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CHAPTER 2

Demand Estimation

1. Introduction

The estimation of demand equations is a fundamental component in most empirical ap-

plications in IO. It is also important in many other fields in empirical economics. There are

important reasons why economists in general, and IO economists in particular, are inter-

ested in demand estimation. Knowledge of the demand function, and of the corresponding

marginal revenue function, is crucial for the determination of a firm’s optimal prices or

quantities. In many applications in empirical IO, demand estimation is also a necessary first

step to measure market power. In the absence of direct information about firms’costs, the

estimation of demand and marginal revenue is key for the identification of marginal costs

(using the marginal cost equals marginal revenue condition) and firms’market power. Sim-

ilarly, the estimation of the degree of substitution between the products of two competing

firms is a fundamental factor in evaluating the profitability of a merger between these firms.

Demand functions are a representation of consumers’valuation of products. Because we

cannot observe consumer utility or satisfaction directly, we estimate consumer preferences

by estimating demand equations. As such, they are fundamental in the evaluation of the

consumer welfare gains or losses associated with taxes, subsidies, the introduction of a new

product, or a merger. Demand estimation can be used to improve our measures of Cost-of-

Living indices (see Hausman, 2003, and Pakes, 2003).1 Ackerberg et al. (2007) and Nevo

(2011) are excellent recent survey papers on demand estimation.

Most products that we find in today’s markets are differentiated products: automo-

biles; smartphones; laptop computers; or supermarket products such as ketchup, soft drinks,

1For instance, the Boskin commission (Boskin et al., 1997 and 1998) concluded that the US Consumer
Price Index (CPI) overstated the change in the cost of living by about 1.1 percentage points per year.
CPIs are typically constructed using weights which are obtained from a consumer expenditure survey. For

instance, the Laspeyres index for a basket of n goods is CPIL =
∑n
i=1 w

0
i

(
P 1
i

P 0
i

)
, where P 0i and P

1
i are the

prices of good i at periods 0 and 1, respectively, and w0i is the weight of good i in the total expenditure of
a representative consumer at period 0. A source of bias in this index is that it ignores that the weights w0i
change over time as the result of changes in relative prices of substitute products, or the introduction of new
products between period 0 to period 1. The Boskin Commission identifies the introduction of new goods,
quality improvements in existing goods, and changes in relative prices as the main sources of bias in the CPI
as a cost of living index. Hausman (2003) and Pakes (2003) argue that the estimation of demand systems
provides a possible solution to these sources of bias in the CPI.
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34 2. DEMAND ESTIMATION

breakfast cereals, or laundry detergent. A differentiated product consists of a collection of

varieties such that each variety is characterized by some attributes that distinguishes it from

the rest. A variety is typically produced by a single manufacturer, but a manufacturer may

produce several varieties.

We distinguish two approaches to model demand systems of differentiated products:

demand systems in product space; and demand systems in characteristics space. In empirical

applications, the model in product space was the standard approach until the 1990s. We

will see in this chapter that the model in characteristics space has several advantages that

have made it the predominant approach in empirical IO over the last two decades.

2. Demand systems in product space

2.1. Model
. In this model, consumer preferences are defined over products themselves. Consider J
different products that we index by j ∈ {1, 2, ..., J}. These J products may include all
the product categories that an individual consumer may consume (for instance, food, trans-

portation, clothing, entertainment) and all the varieties of products within each category

(for instance, every possible variety of computers, or of automobiles). This means that the

number of products J can be of the order of millions. We will see later how, under some

conditions, we can separate the demand of different product categories and reduce the dimen-

sionality of this large product space. For this purpose, it is convenient to introduce "product

zero" that we denote as the outside product which represents all the other products which

are not product 1 to J .

Let qj denote the quantity that a consumer buys and consumes of product j, and let

(q0, q1, ..., qJ) be the vector with the purchased quantities of all the products. Let q0 be

the amount of the outside good. The price of the outside good is normalized to one, such

that q0 represents the dollar expenditure in goods other than 1 to J . The consumer has a

utility function U(q0, q1, ..., qJ) defined over the vector of quantities. The consumer’s problem

consists of choosing the vector (q0, q1, ..., qJ) which maximizes her utility subject to her budget

constraint.
max

{q0,q1,...,qJ}
U(q0, q1, ..., qJ)

subject to : q0 + p1 q1 + ...+ pJ qJ ≤ y

(2.1)

where pj is the price of product j, and y is the consumer’s disposable income. We can define

the Lagrangian problem:

max
{q0,q1,...,qJ}

U(q0, q1, ..., qJ) + λ [y − q0 − p1 q1 − ...− pJ qJ ] (2.2)
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The first order conditions are:

Uj − λpj = 0 for j = 0, 1, ..., J ;

y − q0 − p1q1 − ...− pJqJ = 0
(2.3)

where Uj represents the marginal utility of product j. The demand system is the solution to

this optimization problem. We can represent this solution in terms of J functions, one for

each product, that give us the optimal quantity of each variety as a function of prices and

income. These are the Marshallian demand equations:

q0 = f0 (p1, p2, ..., pJ , y)
q1 = f1 (p1, p2, ..., pJ , y)
... ...
qJ = fJ (p1, p2, ..., pJ , y)

(2.4)

The form of the functions f0, f1, ..., fJ depends on the form of the utility function U .

