ECO 310: Empirical Industrial Organization

Lecture 9: Models of Competition in Prices or Quantities: Conjectural Variations

Victor Aguirregabiria (University of Toronto)

March 15, 2021

1 / 38

Outline on today's lecture

- 1. Introduction
- 2. Estimating the form of competition when MCs are observed
- 3. Estimating the form of competition without data on MCs

1. Introduction

3 / 38

Introduction

- In the previous lecture we saw how given a (estimated) demand system and an assumption about competition, we can obtain (estimate) firms' marginal costs.
- In today's lecture we will see how given a demand system and firms' marginal costs, we can identify the form of competition in a market.
- More specifically, we can identify firms' beliefs about how the other firms in the market respond strategically.
- This approach is called the conjectural variation approach or conjectural variation model.

. Conjectural variation model:

Homogeneous product markets

Conjectural Variation Model: Homogeneous product markets

- Consider an industry where, at period t, the inverse demand curve is $p_t = P\left(Q_t, X_t^D\right)$, and firms, indexed by i, have cost functions $C_i(q_{it})$.
- Every firm i, chooses its amount of output, q_{it} , to maximize its profit, $\Pi_{it} = p_t \ q_{it} C_i(q_{it})$.
- Without further assumptions, the marginal condition for the profit
 maximization of a firm is marginal revenue = marginal cost, where
 the marginal revenue of firm i is:

$$MR_{it} = p_t + P_Q'\left(Q_t \ X_t^D
ight) \ \left[1 + rac{dQ_{(-i)t}}{dq_{it}}
ight] \ q_{it}$$

• $\frac{dQ_{(-i)t}}{dq_{it}}$ represents the **belief** that firm i has about how the other firms will respond if she changes its own amount. We denote this **belief** as the **conjectural variation of firm** i, CV_i .

Conjectural Variations and Beliefs

- As researchers, we can consider different assumptions about firms' beliefs or conjectural variations, CV_{it} .
- An assumption on CVs implies a particular model of competition.
- Different assumptions imply different equilibrium outcomes, q_{it} , Q_t , and p_t .
- However, not all the assumptions are consistent with an equilibrium.
- In fact, most assumptions about CVs imply an equilibrium where firms are not rational in the sense that they have beliefs that do not hold in equilibrium.

Conjectural Variations: Nash-Cournot equilibrium

In our model of firm competition, Nash conjecture implies that:

$$CV_{it} \equiv \frac{\partial Q_{(-i)t}}{\partial q_{it}} = 0$$

- This conjecture implies the Cournot equilibrium (or Nash-Cournot equilibrium).
- For every firm i, the "perceived" marginal revenue is:

$$MR_{it} = p_t + P_Q' \left(Q_t \ X_t^D \right) \ q_{it}$$

and the condition $p_t + P_Q'(Q_t X_t^D) q_{it} = MC_i(q_{it})$ implies the Cournot equilibrium.

→ロト → □ ト → 三 ト → 三 ・ りへで

8 / 38

Victor Aguirregabiria () Competition March 15, 2021

Conjectural Variations: Perfect Competition

- Are other assumptions on firms' CVs that are consistent with a rational equilibrium?
- Yes, there are CVs that generate perfect competition equilibrium and the collusive or monopoly equilibrium which are consistent (rational) with the equilibrium outcome that they generate.
- **Perfect competition**. For every firm i, $CV_{it} = -1$.
- Note that this conjecture implies that:

$$MR_{it} = p_t + P_Q'\left(Q_t \ X_t^D
ight) \ \left[1-1
ight] \ q_{it} = p_t$$

and the conditions $p_t = MC_i(q_{it})$ imply the perfect competition equilibrium.

Conjectural Variations: Collusion

- There are also beliefs that can generate the collusive outcome (monopoly outcome) as a rational equilibrium.
- **Collusion (Monopoly)**. For every firm i, $CV_{it} = N_t 1$. This conjecture implies:

$$MR_{it} = p_t + P_Q' \left(Q_t X_t^D \right) N_t q_{it}$$

• This conjecture implies the equilibrium conditions:

$$p_t + P_Q'\left(Q_t X_t^D\right) N_t q_{it} = MC_i(q_{it})$$

 When firms have constant and homogeneous MCs, these conditions imply:

$$p_t + P_Q' \left(Q_t \ X_t^D \right) \ Q_t = MC$$

which is the equilibrium condition for the Monopoly (collusive or cartel) outcome.

