ECO 310: Empirical Industrial Organization Lecture 3: Production Functions: The simultaneity problem

Victor Aguirregabiria (University of Toronto)

January 25, 2021

Victor Aguirregabiria ()

Outline

- 1. Simultaneity problem: Definition
- 2. Simultaneity problem: Bias of OLS
- 3. Simultaneity problem: Solutions
 - **3.1.** Restrictions in simultaneous equations model
 - **3.2.** Instrumental variables estimation
 - **3.3.** Control function estimation

Image: A matrix and a matrix

1. Endogeneity / Simultaneity Problem: Definition

Victor Aguirregabiria ()

Introduction

January 25, 2021 3 / 25

• • • • • • • • • • • •

Endogeneity / Simultaneity problem

• Consider the PF:

$$y_{it} = \alpha_L \ \ell_{it} + \alpha_K \ k_{it} + \omega_{it} + e_{it}$$

- We are interested in the estimation of α_L and α_K. These parameters represent "ceteris paribus" causal effects of labor and capital on output, respectively.
- When the manager decides the optimal (k_{it}, ℓ_{it}) she has some information about log-TFP ω_{it} (that we do not observe).
- This means that there is a correlation between the observable inputs (k_{it}, ℓ_{it}) are correlated with the unobservable ω_{it} .
- This correlation implies that the OLS estimators of *α_L* and *α_K* are biased and inconsistent.

Victor Aguirregabiria ()

Endogeneity problem: General description

• First, let's consider a Linear Regression Model (LRM) with one regressor:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

 We have an endogeneity problem if the regressor x_i is correlated with the error term ε_i. In other words,

Endogeneity problem $\Leftrightarrow \mathbb{E}(x_i \ \varepsilon_i) \neq 0$

- It is a problem because, in this situation, the OLS estimator does not provide a consistent estimator of the parameter β [of the causal effect of x on y when the rest of the variables remain constant; ceteris paribus effect.]
- We are going to see: (1) Bias of the OLS estimator; (2) Solution: Instrumental variables approach; and (3) Solution: Control function approach.

2. Simultaneity Problem: Biased OLS

Victor Aguirregabiria ()

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Endogeneity problem: Bias of OLS

• The OLS estimator of the slope parameter β is defined as:

$$\widehat{\beta}_{OLS} = \frac{\sum_{i=1}^{N} (y_i - \overline{y}) \quad (x_i - \overline{x})}{\sum_{i=1}^{N} (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

• According to the model:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

$$\overline{y} = \alpha + \beta \overline{x} + \overline{\varepsilon}$$

Such that

$$(y_i - \overline{y}) = \beta \ (x_i - \overline{x}) + (\varepsilon_i - \overline{\varepsilon})$$

and

$$(y_i - \overline{y}) (x_i - \overline{x}) = \beta (x_i - \overline{x})^2 + (\varepsilon_i - \overline{\varepsilon}) (x_i - \overline{x})$$

3

< ロ > < 同 > < 回 > < 回 > < 回

Endogeneity problem: Bias of OLS (2)

• This implies that:

$$\sum_{i=1}^{N} (y_i - \overline{y}) (x_i - \overline{x}) = \beta \sum_{i=1}^{N} (x_i - \overline{x})^2 + \sum_{i=1}^{N} (\varepsilon_i - \overline{\varepsilon}) (x_i - \overline{x})$$

• Or:

$$S_{xy} = \beta \ S_{xx} + S_{x\varepsilon}$$

• Therefore, dividing in this expression by S_{xx} , we have that:

$$\widehat{\beta}_{OLS} \equiv \frac{S_{xy}}{S_{xx}} = \beta + \frac{S_{x\varepsilon}}{S_{xx}}$$

- $\hat{\beta}_{OLS}$ is a measure of the correlation between x and y. In general, this measure of correlation does not give us the causal effect of x on y, as measured by the parameter β .
- Only if $S_{x\varepsilon} = 0$ we have that $\hat{\beta}_{OLS} = \beta$ and the OLS is a consistent estimator of the causal effect β .

