ECO 310: Empirical Industrial Organization

Lecture 8: Models of Competition in Prices or Quantities:
Introduction

Victor Aguirregabiria (University of Toronto)

March 8, 2021

1 / 35

Outline on today's lecture

- 1. Introduction
- 2. Estimating Marginal Costs given a form of competition
 - 2.1. Perfect competition
 - 2.2. Cournot competition
 - 2.3. Bertrand competition: differentiated prod.
- 3. Estimating the form of competition when MCs are observed [Next Lecture]
- 4. Estimating the form of competition & MCs [Next Lecture]
 - 4.1. Homogeneous product model
 - 4.2. Differentiated product model

1. Introduction

3 / 35

Introduction

- Firms' decisions of how much to produce (or sell) and the price to charge are fundamental determinants of firms' profits.
- These decisions are sources of **strategic interactions between firms**.
 - * In the market for an homogeneous good, the price depends on the total quantity produced by all the firms in the industry.
 - * With differentiated products, demand for a firm's product depends on the prices of products sold by other firms in the industry.
- These **strategic interactions** have first order importance to understand competition and outcomes in most industries.
- For this reason, models of competition where firms choose prices or quantities are at the core of Industrial Organization.

Equilibrium model of competition

- The answer to many economy questions require not only the estimation of demand and cost functions but also to know how firms are competing with each other.
- For instance, suppose we are interested in measuring the effects of:
 - a merger
 - a sales tax
 - the entry of a new firm or product in the market
 - ...
- The answers to these questions are very different depending on Perfect Competition, or Oligopoly Competition, or Collusion.

Empirical models of Price or Quantity competition

- We can distinguish three general classes of applications of empirical models of competition in prices or quantities.
- [1] Estimation of firms' marginal costs.
- [2] Identification of the "form of competition".
- [3] Joint identification of marginal costs and "form of competition"

Estimation of firms' marginal costs

- In many empirical applications, the researcher has information on firms' prices and quantities sold, but information on firms' costs is not always available.
- In this context, empirical models of competition in prices or quantities may provide an approach to obtain estimates of firms' marginal costs, and of the structure of these costs.
- Given an assumption about competition (e.g., Cournot, Bertrand, Stackelberg, Collusion), the model predicts that for every firm i, $MR_i = MC_i$, where the concept of MR_i depends on the assumption of the model of competition.
- Based on a estimation of demand, we can construct estimates of firms' MR. Then, the equilibrium conditions of the model imply and estimate of MCs.

7 / 35

Identification of the "Nature of competition"

- Suppose that the researcher has data to estimate separately the demand function and firms' marginal costs (e.g., from the production function and firms' input prices).
- Given an assumption about the form or nature of competition in this industry (e.g., Perfect competition, Cournot, Collusion), the researcher can use the demand to obtain firms' marginal revenues, MR_i, and check if they are equal to the observed marginal costs, MC_i
- That is, the researcher can test if a particular form of competition is consistent with the data.
- In this way, the researcher can find the form of competition that is more consistent the data, e.g., identify if there is evidence of firms' collusion.

Joint identification of MCs and Nature of competition

- Suppose that the researcher does not have data on firms' MCs (or estimates of these MCs from production function).
- We will see that, under some conditions, it is still possible to use the estimated demand and equilibrium conditions to identify both firms' marginal costs and the form of competition.
- This is the purpose of the conjectural variation approach.

Main References

- Bresnahan, T. (1982): "The Oligopoly Solution Concept is Identified," Economics Letters, 10, 87-92.
- Bresnahan, T. (1987): "Competition and Collusion in the American Automobile Market: The 1955 Price War," Journal of Industrial Economics, 35, 457-482.
- Genesove, D. and W. P. Mullin (1998): Testing static oligopoly models: Conduct and cost in the sugar industry, 1890-1914. The Rand Journal of Economics 29 (2), 355-377.
- Nevo, A. (2001): "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, 69 (2), 307-342.

