ECO 310: Empirical Industrial Organization

Lecture 7: Demand Systems: Discrete Choice Models [2]

Victor Aguirregabiria (University of Toronto)

March 1, 2021

Victor Aguirregabiria () Demand March 1, 2021 1 / 24

Outline on today's lecture

- 1. Estimation of the Standard Logit Model
 - 1.1. Endogeneity problem & bias of OLS estimator
 - 1.2. Instrumental Variables estimation
- 2. Logit model with heterogeneous coefficients

Estimation of the Standard Logit Model

Estimation Standard Logit Model: Data

• Suppose that we have data on quantities (sold), prices, and characteristics of all the *J* products in a market:

Data =
$$\{q_j, p_j, X_{1j}, ..., X_{Kj}: \text{ for } j = 1, 2, ..., J\}$$

- Suppose that we also observe the consumers who have not purchased any of the J products, q_0 .
- For instance, the Stata dataset verboven_cars.dta contains the following variables for J=356 car models in the markets of five different European countries.

price; quantity; brand; displacement (in cc); horsepower (in kW); weight (in kg); seats; doors; length; (in cm); width (in cm); height (in cm); fuel efficiency (liter per km); maximum speed (km/hour); time to acceleration (secs from 0 to 100 km/h).

4□ ► ←□ ► ← □ ► ← □ ● ♥9

Estimation Logit Model

- Given quantities, we can construct market shares. Market size (number of consumers) is: $H = q_0 + q_1 + ... + q_J$. And the market share of product j is $s_i = q_i/H$.
- The logit model implies the regression model:

$$y_j = \beta_p \ p_j + \beta_1 \ X_{1j} + ... + \beta_K \ X_{Kj} + \xi_j$$

where $y_j \equiv \ln(s_j) - \ln(s_0)$, $\beta_p = -\alpha$.

- The error term ξ_j represents characteristics of product j valuable to the consumers but unobservable to us as researchers.
- \bullet Given these data, we can estimate parameters $(\beta_{p},\beta_{1},...,\beta_{K}).$

OLS Estimation: Endogeneity problem

- Unfortunately, the OLS estimator does not provide unbiased (consistent) estimates of the parameters of the model.
- Products with higher unobserved quality ξ_j tend to have higher prices [See next slide]:

$$cov(p_j, \xi_j) > 0$$

- This endogeneity problem implies that the OLS estimate $\widehat{\beta}_p^{OLS}$ estimates the combination of two effects:
 - (a) the causal effect of price on y_j : i.e., $\beta_p < 0$;
 - (b) an indirect positive effect (not causal) that comes from the correlation between price and unobserved product quality.

$$\widehat{\beta}_{p}^{OLS} \rightarrow \frac{cov(y_{j}, p_{j})}{var(p_{j})} = \beta_{p} + \frac{cov(p_{j}, \xi_{j})}{var(p_{j})}$$

 $\bullet \ \mbox{We could even get} \ \widehat{\beta}_{\it p}^{\it OLS} > 0.$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Endogeneity problem: Example

 Suppose that the profit maximization condition, Marginal Revenue = Marginal Cost, implies the following optimal price for the firm selling product j:

$$p_j = \gamma_1 X_{1j} + ... + \gamma_K X_{Kj} + \gamma_{\xi} \xi_j$$

where $\gamma's$ are parameters.

- Product characteristics affect price because: (1) they affect MCs, i.e., higher quality products are more costly to produce; and (2) they enter in demand and affect marginal revenue.
- The model consist of the logit demand equation and the pricing equation. For simplicity, let's omit the X variables:

$$y_j = \beta_p p_j + \xi_j$$

$$p_j = \gamma_{\xi} \, \xi_j$$

Endogeneity problem: Example [2]

 These are the structural equations of the model (I have omitted the constant terms; the variables are in deviations with respect to their respective means).

$$y_j = \beta_p p_j + \xi_j$$

$$p_j = \gamma_{\xi} \xi_j$$

Solving the price equation into the demand equation, we have that:

$$y_j = (\beta_p \gamma_{\xi} + 1) \xi_j$$

Therefore:

$$cov(y_j, p_j) = (\beta_p \gamma_{\xi} + 1) \ \gamma_{\xi} \ var(\xi_j)$$
 $var(p_j) = (\gamma_{\xi})^2 \ var(\xi_j)$

