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CHAPTER 5

Empirical Models of Market Entry

In a model of market entry the endogenous variables are firms’s decisions to be active

in the market and, in some cases, the characteristics of the products that firms provide.

In the previous chapters, we have taken the number of firms and products in a market as

exogenously given or, more precisely, as predetermined in the first stage of a two-stage game

of competition. In this chapter, we study the first stage of the competition game.

Empirical games of market entry in retail markets share as common features that the

payoff of being active in the market depends on market size, entry cost, and the number and

characteristics of other active firms. The set of structural parameters of the model varies

considerably across models and applications, but it typically includes parameters that repre-

sent the entry cost and the strategic interactions between firms (competition effects). These

parameters play a key role in the determination of the number of firms in the market, their

characteristics, and their spatial configuration. These costs cannot be identified from the

estimation of demand equations, production functions, or marginal conditions of optimality

for prices or quantities. Instead, in a structural entry model, entry costs are identified using

the principle of revealed preference: if we observe a firm operating in a market it is because

its value in that market is greater than the value of shutting down and putting its assets

in alternative uses. Under this principle, firms’entry decisions reveal information about the

underlying or latent profit function. Empirical games of market entry can be also useful to

identify strategic interactions between firms that occur through variable profits. In empir-

ical applications where a sample variation in prices is very small but there is a substantial

variation in entry decisions, an entry model can provide more information about demand

substitution between stores and products than the standard approach of using prices and

quantities to estimate demand. Furthermore, data on prices and quantities at the store

level are sometimes diffi cult to obtain, while data on firms entry/exit decisions are more

commonly available.

In empirical applications of games of market entry, structural parameters are estimated

using data on firms’entry decisions in a sample of markets. The estimated model is used

to answer empirical questions on the nature of competition and the structure of costs in an

industry, and to make predictions about the effects of changes in structural parameters or of
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166 5. EMPIRICAL MODELS OF MARKET ENTRY

counterfactual public policies affecting firms’profits, for example, subsidies, taxes, or zoning

laws.

An important application of models of entry is the study of firms’decision about the

spatial location of their products, their production plants, or their stores. Competition in

differentiated product markets is often characterized by the importance of product location

in the space of product characteristics. More specifically, the geographic location of stores

is important in retail markets. As shown in previous chapters, the characteristics of firms’

products relative to those of competing products can have substantial effects on demand and

costs, and consequently on prices, quantities, profits, and consumer welfare. Firms need to

choose product location carefully so that they are accessible to many potential customers.

For instance, opening a store in attractive locations is typically more expensive (for example,

higher land prices) and it can be associated with stronger competition. Firms should consider

this trade-offwhen choosing the best store location. The study of the determinants of spatial

location of products is necessary to inform public policy and business debates such as the

value of a merger between multiproduct firms, spatial pre-emption, cannibalization between

products of the same firm, or the magnitude of economies of scope. Therefore, it is not

surprising that models of market entry, store location, and spatial competition have played

a fundamental role in the theory of industrial organization at least since the work of Harold

Hotelling (1929). However, empirical work on structural estimation of these models has

been much more recent and it has followed the seminal work by Bresnahan and Reiss (1990,

1991a).

1. Some general ideas

1.1. What is a model of market entry? Models of market entry in IO can be charac-
terized in terms of three main features. First, the key endogenous variable is a firm decision

to operate or not in a market. Entry in a market should be understood in a broad sense. The

standard example is the decision of a firm to enter in an industry by first time. However,

applications of entry models include also decisions of opening a new store, introducing a new

product, adopting a new technology, the release of a new movie, or the decision to bid in an

auction, among others. A second important feature is that there is an entry cost associated

with being active in the market. Finally, the payoff of being active in the market depends on

the number (and the characteristics) of other firms active in the market, that is, the model

is a game.

Consider a market with N firms that decide whether to be active. We index firms with

i ∈ {1, 2, ..., N}. Let ai ∈ {0, 1} be a binary variable that represents the decision of firm i

of being active in a market (ai = 1) or not (ai = 0). The profit of not being active is zero.
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The profit of an active firm is Vi(n)− Fi where Viis the variable profit of firm i when there

are n firms active in the market, and Fi is the entry cost for firm i. The number of active

firms, n, is endogenous and is equal to n =
∑N

i=1 ai. Under Nash assumption, every firm

takes as given the decision of the other firms and makes a decision that maximizes its own

profit. Therefore, the best response of firm i under Nash equilibrium is:

ai =

 1 if Vi

(
1 +

∑
j 6=i aj

)
− Fi ≥ 0

0 if Vi

(
1 +

∑
j 6=i aj

)
− Fi < 0

(1.1)

For instance, consider a market with two potential entrants with V1(n) = V2(n) = 100− 20

n and F1 = F2 = F , such that Vi (1 + aj)− Fi = 80− F − 20 aj. The best responses are:

a2 = 0 a2 = 1
a1 = 0 (0 , 0) (0 , 80− F )
a1 = 1 (80− F , 0) (60− F , 60− F )

(1.2)

We can see that the model has different predictions about market structure depending on the

value of the fixed cost. If F ≤ 60, duopoly, (a1, a2) = (1, 1), is the unique Nash equilibrium.

If 60 < F ≤ 80, then either the monopoly of firm 1 (a1, a2) = (1, 0) or the monopoly of firm 2

(a1, a2) = (0, 1) are Nash equilibria. If F > 80, then no firm in the market (a1, a2) = (0, 0) is

the unique Nash equilibrium. The observe actions of the potential entrants reveal information

about profits, about fixed costs.

[The principle of Revealed Preference] The estimation of structural models of mar-
ket entry is based on the principle of Revealed Preference. In the context of these models,

this principle establishes that if we observe a firm operating in a market it is because its

value in that market is greater than the value of shutting down and putting its assets in

alternative uses. Under this principle, firms’entry decisions reveal information about the

underlying latent firm’s profit (or value).

[Static models] The first class of models that we study are static. There are many
differences between static and dynamic models of market entry. But there is a simple dif-

ference that I think it is relevant to point out now. For static models of entry, we should

understand "entry" as "being active in the market" and not as a transition from being "out"

of the market to being "in" the market. That is, in these static models we ignore the fact

that, when choosing whether to be active or not in the market, some firms are already active

(incumbents) and other firms not (potential entrants). That is, we ignore that the choice of

non-being active in the market means "exit" for some firms and "stay out" for others.

1.2. Why do we estimate models of market entry? The specification and estima-
tion of models of market entry is motivated by the need to endogenize the number of firms
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in the market, as well as some characteristics that operate at the extensive margin. Endog-

enizing the number of firms in the market is a key aspect in any model of IO where market

structure is treated as endogenous. Once we endogenize the number of firms in the market,

we need to identify entry cost parameters, and these parameters cannot be identify from

demand equations, production functions, and marginal conditions of optimality for prices

and quantities. We identify entry costs from the own entry model. More generally, we can

distinguish the following motives for the estimation of models of market entry.

(a) Identification of entry cost parameters. Parameters such us fixed production
costs, entry costs, or investment costs do not appear in demand or production equations, or

in the marginal conditions of optimality in firms’decisions of prices or quantities. However,

fixed costs contribute to the market entry decision. These parameters can be important in

the determination of market structure and market power in an industry.

(b) Data on prices and quantities may not be available at the level of individual
firm, product, and market. Many countries have excellent surveys of manufacturers or

retailers with information at the level of specific industry (5 or 6 digits NAICS, SIC) and

local markets (census tracts) on the number of establishments and some measure of firm size

such as aggregate revenue. Though we observe aggregate revenue at the industry-market

level, we do not observe P and Q at that level. Under some assumptions, it is possible to

identify structural parameters using these data and the structure of an entry model.

(c) Econometric effi ciency. The equilibrium entry conditions contain useful infor-

mation for the identification of structural parameters. Using this information can increase

significantly the precision of our estimates. In fact, when the sample variability in prices and

quantities is small, the equilibrium entry conditions may have a more significant contribution

to the identification of demand and cost parameters than demand equations or production

functions.

(d) Controlling for endogeneity of firms’entry decisions in the estimation of
demand and production functions. In some applications, the estimation of a demand
system or a production function requires dealing with the endogeneity of firms’(and prod-

ucts) entry. For instance, Olley and Pakes (1996) show that ignoring the endogeneity of

a firm’s decision to exit from the market can generate significant biases in the estimation

of production functions. Similarly, in the estimation of demand of differentiated products

not all the products are available in every market of time period. We observe a product

only in those markets where demand for this product is high enough to make it profitable

to introduce that product. Ignoring this endogeneity of the presence of products can in-

troduce important biases in the estimation of demand (Ciliberto, Murry, and Tamer, 2016;
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Ghandi and Houde, 2016). Dealing with the endogeneity of product presence may require

the specification and estimation of a model of market product entry.

The type of data used, the information structure of the entry game, and the assumptions

about unobserved heterogeneity, are important characteristics of an entry game that have

implications on the identification, estimation, and predictions of the model.

2. Data

The datasets that have been used in empirical applications of structural models of entry

in retail markets consist of a sample of geographic markets with information on firms’entry

decisions and consumer socio-economic characteristics over one or several periods of time.

In these applications, the number of firms and time periods is typically small such that

statistical inference (that is, the construction of sample moments and the application of law

of large numbers and central limit theorems) is based on a ‘large’number of markets. In

most applications, the number of geographic markets is between a few hundred and a few

thousand. Within these common features, there is substantial heterogeneity in the type of

data that have been used in empirical applications.

In this section, we concentrate on four features of the data that are particularly important

because they have substantial implications on the type of model that can be estimated, the

empirical questions that we can answer, and the econometric methods to use. These features

are: (1) the selection of geographic markets; (2) presence or not of within-market spatial

differentiation; (3) information on prices, quantities, or sales at the store level; and (4)

information on potential entrants.

2.1. Selection of geographic markets. In a seminal paper, Bresnahan and Reiss
(1990) use cross-sectional data from 149 small US towns to estimate a model of entry of

automobile dealerships. For each town, the dataset contains information on the number of

stores in the market, demographic characteristics such as population and income, and input

prices such as land prices. The selection of the 149 small towns is based on the following

criteria: the town belongs to a county with fewer than 10 000 people; there is no other

town with a population of over 1000 people within 25 miles of the central town; and there

is no large city within 125 miles. These conditions for the selection of a sample of markets

are typically described as the ‘isolated small towns’market selection. This approach has

been very influential and has been followed in many empirical applications of entry in retail

markets. The main motivation for using this sample selection is in the assumptions of spatial

competition in the Bresnahan—Reiss model. That model assumes that the location of a store

within a market does not have any implication on its profits or in the degree of competition

with other stores. This assumption is plausible only in small towns where the possibilities
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for spatial differentiation are very limited. If this model were estimated using a sample of

large cities, we would spuriously find very small competition effects simply because there is

negligible or no competition at all between stores located far away of each other within the

city. The model also assumes that there is no competition between stores located in different

markets. This assumption is plausible only if the market under study is not geographically

close to other markets; otherwise the model would ignore relevant competition from stores

outside the market.

Although the ‘isolated small towns’approach has generated a good number of important

applications, it has some limitations. The extrapolation to urban markets of the empirical

findings obtained in these samples of rural markets is in general not plausible. Focusing

on rural areas makes the approach impractical for many interesting retail industries that

are predominantly urban. Furthermore, when looking at national retail chains, these rural

markets account for a very small fraction of these firms’total profits.

2.2. Within market spatial differentiation. The limitations of the ‘isolated small
towns’ approach have motivated the development of empirical models of entry in retail

markets that take into account the spatial locations and differentiation of stores within a

city market. The work by Seim (2006) was seminal in this evolution of the literature. In

Seim’s model, a city is partitioned into many small locations or blocks, for example, census

tracts, or a uniform grid of square blocks. A city can be partitioned into dozens, hundreds,

or even thousands of these contiguous blocks or locations. In contrast to the ‘isolated small

towns’approach, these locations are not isolated, and the model allows for competition effects

between stores at different locations. The datasets in these applications contain information

on the number of stores, consumer demographics, and input prices at the block level. This

typically means that the information on store locations should be geocoded, that is, the

exact latitude and longitude of each store location. Information on consumer demographics

is usually available at a more aggregate geographic level.

The researcher’s choice for the size of a block depends on multiple considerations, includ-

ing the retail industry under study, data availability, specification of the unobservables, and

computational cost. In principle, the finer is the grid the more flexible can be the model

to measure spatial substitution between stores. The computational cost of estimating the

model can increase rapidly with the number of locations. The assumption on the distribution

of the unobservables across locations is also important, too. A common approach is to use

a definition of a block/location at which demographic information is available, for example,

the set of locations is equal to the set of census tracts within the city. While convenient, a

drawback of this approach is that some blocks, especially those in the periphery of a city,

tend to be very large. These large blocks are often problematic because (1) within-block
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spatial differentiation seems plausible, and (2) the distance to other blocks becomes highly

sensitive to choices of block centroids. In particular, a mere use of geometric centroids in

these large blocks can be quite misleading as the spatial distribution of population is often

quite skewed. To avoid this problem, Seim (2006) uses population weighted centroids rather

than (unweighted) geometric centroids. An alternative approach to avoid this problem is to

draw a square grid on the entire city and use each square as a possible location, as in Datta

and Sudhir (2013) and Nishida (2015). The value of consumer demographics in a square

block is equal to the weighted average of the demographics at the census tracts that overlap

with the square. The advantage of this approach is that each submarket has a uniform shape.

In practice, implementation of this approach requires the removal of certain squares where

entry cost is prohibitive. These areas include those with some particular natural features

(for example, lakes, mountains, and wetlands) or where commercial space is prohibited by

zoning. For example, Nishida (2015) excludes areas with zero population, and Datta and

Sudhir (2013) remove areas that do not have any ‘big box’stores as these areas are very

likely to be zoned for either residential use or small stores.

So far, all the papers that have estimated this type of model have considered a sample of

cities (but not locations within a city) that is still in the spirit of Bresnahan—Reiss isolated

small markets approach. For instance, Seim selects US cities with population between 40 000

and 150 000 people, and without other cities with more than 25 000 people within 20 miles.

The main reason for this is to avoid the possibility of outside competition at the boundaries

of a city. It is interesting that in the current generation of these applications, statistical

inference is based on the number of cities and not on the number of locations. A relevant

question is whether this model can be estimated consistently using data from a single city

with many locations, that is, the estimator is consistent when the number of locations goes

to infinity. This type of application can be motivated by the fact that city characteristics

that are relevant for these models, such as the appropriate measure of geographic distance,

transportation costs, or land use regulations and zoning, can be city specific. Xu (2014)

studies an empirical game of market entry for a single city (network) and presents conditions

for consistency and asymptotic normality of estimators as the number of locations increases.

As far as we know, there are not yet empirical applications following that approach.