Conjectural Variations: Nature of Competition

 The value of the beliefs CV are related to the "nature of competition", i.e., Cournot, Perfect Competition, Cartel (Monopoly).

Perfect competition:
$$CV_{it} = -1$$
; $MR_{it} = p_t$

Nash-Cournot:
$$CV_{it} = 0$$
; $MR_{it} = p_t + P_Q'(Q_t) q_{it}$

Cartel all firms:
$$CV_{it} = N_t - 1$$
; $MR_{it} = p_t + P_Q'\left(Q_t\right) Q_t$

- Given this result, one can argue that CV is closely related to the nature of competition, and therefore with equilibrium price and quantities.
- If CV is negative, the degree of competition is stronger than Cournot.
 The closer to -1, the more competitive.
- If CV is positive, the degree of competition is weaker than Cournot. The closer to $N_t - 1$, the less competitive.

Conjectural Variations: Nature of Competition

- Interpreting the beliefs CV as an **index of competition** is correct.
- However, it is important to take into account that for values of CV different to -1, or 0, or N_t-1 , the "Conjectural Variation" equilibrium that we obtain is not a rational equilibrium.
- We can think in the CV as firms' beliefs that are determined over time as the result of firms interactions and learning (a dynamic game).

Conjectural Variation: Estimation

 Consider an homogeneous product industry and a researcher with data on firms' quantities and marginal costs, and market prices over T periods of time:

Data =
$$\{p_t, MC_{it}, q_{it}\}$$
 for $i = 1, 2, ..., N_t \& t = 1, 2, ..., T$

• Under the assumption that every firm chooses the amount of output that maximizes its profit given its belief CV_{it} , we have that the following condition holds:

$$p_t + P_Q'\left(Q_t \ X_t^D
ight) \ \left[1 + CV_{it}
ight] \ q_{it} = MC_{it}$$

• And solving for the conjectural variation,

$$CV_{it} = rac{p_t - MC_{it}}{-P_Q'\left(Q_t \ X_t^D
ight) \ q_{it}} - 1 = \left[rac{\left(p_t - MC_{it}
ight) \ / p_t}{q_{it} \ / Q_t}
ight] \left|\eta_t
ight| - 1$$

where η_{t} is the demand elasticity.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Conjectural Variation: Estimation

$$extit{CV}_{it} = \left[rac{\left(p_t - extit{MC}_{it}
ight)/p_t}{q_{it}/Q_t}
ight]|\eta_t| - 1$$

[2]

- This equation shows that, given data on quantities, prices, demand and marginal costs, we can identify the firms' beliefs that are consistent with these data and with profit maximization.
- Let us denote $\left[\frac{(p_t-MC_{it})/p_t}{q_{it}/Q_t}\right]$ as the **Lerner-index-to-market-share** ratio of a firm.
- If the Lerner-index-to-market-share ratios are close zero, then the estimated values of CV will be close to -1, unless the absolute demand elasticity is large.
- If the Lerner-index-to-market-share ratios are large (i.e., larger than the inverse demand elasticity), then estimated CV values will be greater than zero, and can reject the hypothesis of Cournot competition.

Conjectural Variation: Estimation [3]

$$CV_{it} = \left[rac{\left(p_t - MC_{it}
ight)/p_t}{q_{it}/Q_t}
ight]|\eta_t| - 1$$

- Part of the sample variation of CV_{it} can be due to estimation error in demand and marginal costs.
- To implement a formal statistical test of the value of CV_{it} we need to take into account this error.
- For instance, let \overline{CV} be the sample mean of the values CV_{it} . Under the null hypothesis of Cournot competition, $CV_{it}=0$ for every (i,t) and \overline{CV} has a Normal distribution $(0,s^2)$. We can estimate s and implement a t-test based on the statistic $\overline{CV}/\widehat{s}$.

3. Estimating CV parameters without data on MCs

16 / 38

Estimating CV parameters without data on MCs

- So far, we have considered the estimation of CV parameters when the researcher knows both demand and firms' marginal costs.
- We now consider the case where the researcher knows the demand,
 but it does not know firms' marginal costs.
- Identification of CVs requires also de identification of MCs.
- Under some conditions, we can jointly identify CVs and MCs using the marginal conditions of optimality and the demand.