◆個 > ◆ 差 > ◆ 差 > ・ 差 ・ 釣 Q (*)

Endogeneity problem: Example [3]

• Then, in this model, the OLS estimator is such that:

$$egin{aligned} \widehat{eta}_p^{OLS} &
ightarrow & rac{cov(y_j,p_j)}{var(p_j)} = rac{(eta_p \gamma_{\xi} + 1) \gamma_{\xi} \ var(\xi_j)}{(\gamma_{\xi})^2 \ var(\xi_j)} \ & = & eta_p + rac{1}{\gamma_{\xi}} \end{aligned}$$

- Since $\frac{1}{\gamma_{\xi}} >$ 0, the OLS estimator is an upward biased estimate of the true β_p .
- Since $\beta_p < 0$, we have that the estimate is biased towards zero, or it could be even positive.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Instrumental Variables (IV) Estimation

- To deal with this endogeneity problem, we can use IV estimation.
- We need a variable (or multiple variables), Z_j , that satisfies the following conditions.
- [1] Exclusion. Z_j is NOT an explanatory variable in the demand equation of product j, i.e., Z_j is not part of vector \mathbf{X}_j .
- [2] No correlation with error. Z_j is NOT correlated with product j unobserved quality ξ_j .
- [3] Relevance. In the regression of price, p_j , on the vector \mathbf{X}_j and on Z_j , variable Z_j has a significant (partial) correlation with p_j .

IV Estimation in Two stages (2SLS)

- To implement the IV estimator we can use a two stage least squares (2SLS) method.
- [Stage 1] We run an OLS regression for price on the exogenous variables of the model (vector X_j) and the instrument (Z_j) :

$$p_j = \gamma_z Z_j + \gamma_1 X_{1j} + ... + \gamma_K X_{Kj} + e_j$$

And obtain the fitted values: $\widehat{p}_j = \widehat{\gamma}_z Z_j + \widehat{\gamma}_1 X_{1j} + ... + \widehat{\gamma}_K X_{Kj}$.

• [Stage 2] We run an OLS regression of the demand equation but using the fitted values from stage $1(\hat{p}_j)$ instead of price (p_j) as explanatory variable:

$$y_j = \beta_p \ \hat{p}_j + \beta_1 \ X_{1j} + ... + \beta_K \ X_{Kj} + \xi_j^*$$

• The estimator in this second stage is the IV estimator. Standard errors should be corrected.

How to get instruments?

- Under the assumption that the observable characteristics (other than price) X_{kj} are not correlated with the unobserved quality ξ_j , the model of demand and price competition of differentiated products provides IVs.
- This model implies that the profit-maximizing price for product j depends not only on its own characteristics $(\mathbf{X}_j \text{ and } \xi_j)$ but also on the characteristics of other products competing with product j $(\mathbf{X}_i \text{ and } \xi_i)$.
- Intuitively, if the values of X are such that there are other products with similar characteristics as product j, price competition is intense and price p_j is low:

 p_j depends positively on distance($\mathbf{X}_j, \mathbf{X}_i$)

How to get instruments? [2]

- Under this argument, we can use the characteristics of products other than j (i.e., X_{ki} for $i \neq j$) as an instrument for product p_j .
- These instruments are called the Berry-Levinsohn-Pakes (BLP) instruments in the demand of differentiated products.
- For instance, we can use:

$$Z_j = \min_{i \neq j} \|\mathbf{X}_j - \mathbf{X}_i\|$$

where $\|\mathbf{a} - \mathbf{b}\|$ is the Euclidean distance between vectors \mathbf{a} and \mathbf{b} :

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{(a_1 - b_1)^2 + ... + (a_K - b_K)^2}$$

• Or we can use as instrument Z_j other functions of X_j and X_i :

$$Z_j = rac{\sum_{i
eq j} \|\mathbf{X}_j - \mathbf{X}_i\|}{J-1}$$
 or $Z_j = rac{\sum_{i
eq j} \mathbf{X}_i}{J-1}$

Logit Model with Heterogeneous Coefficients

Deriving Elasticities for Standard Logit Demand

• In the logit model, $s_j = \exp\left\{\delta_j\right\}/[1+\sum_{i=1}^J \exp\left\{\delta_i\right\}]$, implies that:

$$rac{ds_j}{d\delta_j} = s_j \ (1-s_j) \quad ext{and} \quad rac{ds_j}{d\delta_i} = -s_j \ s_i \quad ext{for} \ i
eq j$$

• Let's show that $\frac{ds_j}{d\delta_j} = s_j \ (1 - s_j)$. We can write:

$$s_j = \frac{\exp\left\{\delta_j\right\}}{\exp\left\{\delta_j\right\} + C}$$

where $C = 1 + \sum_{i \neq j} \exp{\{\delta_i\}}$.