2.3. Information on prices, quantities, or sales at the store Level. Most appli-
cations of models of entry in retail markets do not use data on prices and quantities due to

the lack of such data. The most popular alternative is to estimate the structural (or semi-

structural) parameters of the model using market entry data only, for example, Bresnahan

and Reiss (1990), Mazzeo (2002), Seim (2006), or Jia (2008), among many others. Typically,

these studies either do not try to separately identify variable profits from fixed costs, or they
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do it by assuming that the variable profit is proportional to an observable measure of market

size. Data on prices and quantities at store level can substantially help the identification

of these models. In particular, it is possible to consider a richer specification of the model

that distinguishes between demand, variable cost, and fixed cost parameters, and includes

unobservable variables into each of these components of the model.

A sequential estimation approach is quite convenient for the estimation of this type of

model. In a first step, data on prices and quantities at the store level can be used to

estimate a spatial demand system as in Davis (2006) for movie theatres or Houde (2012)

for gas stations. Note that, in contrast to standard applications of demand estimation of

differentiated products, the estimation of demand models of this class should deal with the

endogeneity of store locations. In other words, in these demand models, not only prices are

endogenous but also the set of ‘products’or stores available at each location is potentially

correlated with unobserved errors in the demand system. In a second step, variable costs can

be estimated using firms’best response functions in Bertrand or Cournot model. Finally,

in a third step, we estimate fixed cost parameters using the entry game and information of

firms’entry and store location decisions. It is important to emphasize that the estimation of

a demand system of spatial differentiation in the first step provides the structure of spatial

competition effects between stores at different locations, such that the researcher does not

need to consider other type of semi-reduced form specifications of strategic interactions, as

in Seim (2006) among others.

In some applications, price and quantity are not available, but there is information on

revenue at the store level (for example, Ellickson and Misra 2012; Aguirregabiria et al. 2013,

Suzuki 2013). This information can be used to estimate a (semi reduced form) variable profit

function in a first step, and then in a second step the structure of fixed costs is estimated.

2.4. Information on potential entrants. An important modelling decision in em-
pirical entry games is to define the set of potential entrants. In most cases, researchers

have limited information on the number of potential entrants, let alone their identity. This

problem is particularly severe when entrants are mostly independent small stores (for ex-

ample, mom-and-pop stores). A practical approach is to estimate the model under different

numbers of potential entrants and examine how estimates are sensitive to these choices, for

example, Seim (2006) and Jia (2008). The problem is less severe when most entrants belong

to national chains (for example, big box stores) because the names of these chains are often

obvious and the number is typically small.

It is important to distinguish three types of data sets. The specification and the identi-

fication of the model is different for each of these three types of data.
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(1) Only global potential entrants. The same N firms are the potential entrants in

every market. We know the identity of these "global" potential entrants. Therefore, we

observe the decision of each of these firms in every independent market. We observe market

characteristics, and sometimes firm characteristics which may vary or not across markets.

The data set is {sm, xim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., N} where m is the market index;

i is the firm index; sm is a vector of characteristics of market m such as market size, average

consumer income, or other demographic variables; xim is a vector of characteristics of firm

i; and aim is the indicator of the event "firm i is active in market m".

Examples. Berry (1992) considers entry in airline markets. A market is a city pair

(for instance, Boston-Chicago). The set of markets consists of all the pairs of US cities

with airports. Every airline company operating in US is a potential entrant in each of these

markets. aim is the indicator of the event "airline i operates in city pair m". Toivanen and

Waterson (2000) consider entry in local markets by fast-food restaurants in UK. Potential

entrants are Burger King, McDonalds, KFC, Wendys, etc.

(2) Only local potential entrants. We do not know the identity of the potential entrants.
In fact, most potential entrants may be local, that is, they consider entry in only one local

market. For this type of data we only observe market characteristics and the number of

active firms in the market. The data set is: {sm, nm : m = 1, 2, ...,M} where nm is the

number of firms operating in market m. Notice also that we do not know the number of

potential entrants N , and this may vary over markets.

Examples. Bresnahan and Reiss (REStud, 1990). Car dealers in small towns. Bresna-
han and Reiss (JPE, 1991). Restaurants, dentists and other retailer and professional services

in small towns. Seim (2003). Video rental stores.

(3) Both global and local potential entrants. This case combines and encompasses
the previous two cases. There are NG firms which are potential entrants in all the markets,

and we now the identity of these firms. But there are also other potential entrants which

are just local. We observe {sm, nm, zim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., NG}.With this data
we can nonparametrically identify Pr(nm, am|xm). We can allow for heterogeneity between

global players in a very general way. Heterogeneity between local players should be much

more restrictive.

3. Models

3.1. Road map. (a) Bresnahan and Reiss. We start with a simple and pioneer

model in this literature: the models in Bresnahan and Reiss (JPE, 1991). This paper

together with Bresnahan and Reiss (REStud, 1990) were significant contributions to the

structural estimation of models of market entry that opened a new literature that has grown



174 5. EMPIRICAL MODELS OF MARKET ENTRY

significantly during the last 20 years. In that paper, Bresnahan and Reiss show that given a

cross-section of "isolated" local markets where we observe the number of firms active, and

some exogenous market characteristics, including market size, it is possible to identify fixed

costs and the "degree of competition" or the "nature of competition" in the industry. By

"nature of competition" these authors (and after them, this literature) means a measure

of how a firm’s variable profit declines with the number of competitors. What is most

remarkable about Bresnahan and Reiss’s result is how with quite limited information (for

instance, no information about prices of quantities) the researcher can identify the degree of

competition using an entry model.

(b) Relaxing the assumption of homogeneous firms. Bresnahan and Reiss’s model
is based on some important assumptions. In particular, firms are homogeneous and they have

complete information. The assumption of firm homogeneity (both in demand and costs) is

strong and can be clearly rejected in many industries. Perhaps more importantly, ignoring

firm heterogeneity when present can lead to biased and misleading results about the degree

of competition in a industry. Therefore, the first assumption that we relax is the one of

homogeneous firms.

As shown originally in the own work of Bresnahan and Reiss (Journal of Econometrics,

1991), relaxing the assumption of firm homogeneity implies two significant econometric chal-

lenges. The entry model becomes a system of simultaneous equations with endogenous binary

choice variables. Dealing with endogeneity in a binary choice system of equations is not a

simple econometric problem. In general, IV estimators are not available. Furthermore, the

model now has multiple equilibria. Dealing with both endogeneity and multiple equilibria

in this class of nonlinear models is an interesting but challenging problem in econometrics.

(c) Approaches to deal with endogeneity/multiple equilibria in games of com-
plete information. Then, we will go through different approaches that have been used in
this literature to deal with the problems of endogeneity and multiple equilibria. It is worth-

while to distinguish two groups of approaches or methods. The first group of methods
is characterized by imposing restrictions that imply equilibrium uniqueness for any value

of the exogenous variables. Of course, firm homogeneity is a type of assumption that im-

plies equilibrium uniqueness. But there are other assumptions that imply uniqueness even

when firms are heterogeneous. For instance, a triangular structure in the strategic inter-

actions between firms (Heckman, Econometrica 1978), or sequential entry decisions (Berry,

Econometrica 1993) imply equilibrium uniqueness. Given these assumptions, these papers

deal with the endogeneity problem by using a maximum likelihood approach. The sec-
ond group of methods do not impose equilibrium uniqueness. The pioneering work by
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Jovanovic (Econometrica 1989) and Tamer (2003) were important contributions for this ap-

proach. These authors showed (Jovanovic for a general stylized econometric model, and

Tamer for a two-player binary choice game) that identification and multiple equilibria are

very different issues in econometric models. Models with multiple equilibria can be (point)

identified, and we do not need to impose equilibrium uniqueness as a form to get identifica-

tion. Multiple equilibria can be a computational nuisance in the estimation of these models,

but it is not an identification problem. This simple idea has generated a significant and

growing literature that deals with computational simple methods to estimate models with

multiple equilibria, and more specifically with the estimation of discrete games.

(d) Games of incomplete information. Our next step will be to relax the assumption
of complete information by introducing some variables that are private information of each

firm. We will see that the identification and estimation of these models can be significantly

simpler than in the case of models of complete information.

3.2. Static game with single-store firms. We start with the description of a static
entry game between single-store firms. Later, we extend this framework to incorporate

dynamics and multi-store firms. There are N retail firms that are potential entrants in

a market. We index firms by i ∈ {1, 2, . . . , N}. From a geographic point of view, the

market is a compact set C in the Euclidean space R2, and it contains L locations where

firms can operate stores. These locations are exogenously given and they are indexed by

l ∈ {1, 2, . . . , L}. Firms play a two-stage game. In the first stage, firms make their entry and
store location decisions. Each firm decides whether to be active or not in the market, and if

active, the location of its store. We can represent a firm’s decision using an L-dimensional

vector of binary variables, ai ≡ {ail : l = 1, 2, . . . , L}, where ail ∈ {0, 1} is the indicator
of the event ‘firm i has a store in location l’. For single-store firms, there is at most one

component in the vector ai that is equal to one while the rest of the binary variables must

be zero. In the second stage they compete in prices (or quantities) taking entry decisions as

given. The equilibrium in the second stage determines equilibrium prices and quantities at

each active store.

The market is populated by consumers. Each consumer is characterized by her preference

for the products that firms sell and by her geographical location or home address h that

belongs to the set of consumer home addresses {1, 2, . . . , H}. The set of consumer home
addresses and the set of feasible business locations may be different.5 Following Smith (2004),

Davis (2006), or Houde (2012), aggregate consumer demand comes from a discrete choice

model of differentiated products where both product characteristics and transportation costs

affect demand. For instance, in a spatial logit model, the demand for firm i with a store in



176 5. EMPIRICAL MODELS OF MARKET ENTRY

location ` is:

qil =

H∑
h=1

M(h)
ail exp{xi β − α pil − τ(dhl)}

1 +
∑N

j=1

∑L
l′=1 ajl′ exp{xj β − α pjl′ − τ dhl′}

where qil and pil are the quantity sold and the price, respectively, at store (i, l); M(h)

represents the mass of consumers living in address h; the term within the square brackets

is the market share of store (i,l) among consumers living in address h; xi is a vector of

observable characteristics (other than price) of the product of firm i; and β is the vector of

marginal utilities of these characteristics; α is the marginal utility of income; dhl represents

the geographic distance between home address h and business location l; and τ(dhl) is an

increasing real-valued function that represents consumer transportation costs.

Given this demand system, active stores compete in prices à la Nash—Bertrand to max-

imize their respective variable profits, (pil − cil) qil, where cil is the marginal cost of store
(i, l), that is exogenously given. The solution of the system of best response functions can

be described as a vector of equilibrium prices for each active firm/store. Let p∗i (l, a−i, x)

and q∗i (l, a−i, x) represent the equilibrium price and quantity for firm i given that this firm

has a store at location l , that the rest of the firms’entry/location decisions are represented

by the vector a−i ≡ {aj : j 6= i}, and that these firms’ characteristics are denoted by
x ≡ (x1, x2, . . . , xN). Similarly, we can define the equilibrium (indirect) variable profit,

V P ∗i (`, a−i, x) = [p(`, a−i, x)− cil] q∗i (`, a−i, x)

Consider now the entry stage of the game. The profit of firm i if it has a store in location

` is:

πi(`, a−i, x) = V P ∗i (`, a−i, x)− ECi`

whereECi` represents the entry cost of firm i at location l, that for the moment is exogenously

given. The profit of a firm that is not active in the market is normalized to zero, that is,

πi(0, a−i, x) = 0, where with some abuse of notation, we use l = 0 to represent the choice

alternative of no entry in any of the L locations.

The description of an equilibrium in this model depends on whether firms have complete

or incomplete information about other firms’costs. The empirical literature on entry games

has considered both cases. In the complete information model, a Nash equilibrium is an

N-tuple {a∗i : i = 1, 2, . . . , N} such that for every firm i the following best response condition
is satisfied:

a∗i` = 1{πi(`, a∗−i, x) ≥ πi(`
′, a∗−i, x) for any `′ 6= `}

where 1{.} is the indicator function. In equilibrium, each firm is maximizing its own profit

given the entry and location decisions of the other firms.
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In a game of incomplete information, there is a component of a firm’s profit that is private

information of the firm. For instance, suppose that the entry cost of firm i is ECi` = eci`+εi`,

where eci` is public information for all the firms, and εi` is private information of firm i.

These private cost shocks can be correlated across locations for a given firm, but they are

independently distributed across firms, that is, εi ≡ {εi` : ` = 1, 2, . . . , L} is independently
distributed across firms with a distribution function Fi that is continuously differentiable

over RL and common knowledge to all the firms. A firm’s strategy is an L-dimensional

mapping αi(εi;x) ≡ {αi`(εi;x) : ` = 1, 2, . . . , L} where αi`(εi;x) is a binary-valued function

from the set of possible private information values, R^L and the support of x into {0, 1} such
that αi`(εi;x) = 1 means that firm i enters location ` when the value of private information

is εi. A firm has uncertainty about the actual entry decisions of other firms because it

does not know the realization of other firms’private information. Therefore, firms maximize

expected profits. Let πei (`, α−i, x) be the expected profit of firm i if it has a store at location

` and the other firms follow their respective strategies in α∗−i. By definition, π
e
i (`, α−i, x) ≡

Eε−i [πi(`, α−i(ε−i;x), x)], where Eε−i represents the expectation over the distribution of the

private information of firms other than i. A Bayesian Nash equilibrium in this game of

incomplete information is an N-tuple of strategy functions {α∗−i : i = 1, 2, . . . , N} such that
every firm maximizes its expected profit: for any εi,

α∗i`(εi;x) = 1{πei (`, α∗−i, x) ≥ πei (`
′, α∗−i, x) for any `′ 6= `}

In an entry game of incomplete information, firms’strategies (and therefore, a Bayesian

Nash equilibrium) can be described also using firms’probabilities of market entry, instead

of the strategy functions αi(εi;x). In sections 2.2.1 and 2.2.4, we present examples of this

representation in the context of more specific models.

3.3. Multi-store firms. Multi-store firms, or retail chains, have become prominent in
many retail industries such as supermarkets, department stores, apparel, electronics, fast

food restaurants, or coffee shops, among others. Cannibalization and economies of scope

between stores of the same chain are two important factors in the entry and location deci-

sions of a multi-store firm. The term cannibalization refers to the business stealing effects

between stores of the same chain. Economies of scope may appear if some operating costs

are shared between stores of the same retail chain such that these costs are not duplicated

when the number of stores in the chain increases. For instance, some advertising, inventory,

personnel, or distribution costs can be shared among the stores of the same firm. These

economies of scope may become quantitatively more important when store locations are ge-

ographically closer to each other. This type of economies of scope is called economies of

density. The recent empirical literature on retail chains has emphasized the importance of
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these economies of density, that is, Holmes (2011), Jia (2008), Ellickson et al. (2013), and

Nishida (2015). For instance, the transportation cost associated with the distribution of

products from wholesalers to retail stores can be smaller if stores are close to each other.

Also, geographic proximity can facilitate sharing inventories and even personnel across stores

of the same chain. We now present an extension of the basic framework that accounts for

multi-store firms.

