Xi, b) - Ht(Xi, b»l·

NoticeI2 that I10g(Htn(Xi , b» -log(Ht(Xi, b»1 ::: Ilog(Hn(Xi» -log(H(Xi»l. By consistency of the kernel estimator

(Lemma 4) we have that Ilog(Hn(Xi» -log(H(Xi»1 ~ O. This means that ILn[b; Htn(b)] - Ln[b; Ht(b)]1 is op(1)
uniformly in b almost surely. Given the usual regularity conditions, Ln[b; H, (b)] converges to its expectation. To prove
that the expectation of the likelihood above is maximized at the true parameter value, consider the following:

[

In [PI (b)] ICypz)[(I,I)] [pz(b)] ICYI ,Yz)[(0,0)] [Ht(b) ]ICYPZ)[(O,I)] ]

E[L(b; Ht> - L(fJ; H)] = E PI (f3) Pz(f3) H

[
I - P I (b)-Pz(b)-Ht(b)] ICypz)[(I,O)]
I-PI (f3)-Pz(f3)-H

< In E [PI (b) P (Po) + P2(b) P (Po) + Ht(b) H
- x PI (fJ) I P P2(fJ) 2 P H

+ 1- PI (b) - P2(b) - Ht(b) 1 _ P2(fJ) - P2(fJ) - H]
1 - PI (fJ) - P2(fJ) - H

= In Ex [1] = O.

Here we have used Jensen's inequality for convex functions. This implies that the objective function is maximized at the
true parameter value. Uniform convergence added with the compactness of the parameter space and the usual regularity
conditions will imply consistency. II

12. This follows from Ilog max (a , c) -log max (a , b)1 ::: Ilog c -log bl. The same also holds for the min function.
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For deriving the asymptotic distribution of the SML estimator consider the Taylor series expansion for the gradient
of the quasi-likelihood around the true value of the parameter fJ

(A. I)

where ~ is the mean value lying on the line joining Pto fJ. Since the score function is evaluated at the true parameter
vector, and for large enough n, Htn (x, fJ) is close to Ht (x, fJ) which is equal to H (x). Hence for large n, Htn (x, fJ) will
not depend on fJ and I will replace the function Htn (x, fJ) with Hn (x).13 Let Si (fJ; Hn (xi» be defined as

I show that

-/Tir(Hn ) = op(1)

and hence that the asymptotic distribution does not depend on the estimation of the infinite-dimensional parameter. Then
I use a central limit type of result to find the asymptotic distribution of ~ L S(Zi; Hi)'

We have

A -2-L:N ( (OfJPli+OfJP2i) _ (OfJPli+OfJP2i) )
r(Hn ) - A l(y.} Y'2)(1, 0)

N i=1 (1-Pli- P2i- Hni) (1-Pli- P2i- Hi) I' 1

where the function H is of the following form:

" (X-X')
A L..l(Yi}'Yi2)(0,1)k ----r- m(X)

Hni(X) = (X X) =-A-Lk ~ f(X)

where m(X) = -ika L 1(Yi},Yi2) (0, l)k(~) is the kernel estimate of the joint distribution of X and (0, 1), and

J(X) = Nh- L k ( X -/i) is the kernel estimator of the density of the vector X. To be able to deal with the ratio, we

need to linearize rUIn) as a function of m(X) and J(X) functions using the following:

a ao I ao
- - - ~ - (a - aO) - - (b - bo)
b bo bo b5

where the remainder is of order O«a - ao)2, (b - bo)2). This implies that

A 1 ",N (OfJ Pli+ OfJ P2i) (i-Ii)
r(Hn ) = - LJ· --

N 1=1 (1 - Pli - P2i - Hi) fi

+ (OfJPli + °fJ P2i)(1 - Pli - P2i) (J.. - It)
(1- Pli - P2i - Hi)«l - Pli - P2i)fi - mi) 1 1

(OfJ Pli + 0fJP2i) A

--------:.-----"-------- (m' - m·)
(1- Pli - P2i - Hi)«(1- Pli - P2i)fi - mi) I 1

+ remainder

= (1) + (2) + (3) + remainder

where the remainder is of the following order:

Rem = O(llmn - m1l 2 , IIJn - fIl 2).

13. Alternatively, we could drop those observations for which Hn (Xi) > P4(Xi, fJ) fIn (Xi) < P3(Xi, fJ).
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I show below that the three terms (1), (2) and (3) and the remainder tend to zero faster than root n which allows us
to replace the estimated Hwith H in (A.l) and use a centrallirnit theorem. The lemma below deals with the first term.
The other two are similar.

Lemma 6. Given Assumptions 8-10, we have that

JTi(tenn (1» = op(1).

The same applies for terms (2) and (3).