Endogeneity problem: How do we know?

- How do we know that $\mathbb{E}(x_i \ \varepsilon_i) = 0$ or $S_{x\varepsilon} = 0$?
- In general we don't know, but in many cases we can have serious suspicion of omitted variables that are correlated with the regressor(s).
- Only when the observable regressor comes from a randomized experiment we can be certain that $S_{x\varepsilon} = 0$.
- But data from randomized experiments is still rare in many applications in economics.

< ロト < 同ト < ヨト < ヨト

Endogeneity problem: How do we know? (2)

- In models with simultaneous equations, the model itself can tell us that some of the regressors are correlated with the error term: E(x_i ε_i) ≠ 0.
- For instance, this is the case in the production function model once we take into account the firm's optimal demand for inputs.

(日) (同) (三) (三)

Endogeneity / Simultaneity: Example

- Firms operate in the same markets for output and inputs. Same output and input prices: *P* and *W*.
- A Cobb-Douglas PF only with labor input:

$$Y_i = A_i L_i^{\alpha}$$

• Firm *i*'s profit is:

$$\pi_i = P Y_i - W L_i$$

 The marginal condition of optimality for profit maximization give us the Labor Demand (LD) equation:

$$\alpha \frac{Y_i}{L_i} = \frac{W}{P}$$

• PF and LD in logarithms:

(PF)
$$y_i = \alpha \ell_i + \omega_i$$

(LD) $\ell_i = y_i - w_{i} + e_{i} + e_{$

Endogeneity / Simultaneity: Example (cont)

 This is a system of simultaneous equations with 2 equations and 2 endogenous variables, y_i and l_i:

$$(\mathsf{PF}) \quad y_i = \alpha \ \ell_i + \omega_i$$

$$(LD) \quad \ell_i = y_i - w$$

• If we solve this system, we obtain y_i and ℓ_i as functions of exogenous variables only:

$$y_i = \frac{\omega_i - \alpha w}{1 - \alpha}$$

$$\ell_i = \frac{\omega_i - w}{1 - \alpha}$$

• This expression shows that ℓ_i is correlated with the error term in the PF, ω_i .

Endogeneity / Simultaneity: Example (Bias OLS)

• If we continue with this example, we can derive the bias of the OLS estimator **as** *N* **is large**.

$$\widehat{\alpha}_{OLS} = \frac{S_{\ell y}}{S_{\ell \ell}} = \frac{\sum_{i=1}^{N} \widetilde{\ell}_{i} \ \widetilde{y}_{i}}{\sum_{i=1}^{N} \widetilde{\ell}_{i} \ \widetilde{\ell}_{i}}$$

where
$$\widetilde{\ell}_i \equiv \ell_i - \overline{\ell}$$
 and $\widetilde{y}_i \equiv y_i - \overline{y}$

And:

$$\widetilde{y}_i \equiv y_i - \overline{y} = \frac{\omega_i - \overline{\omega}}{1 - \alpha}$$

$$\widetilde{\ell}_i \equiv \ell_i - \overline{\ell} = \frac{\omega_i - \overline{\omega}}{1 - \alpha}$$

• Such that $\hat{\alpha}_{OLS} = 1$ and Bias(OLS) is $1 - \alpha$.

Victor Aguirregabiria ()

- 3

(日) (周) (三) (三)

Simultaneity: Graphical representation

- Graphical representation of structural equations in space (ℓ, y) .
- Graphical interpretation of the bias of the OLS estimator.
- With sample variation in the log-real-wage *w_i* the bias will be reduced, but it will be always present.

(日) (同) (三) (三)

3. Simultaneity Problem: Solutions

Victor Aguirregabiria ()

3

(日) (同) (三) (三)

Solutions to Endogeneity problem

- We are going to consider several (potential) solutions to the endogeneity problem.
 - 1. Exploiting restrictions in simultaneous equations model.
 - 2. Instrumental variables estimation.
 - 3. Control function estimation.
- First, we will see these potential solutions in a general regression model, and then we will particularize them to the estimation of PFs.