A multi-store firm decides its number of stores and their locations. We can represent

a firm’s entry decision using the L-dimension vector ai ≡ {ai` : ` = 1, 2, . . . , L}, where
ai` ∈ {0, 1} is still the indicator of the event ‘firm i has a store in location `’. In contrast to

the case with single-store firms, now the vector a_i can take any value within the choice set

{0, 1}L. The demand system still can be described using equation (***). The variable profit
of a firm is the sum of variable profits over every location where the firm has stores,

∑L
`=1 ai`

(pi` − ci`)qi`. Firms compete in prices taking their store locations as given. A retail chain
may choose to have a uniform price across all its stores, or to charge a different price at each

store. In the Bertrand pricing game with spatial price discrimination (that is, different prices

at each store), the best response of firm i can be characterized by the first-order conditions:

qi` + (pi` − ci`)
∂qi`
∂pi`

+
∑
`′ 6=`

(pi`′ − ci`′)
∂qi`′

∂pi`
= 0

The first two terms represent the standard marginal profit of a single-store firm. The last

term represents the effect on the variable profits of all other stores within the firm, and it

captures how the pricing decision of the firm internalizes the cannibalization effect among

its own stores. A Nash-Bertrand equilibrium is a solution in prices to the system of best

response equations in (***). The equilibrium (indirect) variable profit of firm i is:

V P ∗i (ai, a−i;x) =
L∑
`=1

(p∗i (`, a−i;x)− ci`) q∗i (`, a−i;x)

where p∗i`(`, a−i;x) and q∗i (`, a−i;x) represent Bertrand equilibrium prices and quantities,

respectively.

The total profit of the retail chain is equal to total variable profit minus total entry cost:

πi(ai, a−i;x) = V P ∗i (ai, a−i;x) − ECi(ai). The entry costs of a retail chain may depend on
the number of stores (that is, (dis)economies of scale) and on the distance between the stores

(for example, economies of density). In section 2.2.5, we provide examples of specifications

of entry costs for multi-store retailers.

The description of an equilibrium in this game of entry between retail chains is similar

to the game between single-store firms. With complete information, a Nash equilibrium is
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an N-tuple {a∗i : i = 1, 2, . . . , N} that satisfies the following best response conditions:

πi(a
∗
i , a
∗
−i;x) ≥ πi(ai, a

∗
−i;x) for any ai 6= a∗i

With incomplete information, a Bayesian Nash equilibrium is an N-tuple of strategy functions

{α∗i (εi;x) : i = 1, 2, . . . , N} such that every firm maximizes its expected profit: for any εi:

πei (α
∗
i (εi;x), α∗−i, x) ≥ πei (ai, α

∗
−i, x) for any ai 6= α∗i (εi;x)

3.4. Dynamic game. Opening (or closing) a store is a forward-looking decision with
significant non-recoverable entry costs, mainly owing to capital investments which are both

firm and location-specific. The sunk cost of setting up new stores, and the dynamic strategic

behavior associated with them, are potentially important forces behind the configuration of

the spatial market structure that we observe in retail markets. We now present an extension

of the previous model that incorporates these dynamic considerations.

Time is discrete and indexed by t ∈ {. . . , 0, 1, 2, . . .}. At the beginning of period t a firm’s
network of stores is represented by the vector ait ≡ {ai`t : ` = 1, 2, . . . , L}, where ai`t is the
number of stores that firm ai`t operates in location ` at period t. For simplicity, we maintain

the assumption that a firm can have at most one store in a location, such that ai`t ∈ {0, 1}.
The market structure at period t is represented by the vector at ≡ {ait : i = 1, 2, . . . , N}
capturing the store network of all firms. Following the structure in the influential work on

dynamic games of oligopoly competition by Ericson and Pakes (1995) and Pakes andMcGuire

(1994), at every period t the model has two stages, similar to the ones described in the static

game above. In the second stage, taking the vector of firms’store networks a_t as given,

retail chains compete in prices in exactly the same way as in the Bertrand model described in

section 2.1.2. The equilibrium in this Bertrand game determines the indirect variable profit

function, V P ∗i (at; zt), where zt is a vector of exogenous state variables in demand and costs.

Some components of zt may be random variables, and their future values may not be known

at the current period. In the first stage, every firm decides its network of stores next period,

ai,t+1, and pays at period t the entry and exit costs associated to opening and closing stores.

The period profit of a firm is πi(ai,t+1, at, zt) = V P ∗i (at; zt) − FC(ait; zt) − ACi(ai,t+1, ait),

where FCi is the fixed cost of operating the network, and ACi is the cost of adjusting the

network from ait to ai,t+1, that is, costs of opening and closing stores. A firm chooses its

new network ai,t+1 to maximize the sum of its discounted expected future profits.

A Markov perfect equilibrium of this dynamic game is an N-tuple of strategy functions

{α∗i (at, zt) : i = 1, 2, . . . , N} such that every firm maximizes its expected intertemporal

profit:

α∗i (at, zt) = arg max
ai,t+1

[
πi(ai,t+1, at, zt) + δ Et(V

α∗

i (ai,t+1, α
∗
−i(at, zt), zt+1)

]



180 5. EMPIRICAL MODELS OF MARKET ENTRY

where δ ∈ (0, 1) is the discount factor, and V α∗
i (ait, a−it, zt) is the value of firm i when firms’

networks are equal to at, the value of exogenous state variables is zt, and the other firms

follow strategies α∗−i.

3.5. Specification assumptions. The games of entry in retail markets that have been
estimated in empirical applications have imposed different types of restrictions on the frame-

work that we have presented in section 2.1, for example, restrictions on firm and market

heterogeneity, firms’ information, spatial competition, multi-store firms, dynamics, or the

form of the structural functions. The motivations for these restrictions are diverse. Some re-

strictions are imposed to achieve identification or precise enough estimates of the parameters

of interest, given the researcher’s limited information on the characteristics of markets and

firms. For instance, as we describe in section 3, prices and quantities at the store level are

typically not observable to the researcher, and most sample information comes from firms’

entry decisions. These limitations in the available data have motivated researchers to use

simple specifications for the indirect variable profit function. Other restrictions are imposed

for computational convenience in the solution and estimation of the model, for example, to

obtain closed form solutions, to guarantee equilibrium uniqueness as it facilitates the estima-

tion of the model, or to reduce the dimensionality of the space of firms’actions or states. In

this subsection, we review some important models in this literature and discuss their main

identification assumptions. We have organized these models in an approximate chronological

order.

3.5.1. Homogeneous firms. Work in this field was pioneered by Bresnahan and Reiss. In

Bresnahan and Reiss (1991a), they study several retail and professional industries in US,

that is, pharmacies, tire dealers, doctors, and dentists. The main purpose of the paper is to

estimate the ‘nature’or ‘degree’of competition for each of the industries: how fast variable

profits decline when the number of firms in the market increases. More specifically, the

authors are interested in estimating how many entrants are needed to achieve an oligopoly

equilibrium equivalent to the competitive equilibrium, that is, hypothesis of contestable

markets (Baumol 1982). For each industry, their dataset consists of a cross-section of M small

‘isolated markets’. In section 3, we discuss the empirical motivation and implementation

of the ‘isolated markets’ restriction. For the purpose of the model, a key aspect of this

restriction is that the M local markets are independent in terms of demand and competition

such that the equilibrium in one market is independent of the one in the other markets.

The model also assumes that each market consists of a single location, that is, L = 1, such

that spatial competition is not explicitly incorporated in the model. For each local market,

the researcher observes the number of active firms (n), a measure of market size (s), and

some exogenous market characteristics that may affect demand and/or costs (x). Given
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this limited information, the researcher needs to restrict firm heterogeneity. Bresnahan and

Reiss propose a static game between single-store firms where all the potential entrants in a

market are identical and have complete information on demand and costs. The profit of a

store is π(n) = s ∗ vp(x, n)−EC(x)− ε, where vp(x, n) represents variable profit per capita

(per consumer) that depends on the number of active firms n, and EC(x) + ε is the entry

cost, where ε is unobservable to the researcher. The form of competition between active

firms is not explicitly modelled. Instead, the authors consider a flexible specification of the

variable profit per capita that is strictly decreasing but nonparametric in the number of

active stores. Therefore, the specification is consistent with a general model of competition

between homogeneous firms, or even between symmetrically differentiated firms.

Given these assumptions, the equilibrium in a local market can be described as a number

of firms n∗ that satisfies two conditions: (1) every active firm is maximizing profits by being

active in the market, that is, π(n∗) ≥ 0; and (2) every inactive firm is maximizing profits

by being out of the market, that is, π(n∗ + 1) < 0. That is, every firm is making its best

response given the actions of the others. Since the profit function is strictly decreasing in

the number of active firms, the equilibrium is unique and it can be represented using the

following expression: for any value n ∈ {0, 1, 2, . . .},

{n∗ = n} ⇔ {π(n) ≥ 0 and π(n+ 1) < 0}

⇔ {s ∗ vp(x, n+ 1)− EC(x) < ε ≤ s ∗ vp(x, n)− EC(x)}
Also, this condition implies that the distribution of the equilibrium number of firms given

exogenous market characteristics is:

Pr(n∗ = n | s, x) = F (s ∗ vp(x, n)− EC(x))− F (s ∗ vp(x, n+ 1)− EC(x))

where F is the CDF of ε. This representation of the equilibrium as an ordered discrete choice

model is convenient for estimation.

In the absence of price and quantity data, the separate identification of the variable profit

function and the entry cost function is based on the exclusion restrictions that variable profit

depends on market size and on the number of active firms while the entry cost does not

depend on these variables.

The previous model can be slightly modified to allow for firms’private information. This

variant of the original model maintains the property of equilibrium uniqueness and most of

the simplicity of the previous model. Suppose that now the entry cost of a firm is EC(x)+εi,

where εi is private information of firm i and it is independently and identically distributed

across firms with a CDF F . There areN potential entrants in the local market. The presence

of private information implies that, when potential entrants make entry decisions, they do
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not know ex ante the actual number of firms that will be active in the market. Instead,

each firm has beliefs about the probability distribution of the number of other firms that are

active. We represent these beliefs, for say firm i, using the function Gi(n) ≡ Pr(n∗−i = n|s, x),

where n∗−i represents the number of firms other than i that are active in the market. Then,

the expected profit of a firm if active in the market is:

πei =

[
N−1∑
n=0

Gi(n) s ∗ vp(x, n+ 1)

]
− EC(x)− εi

The best response of a firm is to be active in the market if and only if its expected profit

is positive or zero, that is, ai = 1{πei ≥ 0}. Integrating this best response function over the
distribution of the private information εi we obtain the best response probability of being

active for firm i, that is, Pi ≡ F (
[∑N−1

n=0 Gi(n) s ∗ vp(x, n+ 1)
]
− EC(x)). Since all firms

are identical, up to their independent private information, it seems reasonable to impose

the restriction that in equilibrium they all have the same beliefs and, therefore, the same

best response probability of entry. Therefore, in equilibrium, firms’ entry decisions {ai}
are independent Bernoulli random variables with probability P , and the number of firms

active other than i in the market has a Binomial distribution with argument (N −1, P ) such

that Pr(n∗−i = n) = B(n|N − 1, P ). In equilibrium, the beliefs function G(n) should be

consistent with firms’best response probability P. Therefore, a Bayesian Nash Equilibrium

in this model can be described as a probability of market entry P^* that is the best response

probability when firms’beliefs about the distribution of other firms active in the market are

G(n) = B(n |N − 1, P ∗). We can represent this equilibrium condition using the following

equation:

P ∗ = F
([∑N−1

n=0 B(n|N − 1, P ∗) s ∗ vp(x, n+ 1)
]
− EC(x)

)
When the variable profit vp(x, n) is a decreasing function in the number of active stores, the

right-hand side in equation (14) is also a decreasing function in the probability of entry P,

and this implies equilibrium uniqueness. In contrast to the complete information model in

Bresnahan and Reiss (1991a), this incomplete information model does not have a closed form

solution for the equilibrium distribution of the number of active firms in the market. However,

the numerical solution of the fixed point problem in equation (9.14) is computationally very

simple, and so are the estimation and comparative statistics using this model.

Given that the only difference between the two models described in section 2.2.1 is in

their assumptions about firms’information, it seems reasonable to consider whether these

models are observationally different or not. In other words, does the assumption on complete

versus incomplete information have implications on the model predictions on competition?

Grieco (2014) investigates this question in the context of an empirical application to local

grocery markets. In Grieco’s model firms are heterogeneous in terms of (common knowledge)
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observable variables, and this observable heterogeneity plays a key role in his approach

to empirically distinguish between firms’ public and private information. Note that the

comparison of equilibrium conditions in equations (9.12) and (9.14) shows other testable

difference between the two models. In the game of incomplete information, the number of

potential entrants N has an effect on the whole probability distribution of the number of

active firms: a larger number of potential entrants implies a shift to the right in the whole

distribution of the number of active firms. In contrast, in the game of complete information,

the value of N affects only the probability Pr(n∗ = N |s, x) but not the distribution of

the number of active firms at values smaller than N. This empirical prediction has relevant

economic implications: with incomplete information, the number of potential entrants has a

positive effect on competition even in markets where this number is not binding.

3.5.2. Bresnahan and Reiss (JPE, 1991). They study several retail and professional in-

dustries in US: Doctors; Dentists; Pharmacies; Plumbers; car dealers; etc. For each industry,

say car dealers, the dataset consists of a cross-section of M small, "isolated" markets. We

index markets by m. For each market m, we observe the number of active firms (Nm), a

measure of market size (Sm), and some exogenous market characteristics that may affect

demand and/or costs (Xm).

Data = { Nm, Sm, Xm : m = 1, 2, ...,M}

There are several empirical questions that they want to answer. First, they want to

estimate the "nature" or "degree" of competition for each of the industries: that is, how fast

variable profits decline when the number of firms in the market increase. Second, but related

to the estimation of the degree of competition, BR are also interested in estimating how many

entrants are needed to achieve an equilibrium equivalent to the competitive equilibrium, that

is, hypothesis of contestable markets.

[Model] Consider a marketm. There is a number N∗ of potential entrants in the market.
Each firm decides whether to be active or not in the market. Let Πm(N) be the profit of

an active firm in market m when there are N active firms. The function Πm(N) is strictly

decreasing in N . If Nm is the equilibrium number of firms in marketm, then it should satisfy

the following conditions:

Πm(Nm) ≥ 0 and Πm(Nm + 1) < 0

That is, every firm is making her best response given the actions of the others. For active

firms, their best response is to be active, and for inactive firms their best response is not to

enter in the market.
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To complete the model we have to specify the structure of the profit function Πm(N).

Total profit is equal to variable profit, Vm(N), minus fixed costs, Fm(N):

Πm(N) = Vm(N)− Fm(N)

In this model, where we do not observe prices or quantities, the key difference in the specifi-

cation of variable profit and fixed cost is that variables profits increase with market size (in

fact, they are proportional to market size) and fixed costs do not.

The variable profit function of an incumbent firm in market m when there are N active

firms is:

Vm(N) = Sm vm(N) = Sm
(
XD
mβ − α(N)

)
where Sm represent market size; vm(N) is the variable profit per-capita; XD

m is a vector of

market characteristics that may affect the demand of the product, for instance, per capita

income, age distribution; β is a vector of parameters; and α(1), α(2), ...α(N) are parameters

that capture the degree of competition, such that we expect that α(1) ≤ α(2) ≤ α(3) ...

