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Econometrica, Vol. 64, No. 6 (November, 1996), 1263-1297 

THE DYNAMICS OF PRODUCTIVITY IN THE 
TELECOMMUNICATIONS EQUIPMENT INDUSTRY 

BY G. STEVEN OLLEY AND ARIEL PAKES 1 

Technological change and deregulation have caused a major restructuring of the 
telecommunications equipment industry over the last two decades. Our empirical focus is 
on estimating the parameters of a production function for the equipment industry, and 
then using those estimates to analyze the evolution of plant-level productivity. The 
restructuring involved significant entry and exit and large changes in the sizes of incum- 
bents. Firms' choices on whether to liquidate, and on input quantities should they 
continue, depended on their productivity. This generates a selection and a simultaneity 
problem when estimating production functions. Our theoretical focus is on providing an 
estimation algorithm which takes explicit account of these issues. We find that our 
algorithm produces markedly different and more plausible estimates of production func- 
tion coefficients than do traditional estimation procedures. Using our estimates we find 
increases in the rate of aggregate productivity growth after deregulation. Since we have 
plant-level data we can introduce indices which delve deeper into how this productivity 
growth occurred. These indices indicate that productivity increases were primarily a result 
of a reallocation of capital towards more productive establishments. 

KEYWORDS: Selection, simultaneity and production functions, productivity, telecommu- 
nications equipment and deregulation. 

1. INTRODUCTION 

THERE HAS BEEN A MAJOR RESTRUCTURING of the U.S. telecommunications 
equipment industry over the last two decades, and it can be explained, in large 
part, by a combination of two related factors. One was technological change 
which led to the development of many new products (e.g., digital switching 
equipment and fiber optics). The other factor was a gradual liberalization of the 
regulatory environment (in both the provision of telecommunication services 
and in the use of telecommunications equipment) which culminated in the 
divestiture of AT&T in January of 1984. Together these changes provided many 
new firms, both foreign and domestic, an opportunity to enter the industry, and 
caused dramatic changes in the sizes of incumbents. The empirical focus of this 
paper is on estimating the parameters of a production function for the equip- 

1Both authors are research associates of the Center for Economic Studies of the U.S. Bureau of 
the Census, and much of the research reported here was carried out at the CES. We are grateful to 
the staff of that Center, particularly Robert McGuckin, Timothy Dunne, Bob Bechtold, James 
Monahan, Cyr Linonis, Al Nucci, and Mark Doms, for their comments and assistance. We thank two 
referees and an editor for detailed, helpful reports. Useful comments were also provided by Don 
Andrews, Gary Chamberlain, Ernst Berndt, Zvi Eckstein, Mel Fuss, Zvi Griliches, and Jerry 
Hausman. Financial support from the NSF (Grant Nos. SES-8821733, 9122672, and SBR-9512106) 
and the C. V. Starr Center for Applied Economics at New York University, is gratefully acknowl- 
edged. 
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1264 G. S. OLLEY AND A. PAKES 

ment industry, and then using those estimates to analyze changes that occurred 
in the distribution of plant-level performance between 1974 and 1987, paying 
particular attention to the impact of the regulatory and technological changes 
on aggregate productivity. 

The data at our disposal are a rich plant-level panel constructed from the files 
of the U.S. Bureau of the Census. It is clear from the data that during the 
period under investigation the restructuring of the industry involved significant 
entry and exit, and large changes in the size of continuing establishments.2 As 
we show below, firms' choices of whether to liquidate, and of input quantities 
should they continue, depend on output (or deflated sales) per unit of inputs 
consumed, or their "productivity," a variable with substantial interplant variance 
and correlation over time. 

As a result, to obtain consistent estimates of production function parameters 
we have to address two interrelated estimation problems: a selection problem 
generated by the relationship between the unobserved productivity variable and 
the shutdown decision, and a simultaneity problem generated by the relationship 
between productivity and input demands. Though this selection problem has 
been discussed in the empirical literature at least since the work of Wedervang 
(1965), we do not know of a previous estimation algorithm that takes explicit 
account of it. Formal analysis of the simultaneity problem dates back at least to 
the classic work of Marschak and Andrews (1944).3 

The theoretical focus of this paper is on providing an algorithm for estimating 
production function parameters which takes explicit account of the self-selection 
induced by liquidation and the simultaneity induced by the endogeneity of input 
demands; an algorithm which we hope will be of more general use. To this end, 
we need a model which determines both exit times and input decisions. We 
introduce a dynamic model of firm behavior which allows for firm-specific, or 
idiosyncratic, sources of change, and for the equilibrating forces of entry and 
exit. 

The model provides a framework for analyzing the biases in traditional 
estimators that result from selection and simultaneity, and for building alterna- 
tive estimation algorithms that circumvent these biases. One possibility is to add 
the structure needed to derive exact expressions for the shutdown and input 
demand decisions. This would be computationally burdensome, and require a 
host of auxiliary assumptions. Instead, we develop a semiparametric estimator 

2Related empirical work indicates that it is not uncommon to find entry, exit, and gross job flow 
rates similar to those in our data (this work dates back at least to Wedervang (1965); for more recent 
analyses see Baldwin and Gorecki (1989), Dunne, Roberts, and Samuelson (1988), and Davis and 
Haltiwanger (1992)). 

3Productivity is defined here, as elsewhere, as the residual from a relationship between deflated 
sales and inputs; a definition which gives it a central role in policy debates. If the industry has a 
single product and the deflator is specific to that product, then productivity has the traditional 
interpretation of a production function residual. If not, measured productivity is a residual from a 
reduced form sales equation that is assumed to be stable over the period. Either way the productivity 
variable will generate the simultaneity and selection problems dealt with in this paper. 
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TELECOMMUNICATIONS EQUIPMENT 1265 

for the production function parameters. This estimator is consistent with a quite 
general version of the theoretical framework, and easy to use. It does rely on the 
assumption that there is only one unobserved state variable that causes differ- 
ences in firm behavior at a given point in time (its productivity), and that, 
conditional on the values of all the observed state variables, investment is 
increasing in productivity (at least for a known subset of the sample). So, we 
provide some simple tests of whether a single firm specific unobservable is 
sufficient to account for the impact of simultaneity and selection on the 
parameter estimates. 

We now summarize our empirical findings. A traditional way of accounting for 
entry and exit when using firm level data is to construct a "balanced" panel, 
keeping only those firms that operate the entire sample period, and then 
compute either an O.L.S., or "within," estimator of the production function 
coefficients. Under certain simplifying assumptions (Mundlak (1963)) the within 
estimator, which uses deviations from firm-specific means in O.L.S. estimation, 
controls for simultaneity caused by endogenous input demands. So, we compare 
our estimator to the within and O.L.S. estimators from the balanced panel 
constructed from our data, as well as the within and O.L.S. estimators from the 
full sample (constructed by keeping firms that eventually exit until the year prior 
to their exit and introducing new entrants as they appear). 

We find that going from the balanced panel to the full sample more than 
doubles the capital coefficient, and decreases the labor coefficient by about 
20%. The apparent signs of the biases in the balanced panel coefficients are 
exactly what theory predicts and explain anomalies in production function 
coefficients estimated from balanced panels. Moving from either the total or 
within estimators on the full sample to our estimator causes further, though less 
dramatic, movements of both coefficients in the predicted directions. In particu- 
lar, our estimate of the capital coefficient is twice again as large as the within 
estimator from the full sample, and our estimate of the labor coefficient is 
almost 15% lower than the O.L.S. estimator from the full sample. 

When we use our production function estimates to construct measures of 
aggregate productivity (constructed as an output share weighted average of the 
productivities of all active plants), we find that aggregate productivity increases 
sharply after each of the two periods in which the industry underwent changes 
that decreased regulation. One advantage of micro data is that we can disaggre- 
gate and delve deeper into this productivity growth. We introduce two measures. 
The first is a variable cost efficiency index. It measures the efficiency of labor 
allocation conditional on the extant joint distribution of capital and productivity. 
The second decomposes total productivity into the unweighted average of plant 
level productivities and the sample covariance between productivity and output 
share. The higher the covariance, the higher the share of output that goes to 
more productive firms, and the higher is industry productivity. 

The variable cost efficiency index shows that aggregate productivity increases 
do not result from a more efficient allocation of variable factors of production 
conditional on the existing distribution of state variables among plants (the joint 
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1266 G. S. OLLEY AND A. PAKES 

distribution of capital, productivity, and age). Thus, the increase in efficiency 
that followed the regulatory changes came from either a reallocation of fixed 
inputs to more productive enterprises, or from increases in average productivity 
growth of the plants. Our decomposition of industry productivity provides no 
evidence of an increase in the (unweighted) average productivity, but shows 
sharp jumps in the plant level covariance of output share and productivity after 
each of the regulatory changes. 

The realized productivity gains, then, seem to result from a reallocation of 
output to more productive plants. Since there is no evidence of variable factors 
being reallocated to firms whose capital-productivity combinations warranted it, 
we look for evidence of a reallocation of capital towards more productive plants. 
A tabulation of the correlation of capital and productivity over the sample 
period, and the relationship between shutdown frequencies, on the one hand, 
and capital, age, and productivity, on the other, provides support for the capital 
reallocation explanation. That is, the productivity growth that followed regula- 
tory change seemed to result from the downsizing (frequently the shutdown) of 
(often older) unproductive plants, and the disproportionate growth of productive 
establishments (often new entrants). 

The next section provides a brief history of the telecommunications equip- 
ment industry and documents some changes in the regulatory structure. The 
data set is also described. Section 3 summarizes the theoretical model used to 
guide estimation. Section 4 provides the estimation algorithm, presents the 
parameter estimates and, in Section 4.1, examines their robustness to specifica- 
tion error. Section 5 uses our estimates to analyze the evolution of industry level 
productivity. The conclusion provides some caveats on the interpretation of our 
results and on the use of our estimation algorithm. The Appendix outlines how 
the data base was constructed. 

2. OVERVIEW OF THE INDUSTRY 

We begin with a brief review of recent developments in the telecommunica- 
tions industry. This will illustrate the importance of the empirical phenomena 
which motivate the estimation strategy and provide some background for the 
empirical results. 