• Taking the derivative with respect to δ_j :

$$\frac{ds_{j}}{d\delta_{j}} = \frac{\exp\left\{\delta_{j}\right\} \left[\exp\left\{\delta_{j}\right\} + C\right]}{\left[\exp\left\{\delta_{j}\right\} + C\right]^{2}} - \frac{\exp\left\{\delta_{j}\right\} \exp\left\{\delta_{j}\right\}}{\left[\exp\left\{\delta_{j}\right\} + C\right]^{2}}$$

$$= \frac{\exp\left\{\delta_{j}\right\}}{\exp\left\{\delta_{j}\right\} + C} - \left[\frac{\exp\left\{\delta_{j}\right\}}{\exp\left\{\delta_{j}\right\} + C}\right]^{2} = s_{j}(1 - s_{j})$$

Deriving Elasticities Standard Logit Demand [2]

• Similarly, let's show that $\frac{ds_j}{d\delta_i} = -s_j \ s_i$ for $i \neq j$. We can write:

$$s_j = \frac{\exp\left\{\delta_j\right\}}{\exp\left\{\delta_i\right\} + A}$$

where $A = 1 + \sum_{k \neq i} \exp \{\delta_k\}$.

• Taking the derivative with respect to δ_i :

$$\frac{ds_{j}}{d\delta_{i}} = -\frac{\exp{\{\delta_{j}\}} \exp{\{\delta_{i}\}}}{\left[\exp{\{\delta_{i}\}} + A\right]^{2}}$$

$$= -\left[\frac{\exp{\{\delta_{j}\}}}{\exp{\{\delta_{i}\}} + A} \frac{\exp{\{\delta_{i}\}}}{\exp{\{\delta_{i}\}} + A}\right] = s_{j} \ s_{i}$$

Deriving Elasticities Standard Logit Demand [3]

Taking into account that

$$rac{ds_j}{d\delta_j} = s_j \ (1-s_j) \quad ext{and} \quad rac{ds_j}{d\delta_i} = -s_j \ s_i \quad ext{for } i
eq j$$

The own price elasticity is (chain rule):

$$\frac{ds_j}{dp_j}\frac{p_j}{s_j} = \left[\frac{ds_j}{d\delta_j}\frac{d\delta_j}{dp_j}\right]\frac{p_j}{s_j} = s_j \ (1-s_j) \ [-\alpha] \ \frac{p_j}{s_j} = -\alpha \ (1-s_j) \ p_j$$

And the cross price elasticities are:

$$\frac{ds_j}{dp_i}\frac{p_i}{s_j} = \left[\frac{ds_j}{d\delta_i}\frac{d\delta_i}{dp_i}\right]\frac{p_i}{s_j} = -s_j \ s_i \ [-\alpha] \ \frac{p_i}{s_j} = \alpha \ s_i \ p_i$$

Why are these elasticities very restrictive?

- The standard Logit model imposes some strong restrictions on price elasticities.
- Consider the car models: ECON1, ECON2, and LUX, with:

$$s_{ECON1} = 0.20$$
 $s_{ECON2} = 0.20$ $s_{LUX} = 0.01$ $s_{ECON1} = 1$ $s_{ECON2} = 1$ $s_{LUX} = 20$

• Consider the effect of a change in p_{ECON1} on s_{ECON2} and s_{LUX} :

$$\frac{ds_{ECON2}}{dp_{ECON1}} \frac{p_{ECON1}}{s_{ECON2}} = \alpha s_{ECON1} p_{ECON1} = 0.20 * \alpha$$

$$\frac{ds_{LUX}}{dp_{ECON1}} \frac{p_{ECON1}}{s_{LUX}} = \alpha s_{ECON1} p_{ECON1} = 0.20 * \alpha$$

 This is very unrealistic. An increase in the price of product ECON1 implies the same proportional increase in the demand of ECON2 as in the demand of a luxury car.