Different utility functions imply different demand systems. Not every system of equations

that relates quantities and prices is a demand system. It should come from the solution of the

consumer problem for a given utility function. This has two clear implications on a demand

system. First, it should satisfy the adding up condition
∑J

j=0 pj fj (p1, p2, ..., pJ , y) = y. And

second, it should be homogeneous of degree zero in prices and income: for any scalar δ ≥ 0,

we have that fj (δp1, δp2, ..., δpJ , δy) = fj (p1, p2, ..., pJ , y) for any product j.

A substantial part of the empirical literature on demand is based on finding utility func-

tions which imply demand systems which are simple enough to be estimable using standard

econometric methods such as linear regression, and flexible enough such that they allow for

flexible patterns in the elasticities of substitution between products. The following are some

examples of models that have been considered in the literature.

2.1.1. The Linear Expenditure System

. Consider the Stone-Geary utility function:

U = (q0 − γ0)α0 (q1 − γ1)α1 ... (qJ − γJ)αJ (2.5)

where {αj, γj : j = 1, 2, ..., J} are parameters. The parameter γj can be interpreted as the
minimum amount of consumption of good j that a consumer needs to "survive". Parameter

αj represents the intensity of product j in generating utility. Without loss of generality,

because the ordinality of the utility function, we consider that
∑J

i=0 αi = 1. This utility

function was first proposed by Geary (1950), and Richard Stone (1954) was the first to

estimate the Linear Expenditure System. In the Appendix to this chapter, we derive the

expression for the demand equations of the Linear Expenditure System. They have the

following form:

qj = γj + αj

[
y − Pγ
pj

]
(2.6)
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where Pγ is the aggregate price index
∑J

i=0 pi γi.

This system is convenient because of its simplicity. Suppose that we have data on indi-

vidual purchases and prices over T periods of time (t = 1, 2, ..., T ): {q0t, q1t, ..., qJt} and
{p1t, p2t, ..., pJt}.2 The model implies a system of J linear regressions. For product j:

qjt = γj + αj
yt
pjt

+ βj0
p0t

pjt
+ ...+ βjJ

pJt
pjt

+ ξjt (2.7)

with βjk = −αj γk. Variable ξjt is an error term that can come, for instance, from mea-

surement error in purchased quantity qjt, or from time variation in the coeffi cient γj. The

intercept and slope parameters in these linear regression models can be estimated using

instrumental variable methods.

However, the model is also very restrictive. Note that for any j 6= k, we have that
∂qj
∂pk

= −αjγk/pj < 0, such that all the cross-price elasticities are negative. This implies that

all the products are complements in consumption. This is not realistic in most applications,

particularly when the goods under study are varieties of a differentiated product.

2.1.2. Constant Elasticity of Substitution demand system

. Consider the Constant Elasticity of Substitution (CES) utility function:

U =

(
J∑
j=0

qσj

)1/σ

(2.8)

where σ ∈ [0, 1] is a parameter that represents the degree of substitution between the J + 1

products. The marginal utilities are:

Uj = qσ−1
j

U∑J
i=0 q

σ
i

(2.9)

For any two pairs of products, j and k, we have that
∂2U

∂qj∂qk
< 0, such that all the products

are substitutes in consumption.

Given the CES utility function, we derive in the Appendix the following expression for

the demand equations:

qj =
y

Pσ

[
pj
Pσ

]−1/(1−σ)

(2.10)

where Pσ is the following aggregate price index:

Pσ =

(
J∑
j=0

p
−σ/(1−σ)
j

)−(1−σ)/σ

(2.11)

The CES model is also very convenient because of its simplicity. Suppose that we have

data of individual purchases and prices over T periods of time. The model implies the

2Given information on household income, yt, the consumption of product zero can be obtained using the
budget constraint, q0t = yt −

∑J
j=1 pj qj .
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following log-linear regression model:

ln

(
qjt
yt

)
= β0 + β1 ln(pjt) + β2 ln (Pσt) + ξjt (2.12)

where β1 = −1/(1 − σ), and β2 = σ/(1 − σ). The error term ξjt can be interpreted as

measurement error in quantities. The construction of the true price index Pσt requires

knowledge of the parameter σ. To deal with this issue several approaches have been used

in the literature: (a) approximating the true price index with a conjecture about σ; (b)

controlling for the term β2 ln (Pσt) by including time dummies; (c) estimate the model in

deviations with respect to the equation for the outside product, ln
(
qjt
yt

)
− ln

(
q0t
yt

)
= β1

ln(pjt) + ξjt − ξ0t; and (d) take into the structure of the price index as a function of prices

and σ and estimate the model using nonlinear least squares.