Beginning in the early 1970's, the telecommunications industry entered into a 
period of rapid change. There were significant technological developments in 
telecommunications equipment and, a gradual liberalization of the regulatory 
environment governing the provision of telecommunications services. Together 
these developments have led to a substantial restructuring of the U.S. telecom- 
munications equipment industry. For the purposes of this study, we include in 
our definition of the industry practically all types of customer premise and 
network telecommunications equipment, with the exception of the various types 
of transmission media, such as copper wire, coaxial cable, and glass fiber (for 
details see the Appendix). 
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TELECOMMUNICATIONS EQUIPMENT 1267 

For most of the twentieth century, American Telephone and Telegraph 
(AT&T) maintained an exclusive monopoly in the provision of telecommunica- 
tions services and, through their procurement practices, extended that dominant 
position into the equipment industry.4 Initially, AT&T controlled the telephone 
patent, but AT&T's dominance in the equipment market was maintained by the 
requirement that any equipment attached to the Bell system network had to be 
supplied by AT&T itself. Prior to divestiture, Western Electric, AT&T's manu- 
facturing subsidiary, supplied approximately 90% of AT&T's equipment 
purchases.5 Given that AT&T was by far the largest purchaser of telecommuni- 
cations equipment, entry into the equipment market was effectively prohibited. 

At the manufacturing level, barriers to entry seemed to be no greater than in 
other electrical appliance industries.6 The effective barrier to entry came from 
restrictions in the market for users of the equipment. An end-user could not 
legally attach a telephone set, or any other piece of terminal equipment, to the 
public network. This, together with AT&T purchasing equipment almost solely 
from Western Electric, meant that the only method of entry into the private 
equipment market was to establish a telephone company, a strategy that was 
generally prohibited by state regulatory authorities. As a result, Western Elec- 
tric was relatively free from competitive pressures in the equipment market. 

In recent years however, Western Electric's dominance in the equipment 
market has faded for two related reasons.7 The transition from electromechani- 
cal to fully electronic technology in both the switching and transmission of 
signals opened up many new markets for telecommunications equipment (multi- 
plexers, modems, facsimile machines,.. .). Also, changes in the telecommunica- 
tions regulatory structure has provided new firms the opportunity to enter the 
equipment industry. 

One of the first important decisions was the "Carterphone" decision of 1968. 
The Carter Electronics Company won an antitrust suit against AT&T after 
AT&T had prevented Carter from connecting a private two-way radio system to 
the network. The Carterphone decision, and subsequent rulings by the Federal 
Communications Commission (FCC) in support of the decision, paved the way 
for the interconnection of private equipment to the public network and entry 
into the equipment market. 

The conditions restricting entry were further eroded in 1975 when the FCC 
established a registration and certification program to allow for the connection 

4Brock (1981, p. 234). 
5Office of Telecommunications (1986, p. 23). Also NTIA (1988, pp. 322-323). 
6Brock (1981, p. 235). Temin (1987, p. 335) writes "there does not seem now nor has there been 

in the past an economic argument explaining why competition could not exist in the sale of 
telecommunications equipment." 

7In 1982 the Census of Manufactures published for the first time the four-firm concentration 
ratio for SIC 3661, Telephone and Telegraph Apparatus. In previous years this number had been 
suppressed for disclosure purposes. See also NTIA (1988, pp. 305-350), and Temin (1987) for 
discussion of developments in the equipment industry. 
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TABLE I 

CHARACTERISTICS OF THE DATA 

Shipments 
Year Plants Firms (billions 1982 $) Employment 

1963 133 104 5.865 136899 
1967 164 131 8.179 162402 
1972 302 240 11.173 192248 
1977 405 333 13.468 192259 
1982 473 375 20.319 222058 
1987 584 481 22.413 184178 

of private subscriber equipment to the network, in effect extending the Carter- 
phone decision to all equipment that met FCC standards. By 1978, the program 
included PBX's, key telephone sets, and telephones. Thus the tie between the 
telephone service providers and the equipment industry had finally been broken. 

The result of these changes was sustained entry into telecommunications 
equipment between 1967 and 1987.8 A surge in entry began in the late 1960's 
and continued into the 1970's, as many small firms sought to take advantage of 
the Carterphone decision and the registration and certification program. Table 
I9 documents this fact (for details on the construction of the database used in 
this paper, see Appendix 1 and Olley (1992)). Between 1967 and 1972 the 
number of plants and the number of firms in the industry almost doubled and 
there was substantial entry between all subsequent censuses. 

Despite significant changes in the regulatory environment, in 1982 AT&T 
remained the largest service provider in the United States and, as a result, the 
largest purchaser of telecommunications equipment. As long as AT&T contin- 
ued its practice of buying most of its equipment from its manufacturing 
subsidiary, Western Electric maintained a dominant position in the equipment 
industry, even in the face of the changes in the regulatory environment. The 
1982 Consent Decree changed this situation dramatically. The agreement, 
signed in January 1982 and implemented in January 1984, called for the 
divestiture of AT&T's regional operating companies. The seven regional Bell 
operating companies (RBOC's) that were created from the Consent Decree are 
all very large companies in their own right. It is important to note that as a 
result of the divestiture the RBOC's are free to purchase equipment from any 
supplier and are prohibited from manufacturing equipment themselves. The 
effect of the Consent Decree on the fraction of Bell system companies' equip- 
ment purchases from Western Electric is illustrated in Table II. 

8For example, there were only four PBX manufacturers in 1969, but more than thirty by 1980 
(National Academy of Engineering (1984, p. 86)). 

9Use of the LRD data is subject to the U.S. Bureau of the Census confidentiality rules which 
prohibit releasing any information that allows one to infer plant, or firm, level data. 
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TABLE II 

BELL COMPANY EQUIPMENT PROCUREMENT 

(PERCENT PURCHASED FROM WESTERN ELECTRIC) 

1982 1983 1984 1985 1986E 

92.0 80.0 71.8 64.2 57.6 

EEstimated for 1986. 
Souirce NTIA (1988, p. 336, and discussion pp. 335-337). 

TABLE III 

ENTRANTS ACTIVE IN 1987 

Share of Number Share of 1987 Share of 1987 
Number Active in 1987 (%) Shipments (%) Employment (%) 

Plants: New 463 79.0 32.8 36.0 
since 1972 

Firms: New 419 87.0 30.0 41.4 
since 1972 

Plants: New 306 52.0 12.0 13.5 
since 1982 

Firms: New 299 60.1 19.4 27.5 
since 1982 

Table I only tells part of the entry story. In addition to increased competition 
from U.S. manufacturers, the regulatory changes also induced competition from 
several large foreign producers. In 1972 and 1977 imports accounted for only 
2% of new supply, and by 1982 that share only reached 4%. However, the share 
of imports rose steadily after 1982. By 1987 imports made up 14% of new 
supply.10 This increase in the share of imports can account for a large part of 
the fall in domestic employment between 1982 and 1987 observed in Table I. 
Note that the import figures understate the share of the domestic market that 
the foreign suppliers captured, since many foreign suppliers have manufacturing 
facilities in the U.S. 

Table III provides an indication of the importance of the entry process (in 
terms of domestic production). Almost 90% of the firms, and 80% of the plants, 
active in 1987 entered since 1972, and the new entities account for over 30% of 
shipments and 40% of employment. Many of the new entrants entered after 
1982 (though the later entrants tended to be smaller as of 1987).11 

Table IV provides an indication of the importance of the exit or liquidation 
process. 60% (70%) of the plants (firm's) that were active in 1972 did not survive 
until 1987 and these plants (firms) accounted for 40.2% (13.8%) of 1972 
employment and 39% (12.1%) of 1972 shipments. Over 40% of the plants that 

U.S. Industrial Outlook, various years. 
11About 400 of the 419 new entrants were "de novo" new entrants; they enter by opening a new 

plant or transferring an existing plant into the industry. The others purchased a plant from an 
existing firm. 
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TABLE IV 

INCUMBENTS EXITING BY 1987 

Share of Number Share of Share of 
Active in Base Shipments in Employment in 

Number Year (%) Base Year (%) Base Year (%) 

Plants active in 1972 181 60.0 40.2 39.0 
but not in 1987 

Firms active in 1972 169 70.0 13.8 12.1 
but not in 1987 

Plants active in 1982 195 41.2 26.0 24.1 
but not in 1987 

Firms active in 1982 184 49.1 17.3 16.1 
but not in 1987 

were active in 1982 did not survive until 1987, and these plants produced about 
25% of 1982 output.12 

3. THE BEHAVIORAL FRAMEWORK 

Our empirical goal is to analyze changes in the distribution of productivity 
that accompanied the changes in the regulatory and technological environment 
outlined above. To do so, we need estimates of production function parameters. 
We noted that the changes in the environment were accompanied by a great 
deal of entry and exit, and as we show below, a major determinant of whether or 
not a plant exits is its productivity. There was also a great deal of productivity 
related change in the quantities of inputs used by the continuing establishments. 

Given that a firm's productivity is not directly observable, the fact that exit 
and input demand decisions are based on it generates two problems in obtaining 
production function estimates. First, to the extent that differences in efficiency 
are known to firms when they choose their inputs, and we show below that the 
efficiency of a given firm is highly correlated over time, we face the classic 
simultaneity problem analyzed by Marschak and Andrews (1944). 

Second, the entry and exit that accompanied the industry restructuring 
generates the issue of how to handle attrition from, and additions to, the data. 
Although researchers have drawn attention to the implications of entry and exit 

12 There is a question of whether there wa's more entry and exit than one would typically find in a 
manufacturing industry. Baldwin and Gorecki (1989) provide entry and exit figures for four digit 
Canadian manufacturing industries based on a plant level panel comparable to ours. Their figures 
are for a ten (rather than fifteen) year period, but when we multiply the figures they obtain as 
averages over all four digit industries by 3/2 to make them comparable to the figures in Tables III 
and IV, we obtain numbers for the share of employment in new plants and firms, and the shares of 
employment in plants and firms that eventually exit, that are very close to ours. On the other hand, 
their figures for the fraction of firms that are new, and the fraction of firms initially active that 
eventually exit, are smaller than the analogous numbers in our tables. 
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on production function estimates for some time,13 there has been little formal 
analysis of their effects. 

The traditional way of accounting for entry and exit restricts the analysis to a 
"balanced" panel, a data set that consists of only those firms that were present 
over the entire sample period.14 If firms' exit decisions depend on their percep- 
tions of their future productivity, and if their perceptions are partially deter- 
mined by their current productivity, then a balanced panel sample will be 
selected, in part, on the basis of the unobserved productivity realizations. This 
will generate a selection bias of a particular form in the production function 
estimates. We illustrate this point by considering the balanced panel in the 
empirical section. 

