ECO310 - Tutorial 7 Estimating Marginal Costs

Francis Guiton

March 15, 2021

In this week's tutorial, we will be focusing on how to estimate marginal costs using the Verboven automobile dataset. We will consider both the standard logit model and the nested logit model, and we will assume Bertrand competition in order to pin down the price-cost margin and the marginal cost. Next week, we will see how to implement a simple counterfactual merger analysis using the "mergersim" command in STATA (type *search mergersim* in the Command Window in order to find and install the command).

1 Set-Up

We load the Verboven dataset onto STATA and generate the logarithms of our variables of interest: price (in euros), quantity, population and GDP.

```
. // Generating log-variables
. gen ln_p = ln(eurpr)
. gen ln_q = ln(qu)
. gen ln_pop = ln(pop)
. gen ln_gdp = ln(ngdp)
```

Since we will be working with the logit model, we must generate our market shares. As we have done in the previous tutorial, we generate a market share for each car model in a given market and year, and create a variable that sums these market shares across markets and years. This will then allow us to generate the outside shares. In this tutorial we will consider demand at the household level (i.e. market size = population/4). Finally, given these market shares, we generate our dependent variable - the log-odds ratio.

```
. // Creating market shares
. gen market_size = pop/4
. gen share = qu/market_size
. egen sum_share = sum(share), by(ma ye)
. gen outside_share = 1-sum_share
.
. // Generating the log-odds ratio (our dependent variable)
. gen sj_s0 = ln(share/outside_share)
```

2 Demand Estimation

Nested Logit

In order to implement the nested logit model, we must first decide how to separate the products into groups (or "nests"). In this tutorial, we will group the automobiles into two groups - foreign cars and domestic cars, given by the variable "home" (1 if domestic, 0 otherwise). In a given market and year, we generate a variable "nest_sum" that sums the market shares of each nest. Given this new variable, we compute the (log-) within-group share by dividing the individual market shares by the "nest_sum" variable.

```
. // First, we generate the sum of market shares of each nest given a market and a year
. egen nest_sum = sum(share), by(ma ye home)
.
. // We can now generate the (log) within-group market share
. gen within_share = ln(share/nest_sum)
```

We now run the nested logit model using the "reghdfe" command from last week's tutorial in order to control for multiple levels of fixed effects in our panel. Unlike last week's tutorial, here we will control for market, year, and brand fixed effects (command option "a(ma ye brd)"). We include the log- within-group share as an explanatory variable, population and GDP as covariates, and product attributes. As usual, we include the "vce(robust)" option in our command.

FE Linear re					r of obs =	11,549	
sorbing 3 HD	OFE groups				0, 11466) =	17778.91	
				Prob		0.0000	
				R—squ		0.9524	
					-squared =	0.9521	
					.n R-sq. =	0.9380	
				Root	MSE =	0.3287	
		Robust					
sj_s0	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
ln_p	.0347379	.028136	1.23	0.217	0204135	.0898893	
thin_share	1.059716	.0030231	350.54	0.000	1.05379	1.065641	
hp	.0022768	.0004699	4.85	0.000	.0013557	.0031979	
li	.0005364	.0042338	0.13	0.899	0077626	.0088354	
wi	0042111	.0009483	-4.44	0.000	0060699	0023523	
су	7.53e-06	.0000222	0.34	0.734	0000359	.000051	
le	.0002348	.0002179	1.08	0.281	0001922	.0006619	
he	.0009742	.0009389	1.04	0.299	0008661	.0028145	
ln_pop	162994	.0666984	-2.44	0.015	2937343	0322537	
ln_gdp	.4837022	.0182389	26.52	0.000	.4479509	.5194535	
_cons	-13.66916	1.364237	-10.02	0.000	-16.34329	-10.99502	
sorbed degre	ees of freedo Categories	m: — Redundant	= Num.	Coefs			
ma	5	0		5			
ye brd	30 40	1		29 39 ?			

The "within_share" coefficient measures the consumers' preference correlation for products within nests. Since this estimate is greater than 1, our nested logit model is not valid. We could consider separating products into new groups and subgroups.

Standard Logit

Since our previous nested logit model is not valid, we will instead consider the standard logit model of last week's tutorial.

. reghdfe sj_: (MWFE estimate				ln_g	dp,	vce(robust) a(ma ye brd)
IDFE Linear r	egression			I	Numb	erofobs =	11,549
Absorbing 3 HDFE groups					F (9, 11467) =	341.86
				l	Prob	> F =	0.0000
				I	R-sq	uared =	0.4018
					Adj	R-squared =	0.3975
				1	With	in R-sq. =	0.2203
				1	Root	MSE =	1.1656
		Robust					
sj_s0	Coef.	Std. Err.	t	P>	t	[95% Conf.	Interval]
ln_p	-1.164701	.1038432	-11.22	0.	000	-1.368251	9611507
hp	0137051	.0017671	-7.76	0.	000	0171689	0102413
li	0415553	.0136634	-3.04	0.	002	0683379	0147726
wi	.0638831	.0033199	19.24	0.	000	.0573755	.0703907
су	0006896	.000084	-8.21	0.	000	0008542	000525
le	0000936	.0007787	-0.12	0.9	904	00162	.0014327
he	017626	.0030341	-5.81	0.	000	0235734	0116785
ln_pop	.349325	.2300971	1.52	0.3	129	1017048	.8003547
ln_gdp	.2826532	.062891	4.49	0.	000	.1593761	.4059302
_cons	-17.20771	4.726521	-3.64	0.	000	-26.4725	-7.942923
bsorbed degr	ees of freedo	m :					
Absorbed FE	Categories	- Redundant	= Num	Coe	fs		
ma	5	0		5			
уе	30	1		29			
brd	40	1		39	?		
ye	30 40	1	be high	29 39	?		