≤ α(N). Given that there is not firm-heterogeneity in the variable profit function, there is

an implicit assumption of homogeneous product or symmetrically differentiated product (for

instance, Salop circle city).

The specification fixed cost is:

Fm(N) = XC
m γ + δ(N) + εm

where XC
m is a vector of observable market characteristics that may affect the fixed cost, for

instance, rental price; and εm is a market characteristic that is unobservable to the researchers

but observable to the firms; and δ(1), δ(2), ...δ(N∗) are parameters. The dependence of the

fixed cost with respect to the number of firms is very unconventional or non-standard in IO.

Bresnahan and Reiss allow for this possibility and provide several interpretations. However,

the interpretation of the parameters δ(1), δ(2), ...δ(N∗) is not completely clear. In some

sense, BR allow the fixed cost to depend on the number firms in the market for robustness

reasons. There are several possible interpretations for why fixed costs may depend on the

number of firms in the market: (a) entry Deterrence: incumbents create barriers to entry;

(b) a shortcut to allow for firm heterogeneity in fixed costs, in the sense that late entrants are

less effi cient in fixed costs; and (c) actual endogenous fixed costs, for instance rental prices

or other components of the fixed costs, no included in XC
m, may increase with the number of

incumbents (for instance, demand effect on rental prices). For any of these interpretations

we expect δ(1) ≤ δ(2) ≤ δ(3) ... ≤ δ(N∗).

Since both α(N) and δ(N) increase with N , it is clear that the profit function Πm(N)

declines with N . Therefore, as we anticipated above, the equilibrium condition for the
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number of firms in the market can be represented as follows. For N ∈ {0, 1, ..., N∗}

{nm = N} ⇔ { Πm(N) ≥ 0 AND Πm(N + 1) < 0 }

It is simple to show that the model has a unique equilibrium for any value of the exoge-

nous variables and structural parameters. This is just a direct implication of the strict

monotonicity of the profit function Πm(N).

We have a random sample {Nm, Sm, X
D
m , X

C
m : m = 1, 2, ...,M} and we want to use this

sample to estimate the vector of parameters:

θ = {β, γ, σ, α(1), ..., α(N∗), δ(1), ..., δ(N∗)}

The unobserved component of the entry cost, εm, is assumed independent of (Sm, X
D
m , X

C
m)

and it is i.i.d. over markets with distribution N(0, σ). As usual in discrete choice models, σ

is not identified. We normalize σ = 1, which means that we are really identifying the rest

of the parameters up to scale. We should keep this in mind for the interpretation of the

estimation results.

Given this model and sample, BR estimate θ by (conditional) ML:

θ̂ = arg max
θ

M∑
m=1

log Pr(Nm | θ, Sm, XD
m , X

C
m)

What is the form of the probabilities Pr(Nm|θ, Sm, Xm,Wm) in B&R model? This entry

model is equivalent to anOrdered Probit model for the number of firms. We can represent
the condition {Πm(n) ≥ 0 AND Πm(n+1) < 0} in terms of thresholds for the unobservable
variable εm.

{Nm = n} ⇔ {Tm(n+ 1) < εm ≤ Tm(n)}
and for any n ∈ {1, 2, ..., N∗} we have that

Tm(N) ≡ SmX
D
mβ −XC

mγ − α(n)Sm − δ(n)

and Tm(0) = +∞, Tm(N∗ + 1) = −∞. This is the structure of an ordered probit model.
Therefore, the distribution of the number of firms conditional on the observed exogenous

market characteristics is:
Pr(Nm = n|Sm, XD

m , X
C
m) = Φ (Tm(n))− Φ (Tm(n+ 1))

Φ
(
SmX

D
mβ −XC

mγ − α(n)Sm − δ(n)
)

− Φ
(
SmX

D
mβ −XC

mγ − α(n+ 1)Sm − δ(n+ 1)
)

This is an Ordered Probit model. The model is very simple to estimate. Almost any
econometric software package includes a command for the estimation of the ordered probit.

[Application and Main Results] Data: 202 "isolated local markets". Why isolated
local markets? It is very important to include in our definition of market all the firms that
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are actually competing in the market and not more. Otherwise, we can introduce significant

biases in the estimated parameters. If our definition of market is too narrow, such that we

do not include all the firms that are actually in a market, we will conclude that there is little

entry either because fixed costs are too large or the degree of competition is strong: that is,

we will overestimate the α′s or the δ′s or both. If our definition of market is too broad, such

that we include firms that are not actually competing in the same market, we will conclude

that there is significant entry and to rationalize this wee need fixed costs to be small or to

have a low degree of competition between firms. Therefore, we will underestimate the α′s or

the δ′s or both.

The most common mistake of a broad definition of market is to have a large city as a

single market. The common mistake of a narrow definition of market is to have small towns

that are close to each other, or close to a large town. To avoid these type of errors, BR

construct "isolated local markets". The criteria to select isolated markets in US: (a) at least

20 miles from the nearest town of 1000 people or more; (b) At least 100 miles of cities with

100,000 people or more.

Population sizes between 500 and 75,000 people [see Figure 2 in the ]. Industries (16):

several retail industries (auto dealers, movie theaters,...) and many professions (doctors,

dentists, plumbers, barbers, ...). The model is estimated for each industry separately.

Let S(N) be the minimum market size to sustain N firms in the market. S(N) are called

"entry thresholds" and they can be obtained (estimated) using the estimated parameters.
They do not depend on the normalization σ = 1. The main empirical results are: (a) For

most industries, both α(N) and δ(N) increase with n. (b) There are very significant cross-

industry differences in entry thresholds S(N). (c) For most of the industries, entry thresholds

S(N)/N become constant for values of N greater than 4 or 5. Contestable markets?

3.5.3. Entry with endogenous product choice. Mazzeo (2002) studies market entry in the

motel industry using local markets along US interstate highways.20 A local market is defined

as a narrow region around a highway exit. Mazzeo’s model maintains most of the assumptions

in Bresnahan and Reiss (1991a), such as no spatial competition (that is, L=1), ex ante

homogeneous firms, complete information, no multi-store firms, and no dynamics. However,

he extends the Bresnahan—Reiss model in an interesting dimension: it introduces endogenous

product differentiation. More specifically, firms not only decide whether to enter in a market

but they also choose the type of product: low-quality product E (that is, economy hotel), or

high-quality product H (that is, upscale hotel).21 Product differentiation makes competition

less intense, and it can increase firms’profits. However, firms have also an incentive to offer

the type of product for which demand is stronger.



3. MODELS 187

The profit of an active hotel of type T ∈ {E,H} is:

πT (nE, nH) = s ∗ vT (x, nE, nH)− ECT (x)− εT

where nE and nH represent the number of active hotels with low and high quality, respec-

tively, in the local market. Similarly to the Bresnahan—Reiss model, vT is the variable profit

per capita and ECT (x) + εT is the entry cost for type T hotels, where εT is unobservable

to the researcher. Mazzeo solves and estimates her model under two different equilibrium

concepts: Stackelberg and what he terms a ‘two-stage game’. A computational advantage

of the two-stage game is that under the assumptions of the model the equilibrium is unique.

In the first stage, the total number of active hotels, n ≡ nE + nH , is determined in a similar

way as in the Bresnahan—Reiss model. Hotels enter the market as long as there is some

configuration (nE, nH) where both low-quality and high-quality hotels make positive profits.

Define the first-stage profit function as:

Π(n) ≡ max
nE ,nH :nE+nH=n

min[πE(nE, nH) , πH(nE, nH)]

Then, the equilibrium number of hotels in the first stage is the value n∗ that satisfies two

conditions: (1) every active firm wants to be in the market, that is, Π(n∗) ≥ 0; and (2) every

inactive firm prefers to be out of the market, that is, Π(n∗ + 1) < 0. If the profit functions

πE and πH are strictly decreasing functions in the number of active firms (nE, nH), then

Π(n) is also a strictly decreasing function, and the equilibrium number of stores in the first

stage, n∗, is unique. In the second stage, active hotels choose simultaneously their type or

quality level. In this second stage, an equilibrium is a pair (n∗E, n
∗
H) such that every firm

chooses the type that maximizes its profit given the choices of the other firms: low quality

firms are not better off by switching to high quality, and vice versa,

πE(n∗E, n
∗
H) ≥ πH(n∗E − 1, n∗H + 1)

πH(n∗E, n
∗
E) ≥ πE(n∗E + 1, n∗E − 1)

Mazzeo shows that the equilibrium pair (n∗E, n
∗
H) in this second stage is also unique.

Using these equilibrium conditions, it is possible to obtain a closed form expression for

the (quadrangle) region in the space of the unobservables (εE, εH) that generate a particular

value of the equilibrium pair (n∗E, n
∗
H). Let Rε(nE, nH ; s, x) be the quadrangle region in

R2 associated with the pair (nE, nH) given exogenous market characteristics (s, x) , and let

F (εE, εH) be the CDF of the unobservable variables. Then, we have that:

Pr(n∗E = nE, n
∗
H = nH |s, x) =

∫
1{(εE, εH) ∈ Rε(nE, nH ; s, x) dF (εE, εH)

In the empirical application, Mazzeo finds that hotels have strong incentives to differen-

tiate from their rivals to avoid nose-to-nose competition.
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Ellickson and Misra (2008) estimate a game of incomplete information for the US su-

permarket industry where supermarkets choose the type of ‘pricing strategy’: ‘everyday low

price’(EDLP) versus ‘high-low’pricing.24 The choice of pricing strategy can be seen as a

form of horizontal product differentiation. The authors find evidence of strategic comple-

mentarity between supermarkets pricing strategies: firms competing in the same market tend

to adopt the same pricing strategy not only because they face the same type of consumers

but also because there are positive synergies in the adoption of the same strategy. From

an empirical point of view, this result is more controversial than Mazzeo’s finding of firms’

incentive to differentiate from each other. In particular, the existence of unobservables that

are positively correlated across firms but are not fully accounted in the econometric model,

may generate a spurious estimate of positive spillovers in the adoption of the same strat-

egy. Vitorino (2012) estimates a game of store entry in shopping centers that allows for

incomplete information, positive spillover effects among stores, and also unobserved market

heterogeneity for the researcher that is common knowledge to firms. Her empirical results

show that, after controlling for unobserved market heterogeneity, firms face business stealing

effects but also significant incentives to collocate, and that the relative magnitude of these

two effects varies substantially across store types.

3.5.4. Firm heterogeneity. The assumption that all potential entrants and incumbents

are homogeneous in their variable profits and entry costs is very convenient and facilitates the

estimation, but it is also very unrealistic in many applications. A potentially very important

factor in the determination of market structure is that firms, potential entrants, are ex-

ante heterogeneous. In many applications we want to take into account this heterogeneity.

Allowing for firm heterogeneity introduces two important issues in these models: endogenous

explanatory variables, and multiple equilibria. We will comment on different approaches that

have been used to deal with these issues.

Consider an industry with N potential entrants. For instance, the airline industry. These

potential entrants decide whether to be active or not in a market. We observe M different

realizations of this entry game. These realizations can be different geographic markets (dif-

ferent routes of or city pairs, for instance, Toronto-New York, Montreal-Washington, etc)

or different time periods of time. For the sake of concreteness, we refer to these different

realizations of the entry game as "local markets" or "submarkets". We index firms with

i ∈ {1, 2, ..., N} and submarkets with m ∈ {1, 2, ...,M}.
Let aim ∈ {0, 1} be a the binary indicator of the event "firm i is active in market m".

For a given market m, the N firms choose simultaneously whether to be active or not in the

market. When making her decision, a firm wants to maximize its profit.
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Once firms have decided to be active or not in the market, active firms compete in

prices or in quantities and firms’profits are realized. For the moment, we do not make it

explicit the specific form of competition in this second part of the game, or the structure

of demand and variable costs. We take as given an "indirect profit function" that depends

on exogenous market and firm characteristics and one the number and the identity of the

active firms in the market. This indirect profit function comes from a model of price or

quantity competition, but at this point we do not make that model explicit here. Also, we

consider that the researcher does not have access to data on firms’prices and quantities such

that demand and variable cost parameters in the profit function cannot be estimated from

demand, and/or Bertrand/Cournot best response functions.

The (indirect) profit function of an incumbent firm depends on market and firm char-

acteristics affecting demand and costs, and on the entry decisions of the other potential

entrants:

Πim =

 Πi (xim, εim, a−im) if aim = 1

0 if aim = 0

where xim and εim are vectors of exogenous market and firm characteristics, and a−im ≡
{ajm : j 6= i}. The vector xim is observable to the researcher while εim is unobserved to the
researcher. For the moment we assume that xm ≡ {x1m, x2m, ..., xNm} and εm ≡ {ε1m, ε2m,

..., εNm} are common knowledge for all players.
For instance, in the example of the airline industry, the vector xim may include market

characteristics such as population and socioeconomic characteristics in the two cities that

affect demand, characteristics of the airports such as measures of congestion (that affect

costs), and firm characteristics such as the number of other connections that the airline has

in the two airports (that affect operating costs due to economies of scale and scope).

The N firms chose simultaneously {a1m, a2m, ..., aNm} and the assumptions of Nash
equilibrium hold. A Nash equilibrium in this the entry game is an N -tuple a∗m = (a∗1m,

a∗2m, ..., a
∗
Nm) such that for any player i:

a∗im = 1
{

Πi

(
xim, εim, a∗−im

)
≥ 0

}
where 1 {.} is the indicator.
Given a dataset with information on {aim, xim} for every firm in theM markets, we want

to use this model to learn about the structure of the profit function Πi. In these applications,

we are particularly interested in the effect of other firms’entry decisions on a firm’s profit.

For instance, how Southwest entry in the Chicago-Boston submarket affects the profit of

American Airlines.
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For the sake of concreteness, consider the following specification of the profit function:

Πim = xim βi −
∑

j 6=i ajm δij + εim

where xim is a 1×K vector of observable market and firm characteristics; βi is a K×1 vector

of parameters; δi = {δij : j 6= i} is a (N − 1) × 1 vector of parameters, with δij being the

effect of firm j′s entry on firm i′s profit; εim is zero mean random variable that is observable

to the players but unobservable to the econometrician.

We assume that εim is independent of xm, and it is i.i.d. over m, and independent across

i. If xim includes a constant term, then without loss of generality E(εim) = 0. Define

σ2
i ≡ V ar(εim). Then, we also assume that the probability distribution of εim/σi is known

to the researcher. For instance, εim/σi has a standard normal distribution.

The econometric model can be described as system of N simultaneous equations where

the endogenous variables are the entry dummy variables:

aim = 1
{
xim βi −

∑
j 6=i ajm δij + εim ≥ 0

}
We want to estimate the vector of parameters θ =

{
βi
σi
,
δi
σi

: i = 1, 2, ..., N

}
.

There are two main econometric issues in the estimation of this model: (1) endogenous

explanatory variables, ajm; and (2) multiple equilibria.

