ECO310 - Tutorial 2 Introduction to Stata

Francis Guiton

January 18, 2021

The following is an introduction to the basic commands used in Stata. We outline the main commands associated with creating variables, generating summary statistics, generating graphs and running Ordinary Least Squares regressions. If at any point we are unsure about a command, we simply type "help *command name*" in the command window in order to obtain the Stata documentation.

1 Creating a log file

log

Stata can create a copy of everything that is sent to the Results window, with the exception of graphs. This is called a log file and can be helpful for us to save all of our session's output. This will also retain our commands. To create a log file, we simply type "log using *filename*" in the command window. Stata will start a log, and save the file in our computer's default folder.

Once we have finished our Stata session, we simply type "log close" to close our existing log.

2 Loading a dataset

use

In order to load a dataset, we simply type "use "*filepathname*"" in the command window.

use "/Users/francisguiton/Downloads/blundell_bond_2000_production_function.dta"

3 Descriptive statistics

describe

In order to view the dataset currently in memory, we type "describe" in the command window.

Contains data	from /Use	ers/francis	guiton/Dow	nloads/blundell_bond_2000_production_function.dta
obs:	4,072			
vars:	5			12 Sep 2018 17:10
	storage	display	value	
variable name	type	format	label	variable label
id	float	%9.0g		Firm id number
year	float	%9 . 0g		Year of data
sales	float	%9 . 0g		Sales (millions of current dollars)
labor	float	%9 . 0g		Number of employees (thousands)
capital	float	%9 . 0g		Capital stock (millions of current dollars)

sum

In order to view a variable's summary statistics, we type "sum *varname*" in the command window.

. sum sales					
Variable	Obs	Mean	Std. Dev.	Min	Max
sales	4,072	2544.929	8571.308	2.543578	117131.2

	Sales (millions of cu	rrent dollars)	
	Percentiles	Smallest		
1%	6.404398	2.543578		
5%	18.28162	2.659341		
10%	30.56881	3.272934	Obs	4,072
25%	74.21242	3.411438	Sum of Wgt.	4,072
0%	274.9697		Mean	2544.929
		Largest	Std. Dev.	8571 . 308
75%	1633.326	106102.4		
90%	5283.806	115307.8	Variance	7.35e+07
95%	10064.57	115957.6	Skewness	7.736434
99%	46328.39	117131.2	Kurtosis	76.40535

We can view additional summary statistics by including ", detail" after the command.

Finally, we can summarize multiple variables at once by typing "sum <code>varname1 varname2 ...".</code>

. sum sales la	abor capital				
Variable	Obs	Mean	Std. Dev.	Min	Max
sales labor capital	4,072 4,072 4,072	2544.929 17.56477 1753.099	8571.308 50.16855 6401.547	2.543578 .022 .6055046	117131.2 875.9998 97603.66

sort

To sort our dataset according to specific variables, we type "sort *varname1 varname2* ...".

sort id year

4 Generating new variables

gen

We create a new variable by typing "gen varname = [syntax]" in the command window. For example, in order to generate the logarithm of the variable *sales*, we type:

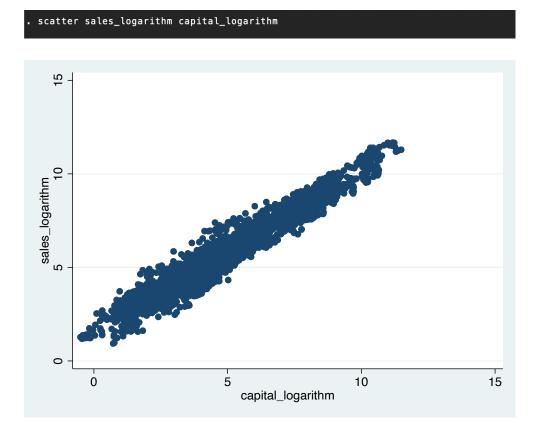
. gen ln_sales = ln(sales)

rename

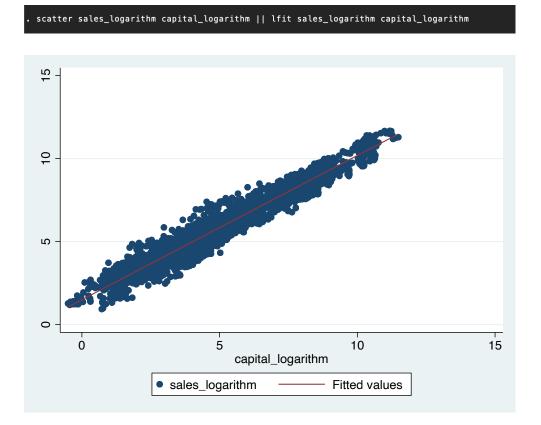
In order to change the name of an existing variable, we simply type "rename *oldname newname*".

rename ln_sales sales_logarithm

egen

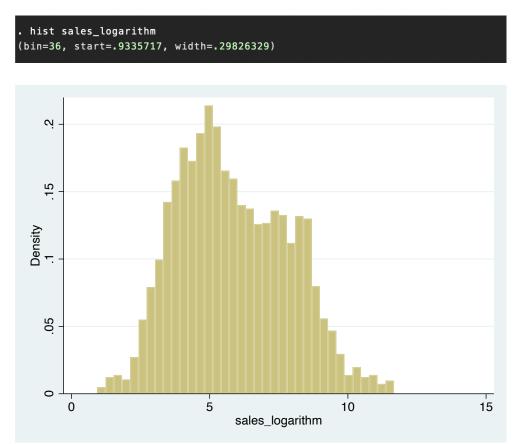

In order to generate a new variable based on descriptive statistics, we type "egen varname = [syntax]". For example, to generate a variable that yields the mean value of the logarithm of sales, we type the following:

egen mean_sales = mean(sales_logarithm)


5 Generating graphs

scatter

In order to generate a scatter plot of two variables x and y, we type "scatter varname1 varname2" in the command window.



To include a regression line in our scatter plot, we simply add "|| lfit *varname1 varname2*" to our previous command.

hist

In order to generate a histogram, we type "hist *varname*" in the command window. Stata provides default bin sizes, but these can be modified by including ", bin(# of bins)" at the end of our previous command.

6 Ordinary Least Squares Regression

reg

In order to run an OLS regression of a variable y on variables x1, x2..., we type "reg y x1 x2" in the command window.

<pre>. reg sales_l</pre>	ogari≀	thm capital_	logarit	hm lal	bor_loga	rithm			
Source		SS	df		MS	Number of o	bs =	4	,072
						F(2, 4069)		6380	90.90
Model	159	942.9273	2	7971	46365	Prob > F	=	0.	0000
Residual	508	3.360451	4,069	.1249	934984	R-squared		0.	9691
						Adj R-squar	ed =	0.	9691
Total	164	451.2878	4,071	4.04:	109255	Root MSE		.3	35346
sales_logar:	ithm	Coef.	Std.	Err.	t	P> t	[95% C	onf.	Interval]
capital_logar:	ithm	.4298586	.007	9525	54.05	0.000	.41426	75	.4454498
labor_logar:	ithm	.560581	.009	6412	58.14	0.000	.5416	79	.5794829
	cons	3.005052	.029	3099	102.53	0.000	2.9475	88	3.062515

predict

In order to obtain a linear prediction of our dependent variable y, we simply type "predict *newvar*, xb" in the command window after our regression output:

predict fitted, xb

Similarly, in order to obtain the residuals of our regression, we type "predict *newvar*, res" in the command window after our regression output:

predict residuals, res