2.1. Estimating marginal costs given a form of competition: Perfect competition

Estimating MCs: Perfect competition

- We first illustrate this approach in the context of a perfectly competitive industry for an homogeneous product.
- The research has data on the market price and on firms' output for T periods of time (or geographic markets):

Dataset =
$$\{p_t, q_{it} : \text{ for } i = 1, 2, ..., N_t \& t = 1, 2, ..., T\}$$

where N_t is the number of firms active at period t.

• The variable profit of firm i is:

$$\Pi_{it} = p_t \ q_{it} - C_i(q_{it})$$

• Under perfect competition, the marginal revenue of any firm i is the market price, p_t . Profit maximization implies:

$$p_t = MC_i(q_{it})$$
 for every firm i

where $MC_{it} \equiv C'_i(q_{it})$.

Suppose that:

$$MC_i(q_{it}) = q_{it}^{\theta} \;\; \exp\{arepsilon_{it}^{MC}\}$$

where θ is a technological parameter and $\varepsilon_{it}^{\mathcal{MC}}$ is an unobservable that captures the cost efficiency of a firm.

- (i) Constant marginal cost: $\theta = 0$
 - (ii) Increasing marginal cost: $\theta > 0$
 - (iii) Decreasing marginal cost: $\theta < 0$.
- Using the equilibrium condition, we can estimate θ and the cost efficiency ε_{it}^{MC} of every firm i.

[3]

Estimating MCs: Perfect competition

• The equilibrium condition $p_t = MC_i(q_{it})$ implies the following regression model in logarithms:

$$\ln(p_t) = \theta \ln(q_{it}) + \varepsilon_{it}^{MC}$$

- Using data on prices and quantities, we can estimate the slope parameter θ in this regression equation.
- Given an estimate of θ , we can estimate ε_{it}^{MC} as a residual from this regression, i.e., $\varepsilon_{it}^{MC} = \ln{(p_t)} \theta \ln{(q_{it})}$.
- Therefore, we can estimate the marginal cost function of each firm, $MC_i(q_{it}) = q_{it}^{\theta} \exp\{\varepsilon_{it}^{MC}\}.$

- 4 ロ ト 4 昼 ト 4 佳 ト - 佳 - り 9 (P

[4]

Estimating MCs: Perfect competition

$$\ln(p_t) = \theta \ln(q_{it}) + \varepsilon_{it}^{MC}$$

- Estimation of this equation by OLS suffers of an Endogeneity problem.
- The equilibrium condition implies that the less efficient firms (with larger value of ε_{it}^{MC}) have a lower level of output.
- Therefore, the regressor $\ln(q_{it})$ is negatively correlated with the error term ε_{it}^{MC} .
- This negative correlation between the regressor and the error term implies that the OLS estimator provides a downward biased estimate of the true θ , e.g., the OLS estimate can show IRS (i.e., $\theta < 0$) when the true technology has DRS (i.e., $\theta > 0$).

<□ > <┛ > < ≧ > < ≧ > < ≥ > ○○○

[5]

Estimating MCs: Perfect competition

 This Endogeneity problem does not disappear if we consider the model in market means:

$$\ln\left(p_{t}\right) = \theta \ \overline{\ln q}_{t} + \overline{\varepsilon}_{t}^{MC}$$

where $\overline{\ln q}_t$ and $\overline{\varepsilon}_t^{MC}$ represents the means values of the variables $\ln(q_{it})$ and ε_{it}^{MC} over all the firms active at period t.

- We still have that $\overline{\ln q}_t$ and $\overline{\varepsilon}_t^{MC}$ are negatively correlated:
 - in time periods with larger aggregate cost shocks $\overline{\varepsilon}_t^{MC}$ there is lower average log-output $\overline{\ln q_t}$.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Estimating MCs: Perfect competition [6]

$$\ln\left(p_{t}\right) = \theta \,\, \overline{\ln q}_{t} + \overline{\varepsilon}_{t}^{MC}$$

- We can deal with this endogeneity problem by using instrumental variables.
- Suppose that X_t^D is a vector of observable variables that affect demand. These variables should be correlated with $\overline{\ln q}_t$ because demand shocks affect firms' output decisions.
- Under the assumption that these observable demand variables X_t^D are not correlated with $\overline{\varepsilon}_t^{MC}$, we can use these variables as instruments for $\overline{\ln q_t}$ for the consistent estimation of θ .

→ロト → □ ト → 重 ト → 重 ・ 夕久 ○

2.2. Estimating marginal costs given a form of competition: Cournot competition

Estimating MCs: Cournot competition

- We still have an homogeneous product industry and a researcher with data on quantities and prices over T periods of time: $\{p_t, q_{it}\}$ for $i = 1, 2, ..., N_t$ and t = 1, 2, ..., T.
- But now, the researcher assumes that the market is not perfectly competitive and that firms compete a la Nash-Cournot.
- The variable profit of firm i is $\Pi_{it} = p_t \ q_{it} C_i(q_{it})$.
- The demand can be represented using the inverse demand function,

$$p_t = P\left(Q_t, X_t^D\right)$$

where $Q_t \equiv \sum_{i=1}^{N} q_{it}$ is the market total output, and X_t^D is a vector of exogenous market characteristic that affect demand.

107107127127 2 040

Estimating MCs: Cournot competition

- [2]
- Each firm chooses its own output q_{it} to maximize profit.
- Since profit is equal to revenue minus cost, profit maximization implies the condition of marginal revenue equal to marginal cost.
- The marginal revenue function is:

$$\begin{aligned} MR_{it} &= \frac{d(p_t \ q_{it})}{dq_{it}} = p_t + \frac{dp_t}{dq_{it}} q_{it} \\ &= p_t + P_Q' \left(Q_t, X_t^D \right) \left[1 + \frac{dQ_{(-i)t}}{dq_{it}} \right] q_{it} \end{aligned}$$

where:

 $P_{Q}^{\prime}\left(Q_{t},X_{t}^{D}\right)$ is the derivative of the inverse demand function with respect to total output;

 $Q_{(-i)t}$ is the aggregate output of firms other than i.

◆ロト ◆問ト ◆意ト ◆意ト ・ 意 ・ 夕久(*)

$$MR_{it} = p_t + P_Q'(Q_t, X_t^D) \left[1 + \frac{dQ_{(-i)t}}{dq_{it}}\right] q_{it}$$

- $\frac{dQ_{(-i)t}}{dq_{it}}$ represents the **belief** or **conjecture** that firm i has about how other firms will respond by changing their output when this firm changes marginally its own output.
- Under the assumption of Nash-Cournot competition, this belief or conjecture is zero:

$$Nash-Cournot \Leftrightarrow rac{dQ_{(-i)t}}{dq_{it}}=0$$

• Firm i takes as fixed the quantity produced by the rest of the firms, $Q_{(-i)t}$, and chooses his own output q_{it} to maximize his profit.

Victor Aguirregabiria () Competition March 8, 2021 21 / 35

 Therefore, the first order condition of optimality under Nash-Cournot competition is:

$$MR_{it} = p_t + P_Q'\left(Q_t, X_t^D\right) \ q_{it} = MC_i(q_{it})$$

- Since $P_Q'\left(Q_t, X_t^D\right) < 0$ (downward sloping demand curve), it is clear that $MR_{it} < p_t$.
- Therefore, if the marginal cost $MC_i(q_{it})$ is a non-decreasing function, we have that the optimal amount of output q_{it} under Cournot is smaller than under perfect competition.
- Oligopoly competition reduces output and consequently increases price.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (*)

- Consider the same specification of the cost function as before, with $MC_i(q_{it}) = q_{it}^{\theta} \exp{\{\varepsilon_{it}^{MC}\}}$.
- Suppose that the demand function has been estimated in a fist step, such that there is a consistent estimate of the demand function.
- The researcher can construct consistent estimates of marginal revenues $MR_{it} = p_t + P_Q'\left(Q_t, X_t^D\right) q_{it}$ for every firm i.