Endogeneity of other players’actions. In the structural (best response) equation

aim = 1
{
xim βi −

∑
j 6=i ajm δij + εim ≥ 0

}
the actions of the other players, {ajm : j 6= i} are endogenous in an econometric sense. That
is, ajm is correlated with the unobserved term εim, and ignoring this correlation can lead to

serious biases in our estimates of the parameters βi and δi.

There two sources of endogeneity or correlation between ajm and εim: simultaneity and

common unobservables between εim and εjm. It is interesting to distinguish between these

two sources of endogeneity because they bias the parameter δij in opposite directions.

Simultaneity. An equilibrium of the model is a reduced form equation where we repre-
sent the action of each player as a function of only exogenous variables in xm and εm. In this

reduced form, ajm depends on εim. It is possible to show that this dependence is negative:

keeping all the other exogenous variables constant if εim is small enough then ajm = 0, and if

εim is large enough then ajm = 1. Suppose that our estimator of δij ignores this dependence.

Then, the negative dependence between ajm and εim contributes to generate a upward bias

in the estimator of δij.

That is, we will spuriously over-estimate the negative effect of Southwest on the profit

of American Airlines because Southwest tends to enter in those markets where AA has low

values of εim.
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Positively correlated unobservables. It is reasonable to expect that εim and εjm
are positively correlated. This is because both εim and εjm contain unobserved market

characteristics that affect in a similar way, or at least in the same direction, to all the firms

in the same market. Some markets are more profitable than others for every firm, and part

of this market heterogeneity is observable to firms but unobservables to us as researchers.

The positive correlation between εim and εjm generates also a positive dependence between

ajm and εim.

For instance, suppose that εim = ωm + uim, where ωm represents the common market

effect, and uim is independent across firms. Then, keeping xm and the unobserved u variables

constant, if ωm is small enough then εim and ajm = 0, and if ωm is large enough then εim
is large and ajm = 1. Suppose that our estimator of δij ignores this dependence. Then, the

negative positive dependence between ajm and εim contributes to generate a downward bias

in the estimator of δij. In fact, the estimate of δij could have the wrong sign, that is, being

negative instead of positive.

That is, we can spuriously find that American Airlines benefits for the operation of

Continental in the same market because we tend to observe that these firms are always active

in the same markets. This positive correlation between aim and ajm can be completely driven

by the positive correlation between εim and εjm.

These two sources of endogeneity generate biases of opposite sign in δij. There is evidence

from different empirical applications that the biased due to unobserved market effects is

much more important than the simultaneity bias. Examples: Collard-Wexler (WP, 2007) US

cement industry; Aguirregabiria and Mira (Econometrica, 2007) different retail industries in

Chile; Aguirregabiria and Ho (WP, 2007) US airline industry; Ellickson andMisra (Marketing

Science, 2008) US supermarket industry.

How do we deal with this endogeneity problem? The intuition for the identifica-
tion in this model is similar to the identification using standard Instrumental Variables (IV)

and Control Function (CF) approaches.

"IV approach": There are exogenous firm characteristics in xjm that affect the action of

firm j but do not have a direct effect on the action of firm i: that is, observable characteristics

with βj 6= 0 but βi = 0.

"CF approach": There is an observable variable Cit that "proxies" or "controls for" the

endogenous part of εim such that if we include Cit in the equation for firm i then the new

error term in that equation and ajm become independent (conditional on Cit).

The method of instrumental variables is the most common approach to deal with en-

dogeneity in linear models. However, IV or GMM cannot be applied to estimate discrete

choice models with endogenous variables. Control function approaches: Rivers and Vuong
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(1988), Vytlacil and Yilditz (2006). These approaches have not been extended yet to deal

with models with multiple equilibria or "multiple reduced forms".

An alternative approach is Maximum likelihood: If we derive the probability distribution

of the dummy endogenous variables conditional on the exogenous variables (that is, the

reduced form of the model), we can use these probabilities to estimate the model by maximum

likelihood.

l(θ) =
∑M

m=1
ln Pr(a1m, a2m, ..., aNm | xm, θ)

This is the approach that has been most commonly used in this literature. However, we will

have to deal with the problem of multiple equilibria.

Multiple equilibria. Consider the model with two players and assume that δ1 ≥ 0 and

δ2 ≥ 0.
a1 = 1 { x1β1 − δ1 a2 + ε1 ≥ 0 }

a2 = 1 { x2β2 − δ2 a1 + ε2 ≥ 0 }
The reduced form of the model is a representation of the endogenous variables (a1, a2) only

in terms of exogenous variables and parameters. This is the reduced for of this model:

{x1β1 + ε1 < 0} & {x2β2 + ε2 < 0} ⇒ (a1, a2) = (0, 0)

{x1β1 − δ1 + ε1 ≥ 0}& {x2β2 − δ2 + ε2 ≥ 0} ⇒ (a1, a2) = (1, 1)

{x1β1 − δ1 + ε1 < 0} & {x2β2 + ε2 ≥ 0} ⇒ (a1, a2) = (0, 1)

{x1β1 + ε1 ≥ 0} & {x2β2 − δ2 + ε2 < 0} ⇒ (a1, a2) = (1, 0)

The graphical representation in the space (ε1, ε2) is:

*************************************

FIGURE ON MULTIPLE EQUILIBRIA: 5 regions

(Tamer, RESTUD 2003)

*************************************

Note that when:

{0 ≤ x1β1 + ε1 < δ1} and {0 ≤ x2β2 + ε2 < δ2}

we have two Nash equilibria: (a1, a2) = (0, 1) and (a1, a2) = (1, 0). For this range of values

of (ε1.ε2), the reduced form (that is, the equilibrium) is not uniquely determined. Therefore,

we can not uniquely determine the probability Pr(a1m, a2m|xm; θ) that we need to estimate

the model by ML. We know Pr(1, 1|θ), and Pr(0, 0|θ), but we only have lower and upper
bounds for Pr(0, 1|θ) and Pr(1, 0|θ).
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The problem of indeterminacy of the probabilities of different outcomes becomes even

more serious in empirical games with more than 2 players or/and more than two choice

alternatives.

There have been different approaches to deal with this problem of multiple equilibria.

Some authors have imposed additional structure in the model to guarantee equilib-
rium uniqueness or at least uniqueness of some observable outcome (for instance, number
of entrants). A second group of studies do not impose additional structure and use methods

such that moment inequalities or pseudo maximum likelihood to estimate structural
parameters. The main motivation of this second group of studies is that identification and

multiple equilibria are different problems and we do not need equilibrium uniqueness to

identify parameters.

3.5.5. Entry games with incomplete information.

Model and basic assumptions. Consider a market with N potential entrants. If firm i

does not operate in market m (aim = 0), its profit is zero. If the firm is active in the market

(aim = 1), the profit is:

Πim = Πi(xm, a−im)− εim (3.1)

For instance,

Πim = xim βi − εim −
∑

j 6=i δij ajm (3.2)

where βi and δi are parameters. These parameters and the vector sm = (s1m, s2m, ..., sNm)

contain the variables which are common knowledge for all players. Now εim is private in-

formation of firm i. For the moment, we assume that private information variables are

independent of sm, independently distributed over firms with distribution functions Gi(εim).

The distribution function Gi is strictly increasing in R. The information of player i is

(sm, εim).

A player’s strategy depends on the variables in her information set. Let α ≡ {αi(sm, εim) :

i = 1, 2, ..., N} be a set of strategy functions, one for each player, such that αi : S × R →
{0, 1}. The actual payoff/profit Πim is unknown to player i because the private information

of the other players is unknown to player i. Players maximize expected profits:

πi(sm, εim, α−i) = sim βi − εim −
∑

j 6=i δij

[∫
I {αj(sm, εjm) = 1} dGj(εjm)

]
(3.3)

or:
πi(sm, εim, α−i) = sim βi − εim −

∑
j 6=i δij P

α
j (sm)

= sim βi − εim − Pα
−i(sm)′δi

(3.4)

where Pα
j (sm) ≡

∫
I {αj(sm, εjm) = 1} dGj(εjm) is player j’s probability of entry if she be-

haves according to her strategy in α.
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Suppose that players other than i play their respective strategies in α. What is player

i’s best response? Let bi(sm, εim, α−i) be player i’s best response function. This function is:

bi(sm, εim, α−i) = I{ πi(sm, εim, α−i) ≥ 0 }

= I
{
εim ≤ sim βi − Pα

−i(sm)′δi
} (3.5)

Associated with the best response function bi (in the space of strategies), we can define a

best response probability function in the space of probabilities as:

Ψi(sm, P
α
−i) =

∫
I { bi(sm, εim, α−i) = 1 } dGi(εim)

=

∫
I
{
εim ≤ sim βi − Pα

−i(sm)′δi
}
dGi(εim)

Gi

(
sim βi − Pα

−i(sm)′δi
)

(3.6)

A Bayesian Nash equilibrium (BNE) in this model is a set of strategy functions α∗ such

that, for any player i and any value of (sm, εim), we have that:

α∗i (sm, εim) = bi(sm, εim, α
∗
−i) (3.7)

Associated with the set of strategies α∗ we can define a set of choice probability functions

P ∗ = {P ∗i (sm) : i = 1, 2, ..., N} such that P ∗i (sm) ≡
∫
I {α∗i (sm, εim) = 1} dGi(εim). Note

that these equilibrium choice probabilities are such that, for any player i and any value of

sm:
P ∗i (sm) = Ψi(sm, P

∗
−i)

= Gi

(
sim βi − P ∗−i(sm)′δi

) (3.8)

Therefore, we can define a BNE in terms of strategy functions α∗ or in terms of choice prob-

abilties P ∗. There is a one-to-one relationship between α∗ and P ∗. Given α∗, it is clear that

there is only one set of choice probabilities P ∗ defines as P ∗i (sm) ≡
∫
I {α∗i (sm, εim) = 1} dGi(εim).

And given P ∗, there is only one set of strategies α∗ that is a BNE and it is consistent with

P ∗. These strategy functions are:

α∗i (sm, εim) = I
{
εim ≤ sim βi − P ∗−i(sm)′δi

}
(3.9)

Suppose that the distribution of εim is known up to some scale parameter σi. For instance,

suppose that εim ∼ iid N(0, 1). Then, we have that equilibrium choice probabilities in

market m solve the fixed point mapping in probability space:

P ∗i (sm) = Φ

(
sim

βi
σi
− Pα

−i(sm)′
δi
σi

)
For notational simplicity we will use βi and δi to represent

βi
σi
and

δi
σi
, respectively.
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We use θ to represent the vector of structural parameters {βi, δi : i = 1, 2, ..., N}. To
emphasize that equilibrium probabilities deped on θ we use P (sm, θ) = {Pi(sm, θ) : i =

1, 2, ..., N} to represent a vector of equilibrium probabilities associated with the exogenous

conditions (sm, θ). In general, there are values of (sm; θ) for which the model has multiple

equilibria. This is very common in models where players are heterogeneous, but we can find

also multiple symmetric equilibria in models with homogeneous players, specially if there is

strategic complementarity (that is, δi < 0) as in coordination games.

Data and identification. Suppose that we observe this game played at M independent

markets. We observe players’actions and a subset of the common knowledge state variables,

xim ⊆ sim. That is,

Data = {xim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., N} (3.10)

The researcher does not observe private information variables. It is important to distinguish

two cases:

Case I: No common knowledge unobservables, that is, xim = sim.

Case II: Common knowledge unobservables, that is, sim = (xim, ωim),

where ωim is unobservable.

Case I: No common knowledge unobservables
(A) Data with global players. Suppose that we have a random sample of markets and

we observe:

{xim, aim : m = 1, 2, ...,M ; i = 1, 2, ..., N} (3.11)

Let P 0 = {P 0
i (x) : i = 1, 2, .., N ;x ∈ X} be players’entry probabilities in the the population

under study. The population is an equilibrium of the model. That is, there is a θ0 such that,

for any i and any x ∈ X:
P 0
i (x) = Φ

(
xi β

0
i − P 0

−i(x)′δ0
i

)
(3.12)

From our sample, we can nonparametrically identify the population P 0, that is, P 0
i (x) =

E(aim|xm = x). Given P 0 and the equilibrium conditions in (3.12), can we uniquely identify

θ0? Notice that we can write these equations as:

Φ−1
(
P 0
i (xm)

)
= xim β0

i − P 0
−i(xm)′δ0

i = Zim θ0
i

Define Yim ≡ Φ−1 (P 0
i (xm)); Zim ≡ (xim, P

0
−i(xm)); and θ0

i ≡ (β0
i , δ

0
i ). Then,

Yim = Zim θ0
i

And we can also write this system as:

E(Z ′imYim) = E(Z ′imZim) θ0
i
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It is clear θ0
i is uniquely identified if E(Z ′imZim) is a nonsigular matrix. Note that if xim

contains variables that variate both over markets and over players then we have exclusion

restrictions that imply that E(Z ′imZim) is a nonsigular matrix.

(B) Data with only local players. Suppose that we have a random sample of markets

and we observe:

{xm, nm : m = 1, 2, ...,M} (3.13)

Let P 0 = {P 0(x) : x ∈ X} be the entry probabilities in the the population under study.
The population is an equilibrium of the model, and therefore there is a θ0 such that for any

x ∈ X:
P 0(x) = Φ

(
x β − δ H(P 0[x])

)
(3.14)

From our sample, we can nonparametrically identify the population P 0. To see this, notice

that: (1) we can identify the distribution for the number of firms: Pr(nm = n|xm = x);

(2) the model implies that conditional on xm = x the number of firms follows a Binomial

distribution with arguments N and P 0(x), therefore

Pr(nm = n|xm = x) =

(
n

N

)
P 0(x)n

(
1− P 0(x)

)N−n
;

and (3) given the previous expression, we can obtain the P 0(x) associated with Pr(nm =

n|xm = x). Given P 0 and the equilibrium condition P 0(x) = Φ (x β − δ H(P 0[x])), can we

uniquely identify θ0? Notice that we can write these equations as:

Ym = xm β0 − δ0 H(P 0[xm]) = Zm θ0

where Ym ≡ Φ−1 (P 0(xm)); θ0 ≡ (β0, δ0); and Zm ≡ (xm, H(P 0[xm])). And we can also write

this system as:

E(Z ′mYm) = E(Z ′mZm) θ0

It is clear θ0 is uniquely identified if E(Z ′mZm) is a nonsingular matrix.

Case II: Common knowledge unobservables
Intuition: conditional on xm, players actions are still correlated across markets. This is

evidence that ....

In applications where we do not observe the identity of the potential entrants, we consider

a model without firm heterogeneity:

Πim = xm β − δ h
(

1 +
∑

j 6=i ajm

)
+ εim (3.15)

A symmetric Bayesian Nash equilibrium in this model is a probability of entry P ∗(xm; θ)

that solves the fixed point problem:

P ∗(xm; θ) = Φ (xm β − δ H(P [xt, θ])) (3.16)
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where H(P ) is the expected value of h
(

1 +
∑

j 6=i aj

)
conditional on the information of firm

i, and under the condition that the other firms behave according to their entry probabilities

in P . That is,

H(P ) =
∑

a−i

(∏
j 6=i

P
aj
j [1− Pj]1−aj

)
h
(

1 +
∑

j 6=i
aj

)
(3.17)

and
∑

a−i
represents the sum over all the possible actions of firms other than i.