Data

Researcher observes data:

$$\mathsf{Data} = \left\{ P_t, \ q_{it}, \ X_t^D, \ X_t^{MC}: \ i = 1, ... N_t; \ t = 1, ..., T \right\}$$

- X_t^D are variables affecting consumer demand, e.g., average income, population.
- \bullet X_t^{MC} are variables affecting marginal costs, e.g., some input prices.

Model: Demand and MCs

Consider the linear (inverse) demand equation:

$$P_t = \alpha_0 + \alpha_1 X_t^D - \alpha_2 Q_t + \varepsilon_t^D$$

with $\alpha_2 \geq 0$, and ε_t^D is unobservable to the researcher.

Consider the marginal cost function:

$$MC_{it} = \beta_0 + \beta_1 X_t^{MC} + \beta_2 q_{it} + \varepsilon_{it}^{MC}$$

with $\beta_2 \geq 0$, and ε_{it}^{MC} is unobservable to the researcher.

Model: Profit maximization

• Profit maximization implies $MR_{it} = MC_{it}$, or equivalently:

$$P_t + rac{dP_t}{dQ_t} \left[1 + CV_{it}
ight] \ q_{it} = MC_{it}$$

• In the model above, $\frac{dP_t}{dQ_t} = -\alpha_2$. Therefore,

$$P_{t}-\alpha_{2}\left[1+CV_{it}\right]\ q_{it}=\beta_{0}+\beta_{1}\ X_{t}^{MC}+\beta_{2}\ q_{it}+\varepsilon_{it}^{MC}$$

Or equivalently,

$$P_t = \beta_0 + \beta_1 X_t^{MC} + [\beta_2 + \alpha_2(1 + CV_{it})] q_{it} + \varepsilon_{it}^{MC}$$

• This equation describes the marginal condition for profit maximization. We assume now that $CV_{it} = CV$ for every observation i, t in the data.

Complete structural model

The structural equations of the model are:

Demand:
$$P_t = \alpha_0 + \alpha_1 X_t^D - \alpha_2 Q_t + \varepsilon_t^D$$

F.O.C.: $P_t = \beta_0 + \beta_1 X_t^{MC} + [\beta_2 + \alpha_2(1 + CV)] q_{it} + \varepsilon_{it}^{MC}$

- Using this model and data, can we identify (estimate consistently, without asymptotic bias) the CV parameter?
- First, we will see that NO. In this model we cannot separately identify CV and MC.
- Second, we will see that a simple modification of this model implies separate identification of CV and MC.

Identification of demand parameters

Demand:
$$P_t = \alpha_0 + \alpha_1 X_t^D - \alpha_2 Q_t + \varepsilon_t^D$$

- Endogeneity problem: in equilibrium, $cov(Q_t, \varepsilon_t^D) \neq 0$.
- The model implies a valid instrument to estimate demand.
- In equilibrium, Q_t depends on X_t^{MC} . Note that X_t^{MC} does not enter in demand. If X_t^{MC} is not correlated with ε_t^D , then X_t^{MC} satisfies all the conditions for being a valid instrument.
- Parameters α_0 , α_1 , and α_2 are identified using this IV estimator.

F.O.C.:
$$P_t = \beta_0 + \beta_1 X_t^{MC} + [\beta_2 + \alpha_2(1 + CV)] q_{it} + \varepsilon_{it}^{MC}$$

- Endogeneity problem: in equilibrium, $cov(q_{it}, \varepsilon_{it}^{MC}) \neq 0$.
- The model implies a valid instrument to estimate demand.
- In equilibrium, q_{it} depends on X_t^D . Note that X_t^D does not enter enter in the F.O.C. If X_t^D is not correlated with ε_{it}^{MC} , then X_t^D satisfies all the conditions for being a valid instrument.
- Parameters β_0 , β_1 , and $\gamma \equiv \beta_2 + \alpha_2(1 + CV)$ are identified using this IV estimator.