To analyze either the selection or the simultaneity problem we need a 
dynamic model of firm behavior that allows for firm-specific efficiency differ- 
ences that exhibit idiosyncratic changes over time. To sort out the simultaneity 
problem, the model must specify the information available when input decisions 
are made. To control for the selection induced by liquidation decisions, the 
model must generate an exit rule.'" 

There are several models that allow for idiosyncratic uncertainty and entry 
and exit (Ericson and Pakes (1995), Hopenhayn and Rogerson (1993), Jovanovic 
(1982), and Lambson (1992)). The model used here combines features of the 
models in Ericson and Pakes, and in Hopenhayn and Rogerson. We now 
summarize aspects of the model needed for the input demand and the liquida- 
tion rules. 

As in Ericson and Pakes, we assume that current profits are a function of the 
firm's own state variables, factor prices, and a vector which lists the state 
variables of the other firms active in the market. In our example the vector of 
firm specific state variables consists of at, the age of the firm, kt, the firm's 
capital stock, and Ct), an index of the firm's efficiency. A market structure 
consists of a list of these triples for all active firms. Factor prices are assumed to 
be common across firms and to evolve according to an exogenous first order 
Markov process. 

At the beginning of every period an incumbent firm has three decisions to 
make. The first is to decide whether to exit or continue in operation. If it exits, it 
receives a sell-off value of CP dollars and never reappears again. If it continues, 

13For a recent example, see Davis, Gallman, and Hutchins (1991), who interpret the positive age 
effect in their analysis of the productivity of fishing vessels as resulting from a selection bias due to 
exit. 

O4Often fixed effects, or firm specific constants, are considered; see, e.g., Pakes and Griliches 
(1984). These authors note the possibility of biases from their sample selection procedure. 

15Starting with Marschak and Andrews (1944), many articles have recognized the importance of 
having a behavioral model to evaluate alternative estimates of production function parameters. 
Griliches, for example, writes: "It is harder to make an adequate allowance for the simultaneity 
problem without constructing a complete production and input decision behavior model" (Griliches 
(1967, pp. 277-278)). Our approach differs from the previous literature in that our model is more 
detailed in its treatment of dynamics and industry equilibrium. We are particularly concerned with 
accounting for entry and exit. 
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1272 G. S. OLLEY AND A. PAKES 

it chooses variable factors (labor) and a level of investment, which together with 
the current capital value determine the capital stock at the beginning of the next 
period. 

The accumulation equations for capital and age are given by 

(1) kt+1 = (1-8)kt+it and at+1=at+1, 

both of which hold with probability one. As in Hopenhayn and Rogerson (1993), 
the index of productivity, cv, is known to the firm and evolves over time 
according to an exogenous Markov process. The distribution of Wt+ 1 conditional 
on all information known at t is determined by the family of distribution 
functions 

(2) F,= {F(V v), wE f}16 

The firm is assumed to maximize the expected discounted value of future net 
cash flows. Therefore, both the exit and the investment decisions will depend on 
the firm's perceptions of the distribution of future market structures given 
current information. The investment, entry, and exit decisions generated by 
these perceptions will, in turn, generate a distribution for the market structure 
in future years. Ericson and Pakes (1995) provide a formal definition for, and 
prove the existence of, a Markov perfect Nash equilibrium in investment 
strategies for a problem similar to ours-an equilibrium where firms' percep- 
tions of the distribution of future market structures are consistent with the 
objective distribution of market structures that the firms' choices generate 
(Maskin and Tirole (1988)). Here we assume the existence of such an equilib- 
rium and then use the investment and liquidation rules that result to structure 
estimation. 

Both the profit and the value function in this equilibrium depend on the 
market structure and on factor prices. Since the values of these state variables 
do not differ across agents in a given period, we omit them from our notation 
and index the value and profit functions by time. This is a convenient way to 
note that the relationship of profits and value to the firm specific state variable 
depends on factor prices and market structure, and that these variables do not 
vary across agents in a given time period. The Bellman equation for an 
incumbent firm can then be written as 

(3) Vt( Wt), at,, kt) = max {?, sup vt( w)t , at kt) - c(ii) 

i420 

16The Ericson-Pakes (1995) model has the distribution of o + conditional on past history 
dependent on the amount of investment in R&D, as well as on to,. Unfortunately we do not have 
the R&D data that would facilitate estimation of their model. 
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TELECOMMUNICATIONS EQUIPMENT 1273 

where -rr,( ) is the restricted profit function giving current period profits as a 
function of the vector of state variables, c(i,) is the cost of current investment it, 
,8 is the firm's discount factor, and Jt represents information available at time t. 

The max operator in (3) indicates that a firm compares the sell-off value of its 
plant (P) to the expected discounted returns of staying in business.17 If the 
current state variables indicate continuing in operation is not worthwhile, the 
firm closes down the plant. If this is not the case the firm chooses an optimal 
investment level (constrained to be nonnegative). The solution to this control 
problem generates an exit rule and an investment demand function. If we define 
the indicator function Xt to be equal to zero if the firm exits, then the exit rule 
and the investment demand equation are written, respectively, as 

(4) Xt 1 if wct 2 t(at , kt), 
O otherwise, 

and 

(5) it it(ojt,at,kt), 

The functions MO() and it(-) are determined as part of the Markov perfect 
Nash equilibrium, and will depend on all the parameters determining equilib- 
rium behavior. In particular, these functions are indexed by t as they depend on 
the market structure and the factor prices prevalent when these decisions are 
made. 

4. ESTIMATION 

We assume that the industry produces a homogeneous product with Cobb- 
Douglas technology, and that the factors underlying profitability differences 
among firms are neutral efficiency differences.18 The production function is 

(6) Yit = P30 + 13aait + f3kkit + 1311it + &)it + 7/it, 

where yit is the log of output (value added) from plant i at time t, ait its age, kit 
the log of its capital input, lit the log of its labor input, cwit its productivity, and 
T7it is either measurement error (which can be serially correlated) or a shock to 
productivity which is not forecastable during the period in which labor can be 

17The assumption that P is independent of the firm's state variables is not necessary for our 
estimation strategy. However, if ' is dependent on the state variables, then that dependence must 
satisfy certain regularity conditions for the analytic bias arguments developed in the next section to 
hold (see footnote 19). 

18 Though we maintain the assumption of the Cobb-Douglas technology in the empirical work in 
this paper, it is easy to generalize the estimation algorithm to allow for more general production 
technologies; translog with neutral efficiency differences across firms would do equally well (see 
Christensen, Jorgenson, and Lau (1973)). Our algorithm requires only that the production technol- 
ogy satisfies the invertibility condition used to go from equation (5) to (7) below (at least for some 
known subset of the data). This condition will be satisfied if the marginal productivity of capital is 
increasing in t. See Pakes (1994, Section IV) for more detail. 
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adjusted. Here both co and ij are unobserved. The distinction is that co is a state 
variable in the firm's decision problem, and hence a determinant of both 
liquidation and input demand decisions, while -q is not. 

We first consider the biases in the OLS estimates of (6) caused by endogeneity 
of input demands and by the self-selection induced by exit behavior. Endogene- 
ity arises because input choices are determined (in part) by the firm's beliefs 
about Cv, when those inputs will be used. If there is serial correlation in Cv, 
inputs in period t will be positively correlated with it, and an OLS procedure 
that fails to take account of the unobserved productivity differences will tend to 
provide upwardly biased estimates of the input coefficients (moreover, we expect 
the more variable inputs to be more highly correlated with current values of Cv,; 
see Marschak and Andrews (1944) and Griliches (1957), for more detailed 
expositions). 

Consider next the problem of self-selection induced by plant closings. Assum- 
ing, temporarily, that there are no variable factors (the estimation algorithm has 
a preliminary step which estimates their coefficients), the conditional expecta- 
tion of y, (conditional on current inputs, survival, and information available at 
t - 1), includes the term 

E[t wtat , kt, I ,t-1 = 1]. 

Recall that x, = 1 if and only if ct > cwt(at, kt). Moreover, if the profit function 
is increasing in k, the value function must be increasing and C,t( ) decreasing in 
k (see (3)). Firms with larger capital stocks can expect larger future returns for 
any given level of current productivity, and hence will continue in operation at 
lower co realizations. Hence, the self-selection generated by exit behavior 
implies that E[ cvtJat, kt, ctv1, xt = 1] will be decreasing in k, leading to a 
negative basis in the capital coefficient.19 

We now describe our estimation algorithm. Labor is assumed to be the only 
variable factor (so its choice can be affected by the current value of ctv). The 
other inputs, kt and a, are fixed factors and are only affected by the distribu- 
tion of ctv conditional on information at time t - 1 and past values of w. In 
particular, the solution to the firm's optimization problem, (3), resulted in 
equation (5) for investment, i.e., it = it(wt, at, kt). Provided it > 0, Pakes (1994, 
Theorem 27) shows that this equation is strictly increasing in c (for every 
(a, k)). Consequently, for the subset of (it, at, kt) values for which it > 0, we can 
invert (5) and write 

(7) (v= ht(it, at, kt). 

19Two further points should be noted. First, if older firms are less profitable conditional on their 
k and co, then an analogous argument establishes that selection is associated with a positive bias in 
the age coefficient. We do not focus on age effects because the empirical results indicate that age 
effects on productivity are small. Second, the crucial part of the logic underlying the sign of these 
biases is that the difference between the value of continuing in operation and the sell-off value of 
the firm be increasing in to and k (decreasing in a). If this condition is met, it does not matter 
whether the sell-off value is independent of k and a (which, for simplicity, was the specification in 
our behavioral model). 
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Equation (7) allows us to express the unobservable productivity variable, cot, as a 
function of observables, and hence to control for wt in estimation. 

Note that (7) rests on there being only one unobserved firm specific state 
variable (G or productivity) and on investment increasing in W. Though these 
are strong assumptions, they have two advantages. First they generate a simple 
estimation algorithm for production function parameters which does not depend 
on the host of auxiliary assumptions necessary to fully specify equilibrium 
behavior. Second, the assumptions lead to an overidentified model and hence 
some direct tests of whether the restrictions have a significant impact on our 
estimates (see Section 4.1 below). 