3 Estimating Marginal Cost

Price-Cost Margin

Using the parameter estimate above for the (log-) price, we will compute the price-cost margin under Bertrand competition, Here we will consider the "standard" functional form for the marginal cost of firms outlined in the lecture slides. Note that given our model, price enters the consumer's utility function as a logarithm. Therefore, with $\alpha < 0$, we have:

$$\frac{\partial \sigma_i}{\partial p_i} = \frac{\alpha}{p_i} s_i (1 - s_i)$$

The above entails that our price-cost margin can be written as

$$-\frac{s_i}{\partial \sigma_i / \partial p_i} = -\frac{p_i}{\alpha(1-s_i)}$$

We therefore compute the price-cost margin in STATA in the following way:

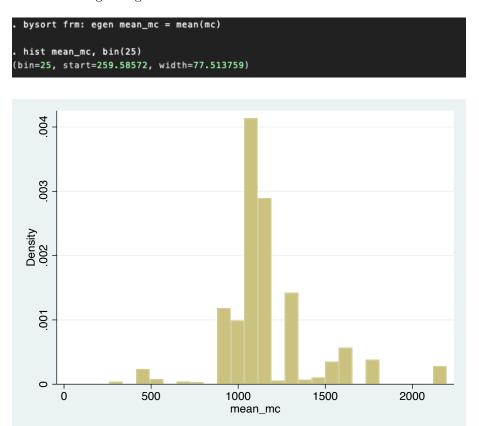
Marginal Cost

Given our price-cost margin, we can now estimate the firms' marginal costs. First, since $MR_i = p_i + \frac{s_i}{\partial \sigma_i / \partial p_i}$, we compute (log-) marginal revenue as:

```
. // Using the price-cost margin, we can compute marginal revenue (in euros)
. gen mr = eurpr - price_cost_margin
. gen ln_mr = ln(mr)
```

Then, given our functional form for marginal cost, we run a regression of (log-) marginal revenue on (log-) quantity and product characteristics in order to obtain an estimate for marginal cost using the regression's fitted value.

reghdfe ln_r MWFE estimato	nr ln_q hp li or converged			ln_gdp, v	ce(robust)	a(m	a ye brd)	re
DFE Linear re	areccion			Numbo	r of obs	=	11,549	
bsorbing 3 H					9, 11467)		8552.44	
bsorbing 5 m	SIL groups			Prob		_	0.0000	
				R-squ		=	0.9724	
					-squared		0.9723	
					n R-sq.		0.8860	
				Root			0.1100	
		Robust						
ln_mr	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]	
ln_q	0188848	.0009599	-19.67	0.000	020766	3	0170032	
hp	.0084214	.0001798	46.84	0.000	.00806	59	.0087738	
li	.0001027	.0013618	0.08	0.940	002566		.002772	
wi	.0034008	.00034	10.00	0.000	.002734	3	.0040674	
су	.0000968	8.75e-06	11.06	0.000	.000079	96	.0001139	
le	.0022009	.0000757	29.08	0.000	.002052	26	.0023493	
he	0033937	.0002729	-12.44	0.000	003928	36	0028587	
ln_pop	.4230247	.0200337	21.12	0.000	.383755	51	.4622942	
ln_gdp	.1295281	.0050102	25.85	0.000	.119707	3	.139349	
_cons	-5.786087	.4045117	-14.30	0.000	-6.57899	9	-4.993175	
bsorbed degre	ees of freedo	m :						
Absorbed FE	Categories	- Redundant	= Num.	Coefs				
ma	5	0		5				
ye	30	1		29				
brd	40	1		39 ?				


Unfortunately, the regression suffers from an endogeneity problem, as our log-quantity is likely correlated with the unobservables. One option would be to use an instrumental variables approach in order to control for this endogeneity. In this tutorial, we will instead consider a constant marginal cost specification, which will get rid of the potential endogeneity. Below, we regress log- marginal revenue on product characteristics. We add the "res" option to our "reghtfe" command in order to tell STATA that we will be using the parameter estimates for post-estimation commands.

. reghdfe ln_r (MWFE estimato				lp, vce	(robust) a(ma y	e brd) res
HDFE Linear re Absorbing 3 HG				F(Pr R- Ad Wi	mber of obs = 8, 11468) = ob > F = squared = j R-squared = thin R-sq. = ot MSE =	0.0000 0.9713 0.9711
ln_mr	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
hp	.0088716	.0001872	47.38	0.00	0 .0085045	.0092386
li	.0008985	.0014203	0.63	0.52	70018855	.0036824
wi	.0022548	.0003321	6.79	0.00	0.0016039	.0029058
су	.0001122	9.38e-06	11.96	0.00	0.0000938	.0001306
le	.0022507	.0000774	29.09	0.00	0.0020991	.0024024
he	003132	.0002753	-11.38	0.00	00036715	0025924
ln_pop	.406027	.02019	20.11	0.00	0.3664511	.4456028
ln_gdp	.1272735	.0051288	24.82	0.00	0.1172202	.1373267
_cons	-5.51132	.4082338	-13.50	0.00	0 -6.311528	-4.711112
bsorbed degre	ees of freedo Categories	m: — Redundant	= Num.	Coefs	7	
ma	5	0		5		
ye 	30	1		29	-	
brd	40	1		39	?	
= number of	redundant pa	rameters may	be high	ier		

Given these parameter estimates, we can estimate marginal cost as the fitted value (including fixed effects) of the previous regression using the "predict *varname*, xbd" command. Since marginal revenue is in logarithms, we will have to take the exponential of the fitted value in order to obtain marginal cost in euros.

Finally, taking the average of the marginal costs we have generated across firms, we obtain the following histogram:

