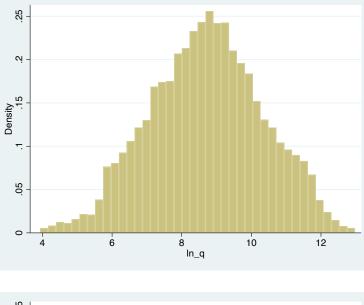
ECO310 - Tutorial 6 Demand Estimation

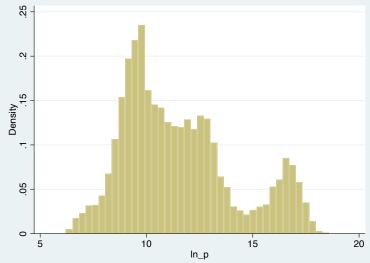
Francis Guiton

February 22, 2021

For this week's tutorial, we will look at Verboven's automobile dataset, which is available on Quercus under *verboven_cars.dta*. We will proceed in two steps: first, we will consider the demand model in the product space. Then, we will look at the model in the characteristics space, and see how to instrument the price with BLP instruments.

1 Set-Up


We load the dataset on STATA. The dataset contains the price, quantity sold, and characteristics of various cars sold in different markets across several years. The dataset is in panel format, according to three dimensions: year, market, and car model. Below, we generate summary statistics of our variables of interest in log-terms (ln_p, ln_q) :


.sum ln_p					
Variable	Obs	Mean	Std. Dev.	Min	Max
ln_p	11,549	11.50098	2.650737	6.2106	18.57478
. sum ln_q					
Variable	Obs	Mean	Std. Dev.	Min	Max
ln_q	11,549	8.709449	1.626834	3.931826	12.98009

Additionally, we investigate the different markets in our dataset:

. tab ma			
market (=second dimension of panel)	Freq.	Percent	Cum.
Belgium	2,673	23.14	23.14
France	2,265	19.61	42.76
Germany	2,283	19.77	62.52
Italy	2,027	17.55	80.08
UK	2,301	19.92	100.00
Total	11,549	100.00	

Finally, we explore the distributions of price and quantity in our dataset using histograms:

2 Model in Product Space

We will first consider demand in product space. That is, we assume that consumers have preferences over products, and we will estimate the elasticity of demand under various regression specifications.

. reg ln_q ln_	_p, robust					
Linear regress	sion			Number F(1, 11 Prob > R-squar Root MS	547) F ed	= 11,549 = 217.88 = 0.0000 = 0.0185 = 1.6118
ln_q	Coef.	Robust Std. Err.	t	P> t	[95% Con	f. Interval]
ln_p _cons	0834329 9.669009	.0056524 .0650023	-14.76 148.75	0.000 0.000	0945125 9.541594	

Simple OLS

The above specification yields a negative estimate for price. However, given the format of our dataset, we must also control for endogeneity by including various fixed effects.

Below, we will consider the user-created command *reghdfe*. This command yields identical estimates to *xtreg*, *fe* or *reg* with dummy variables. However, it has several advantages. First, unlike including dummy variables, it allows us to "absorb" the effects of these variables, and therefore does not require computing parameter estimates for each of the dummies. Second, it allows us to work with higher-dimension panels (i.e. more than two dimensions), as opposed to *xtreg*. In our case this will be useful, as our panel has three dimensions.

In terms of syntax, we simply write *reghdfe dep_var ind_vars*, a(*panel_vars*).

Car Model Fixed Effect

We first control for the car model below:

 reghdfe ln_c (dropped 15 s: (MWFE estimate 	ingleton obse	rvations)					
HDFE Linear re Absorbing 1 HI				F(Prot R-sc Adj Witt	Der of obs 1, 11192) 0 > F quared R-squared nin R-sq. t MSE	= = =	0.0000 0.4556 0.4390 0.0323
ln_q	Coef.	Robust Std. Err.	t	P> t	[95% Cc	onf.	Interval]
ln_p _cons	0873493 9.715253		-18.35 178.64	0.000 0.000			0780187 9.821854
Absorbed degre	ees of freedo	m:					
Absorbed FE	Categories	- Redundant	= Num.	Coefs			
co	341	0	3	41			

Car Model and Year Fixed Effects

Next, we include the time dimension of our panel:

. reghdfe ln_c (dropped 15 si (MWFE estimato	ingleton obse	rvations)					
HDFE Linear re Absorbing 2 HE				F(Prot R-sc Adj With	per of obs 1, 11163) p > F juared R-squared pin R-sq. : MSE		0.0000
ln_q	Coef.	Robust Std. Err.	t	P> t	[95% Co	nf.	Interval]
ln_p _cons	0840172 9.676925		-17.41 175.58	0.000 0.000	093475 9.56889		0745585 9.78496
Absorbed degre	ees of freedo	m:					
Absorbed FE	Categories	- Redundant	= Num.	Coefs			
co ye	341 30	0 1		41 29			

Car Model, Year and Market Fixed Effects

Finally, we control for the market fixed effect:

FE Linear re	aression			Numb	er of obs	= 11,534
osorbing 3 H	-				1. 11159)	
	g. cupo					= 0.0000
				R-sa	uared	= 0.5691
						= 0.5547
				With	in R-sq.	= 0.0044
				Root	MSE	= 1.0854
		Robust				
ln_q	Coef.	Std. Err.	t	P> t	[95% Con	if. Interval]
ln_p	3278852	.053624	-6.11	0.000	4329976	2227727
_cons	12.482	.6174535	20.22	0.000	11.27168	13.69232
	1					
osorbed degre	ees of freedo	·m :				
Absorbed FE	Categories	- Redundant	= Num.	Coefs		
co	341	0	34	11		
уе	30	1	2	29		
ma	5	1		4 ?		

Using the above command, we are therefore effectively running a three-dimension panel regression.

Including (log-) population as a covariate

Below, we add the (log-) population of each market as a covariate in our linear regression:

DFE Linear re					rofobs =	11,534
bsorbing 3 HI	DFE groups				2, 11158) =	21.49
				Prob	>F =	0.000
					ared =	0.5693
				Adj R	-squared =	0.5548
				Withi	n R-sq. =	0.0047
				Root	MSE =	1.0853
		Robust				
ln_q	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_p	3017443	.0556516	-5.42	0.000	4108314	1926573
ln_pop	.4440674	.2142268	2.07	0.038	.024145	.8639899
_cons	4.418463	3.967015	1.11	0.265	-3.357587	12.19451
sorbed degro	ees of freedo Categories	m: - Redundant	= Num.	Coefs		
co	341	0	34	1		
	30	1	2	.9		
ye						

Although we obtain a reasonable (negative) coefficient for price in our regression, we should still be concerned with endogeneity. That is, we suspect that price is still correlated with demand unobservables in our model. We now move on to demand in the product characteristics space, where we will explore a useful method for instrumenting the price variable.

3 Model in Characteristics Space

We now consider the model in the product characteristics space. That is, consumers now have preferences over product characteristics.

First, we construct the market shares s_{jmt} . For each car model j, market m and year t, the market share is computed as the quantity sold of the car divided by the market size M (here, we will use population as the market size). Then, given these market shares, we construct the outside option s_{0mt} as:

$$s_{0mt} = 1 - \sum_{j} s_{jmt}$$

Given this outside option, we can now construct the logarithm of the odds-ratio which will serve as our dependent variable in our logit regression model: $\log(\frac{s_{jmt}}{s_{0mt}})$.

Simple OLS

inear regress	ion			Number	of obs	=	11,549
2.100. 109.000				F(1, 11		=	6.63
				Prob >		=	0.0100
				R-squar	ed	=	0.0006
				Root MS	E	=	1.4994
		Robust					
sj_s0	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
ln_p	0136231	.0052896	-2.58	0.010	023	9917	0032545
_cons	-8.582377	.0620086	-138.41	0.000	-8.70	3925	-8.46083

Again, we would like to control for the car model, market and time fixed effects of our panel dataset. Similarly to the previous section, we will now use the *reghdfe* command in order to run a three-dimensional panel regression.

Car Model Fixed Effect

We first control for the car model below:

<pre>. reghdfe sj_s (dropped 15 si (MWFE estimate</pre>	ingleton obse		s)				
HDFE Linear re Absorbing 1 H[-			F(Prob R-sq Adj With	er of obs 1, 11192) > F uared R-squared in R-sq. MSE	= = =	0.4462
sj_s0	Coef.	Robust Std. Err.	t	P> t	[95% Co	nf.	Interval]
ln_p _cons	0046363 -8.684781				013664 -8.78857		
Absorbed degre	ees of freedo	m :					
Absorbed FE	Categories	- Redundant :	= Num.	Coefs			

Car Model and Year Fixed Effect

Next, we include the time dimension of our panel:

. reghdfe sj_s (dropped 15 si (MWFE estimato	ingleton obse	rvations)					
HDFE Linear re Absorbing 2 HD				F(Prot R-sc Adj With	per of obs 1, 11163 p > F quared R-squared pin R-sq. : MSE) = = = =	0.23
sj_s0	Coef.	Robust Std. Err.	t	P> t	[95% Co	onf.	Interval]
ln_p _cons	.0022322 -8.763786	.0046737 .0536031 -		0.633 0.000			.0113934 -8.658715
Absorbed degre					I		
Absorbed FE	Categories	- Redundant	= Num.	Coefs			
co ye	341 30	0 1	34	1 29			

Car Model, Year and Market Fixed Effect

Finally, we control for the market fixed effect:

dropped 15 s:	ingleton obse	robust) a(co rvations) in 11 iterati				
IDFE Linear ro				F(Prob R-squ Adj R	r of obs 1, 11159) > F ared -squared n R-sq. MSE	
sj_s0	Coef.	Robust Std. Err.	t	P> t	[95% Cor	nf. Interval]
ln_p _cons	2671712 -5.664992		-4.98 -9.17		3722942 -6.875416	
bsorbed degre	ees of freedo	m:				
Absorbed FE	Categories	- Redundant	= Num.	Coefs		
co	341	0	34	41		
ve	30	1		29		
ye	5	1		4 ?		

Including (log-) population as a covariate

Below, we add the (log-) population of each market as a covariate in our regression:

<pre>. reghdfe sj_s (dropped 15 s: (MWFE estimate</pre>	ingleton obse	rvations)		ye ma)		
IDFE Linear re				F(Prob R-sq Adj With	uared = R-squared =	0.0000 0.4932 0.4761 0.0035
sj_s0	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
ln_p ln_pop _cons	3002158 5613457 4.528126	.2142543	-5.39 -2.62 1.14	0.009		1911176 1413694 12.30508
bsorbed degre	ees of freedo	m:				
Absorbed FE	Categories	- Redundant	= Num.	Coefs		
co	341	0	3	41		
ye ma	30 5	1 1		29 4 ?		
e number of	redundant pa	rameters may	be high	er		

Including product characteristics as covariates

. reghdfe sj_s0 ln_p li wi cy we pl do le ln_pop, a(co ye ma) (dropped 15 singleton observations) (MWFE estimator converged in 11 iterations)											
HDFE Linear re Absorbing 3 HD				F(Prob R-squ Adj R	ared = -squared = n R-sq. =	11,532 56.74 0.0000 0.5136 0.4969 0.0438 1.0638					
sj_s0	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]					
ln_p li wi cy we pl do le ln_pop _cons	2146746 1026867 .0513916 0015656 .0007817 .0401136 0313473 .0024706 4668392 -5.300284	.0486984 .0157396 .0052541 .0000976 .0002556 .0494747 .0232265 .0018671 .2197867 4.1156	-4.41 -6.52 9.78 -16.03 3.06 0.81 -1.35 1.32 -2.12 -1.29	0.000 0.000 0.000 0.002 0.418 0.177 0.186 0.034 0.198	3101322 133539 .0410926 001757 .0002806 0568655 0768754 0011892 8976599 -13.36759	1192171 0718344 .0616906 0013742 .0012827 .1370926 .0141807 .0061303 0360184 2.767019					

Again, we should be concerned with the endogeneity of the price variable. We suspect that price is correlated with the demand unobservables. Fortunately, expressing our model in the characteristics space allows us to include BLP instruments in order to control for this endogeneity.

Specifically, we will instrument the price with the average characteristics of other products. Under the assumption that the price of a product depends not only on its own characteristics but also the characteristics of its competitors, these instruments are valid.

Using BLP Instruments

Below, we instrument the price using three product characteristics: horse power, time to acceleration, and maximum speed. We use the IV-counterpart to the *reghdfe* command, which is simply called *ivreghdfe*. The syntax is identical to the usual *ivreg2* command on STATA, but includes the a() option in order to absorb the fixed effects.

. ivreghdfe sj_s0 li wi cy we pl do le ln_pop (ln_p= av_ac av_hp av_sp), a(co ye ma) robust (dropped 15 singleton observations) (MWFE estimator converged in 11 iterations)											
IV (2SLS) estimation											
Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity											
					Number of obs F(9, 11149) Prob > F						
Total (centere	ed)SS =	13194.6857			Centered R2	= -0.1023					
Total (uncente	ered)SS =	13194.6857			Uncentered R2						
Residual SS		14544.57103			Root MSE	= 1.142					
		Robust									
sj_s0	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]					
ln_p	-2.224643	.3302294	-6.74	0.000	-2.871951	-1.577336					
li	0909261	.0170802	-5.32	0.000	1244063	057446					
wi	.0573559	.0074319	7.72	0.000	.0427881	.0719237					
су	0011164	.0001302	-8.57	0.000	0013717	0008612					
we	.0016828	.0003393	4.96	0.000	.0010176	.0023479					
pl	0633531	.0585873	-1.08	0.280	1781945	.0514883					
do	0092754	.0272436	-0.34	0.734	0626776	.0441268					
le	.0029451	.0019652	1.50	0.134	000907	.0067971					
ln_pop	-2.971021	.4609101	-6.45	0.000	-3.874486	-2.067556					
Underidentific	cation test (H	(leibergen-Pa	aap rk LM		stic): i-sq(3) P-val =	265.971 = 0.0000					