Substituting (7) into (6) we have 

(8) yit= f311it + (pt(iit, ait, kit) + 71it, 

where 

(9) 4t(iit aitI kit) = P0 + faait + fkkit + ht(iit aitI kit), 

The "partially linear" model in (8) is a semiparametric regression model 
(Engel, Granger, Rice, and Weiss (1986) and Robinson (1988)) which identifies 
f31 but not the production function coefficients of capital and age, Pa and pk. 

That is, the equation does not allow us to separate the effect of capital and age 
on the investment decision from their effect on output. To identify Pa and Pk 

we use, in addition to the estimates of ,81 and k&) obtained from the partially 
linear model, estimates of the survival probabilities. These probabilities are 
given by 

(10) Pr{ Xt+ 1 = 11 t+ 1(kt+ 1, at+ 1), Jt} 

= Pr{&jtt+ 1 > _0)t+ l(kt+ 1 . at+ j)lC0)t+ l(kt+ 1 , at+ 1), ot)t 

= pjt!@t+ l(kt+ 1,at+1), oit) 

= pt(it, at, kt) 

-p 

where the third equality follows from (5) [i.e., wt = ht(it, at, kt)], and (1) [which 
implies that at+1 and kt+1 can be calculated from (it, at, and kd)]. 

Now consider the expectation of yt+ 1 - 8lt+ 1 conditional on information at t 
and survival 

(11) E[ yt + 1- , lt + 1 at +1, kt + l,Xt + 1 

- f30 + Paat?i + Pkkt+1 +E[wcot+jIc)t, Xt+1 = 1] 

-Paat?i + Pkkt+l +g( 1,)t+ wt) 
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where 

F (d wt + I I Wdt 
g9( t)t + I, )t )d = 10 + W lt + I 

() +f | F(dot+ Ii Ivt) 
+ I 

Note that the "bias" term in (11), g( ), is a function of two indices of firm 
specific state variables; wt and cwt+J[kt? (kt,it),at? (at)]. To control for the 
impact of the unobservable on selection we need a measure of cot and a 
measure of the value of ov which makes the firm just indifferent between 
continuing in operation and selling off (i.e., cot,()). Most models used to 
correct for selection, and these date back to Gronau (1973) and Heckman 
(1974), have been single index models (for a good summary, see Ahn and Powell 
(1993, Section 2)). 

Provided the density of vt+?l conditional on Ctv is positive in a region about 
!t+ i (for every wt), the selection equation (10) can be inverted to express ?t+ I 
as a function of Pt and cvt. Then we can write g() as a function of Pt and Cwt. 
That is, by conditioning on the selection probability (or on the "propensity 
score") we can condition on the value of one of the two needed indices, a 
technique which has been used for single index models at least since Rosen- 
baum and Rubin (1983).20 For given values of I3a and I3k we can condition on 
the second index by conditioning on the nonlinear term generated from the 
partially linear model in (8), that is by conditioning on t = /3O + i3aat + f3kkt + cvt 
in (9). 

Substituting Pt and 4t into g(O), rewriting, and letting ?t+ I be the innovation 
in cojt+?,we have 

(12) Yt+? I 1t+ 1 3 =Paat+l + I3kkt+I +g(Pt, (Pt -8aat 13kkt) 

+ et+ 1 + qth I 

where 

6t+ 1 = vt+ 1 E- E[ t+ I IIct , Xt+? = 1] 

and from (9), (10), and (11), 

gQ (t+) =g [ t( Pt t - Pat - I3kkt) t p- i3aat - Ikkt] 

-g(Pt, Pt - Paat - kkt). 

Equation (12) clarifies the need for the first stage of the estimation algorithm. 
Since the capital in use in a given period is assumed to be known at the 
beginning of the period and (t+ 1 is mean independent of all variables known at 

20We thank a referee for this reference. For further discussion, see Heckman and Robb (1986) 
and more recently Ahn and Powell (1993), who also base their suggestion for controlling for 
selection in single index models on the propensity score. 
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the beginning of the period, t ?1 is mean independent of k, ?1 (and of a,,,). 
On the other hand we want to allow for the possibility of some labor adjustment 
to realizations of t,,. This implies that lt 1 is not mean independent of the 
disturbance in (12) and clarifies the need for the first stage of the estimation 
algorithm. 

We turn now to the details of estimating the system given by (8), (10), and 
(12). Readers not interested in these details can turn directly to the empirical 
results. 

The econometric properties of the partially linear model in (8) have been 
analyzed using kernel (Robinson (1988)) and series (Andrews (1991) and Newey 
(1995)) estimators of Otb ) and, subject to regularity conditions, the resulting 
estimators of f31 have the same limiting distribution. For simplicity, we use a 
polynomial series estimator for Ot( ). We project yt and lt and a polynomial in 
the triple (it, at,kt). The empirical results presented here use a fourth order 
polynomial (with a full set of interactions) to approximate tLO, but there was 
almost no change in either the estimates of the coefficients of interest, or the 
minimand, in going from a third to a fourth order approximation. Also, since the 
investment function, and hence kt& ), should differ with changes in market 
structure, we estimated different polynomials for each of the four regulatory 
periods (1974-77, 1978-80, 1981-83, and 1984-86). 

Next consider estimation of the survival probability (10). Here we use both 
series and kernel estimators and compare the results. The series approximation 
was constructed by using a polynomial series in (it, at,kt) as regressors in a 
probit estimation (the formula the computer uses to evaluate the normal is a 
series approximation to the true distribution; so this gives us a series composed 
with a series as our approximating function). Again we used a fourth order 
polynomial in (it, at, kt) with a full set of interactions, and again there was no 
change in the fit in going from the third to the fourth order. The kernel results 
presented here use the bias reducing normal based kernels in Bierens (1987), 
though the parameter estimates were almost identical when we used a standard 
normal kernel.21 The model implies that both the stopping rule and the 
investment equation change with market structure, and changes in either of 
these functions will change the form of the survival probability, so we ran both 
the kernel and the series estimator twice, once allowing for different selection 
equations in each of the four different regulatory periods, and once not. 

Table V provides the correlation coefficients between the indicator variable 
for survival in period t + 1 conditiopal on survival in period t( xt +1), and the 

21Whenever we use the bias reducing kernels in Bierens (1987) we use a diagonal Q with the 
inverse of the variance of the regressors as the diagonal elements, choose a bandwidth by 
cross-validation, and use a degree of bias reduction of four. Standard normal kernels used a diagonal 
covariance matrix with the inverse of the variance of the regressors as the diagonal elements, and a 
bandwidth of one. 
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TABLE V 

CORRELATION COEFFICIENTS BETWEEN VARIOUS PREDICrED SURVIVAL PROBABILITIES AND X't+1 

Xt+I PHAT1 PHAT2 PHAT3 PHAT4 

1.00 .285 .350 .102 .218 
PHATi .285 1.00 .671 .398 .324 
PHAT2 .350 .671 1.00 .215 .583 
PHAT3 .102 .398 .215 1.00 .483 
PHAT4 .218 .324 .583 .483 1.00 

Notes: (1) Xt+ 1 is a 0, 1 random variable that takes the value 0 when a plant closes. 
(2) PHAT1 and PHAT2 are the kernel estimates. PHAT1 is estimated over the entire data set, and PHAT2 is 

estimated separately for the four time periods 1974-1977, 1978-1980, 1981-1983, and 1984-1987. 
(3) PHAT3 and PHAT4 are the probit estimates. PHAT3 has no time dummies, and PHAT4 is estimated with time 

period dummies corresponding to the periods in note (2), and these dummies are interacted with i,, k,, and a. 

different estimates of the selection probabilities.22 Two points emerge from the 
table. First, the kernel estimator provides predictions (PHAT1 and PHAT2) 
which fit better than the series estimator (PHAT3 and PHAT4). Second, the fits 
are better when we allow for different stopping rules and different investment 
functions in the four different regulatory regimes (compare PHAT2 to PHAT1, 
or in the series case, PHAT4 to PHAT3). Consequently we use PHAT2, the 
kernel estimates that allow for differences in the selection function in our 
different regulatory periods, in the analysis that follows. 

The third (and final) step of the estimation procedure takes the estimates of 
f31, 40, and Pt from the first two steps, substitutes them into equation (12) for 
the true f31, 4t, and Pt, and then obtains estimates of (P8a' fk), by minimizing 
the sum of squared residuals in that equation. Here we try both a series and a 
kernel estimator of the unknown g(Pt, h,) function. Recall that we estimate 4t 
and ht = -t -,aat -,3kkt, so the values of the regressors that determine g(0) 
depend upon the values of the parameters of interest. 

For the series estimator we used a fourth order polynomial expansion in 
(Pr, h,) (and again there was almost no difference in either the sum of squares, 
or in the coefficients of interest, between the third and the fourth order 
approximation). Thus the series estimator is obtained by running nonlinear least 
squares on the equation 

4-m 4 
(13) yt+ I-bllt+ 1 = c + aat+ 1 +I3kktf? + E E mihtP' + et 

j=0 m=O 

22The unit of analysis for all the empirical results is the plant. This assumes that each plant of a 
multi-plant firm makes decisions independent of the other plants of the same firm. We did several 
runs which allowed for different exit and investment rules both for multi-plant firms and for the 
dominant firms in the industry. These modelling differences did not affect the empirical results of 
interest (see footnote 32). Note also that our treatment of plants as the unit of analysis means that 
we do not record the sale of a plant from one telecommunications equipment firm to another as exit 
followed by entry. 
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with 

A A 

ht = t - Iaat - l3kkt, 

Here dh and b1 are taken from the estimates of the partially linear model in (8), 
and Pt is taken from the kernel estimates of the survival probability in (10). 

The kernel estimator is obtained by forming a kernel estimator of the 
regression of 

Yt+ I - bllt+ I - aat+ I - lPkkt+ 1 

on Pt and h t = Xt - fpaat - kkt for different values of ( f3a' Xk), and then using 
a nonlinear search routine to find that value of ( 13a, 18k) that minimized the sum 
of squared residuals from this regression. Again the results are the bias reducing 
kernels in Bierens (1987) (though we also used a standard normal kernel with 
little difference in the resulting coefficient estimates).23 

Finally, the results indicate that a linear trend (representing disembodied 
technical change) was significant, so we included a time trend in the production 
function in (10), and carried it through the estimation procedure. 