Then, the econometric model can be described in terms of the following linear regression model in logarithms:

$$\ln\left(MR_{it}\right) = \theta \ln\left(q_{it}\right) + \varepsilon_{it}^{MC}$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 夕 Q ○

$$\ln\left(MR_{it}\right) = \theta \ln\left(q_{it}\right) + \varepsilon_{it}^{MC}$$

- OLS estimation of this regression function suffers of the same endogeneity problem as in the perfect competition case.
- To deal with this endogeneity problem, we can use instrumental variables
- As in the case of perfect competition, we can use observable variables that affect demand but not costs, X_t^D , as instruments.
- In the case of Cournot competition we can have additional types of instruments.

- 4 ロ ト 4 昼 ト 4 佳 ト - 佳 - り 9 (P

[7]

- Suppose that the researcher observes also some exogenous characteristics of firms that affect the marginal cost.
- For instance, suppose that there is information at the firm level on the firm's wage rate, or its capital stock, or its installed capacity.
- Let us represent these variables using the vector Z_{it} .

Therefore, the marginal cost function is now $MC_i(q_{it}) = q_{it}^{\theta} \exp\{Z_{it}\gamma + \varepsilon_{it}^{MC}\}$, where γ is a vector of parameters. The marginal condition of optimality, in logarithms, becomes:

$$\ln\left(MR_{it}\right) = \theta \ln\left(q_{it}\right) + Z_{it} \gamma + \varepsilon_{it}^{MC}$$

$$ln(MR_{it}) = \theta ln(q_{it}) + Z_{it} \gamma + \varepsilon_{it}^{MC}$$

- Note that the characteristics Z_{jt} of firms j other than i have an effect on the equilibrium amount of output of a firm i.
- The smaller Z_{jt} the more cost efficient firm j, the larger its output, the smaller price p_t and the marginal revenue MR_{it} , and the smaller q_{it} for any firm i other than j.
- Under the assumption that the vector of firm characteristics in Z are exogenous, i.e., $E(Z_{jt} \ \varepsilon_{it}^{MC}) = 0$ for any (i,j), we can use the characteristics Z_{jt} of other firms as instrumental variables.

• For instance, we can use $\sum_{j \neq i} Z_{jt}$ as an instrumental variables, and estimate θ and γ using the moment conditions:

$$E\left(\left[egin{array}{c} Z_{it} \ \sum_{j
eq i} Z_{jt} \end{array}
ight] \left[\ln\left(MR_{it}
ight) - heta \ \ln(q_{it}) - Z_{it} \ \gamma
ight]
ight) = \mathbf{0}$$

Or equivalently, using a 2SLS estimator.

2.3. Estimating marginal costs given a form of competition:

Bertrand with diff. product

28 / 35

Estimating MCs: Bertrand with diff. prod.

- Consider the industry of a differentiated product.
- The researcher has data on prices, quantities, and product characteristics for the J products in the industry, where J is large: $\{p_i, q_i, X_i\}$ for i = 1, 2, ..., J.
- For the moment, we consider that each product is produced by only one firm and each firm produces only one product.
- The profit of firm i is $\Pi_i = p_i \ q_i C_i(q_i)$.

4 D > 4 B > 4 B > 4 B > 9 Q P

Estimating MCs: Bertrand with diff. prod. [2]

The demand system comes from a discrete choice model of demand:

$$q_i = H s_i = H \sigma_i(\mathbf{p}, \mathbf{X})$$

- H is the number of consumers in the market, s_i is the market share of product, i.e., $s_i \equiv q_i/H$.
- $\sigma_i(\mathbf{p}, \mathbf{X})$ is the market share function in the demand model, and \mathbf{p} and \mathbf{X} are the vectors of prices and characteristics.
- For instance, under a logit demand system we have that,

$$\sigma_i(\mathbf{p}, \mathbf{X}) = \frac{\exp\left\{-\alpha \ p_i + X_i \ \beta\right\}}{1 + \sum_{j=1}^{J} \exp\left\{-\alpha \ p_j + X_j \ \beta\right\}}$$