F.O.C.:
$$P_t = \beta_0 + \beta_1 X_t^{MC} + \gamma q_{it} + \varepsilon_{it}^{MC}$$

- Note that we can identify the parameter γ , where $\gamma \equiv \beta_2 + \alpha_2 (1 + CV)$, and the slope of inverse demand function, α_2 .
- However, knowledge of γ and α_2 is not sufficient to identify separately CV and the slope of the MC, β_2 .
- ullet Suppose that $\gamma=1$ and $lpha_2=0.4$, such that we have the constraint:

$$1 = \beta_2 + 0.4 \ (1 + CV)$$

• This equation is satisfied by any of the following: [Perfect competition] CV = -1 and $\beta_2 = 1.0$

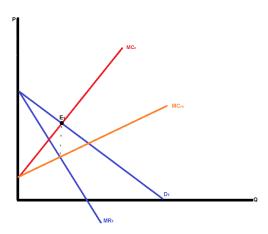
[Cournot]
$$CV = 0$$
 and $\beta_2 = 0.6$

[Cartel, with
$$N=3$$
] $CV=N-1=2$ and $\beta_2=0.2$

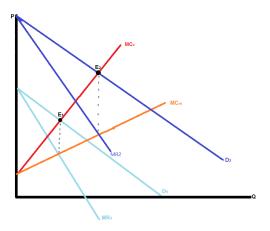
• The IV estimator identifies the MC by using the instrument X_t^D that shifts the demand.

[2]

- When we make an assumption about the form of competition, shifts in the demand curve are able to trace out the marginal cost curve, i.e., to identify the MC parameters.
- However, without specifying the form of competition, shifts in the demand alone are not sufficient to separately identify MC and CV.
- Let $\widehat{q}_{it}(X_t^D)$ be the part of q_{it} explained X_t^D . When X_t^D varies, we see a positive correlation between P_t and $\widehat{q}_{it}(X_t^D)$. But the magnitude of this correlation can be explained by the combination of:
 - either zero/negative CV and positive and large β_2 ;
 - or positive CV and small or zero β_2 .



[3]

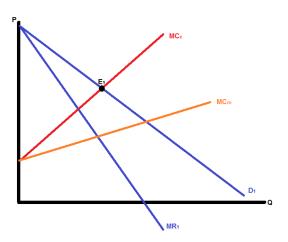


[4]

Solving the identification problem

- Solving the identification problem involves generalizing demand so that changes in exogenous variables do more than just parallel shift the demand curve and MR.
- In particular, we need to allow for additional exogenous variables that are capable of rotating the demand curve as well.
- "Demand Rotators" are exogenous variables affecting the slope of the demand curve:

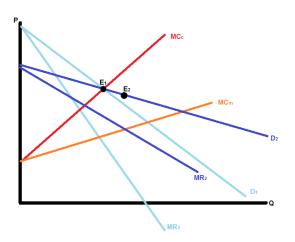
Solving the identification problem



[2]

- Note that E_1 could be an equilibrium either for a perfectly competitive industry with cost MC_c or for a monopolist with cost MC_m .
- There is no observable distinction between the hypotheses of competition and

30 / 38



- Now, rotate the demand curve to D_2 , with MR_2
- Competitive equilibrium stays at E_1 . But monopoly equilibrium moves to E_2

Consider now the following demand equation:

$$P_t = \alpha_0 + \alpha_1 X_t^D - \alpha_2 Q_t - \alpha_3 [R_t Q_t] + \varepsilon_t^D$$

- R_t is an observable variable that affects the slope of the demand, i.e., the price of a substitute or complement product.
- Key condition: $\alpha_3 \neq 0$.
- That is, when R_t varies, there should be rotation (i.e., change in the slope of the demand curve).