Solutions to Endogeneity: Restrictions in model

- Sometimes, the model of simultaneous equations implies restrictions that provide information of the parameter(s) of interest.
- In the case of the PF estimation these restrictions typically come from the marginal conditions of optimality in the demand for inputs.
- For illustration, consider the example with only labor input. The marginal condition is $\alpha \frac{Y_i}{L_i} = \frac{W}{P}$, and in logs:

$$y_i - \ell_i = \ln(W/P) - \ln(\alpha)$$

Or

$$\ln(\alpha) = \overline{\ell} - \overline{y} + \ln(W/P)$$

• Mean values $\overline{\ell}$ and \overline{y} , together with info on $\ln(W/P)$, give us a consistent estimator of $\ln(\alpha)$ and of α .

イロト 人間ト イヨト イヨト

Solutions to Endogeneity: Instrumental variables (IV)

• Consider the LRM

$$y_i = \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + \varepsilon_i$$

where we are concerned about the endogeneity of regressor x_{1i} , i.e., $\mathbb{E}(x_{1i} \ \varepsilon_i) \neq 0$.

- Suppose that the researcher has sample data for a variable z_i ("the instrument") that satisfies **two conditions**.
- [Relevance] In a regression of x_{1i} on $(z_i, x_{2i}, ..., x_{Ki})$, regressor z_i has a significant effect on x_{1i} .
- [Independence] z_i is NOT correlated with ε_i : $\mathbb{E}(z_i \ \varepsilon_i) = 0$.
- Under these conditions we can construct a consistent estimator of β_1 , β_2 , ..., β_K : the IV or Two-state Least Square (2SLS) estimator.

Two-Stage Least Square (2SLS or IV)

- The IV or 2SLS can be implemented as follows.
- **[Stage 1]** Run an OLS regression of x_{1i} on $(z_i, x_{2i}, ..., x_{Ki})$. Obtain the fitted values from this regression:

$$\widehat{x}_{1i} = \widehat{\gamma}_0 + \widehat{\gamma}_1 z_i + \widehat{\gamma}_2 x_{2i} + ... + \widehat{\gamma}_K x_{Ki}$$

- [Stage 2] Run an OLS regression of y_i on (x̂_{1i}, x_{2i}, ..., x_{Ki}). This OLS estimator is consistent for β₁, β₂, ..., β_K.
- The first stage decomposes x_{1i} in two parts: $x_{1i} = \hat{x}_{1i} + e_{1i}$, where e_{1i} is the residual from this first-stage regression.
- Since x
 _{1i} depends only on exogenous regressors, it is not correlated with ε_i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Consistency of IV / 2SLS

- To illustrate how this approach give us a consistent estimator, consider the model with a single regressor: $y_i = \alpha + \beta x_i + \varepsilon_i$.
- Remember that:

$$(y_i - \overline{y}) = \beta \ (x_i - \overline{x}) + (\varepsilon_i - \overline{\varepsilon})$$

• Such that multiplying by $(z_i - \overline{z})$:

$$(y_i - \overline{y})(z_i - \overline{z}) = \beta(x_i - \overline{x})(z_i - \overline{z}) + (\varepsilon_i - \overline{\varepsilon})(z_i - \overline{z})$$

• And summing over observations *i*:

$$S_{zy} = \beta \ S_{zx} + S_{z\varepsilon}$$

• Since $S_{z\varepsilon} = 0$, we have that, for large N:

$$\frac{S_{zy}}{S_{zx}} = \beta$$

イロト 不得下 イヨト イヨト 二日

Consistency of IV / 2SLS (cont)