A note on the properties of these estimators is in order. The estimator used 
here belongs to a class of semiparametric estimators whose properties are 
discussed in Pakes and Olley (1995). That paper extends semiparametric results 
in Newey (1994), and Andrews (1994, 1995) to cover problems which require 
estimates of nonparametric functions which are indexed either by other non- 
parametric functions, or by the parameters of interest (e.g., g( ) in (12)). Pakes 
and Olley provide a set of smoothness conditions on the primitive functions, 
conditions on the choice of kernels (bias reduction, bandwidth selection, and 
smoothness conditions), and trimming conditions, that together insure that the 
kemel estimator of g( ) in equation (12) provides /n consistent and asymptoti- 
cally normal estimators of the capital, age, and time coefficients. The asymptotic 
covariance matrix of the parameter estimates for this paper is developed as an 
example in Section III of Pakes and Olley (1995). We do not currently know of a 
theorem that insures /n consistency and asymptotic normality when the series 
estimator is used for g( ), as in equation (13). However, we would be surprised if 
the series estimator did not have the same properties as the kernel estimator 
(especially in light of the results we are about to present) and it is much easier 
to compute.24 

23 Kernel estimation was computationally burdensome as the kernel had to be re-evaluated each 
time we needed to evaluate the objective function at a different parameter vector. As a result, we 
chose the bandwidth by cross validation at the estimate of the parameter vector obtained from the 
series estimation procedure, and held the bandwidth fixed at that value thereafter. 

24Pakes and Olley (1995) also compute bootstrapped standard errors for the semiparametric 
production function estimates developed here (though on a smaller data set). The bootstrap 
estimates of the standard errors were consistently higher than estimates obtained from our 
analytical formula. However, as discussed in Pakes and Olley the bootstrap estimates of the standard 
errors are likely to be biased upwards due to computational problems. 
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The results of the two three step estimation procedures, together with some 
other estimates of the production function coefficients, are provided in Table 
VI. Columns 1 and 2 employ the subset of the data set that contains only those 
plants that were active throughout the sample period. That is, these columns use 
the "balanced panel." Column 1 provides the OLS estimates from the balanced 
panel, while Column 2 provides the within estimates (a fixed effects model which 
uses deviations from plant specific means in least squares estimation). Columns 
3 to 9 use the "full" sample; this sample keeps plants that eventually drop out 
for all periods in which they are active, and introduces new entrants as they 
appear.25 

The first point to note is that the full sample contains almost three times the 
number of observations in the balanced panel. Thus the selection criteria 
implicit in using a balanced panel throws out roughly 65 percent of the 
observations. This percentage, together with the theoretical discussion above, 
helps explain many of the anomalies generated by the balanced panel. 

The estimates in columns (1) and (2) are what we have come to expect from 
production function estimates from balanced panels. The labor coefficient is 
higher than we would expect for the elasticity of output with respect to labor 
(certainly higher than the share of labor in total cost, about .65 in these data), 
while the capital coefficient is lower than we would expect (and almost disap- 
pears in the "within" dimension in column (2)). The age coefficient is close to 
zero in all specifications and we will ignore it in our discussion. 

We have two reasons for worrying about biases in these estimates. First 
endogeneity of the input choices should lead to a positive correlation between 
the inputs and the unobserved productivity term (a problem which is likely to be 
more severe the easier it is to adjust the input to current realizations of 
productivity). This is the traditional reason for believing there is a positive bias 
in the O.L.S. estimate of the labor coefficient. The within estimator will only 
account for the bias if the plant's productivity is constant over time (and there 
was significant restructuring during the period under study). Second, even 
considering the 1972 cross section as the universe for the subsequent analysis, by 
taking the balanced panel we are only keeping those firms that did well enough 
to survive the entire period (Table IV indicates that this was under half of the 
plants active in 1972). Since firms with larger capital stocks will survive on the 
basis of lower productivity realizations, we expect selecting on survival to 

25Our procedure does not generate an estimate of wlt for either incumbents with it=O (see 
equation (7) above) or for entrants in the year prior to their entry, and we omit both entrants in 
their first year and firms with it = 0 from this analysis. Moreover because the data are a rotating five 
year panel we also omit some observations from the initial year of each rotation (see the footnote to 
the table, and our Appendix). These selection criteria are all functions of variables known in period 
t, and the moment conditions that generate our estimators are conditional on any values for period t 
variables, so the selection procedures do not change the consistency of our estimators. It is possible 
to use the information in the omitted observations to increase the efficiency of our estimators, but 
this would require additional assumptions and a significant increase in computational burden. 
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TABLE VI 

ALTERNATIVE ESTIMATES OF PRODUCTION FUNCTION PARAMETERSa 
(STANDARD ERRORS IN PARENTHESES) 

Sample: Balanced Panel Full Samplec d 

Nonparametric F. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Estimation 
Procedure Total Within Total Within OLS Only P Only h Series Kernel 

Labor .851 .728 .693 .629 .628 .608 
(.039) (.049) (.019) (.026) (.020) (.027) 

Capital .173 .067 .304 .150 .219 .355 .339 .342 .355 
(.034) (.049) (.018) (.026) (.018) (.02) (.03) (.035) (.058) 

Age .002 -.006 -.0046 -.008 -.001 -.003 .000 -.001 .010 
(.003) (.016) (.0026) (.017) (.002) (.002) (.004) (.004) (.013) 

Time .024 .042 .016 .026 .012 .034 .011 .044 .020 
(.006) (.017) (.004) (.017) (.004) (.005) (.01) (.019) (.046) 

Investment -.13 - - - - 

(.01) 

Other - - - - - Powers Powers Full Kernel in 

Variables of P of h Polynomial P and h 
in P and h 

# Obs.b 896 896 2592 2592 2592 1758 1758 1758 1758 

aThe dependent variable in columns (1) to (5) is the log of value added, while in columns (6) to (10), the dependent 
variable is the log of value added - b, * log(labor). 

bThe number of observations in the balanced panels of regressions 1 and 2 are the observations for those plants that 
have continuous data over the period, with zero investment observations removed. The 2592 observations used in columns 
(3), (4), and (5) are all observations in the full sanyple except those with zero investment. Approximately 8% of the full 
data set had observations with zero investment. Columns (6) to (10) have fewer observations because the sampling 
procedures for the Annual Survey of Manufactures forced us to drop observations in years 1978, 1983, and the last year, 
1987. See note c. 

CThe number of observations in the last four columns decreases to 1758 because we needed lagged values of some of 
the independent variables in estimation. This rules out using the first observation on each plant and the first year of the 
rotating five-year panels that make up the Annual Survey of Manufactures. To check that the difference between the 
estimates in columns (6)-(9) and those in columns (3)-(5) are not due to the sample, we ran the estimating equations in 
columns (3)-(5) on the 1758 plant sample and got almost identical results. 

dConsult the text for details of the estimation algorithm for columns (6) to (10). 

generate a negative correlation between the disturbance term in the selected 
sample and capital. 

By going to the full sample we expect to eliminate much of the selection 
problem, but not necessarily the problems generated by the endogeneity of the 
input choices. Columns (3) and (4) provide the OLS and within estimates on the 
full sample. The simple act of adding back in the plants that were active during 
only part of the sample period almost doubles the capital coefficient and pushes 
the labor coefficient down by about 20% (for both the total and the within 
columns). Of course, the column (3) 'and (4) coefficients should still be biased by 
selection and endogeneity. In particular since the within column uses only 
changes over time and has to discard those plant-year changes in productivity 
that induce the plant to close down, one might expect a large negative bias in 
the capital coefficient generated by selection, whereas the total column makes 
no attempt to control for firm specific differences in productivity, so we might 
expect a large positive bias in the labor coefficient. 
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To account for the positive bias in the labor coefficient in column (3), we 
should substitute a polynomial expansion in the triple (i, a, k,) for Co, in 
equation (6) and re-estimate that equation. Column (5) adds only investment to 
the list of regressors in column (3). If the polynomial needed for Co, were both 
linear and did not require interactions with time for the different regulatory 
periods, the estimate of the labor coefficient in column (5) would be consistent. 
The capital and age coefficients, however, would confound the effect of capital 
and age on output with their effect on investment and hence have no direct 
interpretation. There are two points to note from column (5). The investment 
coefficient is highly significant, indicating that there is likely to be a simultaneity 
bias in the column (3) estimates. Second, as predicted the labor coefficient goes 
down (by another 10%).26 

The labor coefficient from equation (8), which used a fourth order polynomial 
expansion in (it, at, k,) whose coefficients were allowed to vary over the four 
regulatory periods to account for Cot, was .608 (.027) (not too different from the 
column (5) estimate, and close to 15% lower than in column (3)). Columns (6) to 
(9) use this coefficient, the implied estimate of Cot, and the estimate of P, from 
the selection equation (10) to obtain estimates of the capital, age, and time 
coefficients. 

Column (6) regresses Yt+l - .608lt+1 on age, capital, time, and a polynomial 
in the estimate of the selection probability. If there were no serial correlation in 
tot, our model would reduce to a single index selection model (that index being 
.Lot+ 1), and the bias term (g(-) in equation (12)) could be expressed as a function 
of Pt, making the estimates in column (6) consistent. On the other hand if ct is 
serially correlated, then we would expect kt+ 1 to be positively correlated with 
the now omitted Cto, generating a positive bias in the capital coefficient in this 
column. 

Column (7) regresses yt + 1 - .6081t+1 on age, capital, time, and a polynomial 
in ht, the estimate of Cot obtained from the first equation. If the probability of 
exit were zero, so that E[ Cvto+ 1 l wtI, Xt+ 1 == 1] = E[ct)t+ 1 l C)t ], then the bias term in 
(12) could be expressed as a function of Cto, and the estimates in column (7) 
would be consistent. Since the transitions on the full panel are selected for 
survival (though this is only survival over a two, not fourteen, year period), and 
the now omitted Pt is declining in kt + 1 given Cto, we expect a negative bias in 
this capital coefficient. 

The estimates of the upwardly biased capital coefficient from column (6), and 
the downwardly biased coefficient from (7) are surprisingly close to one another. 
If we were to ignore the variance in these estimates they would imply that the 

26On the suggestion of a referee we also estimated the equations in columns (3) and (5) using 
capital constructed as Kt = (1 - Kt- 1 + It rather than Kt = (1-8)t_ I + It? 1. The results were 
virtually identical to those reported in Table VI. 
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true /8k lies between .33 and .36 (these bounds rule out the total and the within 
estimates from the balanced panel or the full sample). 