Pseudo ML estimation. The problem is to estimate the vector of structural parameters θ0

given a random sample {xim, aim}. Equilibrium probabilities are not uniquely determined for
some values of the primitives. However, for any vector of probabilities P , the best response

probability functions Φ
(
xim βi −

∑
j 6=i δij Pj(xm)

)
are always well-defined. We define a

pseudo likelihood function based on best responses to the population probabilities.

QM(θ, P 0) =
∑M

m=1

∑N
i=1 aim ln Φ

(
xim βi −

∑
j 6=i δij P

0
j (xm)

)
+ (1− aim) ln Φ

(
−xim βi +

∑
j 6=i δij P

0
j (xm)

) (3.18)

It is possible to show that θ0 uniquely maximizes Q∞(θ, P 0). The PML estimator of θ0 max-

imizes QM(θ, P̂ 0), where P̂ 0 is a consistent nonparametric estimator of P 0. This estimator

is consistent and asymptotically normal. Iterating in this procedure can provide effi ciency

gains both in finite samples and asymptotically (Aguirregabiria, Economics Letters, 2004).

3.5.6. Entry and spatial competition. How do market power and profits of a retail firm

depend on the location of its store(s) relative to the location of competitors? How important

is spatial differentiation to explain market power? These are important questions in the

study of competition in retail markets. Seim (2006) studies these questions in the context

of the video rental industry. Seim’s work is the first study that endogenizes store locations

and introduces spatial competition in a game of market entry. Her model has important

similarities with the static game with single-store firms and incomplete information that

we have presented above in section 2.1.1. The main difference is that Seim’s model does

not include an explicit model of spatial consumer demand and price competition. Instead,

she considers a ‘semi-structural’specification of a store’s profit that captures the idea that

the profit of a store declines when competing stores get closer in geographic space. The

specification seems consistent with the idea that consumers face transportation costs and

therefore spatial differentiation between stores can increase profits.

From a geographical point of view, a market in this model is a compact set in the two-

dimension Euclidean space. There are L locations in the market where firms can operate

stores. These locations are exogenously given and they could be chosen as the set grid points

where the grid can be as fine as we want. We index locations by ` that belongs to the set

{1, 2, ..., L}.
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There are N potential entrants in the market. Each firm takes two decisions: (1) whether

to be active or not in the market; and (2) if it decides to be active, it chooses the location

of its store. Note that Seim does not model multi-store firms. Aguirregabiria and Vicentini

(2007) present an extension of Seim’s model with multi-store firms, endogenous consumer

behavior, and dynamics.

Let ai represent the decisions of firm i, such that ai ∈ {0, 1, ..., L} and ai = 0 represents

"no entry", and ai = ` > 0 represents entry in location `.

The profit of not being active in the market is normalized to zero. Let Πi` be the profit

of firm i if it has a store in location `. These profits depend on the store location decisions

of the other firms. In particular, Πi` declines with the number of other stores "close to"

location `.

Of course, the specific meaning of being close to location ` is key for the implications

of this model. This should depend on how consumers perceive as close substitutes stores in

different locations. In principle, if we have data on quantities and prices for the different

stores active in this city, we could estimate a demand system that would provide a measures

of consumers’ transportation costs and of the degree of substitution in demand between

stores at different locations. That is what Jackie Wang did in his job market paper for the

banking industry (Wang, 2010). However, for this industry we do not have information on

prices and quantities at the store level, and even if we had, stores location decisions may

contain useful (and even better) information to identify the degree of competition between

stores at different locations.

Seim’s specification of the profit function is "semi-structural" in the sense that it does

not model explicitly consumer behavior,but it is consistent with the idea that consumers

face transportation costs and therefore spatial differentiation (ceteris paribus) can increase

profits.

*************************************

FIGURE on definition of local markets

(Seim, RAND 2006)

*************************************

For every location ` in the city, Seim defines B rings around the location. A first ring

of radius d1 (say half a mile); a second ring of radius d2 > d1 (say one mile), and so on.

The profit of a store depends on the number of other stores located within each of the B

rings. We expect that closer stores should have stronger negative effects on profits. The

profit function of an active store at location ` is:

Πi` = x` β +
∑B

b=1 γb Nb` + ξ` + εi`
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where β, γ1, γ2, ..., and γB are parameters; x` is a vector of observable exogenous character-

istics that affect profits in location `; Nb` is the number of stores in ring b around location `

excluding ; ξ` represents exogenous characteristics of location ` that are unobserved to the

researcher but common and observable to firms; and εi` is component of the profit of firm i

in location ` that is private information to this firm. For the no entry choice, Πi0 = εi0.

ASSUMPTION: Let εi = {εi` : ` = 0, 1, ..., L} be the vector with the private information
variables of firm i at every possible location. εi is i.i.d. over firms and locations with a

extreme value type 1 distribution.

The information of firm i is (x, ξ,εi), where x and ξ represent the vectors with x` and

ξ`, respectively, at every location in the city. Firm i does not know the ε′s of other firms.

Therefore, Nb` is unknown to a firm. Firms only know the probability distribution of Nb`.

Therefore, firms maximize expected profits. The expected profit of firm i is:

Πe
i` = x` β +

∑B
b=1 γb N

e
b` + ξ` + εi`

where N e
b` represents E(Nb`|x, ξ).

A firm’s strategy depends on the variables in her information set. Let αi(x, ξ,εi) be a

strategy function for firm i such that αi : X × R2 → {0, 1, ..., L}. Given expectations N e
b`,

the best response strategy of player i is:

αi(x, ξ, εi) = arg max
`∈{0,1,...,L}

{
x` β +

∑B
b=1 γb N

e
b` + ξ` + εi`

}
Or similarly, αi(x, ξ, εi) = ` if and only if x` β +

∑B
b=1 γb N

e
b` + ξ` + εi` is greater that x`′

β +
∑B

b=1 γb N
e
b`′ + ξ`′ + εi`′ for any other location `.

From the point of view of other firms that do not know the private information of firm

i but know the strategy function αi(x, ξ, εi), the strategy of firm i can be described as a

probability distribution: Pi ≡ {Pi` : ` = 0, 1, ..., L} where Pi` is the probability that firm i

chooses location ` when following her strategy αi(x, ξ, εi). That is,

Pi` ≡
∫

1{αi(x, ξ, εi) = `} dF (εi)

where F (εi) is the CDF of εi. By construction,
∑L

`=0 Pi` = 1.

Given expectations N e
b`, we can also represent the best response strategy of firm i as a

choice probability. A best response probability Pi` is:

Pi` =

∫
1
[
` = arg max

`′

{
x`′ β +

∑B
b=1 γb N

e
b`′ + ξ`′ + εi`′

}]
dF (εi)
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And given the extreme value assumption on εi:

Pi` =
exp

{
x`β +

∑B
b=1 γb N

e
b` + ξ`

}
1 + exp

{
x`′β +

∑B
b=1 γb N

e
b`′ + ξ`′

}

In this application, there is not information on firm exogenous characteristics, and Seim

assumes that the equilibrium is symmetric: αi(x, ξ, εi) = α(x, ξ, εi) and Pi` = P` for every

firm i.

The expected number of firms in ring b around location `, N e
b`, is determined by the

vector of entry probabilities P ≡ {P`′ : `′ = 1, 2, ..., L}. That is:

N e
b` =

∑L
`′=1 1{`′ belongs to ring b around `} P`′ N

To emphasize this dependence we use the notation N e
b`(P ).

Therefore, we can define a (symmetric) equilibrium in this game as a vector of probabil-

ities P ≡ {P` : ` = 1, 2, ..., L} that solve the following system of equilibrium conditions: for

every ` = 1, 2, ..., L:

P` =
exp

{
x`β +

∑B
b=1 γb N

e
b`(P ) + ξ`

}
1 + exp

{
x`′β +

∑B
b=1 γb N

e
b`′(P ) + ξ`′

}
By Brower’s Theorem an equilibrium exist. The equilibrium may not be unique. Seim

shows that if the γ parameters are not large and they decline fast enough with b, then the

equilibrium is unique.

Let θ = {N, β, γ1, γ2, ..., γB} be the vector of parameters of the model. These parameters
can be estimated even if we have data only from one city. Suppose that the data set is

{x`, n` : ` = 1, 2, ..., L} for L different locations in a city, where L is large, and n` represents
the number of stores in location `. We want to use these data to estimate θ. I describe the

estimation with data from only one city. Later, we will see that the extension to data from

more than one city is trivial.

Let x be the vector{x` : ` = 1, 2, ..., L}. All the analysis is conditional on x, that is a
description of the "landscape" of observable socioeconomic characteristics in the city. Given

x, we can think in {n` : ` = 1, 2, ..., L} as one realization of a spatial stochastic process.
In terms of the econometric analysis, this has similarities with time series econometrics in

the sense that a time series is a single realization from a stochastic process. Despite having

just one realization of a stochastic process, we can estimate consistently the parameters of

that process as long as we make some stationarity assumptions.
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This is the model considered by Seim (2006): there is city unobserved heterogeneity

(her dataset includes multiple cities) but within a city there is not unobserved location

heterogeneity.

Conditional on x, spatial correlation/dependence in the unobservable variables ξ` can

generate dependence between the number of firms at different locations {n`}. We start with
the simpler case where there is not the unobserved location heterogeneity: that is, ξ` = 0

for every location `.

Without unobserved location heterogeneity, and conditional on x, the variables n` are

independently distributed, and n` is a random draw from Binomial random variable with

arguments (N,P`(x, θ)), where P`(x, θ) are the equilibrium probabilities defined above where

now I explicitly include (x, θ) as arguments.

n` ∼ i.i.d. over ` Binomial(N,P`(x, θ))

Therefore,

Pr (n1, n2, ..., nL | x, θ) =
∏L

`=1 Pr (n` | x, θ)

=
∏L

`=1

N !

n`(N − n`)!
P`(x, θ)

n`(1− P`(x, θ))N−n`

The log-likelihood function is:

l(θ) =
L∑̀
=1

ln

(
N !

(N − n`)!

)
+ n` lnP`(x, θ) + (N − n`) ln(1− P`(x, θ))

And the maximum likelihood estimator, θ̂, is the value of θ that maximizes this likelihood.

Later, I will present and describe in detail several algorithms to obtain this MLE. The part

of this estimation that is computationally more demanding is that the probabilities are the

solution of a fixed point/equilibrium problem.

The parameters of the model, including the number of potential entrantsN , are identified.

Partly, the identification comes form functional form assumptions. However, there also

exclusion restrictions that can provide identification even if some of these assumptions are

relaxed. In particular, for the identification of β and γb, the model implies that N
e
b` depends

on socioeconomic characteristics at locations other than ` (that is, x`′ for `′ 6= `). Therefore,

N e
b` has sample variability that is independent of x` and this implies that the effects of x`

and N e
b` on a firm’s profit can be identified even if we relax the linearity assumption.

Haiqing Xu’s job market paper (2010) (titled "Parametric and Semiparametric Structural

Estimation of Hotelling-type Discrete Choice Games in A Single Market with An Increasing

Number of Players") studies the asymptotics of this type of estimator. His model is a bit

different to Seim’s model because players and locations are the same thing.
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Now, let’s consider the model where ξ` 6= 0. A simple (but restrictive approach) is to

assume that there is a number R of "regions" or districts in the city, where the number

of regions R is small relative to the number of locations L, such that all the unobserved

heterogeneity is between regions but there is no unobserved heterogeneity within regions.

Under this assumption, we can control for unobserved heterogeneity by including region

dummies. In fact, this case is equivalent to the previous case without unobserved location

heterogeneity with the only difference is that the vector of observables x` now includes region

dummies.

A more interesting case is when the unobserved heterogeneity is at the location level.

We assume that ξ = {ξ` : ` = 1, 2, ..., L} is independent of x and it is a random draw

from a spatial stochastic process. The simplest process is when ξ` is i.i.d. with a known

distribution, say N(0, σ2
ξ) where the zero mean is without loss of generality. However, we

can allow for spatial dependence in this unobservable. For instance, we may consider a

Spatial autorregressive process (SAR):

ξ` = ρ ξ̄
C
` + u`

where u` is i.i.d. N(0, σ2
u), ρ is a parameter, and ξ̄

C
` is the mean value of ξ at the C locations

closest to location `, excluding location ` itself. To obtain, a random draw of the vector ξ

from this stochastic process it is convenient to write the process in vector form:

ξ = ρ WC ξ + u

where ξ and u are L × 1 vectors, and WC is a L × L weighting matrix such that every

row, say row `, has values 1/C at positions that correspond to locations close to location `,

and zeroes otherwise. Then, we can write ξ = (I − ρ WC)−1u. First, we take independent

draws from N(0, σ2
u) to generate the vector u, and then we pre-multiple that vector by (I−ρ

WC)−1 to obtain ξ.

Note that now the vector of structural parameters includes the parameters in the sto-

chastic process of ξ, that is, σu and ρ.

Now, conditional on x AND ξ, the variables n` are independently distributed, and n`
is a random draw from Binomial random variable with arguments (N,P`(x, ξ, θ)), where

P`(x, ξ, θ) are the equilibrium probabilities. Importantly, for different values of ξ we have
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different equilibrium probabilities. Then,

Pr (n1, n2, ..., nL | x, θ) =
∫

Pr (n1, n2, ..., nL | x, ξ, θ) dG(ξ)

=
∫ [∏L

`=1 Pr (n` | x, ξ, θ)
]
dG(ξ)

=
∏L

`=1

N !

n`(N − n`)!∫ [∏L
`=1 P`(x, ξ, θ)

n`(1− P`(x, ξ, θ))N−n`
]
dG(ξ)

And the log-likelihood function is:

l(θ) =
L∑̀
=1

ln

(
N !

(N − n`)!

)

+ ln

(∫ [∏L
`=1 P`(x, ξ, θ)

n`(1− P`(x, ξ, θ))N−n`
]
dG(ξ)

)
And the maximum likelihood estimator is defined as usual.