Estimating MCs: Bertrand with diff. prod. [3]

- Under Bertrand competition, each firm chooses its price p_i to maximize its profit.
- The marginal condition of optimality implies that $\frac{d\Pi_i}{dp_i}=0$, or equivalently, $\frac{d(p_iq_i)}{dp_i} = \frac{dC_i(q_i)}{dp_i}$.
- Note that profit Π_i depends on price p_i both directly and indirectly through q_i . Then we have that

$$\frac{d(p_iq_i)}{dp_i}=q_i+p_i\frac{dq_i}{dp_i}$$

And

$$\frac{dC_i(q_i)}{dp_i} = MC_i(q_i) \; \frac{dq_i}{dp_i}$$

31 / 35

141

Estimating MCs: Bertrand with diff. prod.

• Combining these equations, $\frac{d(p_iq_i)}{dp_i} = \frac{dC_i(q_i)}{dp_i}$, we have:

$$MR_i = p_i + \frac{q_i}{dq_i/dp_i} = MC_i(q_i)$$

• And taking into account that $q_i = H s_i = H \sigma_i(\mathbf{p}, \mathbf{X})$:

$$MR_i = p_i + \frac{s_i}{d\sigma_i/dp_i} = MC_i(q_i)$$

- The term $\frac{s_i}{d\sigma_i/dp_i}$ is negative. Therefore, $\frac{-s_i}{d\sigma_i/dp_i}$ is the price-cost margin $p_i-MC_i(q_i)$ in equilibrium.
- For instance, for the Logit demand system, we have that $d\sigma_i/dp_i = -\alpha \ s_i(1-s_i)$, such that:

$$p_i - \frac{1}{\alpha(1-s_i)} = MC_i(q_i)$$

★ 4 回 ★ 4 直 ★ 4 直 ★ 9 Q @

Estimating MCs: Bertrand with diff. prod. [5]

• In general, we have that the marginal revenue,

$$MR_i = p_i + \frac{s_i}{d\sigma_i/dp_i}$$

only depends on p_i , s_i , and the demand function $\sigma_i(\mathbf{p}, \mathbf{X})$.

• After estimating the demand function, the researcher knows (or has estimates) of the marginal revenues MR_i for every firm/product in the market.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Estimating MCs: Bertrand with diff. prod. [6]

- Suppose that the marginal cost function is $MC_i(q_{it}) = q_{it}^{\theta} \exp\{X_{it} + \varepsilon_{it}^{MC}\}$.
- The marginal cost of producing a product depends on the characteristics of this product.
- Suppose that the demand function has been estimated in a fist step, such that there is a consistent estimate of the demand function.
- Then, the econometric model is:

$$\ln\left(MR_{it}\right) = \theta \ln\left(q_{it}\right) + X_{it} \gamma + \varepsilon_{it}^{MC}$$

∢ロト (個) (重) (重) (重) のQで

[7]

Estimating MCs: Bertrand with diff. prod.

$$\ln\left(MR_{it}\right) = \theta \ \ln(q_{it}) + X_{it} \ \gamma + \varepsilon_{it}^{MC}$$

- OLS estimation of this regression function suffers of the same endogeneity problem as in the PC or Cournot.
- To deal with this endogeneity problem, we can use instrumental variables.
- We can use the characteristics of products other than i, X_{jt} $j \neq i$, as instruments.

$$E\left(\left[\begin{array}{c}X_{it}\\\sum_{j\neq i}X_{jt}\end{array}\right]\left[\ln\left(MR_{it}\right)-\theta\ \ln(q_{it})-X_{it}\ \gamma\right]\right)=\mathbf{0}$$

Victor Aguirregabiria ()