Columns (8) and (9) provide the third stage of our estimation routine. Column 
(8) uses the series and column (9) the kernel estimate of g(0). The coefficient 
estimates, .342(.035) and .355(.058) are within the bounds generated by columns 
(6) and (7), and not significantly different from one another. Since we only know 
that the kernel estimate is n consistent and asymptotically normal, we use it in 
the analysis to follow.27 

To summarize, both the total and within estimates from the balanced panel 
produce estimates of the labor and the capital coefficients with large biases in 
the directions predicted by the theory. Going to the full sample helps, but the 
within capital coefficient is under one half of, and the labor coefficient almost 
15% larger than, the capital and labor coefficients from our estimation proce- 
dure (and there are smaller biases, with the predicted signs, in the other 
coefficients).28 

However, there are two costs to our procedure. First, we obtain higher 
estimated standard errors than the total and within estimates from the full 
sample (especially for capital). Still our estimated variances are not "out of 
bounds" for micro estimates of labor and capital coefficients (compare them to 
the variances estimated from the balanced panel). Second, our procedure is 
more computationally demanding (from a programming and a required c.p.u. 
time point of view). In fact the estimates in columns (5) to (8) were obtained 
from standard nonlinear search routines (if one uses a polynomial estimate of 
the survival probability) and were not very c.p.u. time intensive (the consistent 
labor coefficient is easy to generate). The kernel estimates of column (9) were 

27We have done more than reported above and this note summarizes some other results. The 
system was estimated: (i) assuming that F (the family of distributions for W, 1 conditional on W,) 
was a normal family, (ii) using several different estimators for the nonparametric components, and 
(iii) adding a trimming step to account for low density regions of the data. When we assume that 

Ot + = Pot + t 1, with t+ 1N(O, 0.2), the model generates a correction term for the third 
equation which is pwt plus a. times the inverse of a Mill's ratio. This model resulted in a higher sum 
of squared residuals than in column 9 (670 vs. 635) and a capital coefficient of .23. However, when 
we allowed a to be a linear function of wt, which produces an interaction term between wt and the 
Mill's ratio, the fit improved markedly and the capital coefficient increased to .30. Generalizing 
further and replacing pWt with f(c t) and letting cr be a polynomial in cot produced fits and 
estimates close to those in column (9). There was no noticeable difference between our estimates 
and those obtained using different estimators, for the nonparametric components, and/or after 
adding a trimming step, except for a few runs in which one or more of the estimated standard errors 
were significantly higher before outliers were trimmed away. 

2IAt the request of a referee we conducted two Hausman tests to summarize the differences 
between the standard OLS and Fixed Effects production function coefficient estimates (columns (3) 
and (4)) and those obtained from our procedure (column (9)). The observed values of the x2(3) test 
statistics were respectively 45.38 and 58.91, which clearly reject either null hypothesis (i.e., that the 
OLS or the Fixed Effects models are correct). 
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much harder to generate, but they are similar to the series estimates in column 
(8), and will be easier to obtain with improvements in computer hardware and 
software.29 

4.1. Robustness Analysis30 

This section begins with simple tests of whether the simplifying assumptions 
used to derive our estimating equations have led to gross errors in our estimates 
of the production function coefficients. We then review results obtained when 
we disaggregate in various ways. Our ability to disaggregate was limited by both 
the size of the overall sample and by the Census' confidentiality requirements. 

Table VI compares our 3-step estimator to those from simpler algorithms that 
could be obtained by constraining our model in various ways. Next we consider 
whether relaxing the simplifying assumptions in our model leads to changes in 
the coefficient estimates. 

We are particularly concerned with the assumption that investment demand 
can be expressed as a function of age, capital, and productivity (equation (5)). 
This assumption leads directly to our estimate of the labor coefficient in (8). To 
test it we ask whether It belongs in the third estimating equation. If our 
estimate of the labor coefficient, bl, differs from x31, then equation (12) contains 
the error (/, - bl)l1 + . Recall that the disturbance in (12) contains the error 
t1 +I +t+ 1, where (t+ (1- +l - E[ t+ 1 IJt Xt+ I = 1] and we expect It+ 1 to be 

determined in part by 4t+ 1. Thus It+ I would be correlated with the error in (12) 
whether or not the labor coefficient is correctly estimated. However, if our 
model is correct 6, + should be mean independent of lt. Moreover since It and 
It+ are highly correlated, if there were an error in our first stage estimate of /,l 
we would expect a significant coefficient for It if It is added to the list of 
regressors in (12). 

To test our assumption we used our 3-step kernel estimation procedure to 
estimate the model 

Yt+ - b11t+l1 = Paat+j + Pkkt+l +?g(P,Pt X-8aat - 8kkt) 

+ YlIt + t + I+ t+I* 

The results are presented in column (1) of Table VII. The estimate of y, is not 
significant and the other coefficients barely change from column (9) of Table VI. 

In an analogous manner we can add at and kt to equation (12). This tests 
whether the index restrictions in the bias term, g(Pt, (t - 3aat - 3kkt), are 

29The full three equation model with series estimates of the last equation usually took under one 
hour on the 486,33 Mhz computer used for most of this analysis. The kernel estimates often took a 
day on the 486,33 Mhz machine, in part because we had to make more intensive use of nonderivative 
search routines. Routines for doing kernel estimation are currently available in standard software 
packages. 

3 We thank the referees and an editor for comments that led to this section of the paper. 
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TABLE VII 

SPECIFICATION TESTSa 

(STANDARD ERRORS IN PARENTHESES) 

Test 1 Test 2 

bP 
b .608 .608 

ba .01 (.01) .01 (.01) 

bk .36 (.06) .36 (.06) 
bt .02 (.05) .02 (.05) 
Yi -.01 (.03) 
Ya .00 (.02) 
Yk - -.01 (.04) 

aSee text for details. 
bThe labor coefficient is taken from the first 

equation, and is the same in both tests. 

consistent with the data. The test uses our 3-step kernel estimation procedure to 
estimate the model 

yt+ 1-bllt+ 1 = f3aat+ 1 + 3kkt+ 1 + g(PtI 't- 8aat-3k kt) + Ykkt 

+ yaat + t,+ 1 + qt+ 1v 

If the assumptions underlying the estimators of column (9) in Table VI are 
correct, the estimates of Yk and ya should be near zero. Column (2) of Table 
VII provides the results. The estimates of Yk and ya are neither individually, nor 
jointly, significant, and the rest of the parameters do not change. 

We now summarize the results from disaggregating and analyzing different 
subsamples of the data separately. We tried disaggregating by both time period 
and firm characteristics. In the time dimension the most telling results were 
obtained when we split the sample into three periods and did the analysis 
separately on the first and the last of them (1974/78 and 1982/87).31 We 
present the results from OLS and the three step kernel estimation procedure in 
these two subperiods in the first four columns of Table VIII. 

Note first that, as theory predicts, the three step estimator of the labor 
coefficient is lower, and that of the capital coefficient is higher, than the OLS 
estimates in both subsamples. As expected, the difference in the capital coeffi- 
cient is larger in the later period (the period with markedly higher exit rates; see 
Table XII below). We note that there is some evidence the later period is less 
labor and more capital intensive than the earlier period. Unfortunately our 
estimators for the subsamples, particularly for capital in the later period, are too 
imprecise to put much confidence in, this statement. 

31We also allowed both the investment and the stopping rule to differ each year of the panel (not 
just the four subperiods reported in the text), and we separately analyzed plants that began 
operation after divestiture. Allowing for year effects in the investment and stopping rules did not 
cause a noticeable change in any of the coefficients of interest. There were not enough post 
divestiture plants to run the three stage estimation procedure separately for them, but the OLS 
results from this subsample of plants were not very different from the results for the 1982-87 period 
reported in the text. 
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TABLE VIII 

PRODUCTION FUNCrION PARAMETER ESTIMATES 

(STANDARD ERRORS IN PARENTHESES) 

Labor Capital Age Time # Obs. 

1974-1978 
OLS .78 .27 -.00 .03 832 

(.03) (.03) (.003) (.01) 
3-Step Procedurea .71 .29 .01 .10 578b 

(.05) (.05) (.03) (.19) 

1982-1987 
OLS .62 .33 -.01 -.02 1212 

(.03) (.03) (.002) (.010) 
3-Step Procedure .55 .40 .01 - .01 729 

(.05) (.13) (.02) (.11) 

Switch Makersc 
OLS .79 .25 -.01 .03 562 

(.05) (.05) (.003) (.01) 
3-Step Procedure .66 .31 .01 .01 387 

(.07) (.16) (.04) (.16) 

Non-Switch Makers 
OLS .67 .32 -.00 .01 2030 

(.02) (.02) (.002) (.004) 
3-Step Procedure .59 .37 .01 .04 1433 

(.03) (.05) (.03) (.03) 

aThe 3-step estimation procedure is described in detail in the text. The labor coefficient is obtained in the 
first step using a fourth order polynomial series estimator, the second stage uses a bias reducing kernel to 
estimate the survival probability, and third stage uses a bias reducing kernel estimator. 

bThe number of observations in the 3-step procedure is the number of observations in the third step of the 
estimation procedure in which the age and capital coefficient estimates are obtained. 

CSwitch makers are plants that primarily produce switching equipment, and nonswitch makers include all 
other plants. 

Of the samples we created based on firm characteristics the most telling 
results were obtained when we divided the sample into switchmakers and 
nonswitchmakers by the plurality of their sales.32 The results from the OLS and 
the three-stage kernel estimation procedure for these two subsamples are 
provided in the last four rows of Table VIII. Again both coefficients move in the 
expected direction in both subsamples as we move from the OLS to the 3-step 
estimator. There is also some indication that the coefficients are different in the 

32 We also estimated models in which plants belonging to multiplant firms had different stopping 
and investment rules (different from single plant firms, and different by the number of plants), and a 
model in which only plants belonging to the dominant firm in the industry had different stopping and 
investment rules. The results were not noticeably different than the results provided in Table VI. As 
noted in the Appendix plants producing fiber optic and microwave equipment are classified in a 
separate four digit industry than the rest of the plants in our data. There were not enough of these 
plants for a separate three stage estimation procedure, but we compared O.L.S. estimates from this 
subsample to those from the overall sample and there was not much difference. 
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two subsamples (switchmakers being less capital intensive), but a x2 test for the 
differences in the coefficients between the subsamples is below its expected 
value. 