- This means that the estimator $\widehat{\beta}_{IV} = \frac{S_{zy}}{S_{zx}} = \frac{\sum_{i=1}^{N} (y_i \overline{y}) (z_i \overline{z})}{\sum_{i=1}^{N} (x_i \overline{x}) (z_i \overline{z})}$ is a consistent estimator of β .
- It remains to show that this $\hat{\beta}_{IV} = \frac{S_{zy}}{S_{zx}}$ is identical to the 2SLS described above.
- By definition:

$$\widehat{\beta}_{2SLS} = \frac{S_{\widehat{x}y}}{S_{\widehat{x}\widehat{x}}} = \frac{\sum_{i=1}^{N} (y_i - \overline{y}) \quad \left(\widehat{x}_i - \overline{\widehat{x}}\right)}{\sum_{i=1}^{N} \left(\widehat{x}_i - \overline{\widehat{x}}\right) \left(\widehat{x}_i - \overline{\widehat{x}}\right)}$$

where $\widehat{x}_i = \widehat{\gamma}_0 + \widehat{\gamma}_1 z_i$, with $\widehat{\gamma}_1 = \frac{S_{zx}}{S_{zz}}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Consistency of IV / 2SLS (cont)

• Therefore,
$$\widehat{x}_i - \overline{\widehat{x}} = \widehat{\gamma}_1(z_i - \overline{z}) = \frac{S_{zx}}{S_{zz}}(z_i - \overline{z}).$$

Such that

$$\widehat{\beta}_{2SLS} = \frac{\sum\limits_{i=1}^{N} (y_i - \overline{y}) \ \frac{S_{zx}}{S_{zz}} (z_i - \overline{z})}{\sum\limits_{i=1}^{N} \frac{S_{zx}}{S_{zz}} (z_i - \overline{z}) \ \frac{S_{zx}}{S_{zz}} (z_i - \overline{z})} = \frac{S_{yz}}{S_{zz}} \frac{S_{zx}}{S_{zz}} \frac{S_{zx}}{S_{zz}}}{S_{zz}} = \frac{S_{yz}}{S_{zx}}$$

• The 2SLS is equivalent to the IV estimator as defined above.

3

< ロ > < 同 > < 回 > < 回 > < 回

How to obtain instruments?

- A simultaneous equation model may suggest valid instruments.
- For instance, consider the PF with only labor input, but now firms operate in different output/labor markets with different prices.

$$(\mathsf{PF}) \quad y_i = \alpha \ \ell_i + \omega_i$$

(LD)
$$\ell_i = \ln(\alpha) + y_i - w_i$$

with $w_i = \ln(W_i/P_i)$.

- Suppose that the researcher observes w_i.
- It is clear that *w_i* satisfies the **relevance condition**: it does not enter in the PF as a regressor; it has an effect on labor.

• Under the condition $\mathbb{E}(w_i \ \omega_i) = 0$ it is a valid instrument.

Control Function (CF) Method

• Consider the LRM

$$y_i = \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + \varepsilon_i$$

where we are concerned about the endogeneity of regressor x_{1i} , i.e., $\mathbb{E}(x_{1i} \ \varepsilon_i) \neq 0$.

- Suppose that the researcher has sample data for a variable c_i ("the control") that satisfies **two conditions**.
- **[Control]** $\varepsilon_i = \gamma c_i + u_i$ such that u_i is independent of x_{1i} and c_i .
- **[No multicollinearity]** We cannot write c_i as a linear combination of the exogenous regressors $x_{2i}, ..., x_{Ki}$.
- Under these conditions we can construct a consistent estimator of β_1 , β_2 , ..., β_K : the Control Function (CF) estimator.

Control Function (CF) estimator

• To obtain the CF estimator we simply include the CF variable *c_i* in the regression and apply OLS:

$$y_i = \beta_1 x_{1i} + \ldots + \beta_K x_{Ki} + \gamma c_i + u_i$$

- Under the "Control" condition, the new error term *u_i* is not correlated with the regressors.
- And under the "No multicollinearity" condition all the regressors (including c_i) are not linearly independent.
- Therefore, this OLS estimator is consistent.
- The CF approach uses observables to control for the part of the error that is correlated with the regressor.

- 31

(日) (周) (三) (三)