Solving the identification problem

Given this demand model, we have that:

$$\frac{dP_t}{dQ_t} = -\alpha_2 - \alpha_3 R_t$$

[5]

And the F.O.C. for profit maximization

$$P_t + \frac{dP_t}{dQ_t} \left[1 + CV \right] \ q_{it} = MC_{it}$$

become:

$$P_t + (-\alpha_2 - \alpha_3 R_t) [1 + CV] q_{it} = MC_{it}$$

or equivalently:

$$P_t = MC_{it} + (\alpha_2 + \alpha_3 R_t) [1 + CV] q_{it}$$

• Combining this F.O.C. with the MC function, $MC_{it} = \beta_0 + \beta_1 X_t^{MC} + \beta_2 q_{it} + \varepsilon_{it}^{MC}$, we have:

$$P_t = \beta_0 + \beta_1 X_t^{MC} + \beta_2 \ q_{it} + (\alpha_2 + \alpha_3 \ R_t) \ [1 + CV] \ q_{it} + \varepsilon_{it}^{MC}$$

• That we can represent using the following regression model:

$$P_t = \beta_0 + \beta_1 X_t^{MC} + \gamma_1 \ q_{it} + \gamma_2 \ (R_t \ q_{it}) + \varepsilon_{it}^{MC}$$
 with $\gamma_1 \equiv \beta_2 + \alpha_2 \ [1+CV]$ and $\gamma_2 \equiv \alpha_3 \ [1+CV]$.

The structural equations of the model are:

Demand:
$$P_t = \alpha_0 + \alpha_1 X_t^D - \alpha_2 Q_t - \alpha_3 [R_t Q_t] + \varepsilon_t^D$$

F.O.C.: $P_t = \beta_0 + \beta_1 X_t^{MC} + \gamma_1 q_{it} + \gamma_2 (R_t q_{it}) + \varepsilon_{it}^{MC}$

 Using this model and data, we can identify separately CV and MC parameters.

Identification of demand parameters

Demand:
$$P_t = \alpha_0 + \alpha_1 X_t^D - \alpha_2 Q_t - \alpha_3 [R_t Q_t] + \varepsilon_t^D$$

- Endogeneity problem: in equilibrium, $cov(Q_t, \varepsilon_t^D) \neq 0$.
- The model implies a valid instrument to estimate demand.
- In equilibrium, Q_t depends on X_t^{MC} . Note that X_t^{MC} does not enter in demand. If X_t^{MC} is not correlated with ε_t^D , then X_t^{MC} satisfies all the conditions for being a valid instrument.
- Parameters α_0 , α_1 , α_2 , and α_3 are identified using this IV estimator.

F.O.C.:
$$P_t = \beta_0 + \beta_1 X_t^{MC} + \gamma_1 q_{it} + \gamma_2 (R_t q_{it}) + \varepsilon_{it}^{MC}$$

- Endogeneity problem: in equilibrium, $cov(q_{it}, \varepsilon_{it}^{MC}) \neq 0$.
- The model implies a valid instrument to estimate demand.
- In equilibrium, q_{it} depends on X_t^D . Note that X_t^D does not enter enter in the F.O.C. If X_t^D is not correlated with ε_{it}^{MC} , then X_t^D satisfies all the conditions for being a valid instrument.
- \bullet Parameters $\beta_0,~\beta_1,~\gamma_1,~{\rm and}~\gamma_2$ are identified.

F.O.C.:
$$P_t = \beta_0 + \beta_1 X_t^{MC} + \gamma_1 q_{it} + \gamma_2 (R_t q_{it}) + \varepsilon_{it}^{MC}$$

Note that:

$$\gamma_1 = \beta_2 + \alpha_2 \left[1 + CV \right]$$

[2]

$$\gamma_2 = \alpha_3 [1 + CV]$$

- It is clear that given γ_2 and α_3 , we identify CV.
- And given γ_1 , α_2 , and CV we identify β_2 .

F.O.C.:
$$P_t = \beta_0 + \beta_1 X_t^{MC} + \gamma_1 q_{it} + \gamma_2 (R_t q_{it}) + \varepsilon_{it}^{MC}$$

with

$$\gamma_2 = \alpha_3 [1 + CV]$$

[3]

- The identification of CV is very intuitive: $1+CV=\gamma_2/\alpha_3$. It measures the ratio between the sensitivity of P_t with respect to $(R_t \ q_{it})$ in the F.O.C. and the sensitivity of P_t with respect to $(R_t \ Q_t)$ in the demand.
- Example: $\alpha_3=0.5$ and N=3. [Perfect competition] CV=-1 such that $\gamma_2/\alpha_3=0$ [Cournot] CV=0 such that $\gamma_2/\alpha_3=1/0.5=2$ [Cartel, with N=3] CV=N-1=2 such that $\gamma_2/\alpha_3=2/0.5=4$