5. THE IMPLICATIONS FOR PRODUCTIVITY 

We now use our production function estimates to construct measures of plant 
level productivity and analyze changes in its distribution between 1974 and 1987. 
Our plant level productivity measure is calculated as 

Pit= exp(yit - blit -bkkit - baait) 

where the parameter estimates bl, bk, and ba, are taken from column (9) in 
Table VI.33 Aggregate industry productivity is calculated annually as the share- 
weighted average of the plant-level productivity measure, using plant-level 
output shares as weights. 

The annual productivity growth rates presented in column (1) of Table IX are 
calculated as the percentage change in the aggregate productivity index. These 
growth rates use the full sample and the parameter estimates from column (9) of 
Table VI. Column (2) of Table IX provides the productivity growth rates derived 
from the balanced panel and the coefficients estimated from that panel (from 
column (1) in Table VI). 

There was a sharp drop in productivity between 1974 and 1975.34 If we 
exclude that year the average annual growth rate in aggregate productivity in 
the full sample was 3.2%. There were important differences in the productivity 
growth rates between the four subperiods and these differences are not reflec- 
tive of productivity growth in manufacturing as a whole. The correlation be- 
tween the annual productivity growth rate for telecommunication equipment 
and that for manufacturing (obtained from the Bureau of Labor Statistics) was 
essentially zero. It seems that the factors underlying productivity growth in 
telecommunications equipment during this period are specific to the industry, 
and not related to trends in overall manufacturing productivity. 

The movements in column (1) can be accounted for by changes in the 
regulatory environment. The two periods of high productivity growth are the 

33 The advantage of this estimate, rather than exp(4it - bkkit - baait), is that there are data 
available on pit for all plants active in period t, whereas we cannot construct 4it for the 8% of the 
plants with zero investment. We shall primarily be concerned with weighted averages of pit and 
omitting plants with zero investment would tend to omit plants with low and declining productivities, 
thus biasing our aggregate results. If our parameter estimates are exact pit = exp(wc1t + 71it), so that 
our measures of productivity include the impact of {7}it}. We have also used sales weighted averages 
of log(pit). In those calculations the impact of {71it} tends to average out. These results were similar 
(actually somewhat sharper) than those given below. We present the results using p,t because, as 
noted by a referee, they are closer to the usual notion of productivity. 

34 We have not been able to find a satisfactory explanation for this fall. Crandall (1991, p. 83) finds 
an 11% drop in sales between 1974 and 1975 in a period of substantial growth, and begins his 
productivity analysis in 1975. 
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TABLE IX 

INDUSTRY PRODUCTIVITY GROWTH RATESa 

(1) (2) 
Time Period Full Sample Balanced Panel 

1974-1975 - .279 - .174 
1975-1977 .020 - .015 
1978-1980 .146 .102 
1981-1983 - .087 - .038 
1984-1987 .041 .069 
1974-1987 .008 .020 
1975-1987 .032 .036 
1978-1987 .034 .047 

aThe numbers in Table IX are annual averages over the 
various subperiods. 

periods following the registration and certification program in 1977 and 1978, 
and following divestiture in 1984. The growth rate in productivity is negative 
from 1981 to 1983. The Consent Decree announcing divestiture was signed in 
January 1982 so this was undoubtedly a time of reorganization and restructur- 
ing, and the negative productivity growth probably reflects the costs of this 
process. 

Now compare our productivity figures to those obtained from the balanced 
panel. First, and perhaps most important, the time series for productivity 
obtained from the balanced panel is significantly different from that from the 
full sample. 

There are several reasons for these differences. Both theory and our empirical 
results suggest that plants that eventually exit had low productivity growth. The 
balanced panel's exclusion of these plants should generate an upward bias in its 
productivity index. Second, new entrants tended to be smaller and have lower 
productivity than the average productivity of continuing establishments (but 
higher productivity than those which exit). At least in the year they enter, the 
difference in the treatment of new entrants also tends to bias the productivity 
index from the balanced panel upward. In contrast, the new entrants who 
survive had greater average productivity growth than the average incumbent, 
tending to make the full sample have higher productivity growth than the 
balanced panel. 

The overall effect of omitting exiting and entering firms is to bias the 
productivity figures derived from the balanced panel upwards (see Table IX). 
Moreover, the bias is particularly large (on the order of thirty percent) in the 
post 1978 period, the period of restructuring induced by the certification and 
registration program and divestiture. 

We now delve deeper into the determinants of industry productivity. We first 
ask about the efficiency of the output allocation among plants. One can ask this 
question either conditional on the extant distribution of fixed factors (age, 
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capital, and productivity), or unconditionally. We begin with the efficiency of the 
allocation conditional on the distribution of fixed factors. To analyze this issue 
we introduce a variable cost efficiency index. The index is defined as the ratio of 
the minimum variable cost of producing industry output, given the current 
distribution of fixed factors (age, capital, and productivity), to the actual variable 
cost of producing industry output. Firms are assumed to minimize variable cost 
given their fixed factors, so their actual variable cost of production is calculated 
as 

(14) C(Yj,Ki,ai,pi,wi)=minwiLi subjectto 

Y, < LfK/ke Paa e P 

where pi is productivity as defined at the beginning of this section. The 
minimum total variable cost of producing industry output is calculated as the 
solution to 

N 

(15) min E C(Yj,Ki,ai,pi,wi) subject to 
Y.,..-,YN i=1 

N 

i= 1 

The static efficiency index is calculated as the ratio of (15) to the sum of (14) 
across plants. Results are presented in Table X where we have averaged the 
annual static cost efficiency index over four subperiods. 

Table X goes one step further. It decomposes the static variable cost index 
into two terms; a measure of the efficiency of allocation of output among plants 
within a firm (the intrafirm index), and a measure of the efficiency of the 
allocation of output between firms (the interfirm index). Specifically the in- 
trafirm index is the ratio of the variable cost of production one would obtain if 
one allocated the actual firms' output efficiently among their own plants to the 
actual cost of production (from (14)). The interfirm component is the ratio of 
the minimum cost of production obtained from (15) to the cost of production 
obtained from efficiently allocating the existing firm distribution of output 

TABLE X 

VARIABLE COST EFFICIENCY a 

(MINIMUM COST OF PRODUCTION DIVIDED BY ACTUAL COST OF PRODUCTION) 

Years Total Interfirm Intrafirm 

1974-1977 .77 .84 .91 
1978-1980 .69 .76 .91 
1981-1983 .65 .72 .91 
1984-1987 .72 .80 .89 

"See text for details. 
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among the plants of the firms (the numerator of the intrafirm index). Thus the 
product of the interfirm and intrafirm indices equals the total index. 

All movements in the static efficiency index are caused by movements in the 
interfirm component of the index; the intrafirm component was essentially 
constant at .9 throughout the period. The interfirm index declined in 1978-1983 
when the industry was undergoing restructuring induced by regulatory changes. 
It increased after deregulation, but not to the level prior to 1978. 

As of 1987, the more competitive structure that emerged after deregulation 
generated an interfirm allocation of output that was less efficient, conditional on 
total output produced and on the existing joint distribution of fixed factors, than 
the output allocation prior to deregulation. Perhaps this finding is not surprising. 
More concentrated industry structures may well allocate output among existing 
plants in a more cost effective manner; a multiplant monopolist allocates output 
efficiently. This implies that the increases in aggregate productivity that followed 
the registration and certification program and divestiture were either a result of 
a reallocation of fixed factors towards more productive enterprises, or increases 
in average productivity growth. We now investigate these possibilities.35 

To distinguish between these two sources of productivity growth it is helpful 
to decompose the productivity figures in a different way. Our measure of 
industry productivity is a weighted average of plant-level productivity, with 
shares of industry output as weights, 

Nt 

Pt =ESitpit, 
i=1 

Where Pt is industry productivity at time t, pit is plant level productivity, and Sit 

is plant i's share of output at time t. Now decompose Pt into two terms as 
follows: 

Nt 

(16) Pt = E (&t + Asit)(pt + Apit) 
i=1 

Nt 

=Ntftpt + , Asit APit 
i=l 

Nt 

=Pt + E sit APit 
i=l1 

where 

Asit = Sit - St and Apit =Pit -Pt, 

and Pt and &t represent unweighted mean productivity and unweighted mean 
share, respectively. 

35Deregulation is also likely to generate benefits from less restrictive output policies. We do not 
attempt to measure these benefits. 
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Table XI presents the three terms from equation (16). Column (1) is industry 
productivity constructed as a weighted average of plant-level productivities. 
Column (2) is the unweighted average of plant-level productivity, and column (3) 
is the sample covariance between productivity and output. The larger this 
covariance, the higher the share of output that goes to more productive firms 
and the higher is industry productivity. Finally, the fourth column of Table XI 
gives the correlation coefficient between plant-level capital and plant-level 
productivity. 

Unweighted average productivity has not changed much since 1975, but there 
has been a reallocation of output from less productive to more productive 
plants. This reallocation of output, and not an increase in average productivity, 
is behind the increase in productivity at the industry level. Moreover the 
allocation of output seems to have improved dramatically following the certifi- 
cation and registration program, and then again following divestiture. 

From the static cost efficiency index, we know that this reallocation of output 
to more productive plants is not a result of a more efficient allocation of 
variable factors of production conditional on the existing distribution of fixed 
factors. So it should be a result of a reallocation of capital towards more 
productive plants. A complete analysis of this reallocation process requires the 
details of the dynamic general equilibrium model behind the adjustment process 
-a task beyond the scope of this paper. All we provide is reduced form 
evidence on the extent of the capital reallocation process. 

Column (4) of Table XI provides the correlation between capital and produc- 
tivity. It has increased since the Consent Decree, and it increased following 
earlier regulatory changes also. The only two years in which there was a 

TABLE XI 

DECOMPOSITION OF PRODUCTIVITYa 

(EQUATION (16)) 

Year Pt 'pt El ist jp1t p(p, kt) 

1974 1.00 0.90 0.01 -0.07 
1975 0.72 0.66 0.06 -0.11 
1976 0.77 0.69 0.07 -0.12 
1977 0.75 0.72 0.03 -0.09 
1978 0.92 0.80 0.12 -0.05 
1979 0.95 0.84 0.12 -0.05 
1980 1.12 0.84 0.28 -0.02 
1981 1.11 0.76 0.35 0.02 
1982 1.08 0.77 0.31 -0.01 
1983 0.84 0.76 0.08 -0.07 
1984 0.90 0.83 0.07 -0.09 
1985 0.99 0.72 0.26 0.02 
1986 0.92 0.72 0.20 0.03 
1987 0.97 0.66 0.32 0.10 

aSee text for details. 
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perceptible drop in the capital-productivity correlation were 1983-84, when the 
adjustment to deregulation must have been greatest. 