In their empirical study on competition between big-box discount stores in US (that is,

Kmart, Target and Walmart), Zhu and Singh (2009) extend Seim’s entry model by introduc-

ing firm heterogeneity. The model allows competition effects to be asymmetric across three

different chains. The model can incorporate a situation where, for example, the impact on

the profit of Target of a Walmart store 10 miles away is stronger than the impact of a Kmart

store located 5 miles away. The specification of the profit function of a store of chain i at

location l is:

πi` = x` βi +
∑
j 6=i

B∑
b=1

γbij nb`j + ξ` + εi`

where nb`j represents the number of stores that chain j has within the b − ring around

location `. Despite the paper studies competition between retail chains, it still makes similar

simplifying assumptions as in Seim’s model that ignores important aspects of competition

between retail chains. In particular, the model ignores economies of density, and firms’

concerns on cannibalization between stores of the same chain. It assumes that the entry

decisions of a retail chain are made independently at each location. Under these assumptions,

the equilibrium of the model can be described as a vector of N ∗ L entry probabilities, one
for each firm and location, that solves the following fixed point problem:

Pi` =
exp

{
x`βi +

∑
j 6=i
∑B

b=1 γbij N
[∑L

`′=1D
b
``′ Pj`′

]
+ ξ`

}
1 +

∑L
`′=1 exp

{
x`′βi +

∑
j 6=i
∑B

b=1 γbij N
[∑L

`′′=1D
b
`′`′′ Pj`′′

]
+ ξ`′

}
The authors find substantial heterogeneity in the competition effects between these three

big-box discount chains, and in the pattern of how these effects decline with distance. For

instance, Walmart’s supercenters have a very substantial impact even at large distance.
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Datta and Sudhir (2013) estimate an entry model of grocery stores that endogenizes both

location and product type decisions. Their main interests are the consequence of zoning

on market structure. Zoning often reduces firms’ability to avoid competition by locating

remotely each other. Theory suggests that in such a market firms have a stronger incentive

to differentiate their products. Their estimation results support this theoretical prediction.

The authors also investigate different impacts of various types of zoning (‘centralized zoning’,

‘neighborhood zoning’, and ‘outskirt zoning’) on equilibrium market structure.25

3.5.7. Multi-store firms. As we have mentioned above, economies of density and canni-

balization are potentially important factors in store location decisions of retail chains. A

realistic model of competition between retail chains should incorporate this type of spillover

effects. Taking into account these effects requires a model of competition between multi-store

firms similar to the one in section 2.1.2. The model takes into account the joint determina-

tion of a firm’s entry decisions at different locations. A firm’s entry decision is represented

by the L-dimension vector ai ≡ {ai` : ` = 1, 2, . . . , L}, with ai` ∈ {0, 1}, such that the set of
possible actions contains 2ˆL elements. For instance, Jia (2008) studies competition between

two chains (Walmart and Kmart) over 2065 locations (US counties). The number of possible

decisions of a retail chain is 2^2065, which is larger than 10^621. It is obvious that, without

further restrictions, computing firms’best responses is intractable.

Jia (2008) proposes and estimates a game of entry between Kmart and Walmart over

more than 2000 locations (counties). Her model imposes restrictions on the specification of

firms’profits that imply the supermodularity of the game and facilitate substantially the

computation of an equilibrium. Suppose that we index the two firms as i and j. The profit

function of a firm, say i, is Πi = V Pi(ai, aj)−ECi(ai), where V Pi(ai, aj) is the variable profit
function such that:

V Pi(ai, aj) =
L∑
`=1

ai`
[
x` βi + γij aj`

]
x` is a vector of market/location characteristics. γij is a parameter that represents the effect

on the profit of firm i of competition from a store of chain j. ECi(ai) is the entry cost

function such that:

ECi(ai) =

L∑
`=1

ai`

[
θECi` −

θED

2

L∑
`′=1

ai`′

d``′

]
θECi` is the entry cost that firm i would have in location l in the absence of economies of density

(that is, if it were a single-store firm); θED is a parameter that represents the magnitude

of the economies of density and is assumed to be positive; and d``′ is the distance between

locations ` and `′. Jia further assumes that the entry cost θECi` consists of three parts:

θECi` = θECi + (1− ρ) ξ` + εi`, where θ
EC
i is chain-fixed effects, ρ is a scale parameter, ξ` is a
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location random effect, and εi` is a firm-location error term. Both ξ` and εi` are i.i.d. draws

from the standard normal distribution and known to all the players when making decisions.

To capture economies of density, the presence of the stores of the same firm at other locations

is weighted by the inverse of the distance between locations, 1/d``′ . This term is multiplied

by one-half to avoid double counting in the total entry cost of the retail chain.

The specification of the profit function in equations (9.29) and (9.30) imposes some

important restrictions. Under this specification, locations are interdependent only through

economies of density. In particular, there are no cannibalization effects between stores of the

same chain at different locations. Similarly, there is no spatial competition between stores

of different chains at different locations. In particular, this specification ignores the spatial

competition effects between Kmart, Target, and Walmart that Zhu and Singh (2009) find

in their study. The specification also rules out cost savings that do not depend on store

density such as lower wholesale prices owing to strong bargaining power of chain stores. The

main motivation for these restrictions is to have a supermodular game that facilitates very

substantially the computation of an equilibrium, even when the model has a large number

of locations.

In a Nash equilibrium of this model, the entry decisions of a firm, say i, should satisfy

the following L optimality conditions:

ai` = 1

{
x` βi + γij aj` − θECi` +

θED

2

L∑
`′=1

ai`′

d``′
≥ 0

}

These conditions can be interpreted as the best response of firm i in location l given the

other firm’s entry decisions, and given also firm i’s entry decisions at locations other than

l. We can write this system of conditions in a vector form as ai = bri(ai, aj). Given aj, a

fixed point of the mapping bri(., aj) is a (full) best response of firm i to the choice aj by

firm j. With θED > 0 (that is, economies of density), it is clear from equation (9.31) that

the mapping br_i is increasing in ai. By Topkis’s theorem, this increasing property implies

that: (1) the mapping has at least one fixed point solution; (2) if it has multiple fixed points

they are ordered from the lowest to the largest; and (3) the smallest (largest) fixed point

can be obtained by successive iterations in the mapping br_i using as starting value ai = 0

(ai = 1). Given these properties, Jia shows that the following algorithm provides the Nash

equilibrium that is most profitable for firm i:

Step [i]: Given the lowest possible value for aj = 0, that is, ai = (0, 0, . . . 0), we apply

successive iterations with respect to ai in the fixed point mapping bri(., aj = 0) starting at

ai = (1, 1, . . . 1). These iterations converge to the largest best response of firm i, that we

denote by a(1)
i = BR

(High)
i (0).
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Step [j]: Given a(1)
i , we apply successive iterations with respect to aj in the fixed point

mapping brj(., a
(1)
i ) starting at aj = 0. These iterations converge to the lowest best response

of firm j, that we denote by a(1)
j = BR

(Low)
j (a

(1)
i ).

We keep iterating in (Step [i]) and (Step [j]) until convergence.

At any iteration, say k, given a(k−1)
j we first apply (Step [i]) to obtain a(k)

i = BR
(High)
i (a

(k−1)
j ),

and then we apply (Step [j) to obtain a(k)
j = BR

(Low)
j (a

(k)
i ). The supermodularity of the game

assures the convergence of this process and the resulting fixed point is the Nash equilibrium

that most favors firm i. Jia combines this solution algorithm with a simulation of unob-

servables to estimate the parameters of the model using the method of simulated moments

(MSM).

In his empirical study of convenience stores in Okinawa Island of Japan, Nishida (2015)

extends Jia’s model in two directions. First, a firm is allowed to open multiple stores (up to

four) in the same location. Second, the model explicitly incorporates some form of spatial

competition: a store’s revenue is affected not only by other stores in the same location but

also by those in adjacent locations.

Although the approach used in these two studies is elegant and useful, its use in other

applications is somewhat limited. First, supermodularity requires that the own network

effect on profits is monotonic, that is, the effect of *** is either always positive ( ED > 0)

or always negative ( ED < 0). This condition rules out situations where the net effect

of cannibalization and economies of density varies across markets. Second, the number of

(strategic) players must be equal to two. For a game to be supermodular, players’strategies

must be strategic complements. In a model of market entry, players’strategies are strategic

substitutes. However, when the number of players is equal to two, any game of strategic

substitutes can be transformed into one of strategic complements by changing the order of

strategies of one player (for example, use zero for entry and one for no entry). This trick no

longer works when we have more than two players.26

Ellickson et al. (2013, hereafter EHT) propose an alternative estimation strategy and

apply it to data of US discount store chains. Their estimation method is based on a set of

inequalities that arise from the best response condition of a Nash equilibrium. Taking its

opponents’decisions as given, a chain’s profit associated with its observed entry decision

must be larger than the profit of any alternative entry decision. Ellickson et al. (2013)

consider particular deviations that relocate one of the observed stores to another location.

Let a∗i be the observed vector of entry decisions of firm i, and suppose that in this observed

vector the firm has a store in location ` but not in location `′. Consider the alternative

(hypothetical) choice a`→`
′

i that is equal to a∗i except that the store in location ` is closed

and relocated to location `′. Revealed preference implies that πi(a∗i ) ≥ πi(a
`→`′
i ). Ellickson
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et al. (2013) further simplify this inequality by assuming that there are no economies of

scope or density (for example, θED = 0), and that there are no firm-location-specific factors

unobservable to the researcher, that is, εi` = 0. Under these two assumptions, the inequality

above can be written as the profit difference between two locations:

[x` − x`′ ]βi +
∑
j 6=i

γij
[
a∗j` − a∗j`′

]
+ [ξ` − ξ`′ ] ≥ 0

Now, consider another chain, say k, that has an observed choice a∗k with a store in location

`′ but not in location `. For this chain, we consider the opposite (hypothetical) relocation

decision that for firm i above: the store in location `′ is closed and a new store is open in

location `. For this chain, revealed preference implies that

[x`′ − x`]βk +
∑
j 6=k

γkj
[
a∗j` − a∗j`′

]
+ [ξ`′ − ξ`] ≥ 0

Summing up the inequalities for firms i and k, we generate an inequality that is free from

location fixed effects ξ.

[x`′ − x`] [βi − βk] +
∑
j 6=i

γij
[
a∗j` − a∗j`′

]
+
∑
j 6=k

γkj
[
a∗j` − a∗j`′

]
≥ 0

Ellickson et al. (2013) construct a number of inequalities of this type and obtain estimates

of the parameters of the model by using a smooth maximum score estimator (Manski 1975;

Horowitz, 1992; Fox, 2010).

Unlike the lattice theory approach of Jia and Nishida, the approach applied by EHT

can accommodate more than two players, allows the researcher to be agnostic about equi-

librium selections, and is robust to the presence of unobserved market heterogeneity. Their

model, however, rules out any explicit interdependence between stores in different locations,

including spatial competition, cannibalization and economies of density. Although incor-

porating such inter-locational interdependencies does not seem to cause any fundamental

estimation issue, doing so can be diffi cult in practice as it considerably increases the amount

of computation. Another possible downside of this approach is the restriction it imposes on

unobservables. The only type of structural errors that this model includes are the variables

ξ` that are common for all firms. Therefore, to accommodate observations that are incom-

patible with inequalities in (9.33) above, the model requires non-structural errors, which may

be interpreted as firms’optimization errors.

3.5.8. Dynamics with single-store firms. When the entry cost is partially sunk, firms’

entry decisions depend on their incumbency status, and dynamic models become more rel-

evant. The role of sunk entry costs in shaping market structure in an oligopoly industry

was first empirically studied by Bresnahan and Reiss (1993). They estimate a two-period

model using panel data of the number of dentists. Following recent developments in the
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econometrics of dynamic games of oligopoly competition,27 several studies have estimated

dynamic games of market entry-exit in different retail industries.

Aguirregabiria and Mira (2007) estimate dynamic games of market entry and exit for five

different retail industries: restaurants, bookstores, gas stations, shoe shops, and fish shops.

They use annual data from a census of Chilean firms created for tax purposes by the Chilean

Internal Revenue Service during the period 1994—99. The estimated models show significant

differences in fixed costs, entry costs, and competition effects across the five industries, and

these three parameters provide a precise description of the observed differences in market

structure and entry-exit rates between the five industries. Fixed operating costs are a very

important component of total profits of a store in the five industries, and they range between

59 percent (in restaurants) to 85 percent (in bookstores) of the variable profit of a monopolist

in a median market. Sunk entry costs are also significant in the five industries, and they range

between 31 percent (in shoe shops) and 58 percent (in gas stations) of a monopolist variable

profit in a median market. The estimates of the parameter that measures competition effect

show that restaurants are the retailers with the smallest competition effects, that might

explained by a higher degree of horizontal product differentiation in this industry.

Suzuki (2013) examines the consequence of tight land use regulation on market structure

of hotels through its impacts on entry costs and fixed costs. He estimates a dynamic game

of entry-exit of mid-scale hotels in Texas that incorporates detailed measures of land use

regulation into cost functions of hotels. The estimated model shows that imposing stringent

regulation increases costs considerably and has substantial effects on market structure and

hotel profits. Consumers also incur a substantial part of the costs of regulation in the form

of higher prices.

Dunne et al. (2013) estimate a dynamic game of entry and exit in the retail industries

of dentists and chiropractors in the US, and use the estimated model to evaluate the effects

on market structure of subsidies for entry in small geographic markets, that is, markets that

were designated by the government as Health Professional Shortage Areas (HPSA). The

authors compare the effects of this subsidy with those of a counterfactual subsidy on fixed

costs, and they find that subsidies on entry costs are cheaper, or more effective for the same

present value of the subsidy.

Yang (2014) extends the standard dynamic game of market entry-exit in a retail mar-

ket by incorporating information spillovers from incumbent firms to potential entrants.28 In

his model, a potential entrant does not know a market-specific component in the level of

profitability of a market (for example, a component of demand or operating costs). Firms

learn about this profitability only when they actually enter that market. In this context,

observing incumbents stay in this market is a positive signal for potential entrants about the
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quality of this market. Potential entrants use these signals to update their beliefs about the

profitability of the market (that is, Bayesian updating). These information spillovers from

incumbents may contribute to explain why we observe retail clusters in some geographic

markets. Yang estimates his model using data from the fast food restaurant industry in

Canada, which goes back to the initial conditions of this industry in Canada. He finds sig-

nificant evidence supporting the hypothesis that learning from incumbents induces retailers

to herd into markets where others have previously done well in, and to avoid markets where

others have previously failed in.

3.5.9. Dynamics and spatial competition between multi-store firms. A structural empir-

ical analysis of economies of density, cannibalization, or spatial entry deterrence in retail

chains requires the specification and estimation of models that incorporate dynamics, multi-

store firms, and spatial competition. Some recent papers present contributions on this re-

search topic.

Holmes (2011) studies the temporal and spatial pattern of store expansion by Walmart

during the period 1971—2005. He proposes and estimates a dynamic model of entry and store

location by a multi-store firm similar to the one that we have described in section 2.1.3 above.

The model incorporates economies of density and cannibalization between Walmart stores,

though it does not model explicitly competition from other retailers or chains (for example,

Kmart or Target), and therefore it abstracts from dynamic strategic considerations such as

spatial entry deterrence. The model also abstracts from price variation and assumes that

Walmart sets constant prices across all stores and over time. However, Holmes takes into

account three different types of stores and plants in Walmart retail network: regular stores

that sell only general merchandise; supercenters, that sell both general merchandise and

food; and distribution centers, which are the warehouses in the network, and that have also

two different types, that is, general and food distribution centers. The distinction between

these types of stores and warehouses is particularly important to explain the evolution of

Walmart retail network over time and space. In the model, every year Walmart decides

the number and the geographic location of new regular stores, supercenters, and general

and food distribution centers. Economies of density are channeled through the benefits

of stores being close to distribution centers. The structural parameters of the model are

estimated using the Moment Inequalities estimation method in Pakes et al. (forthcoming).