Dealing with Limitations of Standard Logit Model

- We can introduce two alternative extensions in the model that relax this restriction.
 - [A] Consumer heterogeneous coefficients β_h
 - [B] Nested Logit model for ε_h

Logit with heterogeneous coefficients: Micro data

- Suppose that our dataset is such that we observe consumer purchasing decisions for G groups of consumers, indexed by g = 1, 2, ..., G.
- These *G* groups are based on consumer demographic characteristics such as age, gender, income, geographic location, etc.
- For instance, group 1 could be defined as: "Consumers in age group 20-to-30; Female; income group [\$70K-\$80K]; in city A".
- For each group g, we observe quantities q_{gj} and the number of consumers H_g , such that we can construct the market shares $s_{gj} = q_{gj}/H_g$.

Logit with heterogeneous coefficients

- Suppose that consumer groups are heterogeneous in the preferences: in the utility parameters α and β .
- The logit model for group g is:

$$\ln\left(s_{gj}\right) - \ln\left(s_{g0}\right) = -\alpha_g \ p_j + \beta_{1g} \ X_{1j} + ... + \beta_{Kg} \ X_{Kj} + \xi_{gj}$$

- Note that the explanatory variables $(p_j \text{ and } X_j)$ are the same for each group, but the dependent variable and the parameters are different.
- We have G different regression equations, one for each group. We can estimate the model parameters separately for each group using the IV method described above.

Heter. coeff overcome limitations standard Logit

- For each group g, the model has the same structure as the standard logit. However, now the aggregate demand of product j has a different structure.
- The aggregate demand of product j is:

$$q_{j} = \sum_{g=1}^{G} q_{gj} = \sum_{g=1}^{G} H_{g} \ s_{gj} = \sum_{g=1}^{G} H_{g} \left[\frac{\exp\left\{\delta_{gj}\right\}}{\sum_{i=0}^{J} \exp\left\{\delta_{gi}\right\}} \right]$$

with
$$\delta_{gj} = -\alpha_g \ p_j + \beta_{1g} \ X_{1j} + ... + \beta_{Kg} \ X_{Kj} + \xi_{gj}$$
.

Now, we have:

$$\frac{dq_j}{dp_i}\frac{p_i}{q_j} = \left[\sum_{g=1}^G H_g \frac{ds_{gj}}{dp_i}\right]\frac{p_i}{q_j} = \left[\sum_{g=1}^G H_g \alpha_g s_{gj} s_{gi}\right]\frac{p_i}{q_j}$$

Heterogeneous coeff. Logit: Price elasticities

$$\frac{\partial q_j}{\partial p_i} \frac{p_i}{q_j} = \left[\sum_{g=1}^G H_g \ \alpha_g \ s_{gj} \ s_{gi} \right] \frac{p_i}{q_j}$$

- Note that $\sum_{g=1}^{G} H_g \alpha_g s_{gj} s_{gi}$ is no longer equal to $\alpha s_j s_i$.
- The term $\sum_{g=1}^{G} H_g \alpha_g s_{gj} s_{gi}$ measures the Covariance of the market shares of products j and i across groups.
- This covariation depends on the characteristics of these products.
- If the two products have similar characteristics, Covariance is large.
- If the two products have very different characteristics, Covariance is small.

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ 900

Heterogeneous coeff. Logit: Price elasticities

- ullet For simplicity, suppose that $H_g=H$ and $lpha_g=lpha$ for all groups.
- It is simple to varifu that:

$$\frac{1}{G}\sum_{g=1}^{G}s_{gj}\ s_{gi}=\bar{s}_{j}\ \bar{s}_{i}+Cov(s_{gj},s_{gi})$$

where
$$\overline{s}_j = \frac{1}{G} \sum_{g=1}^G s_{gj}$$
; $\overline{s}_i = \frac{1}{G} \sum_{g=1}^G s_{gi}$; and $Cov(s_{gj}, s_{gi}) = \frac{1}{G} \sum_{g=1}^G (s_{gj} - \overline{s}_j)(s_{gi} - \overline{s}_i)$.

• Therefore, elasticity between products *j* and *i*:

Elasticity
$$j$$
, $i = H \alpha G [\bar{s}_j \bar{s}_i + Cov(s_{gj}, s_{gi})] \frac{p_i}{q_j}$

• Product with similar characteristics have high $Cov(s_{gj}, s_{gi})$ and therefore high cross elasticity.