The importance of the reallocation of capital towards more productive plants 
is also evident in exit behavior. The stopping rule from the behavioral model 
(equation (5)) implies that whether a firm shuts down depends on its productiv- 
ity, capital stock, and age. The nonparametric estimation procedure derives 
survival probabilities, but treats these probabilities as nuisance parameters. 
Table XII provides a simple probit analysis of survival probabilities with our 
estimates of productivity, capital, and age, as well as time dummies, as right-hand 
side variables. As theory predicts, the exit probability is negatively related to the 
firm's capital stock and its productivity, with productivity having the larger 
effect. As in the production function, age is insignificant and sometimes the 
wrong sign. Also, there seems to be an effect of deregulation on the probability 
of exit. Conditional on any triple for the state vector, the exit probability seems 
to have gone up sharply after 1984. One mechanism for the reallocation of 
capital that facilitated the increase in aggregate productivity seems to have been 
the shutdown of unproductive plants. 

Our results indicate that the changes in the telecommunications industry 
improved performance by inducing a reallocation of capital to more productive 
plants. This reallocation process seems to be facilitated by entry and exit, 
phenomena which would not be picked up from the analysis of balanced panels 
(much less aggregate data). Nevertheless, it is the reallocation of capital, rather 
than an increase in the efficiency of the allocation of variable inputs or in 
average productivity, that seems to underlie the increase in productivity that 
followed the deregulation of the telecommunications equipment industry. 

TABLE XII 

PROBIT MODELS OF EXIT PROBABILITIES a 

(STANDARD ERRORS IN PARENTHESES) 

1 2 3 

Intercept -1.39 (.11) -0.69 (.25) -0.63 (.25) 
Productivity -0.16 (.06) -0.15 (.06) -0.16 (.06) 
Age 0.00 (.01) -0.00 (.01) 

Capital -0.09 (.03) -0.10 (.03) 
D2 -0.37 (.20) 
D3 0.10 (.14) 
D4 0.47 (.12) 
# Obs. 2098 2098 2098 
Log -392.2 -387.1 -372.1 

Likelihood 

aThe dummy variables are defined as follows: Base period is 1974-1977; D2 = I for years 1978 
to 1980, 0 otherwise; D3 = I for years 1981 to 1983, 0 otherwise; D4 = I for years 1984 to 1987, 0 
otherwise. 
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6. CONCLUDING CAVEATS 

We conclude with two caveats. First, we would like to emphasize that it is too 
early to assess the full impact of deregulation on productivity in the telecommu- 
nications equipment industry. Our analysis suggests that changes in the regula- 
tory structure were followed by an increase in industry productivity generated by 
a reallocation of capital and a shift in production towards more productive 
plants. However, the long term effect of divestiture on productivity will depend 
on its effect on R&D activity. Partly because of Bell Labs, AT&T's research 
subsidiary, the telecommunications network in the United States is the most 
sophisticated in the world. Our estimates indicate that there has not been an 
increase in average productivity since divestiture. However, any change in 
productivity resulting from a change in the structure of R&D after deregulation 
would probably not be apparent in the data until after 1987. We know that when 
we take the RBOC's together with AT&T their joint R&D expenditures and 
employment after divestiture are not lower than the predivestiture levels of 
AT&T (Noll (1987)). However, it is still too early to know whether the changes 
in industry structure have affected the efficiency of those R&D expenditures. 

The second point is related. The data indicate that certain plants appear to 
generate more sales for given amounts of capital and labor expenditures than 
others, and that these differences in sales generating ability (which we will call 
productivity) among plants are highly serially correlated over time. This implies 
that there is an unobserved, serially correlated, state variable that is a determi- 
nant of both survival probabilities and input choices. 

We deal with this unobserved serially correlated state variable by assuming 
that there is a one-to-one relationship between it and investment conditional on 
the observed state variables (at least on the subset of the data with it > 0). A 
more general model, say one that allowed for a separate effect of an R&D 
process on profits, and hence on investment, would be unlikely to generate an 
invertibility condition without incorporating information on additional observ- 
ables. Alternatively, we could have allowed for errors in the investment equation 
(equation (5)). We stopped where we did for three reasons. First, our tests 
indicate that one unobserved state variable was sufficient to capture the effects 
of unobservables (through exit behavior and input demands) on the production 
function estimates. Second, we did not have detailed R&D data. Third, an error 
in the investment equation would lead us to a semiparametric errors-in-variables 
problem which is beyond current econometric knowledge. We do not doubt, 
however, that extensions to (or modifications of) our techniques may be neces- 
sary for different questions or different data sets. 

The conceptual point we would like to emphasize is not that our solution need 
always be used. Rather, it is that the solution that is used to study changes in 
the performance of an industry should take into account the differential 
efficiency of enterprises in producing sales, and the serial correlation in these 
efficiency differences over time. Because of this serial correlation, the efficiency 
differences are determinants of the rates of expansion (or contraction) of plants. 
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This makes the efficiency differences an integral part of the process by which 
markets adjust to changes in their environment. In our case differences in 
adjustments before and after deregulation were the major determinant of the 
pre- and post-deregulation differences in industry performance. 
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NY 10003, U. S.A., and National Bureau of Economic Research 

and 
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APPENDIX 1: THE DATA 

The data are an extract drawn from the Longitudinal Research Database (LRD) maintained at 
the Center for Economic Studies at the Bureau of the Census and described in McGuckin and 
Pascoe (1988). The LRD contains the data for manufacturing establishments collected by the Census 
of Manufactures in 1963, 1967, 1972, 1977, 1982, and 1987, and by the Annual Survey of Manufac- 
tures for non-Census years from 1973 to 1986. The data are collected at the establishment level and 
include detailed information on inputs and outputs that characterize the production process. A more 
detailed description of the data and variable construction can be found in Olley (1992). 

Telecommunications networks are composed of three broad categories of equipment. Terminal 
equipment terminates a telephone wire at a customer's premises and includes telephone sets, key 
telephone sets, facsimile machines, and modems. Transmission equipment, which carries the signal 
between terminal stations and switching centers, includes coaxial cable, microwave radio equipment, 
optical fiber, and communications satellites. Finally, switching equipment, the heart of the network, 
links the terminals of the telecommunications system. The main types of switching equipment are 
private branch exchanges (PBX) and central office switching centers. This study focuses on all three 
types of equipment with the exception of transmission cable. Thus we do not include plants that 
produce transmission media such as copper wire, coaxial cable, or glass fibers. 

In terms of the classification system used by the U.S. Bureau of the Census, the telecommunica- 
tions equipment industry is made up primarily of those plants that are classified in SIC industry 
3661, Telephone and Telegraph Apparatus. The three 5-digit product classes within SIC 3661 are 
36611, switching and switchboard equipment, 36613, carrier line equipment, and 36614, other 
telephone and telegraph wire apparatus. This last 5-digit product class includes such products as 
telephone sets, key telephone sets, and telephone answering devices. In addition, a subset of the 
plants from SIC 3663, Radio and Television Communications Equipment, are included in the 
analysis. 

The subset of plants added from industry 3663 are plants that produce products within the 5-digit 
product class 36631, communications systems and equipment, except broadcast. The Bureau of the 
Census classifies fiber optics communication equipment, microwave communication equipment, 
facsimile communication equipment, and carrier line equipment, n.e.c. (not elsewhere classified) in 
the product class 36631, but we include these plants. However, the product class 36631 also includes 
military space satellites, amateur radio communications equipment, and other products that we felt 
should be excluded. Therefore, we tried to eliminate from the data set those plants that primarily 
produce products outside our definition of the industry. 

Though our choice of product classes is as close to the desired definition of the product market as 
possible, we have pulled together data for plants in different four-digit SIC industries and compari- 
son with published aggregates will be limited. 
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We now describe the variables used. Unless otherwise specified, all variables are measured at the 
plant level and are taken from the LRD. 

Value added is total shipments, adjusted for changes in inventories, minus the cost of materials. 
Real value added is constructed by deflating output by a 4-digit industry output deflator and 
deflating the cost of materials by a 4-digit materials deflator. The deflators are taken from the 
productivity database described in Gray (1989). The labor variable is an hours variable constructed 
by taking the total compensation for labor, including all supplemental labor costs, and dividing by 
the production worker wage rate at the given plant. 

The capital measure is constructed using a perpetual inventory method, Kt, 1 = (1 - 8)Kt + It. 
Since the capital data in the LRD distinguish between buildings and equipment, all calculations of 
the capital stock are done separately for buildings and equipment. Real capital is obtained by 
deflating investment by a 4-digit industry new investment deflator taken from the extended PCS data 
set. As suggested by Hulten and Wykoff (1981) buildings are depreciated at a rate of .0361, and 
equipment at .1179. 

In order to construct the capital series using the perpetual inventory method, we had to address 
two other issues. We need an initial capital stock, and we want to utilize LRD data on rentals and 
used equipment expenditures. The method of dealing with the initial condition problem differed 
with the information available on the plant. If the plant is first observed in an ASM year we treated 
the plant as a new entry, and assumed the entire book value of capital was put in place in the 
previous year. If a plant is first observed in a census year, it could have opened any time between the 
previous census and the first observed census. As a result we calculated two estimates of capital; the 
first assumes that the plant is new in the first observed census year, and the second assumes that the 
entire book value was put in place in the previous census year. The initial capital stock used in the 
analysis was a simple average of these two estimates. For plants first observed in the first year of the 
LRD (1963) we took the book value in that year to be correct. 

If a plant rented capital, the rental value is capitalized and added to current year capital stock. 
The rental data are capitalized using rental rates for all manufacturing supplied by the Bureau of 
Labor Statistics. Rentals seem to be more important for smaller plants than they are for large plants. 
Many small plants do not have any buildings on their books and rent their factory. Many plants also 
report purchases of used equipment. In the calculation of the capital stock, used equipment is 
deflated using the new investment deflator and added to current capital. Finally, partly because of 
the sampling design, there were often missing years on the plants. We imputed the missing 
investment data by averaging reported investment in the year just before the missing data with 
investment in the year immediately following the gap. This allowed us to keep the historical 
information on the plant's capital. 
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