More specifically, moment inequalities are constructed by comparing the present value of

profits from Walmart’s actual expansion decision with the present value from counterfactual

expansion decisions which are slight deviations from the observed ones. Holmes finds that

Walmart obtains large savings in distribution costs by having a dense store network.
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Igami and Yang (forthcoming) study the trade-off between cannibalization and spatial

pre-emption in the fast-food restaurant industry, for example, McDonalds, Burger King,

and so on. Consider a chain store that has already opened its first store in a local market.

Opening an additional store increases this chain’s current and future variable profits by, first,

attracting more consumers and, second, preventing its rivals’future entries (pre-emption).

However, the magnitude of this increase could be marginal when the new store steals cus-

tomers from its existing store (cannibalization). Whether opening a new store economically

makes sense or not depends on the size of the entry cost. Igami and Yang estimate a dynamic

structural model and find the quantitative importance of preemptive motives. However, they

do not model explicitly spatial competition, or allow for multiple geographic locations within

their broad definition of geographic market.

Schiraldi et al. (2013) study store location and spatial competition between UK super-

market chains. They propose and estimate a dynamic game similar to the one in Aguirre-

gabiria and Vicentini (forthcoming) that we have described in section 2.1.3. A novel and

interesting aspect of this application is that the authors incorporate the regulator’s decision

to approve or reject supermarkets’applications for opening a new store in a specific location.

The estimation of the model exploits a very rich dataset from the U.K. supermarket indus-

try on exact locations and dates of store openings/closings, applications for store opening,

approval/rejection decisions by the regulator, as well as rich data of consumer choices and

consumer locations. The estimated model is used to evaluate the welfare effects of factual

and counterfactual decision rules by the regulator.

4. Estimation

The estimation of games of entry and spatial competition in retail markets should deal

with some common issues in the econometrics of games and dynamic structural models.

Here we do not try to present a detailed discussion of this econometric literature. Instead,

we provide a brief description of the main issues, with an emphasis on aspects that are

particularly relevant for empirical applications in retail industries.31

4.1. Multiple Equilibria. Entry models with heterogeneous firms often generate more
than one equilibria for a given set of parameters. Multiple equilibria pose challenges to the

researcher for two main reasons. First, standard maximum likelihood estimation no longer

works because the likelihood of certain outcomes is not well defined without knowing the

equilibrium selection mechanism. Second, without further assumptions, some predictions or

counterfactual experiments using the estimated model are subject to an identification prob-

lem. These predictions depend on the type of equilibrium that is selected in a hypothetical

scenario not included in the data.
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Several approaches have been proposed to estimate an entry game with multiple equilib-

ria. Which method works the best depends on assumptions imposed in the model, especially

its information structure. In a game of complete information, there are at least four ap-

proaches. The simplest approach is to impose some particular equilibrium selection rule

beforehand and estimate the model parameters under this rule. For instance, Jia (2008)

estimates the model of competition between big-box chains using the equilibrium that is

most preferable to K-mart. She also estimates the same model under alternative equilibrium

selection rules to check for the robustness of some of her results. The second approach is to

construct a likelihood function for some endogenous outcomes of the game that are common

across all the equilibria. Bresnahan and Reiss (1991b) estimate their model by exploiting

the fact that, in their model, the total number of entrants is unique in all the equilibria.

A third approach is to make use of inequalities that are robust to multiple equilibria.

One example is the profit inequality approach of EHT, which we described in section 2.2.5.

Another example is the method of moment inequality estimators proposed by Ciliberto and

Tamer (2009). They characterize the lower and upper bounds of the probability of a certain

outcome that are robust to any equilibrium selection rule. Estimation of structural parame-

ters relies on the set of probability inequalities constructed from these bounds. In the first

step, the researcher nonparametrically estimates the probabilities of equilibrium outcomes

conditional on observables. The second step is to find a set of structural parameters such

that the resulting probability inequalities are most consistent with the data. The application

of Ciliberto and Tamer’s approach to a spatial entry model may not be straightforward. In

models of this class, the number of possible outcomes (that is, market structures) is often

very large. For example, consider a local market consisting of ten sub-blocks. When two

chains decide whether they enter into each of these sub-blocks, the total number of possible

market structures is 1024 (=2^10). Such a large number of possible outcomes makes it diffi -

cult to implement this approach for two reasons. The first stage estimate is likely to be very

imprecise even when a sample size is reasonably large. The second stage estimation can be

computationally intensive because one needs to check, for a given set of parameters, whether

each possible outcome meets the equilibrium conditions or not.

A fourth approach proposed by Bajari et al. (2010b) consists in the specification of a

flexible equilibrium selection mechanism and in the joint estimation of the parameters in this

mechanism and the structural parameters in firms’profit functions. Together with standard

exclusion restrictions for the identification of games, the key specification and identification

assumption in this paper is that the equilibrium selection function depends only on firms’

profits.
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In empirical games of incomplete information, the standard way to deal with multiple

equilibria is to use a two-step estimation method (Aguirregabiria and Mira 2007; Bajari

et al. 2010a).32 In the first step, the researcher estimates the probabilities of firms’entry

conditional on market observables (called policy functions) in a nonparametric way, for

example, a sieves estimator. The second step is to find a set of structural parameters that

are most consistent with the observed data and these estimated policy functions. A key

assumption for the consistency of this approach is that, in the data, two markets with

the same observable characteristics do not select different types of equilibria, that is, same

equilibria conditional on observables. Without this assumption, the recovered policy function

in the first stage would be a weighted sum of firms’policies under different equilibria, making

the second-stage estimates inconsistent. Several authors have recently proposed extensions

of this method to allow for multiplicity of equilibria in the data for markets with the same

observable characteristics.

4.1.1. Identification and multiple equilibria. Tamer (2003) showed that all the parame-

ters of the previous entry model with N = 2 is (point) identified under standard exclusion

restrictions, and that multiple equilibria do not play any role in this identification result.

Tamer’s result can be extended to any number N of players, as long as we have the appro-

priate exclusion restrictions.

More generally, equilibrium uniqueness is neither a necessary nor a suffi cient condition

for the identification of a model (Jovanovic, 1989). To see this, consider a model with vector

of structural parameters θ ∈ Θ, and define the mapping C(θ) from the set of parameters Θ

to the set of measurable predictions of the model. For instance, C(θ) may contain the proba-

bility distribution of players actions conditional on exogenous variables Pr(a1, a2, ..., aN |x, θ).
Multiple equilibria implies that the mapping Cis a correspondence. A model is not point-

identified if at the observed data (say P 0 = Pr(a1, a2, ..., aN |x, θ) for any vector of actions
and x′s) the inverse mapping C−1 is a correspondence. In general, C being a function (that

is, equilibrium uniqueness) is neither a necessary nor a suffi cient condition for C−1 being a

function (that is, for point identification).

*************************************

FIGURE ON MULTIPLE EQUILIBRIA AND IDENTIFICATION

Mapping and inverse mapping. four cases.

(Cooper, 2002)

*************************************
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To illustrate the identification of a game with multiple equilibria, we start with a simple

binary choice game with identical players and where the equilibrium probability P is im-

plicitly defined as the solution of the condition P = Φ (−1.8 + θ P ), where θ is a structural

parameter, and Φ (.) is the CDF of the standard normal. Suppose that the true value θ0

is 3.5. It is possible to verify that the set of equilibria associated with θ0 is C(θ0) = {
P (A)(θ0) = 0.054, P (B)(θ0) = 0.551, and P (C)(θ0) = 0.924}. The game has been played M
times and we observe players’actions for each realization of the game {aim : i,m}. Let P0

be the population probability Pr(aim = 1). Without further assumptions the probability

P0 can be estimated consistently from the data. For instance, a simple frequency estimator

P̂0 = (NM)−1
∑

i,m aim is a consistent estimator of P0. Without further assumption, we do

not know the relationship between population probability P0 and the equilibrium probabili-

ties in C(θ0). If all the sample observations come from the same equilibrium, then P0 should

be one of the points in C(θ0). However, if the observations come from different equilibria in

C(θ0), then P0 is a mixture of the elements in C(θ0). To obtain identification, we can assume

that every observation in the sample comes from the same equilibrium. Under this condition,

since P0 is an equilibrium associated with θ0, we know that P0 = Φ (−1.8 + θ0 P0). Given

that Φis an invertible function, we have that θ0 = (Φ−1 (P0) + 1.8)/P0. Provided that P0 is

not zero, it is clear that θ0 is point identified regardless the existence of multiple equilibria

in the model.

4.2. UnobservedMarket Heterogeneity. Somemarket characteristics affecting firms’
profits may not be observable to the researcher. For example, consider local attractions that

spur the demand for hotels in a particular geographic location. Observing and controlling

for all the relevant attractions are often impossible to the researcher. This demand effect

implies that markets with such attractions should have more hotels than those without such

attractions but with equivalent observable characteristics. Therefore, without accounting

for this type of unobservables, researchers may wrongly conclude that competition boosts

profits, or underestimate the negative effect of competition on profits.

Unobserved market heterogeneity usually appears as an additive term (ω`) in the firm’s

profit function (πi`) where ω` is a random effect from a distribution known up to some

parameters.34 The most common assumption (for example, Seim 2006; Zhu and Singh 2009;

Datta and Sudhir 2013) is that these unobservables are common across locations in the same

local market (that is, ω` = ω for all `). Under this assumption the magnitude of unobserved

market heterogeneity matters whether the firm enters some location in this market but not

which location. Orhun (2013) relaxes this assumption by allowing unobserved heterogeneity

to vary across locations in the same market.
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In a game of complete information, accommodating unobserved market heterogeneity

does not require a fundamental change in the estimation process. In a game of incomplete

information, however, unobserved market heterogeneity introduces an additional challenge.

Consistency of the two-step method requires that the initial nonparametric estimator of

firms’ entry probabilities in the first step should account for the presence of unobserved

market heterogeneity. A possible solution is to use a finite mixture model. In this model,

every market’s ω` is drawn from a distribution with finite support. Aguirregabiria and

Mira (2007) show how to accommodate such market-specific unobservables into their nested

pseudo likelihood (NPL) algorithm. Arcidiacono and Miller (2011) propose an expectation-

maximization (EM) algorithm in a more general environment. An alternative way to deal

with this problem is to use panel data with a reasonably long time horizon. In that way,

we can incorporate market fixed effects as parameters to be estimated. This approach is

popular when estimating a dynamic game (for example, Ryan 2012; Suzuki 2013).35 A

necessary condition to implement this approach is that every market at least observes some

entries during the sample period.36 Dropping markets with no entries from the sample may

generate a selection bias.

4.3. Computation. The number of geographic locations, L, introduces two dimension-
ality problems in the computation of firms’best responses in games of entry with spatial

competition. First, in a static game, a multi-store firm’s set of possible actions includes all

the possible spatial configurations of its store network. The number of alternatives in this

set is equal to 2^L, and this number is extremely large even with modest values of L, such as

a few hundred geographic locations. Without further assumptions, the computation of best

responses becomes impractical. This is an important computational issue that has deterred

some authors to account for multi-store retailers in their spatial competition models, for

example, Seim (2006), or Zhu and Singh (2009), among many others. As we have described

in section 2.2.5, two approaches that have been applied to deal with this issue are (1) to

impose restrictions that guarantee supermodularity of the game (that is, only two players,

no cannibalization effects), and (2) to avoid the exact computation of best responses and use

instead inequality restrictions implied by these best responses.

Looking at the firms’decision problem as a sequential or dynamic problem helps also

to deal with the dimensionality in the space of possible choices. In a given period of time

(for example, year, quarter, or month), we typically observe that a retail chain makes small

changes in its network of stores, that is, it opens a few new stores, or closes a few existing

stores. Imposing these small changes as a restriction on the model implies a very dramatic

reduction in the dimension of the action space such that the computation of best responses

becomes practical, at least in a ‘myopic’version of the sequential decision problem.
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However, to fully take into account the sequential or dynamic nature of a firm’s decision

problem, we also need to acknowledge that firms are forward looking. In the firm’s dynamic

programming problem, the set of possible states is equal to all the possible spatial configu-

rations of a store network, and it has 2^L elements. Therefore, by going from a static model

to a dynamic forward-looking model, we have just ‘moved’the dimensionality problem from

the action space into the state space. Recent papers propose different approaches to deal

with this dimensionality problem in the state space. Arcidiacono et al. (2013) present a

continuous-time dynamic game of spatial competition in a retail industry and propose an

estimation method of this model. The continuous-time assumption eliminates the curse of

dimensionality associated to integration over the state space. Aguirregabiria and Vicen-

tini (forthcoming) propose a method of spatial interpolation that exploits the information

provided by the (indirect) variable profit function.

5. Further topics

Spillovers between different retail sectors. Existing applications of games of entry and spa-

tial competition in retail markets concentrate on a single retail industry. However, there are

also interesting spillover effects between different retail industries. Some of these spillovers

are positive, for example, good restaurants can make a certain neighborhood more attractive

for shopping. There are also negative spillovers effects through land prices, that is, retail sec-

tors with high value per unit of space (for example, jewelry stores) are willing to pay higher

land prices than supermarkets that have low markups and are intensive in the use of land.

The consideration and measurement of these spillover effects are interesting in themselves,

and they can help to explain the turnover and reallocation of industries in different parts

of a city. Relatedly, endogenizing land prices would also open the possibility of using these

models for the evaluation of specific public policies at the city level.

Richer datasets with store level information on prices, quantities, inventories. The iden-

tification and estimation of competition effects based mainly on data of store locations have

been the rule more than the exception in this literature. This approach typically requires

strong restrictions in the specification of demand and variable costs. The increasing avail-

ability of datasets with rich information on prices and quantities at product and store level

should create a new generation of empirical games of entry and spatial competition that

relax these restrictions. Also, data on store characteristics such as product assortments or

inventories will enable the introduction of these important decisions as endogenous variables

in empirical models of competition between retail stores.

Measuring spatial pre-emption. So far, all the empirical approaches to measure the effects

of spatial pre-emption are based on the comparison of firms’actual entry with firms’behavior
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in a counterfactual scenario characterized by a change in either (1) a structural parameter

(for example, a store exit value), or (2) firms’ beliefs (for example, a firm believes that

other firms’entry decisions do not respond to this firm’s entry behavior). These approaches

suffer the serious limitation that they do not capture only the effect of pre-emption and are

contaminated by other effects. The development of new approaches to measure the pure

effect of pre-emption would be a methodological contribution with relevant implications in

this literature.

Geography. Every local market is different in its shape and its road network. These

differences may have important impacts on the resulting market structure. For example, the

center of a local market may be a quite attractive location for retailers when all highways

go through there. However, it may not be the case anymore when highways encircle the

city center (for example, Beltway in Washington DC). These differences may affect retailers’

location choices and the degree of competition in an equilibrium. The development of em-

pirical models of competition in retail markets that incorporate, in a systematic way, these

idiosyncratic geographic features will be an important contribution in this literature.
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