Let us write term (1) in a different manner:

JTi(tenn (1» = L~ N- l / 2 (8fj
P

li + 8fj
P2i)

(fl - Ii)
1=1 (1 - Pli - P2i - Hi) fi

""N -1/2 ~= L...,i=l N T(Zi, {J)(fi - fi)·

It suffices to show that the above converges in mean-square:

E[L:l N-
l/2T(Zi,

{J)(fl - Ii)f = E[L:l T(Zi, {J)(fl - fi)f / N

= E[ LT2(Zi, {J)(h - fi)2 j N]

+ E[ L i;6j T(Zi, {J)(h - fi)(!j - fj)T(Zj, {J)jNl
Since T 2(z , {J)(j- f)2 ~ 0, and by a uniform boundedness condition, the first term above goes to zero. The second
condition goes to zero by first using the law of iterated expectation and conditioning on z; and then Zi- The same applies
to the other two terms (2) and (3). II

The next lemma guarantees that the remainder has the appropriate rate.

Lemma 7. If(i) ..;nh 2m -+ 0, (ii) ..;nln(n)jnh2r+d -+ 0, (iii) nh d -+ 00, and nh d j In(n) -+ 00 we get

JTilimn - mll2 = op(1)

and

Proof Basically we need condition (i) to control the bias, but at the same time we need (iv) to make sure the
variance goes to zero. Condition (ii) guarantees uniform convergence. These conditions will be satisfied for a range of
bandwidth sequences hn if the kernel we use is of high enough order (m » 0) and the density has enough derivatives
(r »0). II

The next lemma deals with the Hessian term in (A.l).

Lemma 8. Given the assumptions above,

2 ~ p {[8P18P{ 8P28P~ (8Pl + 8P2)(8 PI +8P2)']}
-[8 Ln[b; Hn(x, b)]] ---* E --+--+ .

PI P2 1 - PI - P2 - H b~ fj

Proof First taking the derivative of the score function with respect to b we get

1 [Pl'82PI' - 8Pl,8P' P2'82 P2' - 8P2,8P'
82Ln[b;Htn(x,b)]=-Li 1 1

2
1 li 1i (1, l) + 1 1

2
1 2i 1i (0, 0)

n Pli P2i

_ (8
2

Pli + 8
2

P2i)(1 - Pli - P2i - Hn(Xi» ~+ (8 Pli + 8P2i)(8 Pli + 8P2d li(1, 0)] (A,2)

(1 - Pli - P2i - Hn(Xi»2

where for example 1i (1, 1) = 1 if (Yli , Y2i) = (I, I), Using similar arguments to ones used above, one can show that

182L
n[b; Htn(x, b)] - 82L

n[b; Ht(x, b)]1 = opel)
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uniformly in b in a shrinking neighbourhood around fJ. Using a law of large number type result we get that since {J is
consistent the convergence results above insure that for f, E [{J, fJ],

aZLn[f,; Ht(x,f,)] ~ EaZLn[fJ; H] asn ~ 00

where by conditioning first on x and taking expectations in (A.2) we get the result of the lemma.

Normality Proof:
The above implies that

which implies that LSi (fJ; Htni)/.;n has the same asymptotic distribution as L s, (fJ; Hi)/.;n. We have

-In({J - fJ) = [-aZL(fJ; H)]-I :n L
i

Si(fJ, Hi) +op(l)

Z . -1 1 L N [OPIi apZi= [-a L(fJ, H)] r.; , -1(y'} Y'2)(l, 1) + -1(y'} Y'2)(0, 0)v n 1=1 PH I' I PZi I' I

(aPli + apzi) ]
----'------:-~-I(Yil,yi2)(l, 0) + op(1).
(1 - Pli - PZi - Hni)

By a central limit theorem,

1 "N [aPh aPzi (aPIi + apZi) ]
.;n L.Ji=I Ph I(YjJ,Yi2)(l, 1) + PZi 1(YjJ,Yi2) (0, 0) - (l _ Ph _ PZi _ Hi) I(YjJ,Yi2)(l, 0)

tends to a normal distribution with mean zero and the variance matrix equals the variance of

[
aPI apz (aPI + apz) ]
~1(Yl'Y2)(l, 1)+ Ji2 1(Yl ,Y2)(O, O) - (I_PI_Pz_H)1(YJ,Y2)(l,O) .

This is equal to

[
aPI op{ apzap~ (apt + aPZ)(aPI + apz)' ]

E Pf 1(1,1)+~ 1(0,0)+ (1 _ PI _ Pz _ H)z 1(1,0)'

Hence taking first the expectation with respect to y conditional on x and using Lemma 6, we get that

r: ~ d ( ![aPIap{ apzap~ (aPI + apz)(aPI +apz),]}-I)
vn(fJ-fJ)~N O,E --+--+ .

PI Pz 1 - PI - Pi - H
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