The demand elasticity β1 can be estimated from this model and data using a standard

method for linear regression models. For instance, if the number of products is large relative

to the number of time periods, one can control for the time-effects using time dummies, and

β can be estimated using OLS or IV methods.

This model also imposes strong restrictions. In particular, the elasticity of substitution

between any pair of products is exactly the same. For any three products, say j, k, and

i: Elasticityk,j = ∂ ln qk
∂ ln pj

= ∂ ln qi
∂ ln pj

= Elasticityi,j. This can be quite unrealistic in most

applications in IO. This model all the products have the same degree of substitution. It

cannot represent an industry where some products are very similar and close substitutes

where other are relatively unique (for good or for bad). In such an industry we expect that

an increase in the price of a product with many close substitutes generates a substantial

reduction in quantity, while this is not the case if the product does not have close substitutes.

2.1.3. Deaton and Muellbauer "Almost Ideal" demand system

. The "Almost Ideal" demand system (AIDS) proposed by Deaton and Muellbauer (1980a,

1980b). Because its flexibility, it is the most popular specification in empirical applications

where preferences are defined on the product space. The standard derivation of the AIDS

does not start from the utility function but from the Expenditure Function of the model.

The expenditure function of a demand system, E(u,p) is defined as the minimum consumer

expenditure to achieve a level utility u given the vector of prices p = (p1, p2, ..., pJ).

E(u,p) = min
q0,q1,...,qJ

∑J

j=0
pj qj subject to: U (q0, q1, ..., qJ) = u (2.13)

Given its definition, the expenditure function is non-decreasing in all its arguments, and it

is homogeneous of degree one in prices: for any δ ≥ 0, E(u, δ p) = δ E(u,p). Shephard’s

Lemma establishes that the derivative of expenditure function with respect to the price of
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price of product j is the Hicksian or compensated demand function, hj(u,p):

qj = hj(u,p) =
∂E(u,p)

∂pj
(2.14)

Similarly, Shephard’s Lemma and the condition that income is equal to total expenditure,

y = E(u,p), implies that the partial derivative of the log-expenditure function with respect

to the price of product j is equal to the expenditure share of the product, wj ≡ pjqj/y.

wj =
pj qj
y

=
∂ lnE(u,p)

∂pj
(2.15)

Therefore, given a expenditure function that is consistent with consumer theory (non-

decreasing and homogeneous of degree one), we can derive the demand system. Deaton and

Muellbauer propose the following log-expenditure function:

lnE(u,p) = a(p) + b(p) u (2.16)

with
a(p) =

∑J
j=1 αj ln pj +

1

2

∑J
j=1

∑J
k=1 γ

∗
jk ln pj ln pk

b(p) =
∏J

j=1 p
βj
j

(2.17)

Homogeneity of degree of the expenditure function requires the following restrictions on the

parameters: ∑J

j=1
αj = 1;

∑J

j=1
γ∗jk = 0;

∑J

k=1
γ∗jk = 0;

∑J

j=1
βj = 0. (2.18)

Applying Shephard’s Lemma to this log-expenditure function, we can derive the following

demand system represented in terms of expenditure shares:

wj = αj + βj [ln(y)− ln(Pα,γ)] +
J∑
k=1

γjk ln pk (2.19)

where γjk ≡ (γ∗jk + γ∗kj)/2 such that the model implies the symmetry condition γjk = γkj;

and Pα,γ is a price index with the following form:

lnPα,γ =
∑J

j=1
αj ln pj +

1

2

∑J

j=1

∑J

k=1
γjk ln pj ln pk (2.20)

The number of free parameters in this demand system is 2J+ J(J+1)
2
, which increases quadrat-

ically with the number of products.

Suppose that we have data on individual purchases, income, and prices over T periods

of time. For each product j, we can estimate the regression equation:

wjt = αj + βj ln(yt) + γj1 ln(p1t) + ...+ γjJ ln(pJt) + ξjt (2.21)

Since the number of parameters increases quadratically with the number of products, the

estimation of this model (without restrictions on the parameters) requires that the number

of observations T (either time periods or geographic markets) is substantially larger than
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the number of products J . For differentiated products with many varieties, say J > 100

(such as most differentiated products like automobiles, smartphones, cereals, beer, etc), the

number of parameters can be of the order of several thousands such that this condition does

not hold. Increasing the number of observations by using data from many consumers does

not help in the estimation of price elasticities because consumers in the same market face

the same prices, that is, prices do not have variation across consumers, only over time and

geographic markets.

2.2. Multi-stage budgeting using the Almost Ideal demand system
. To reduce the number of parameters when J is relatively large, Deaton and Muellbauer
propose using a multi-stage budgeting approach. Suppose that the the J + 1 products can

be classified in G groups or segments. For instance, in the ready-to-eat cereal industry most

empirical studies distinguish three segments: Kids, All family, and Health. The following

diagram presents the nested structure of the demand system.

Figure 2.1

Individual Products 1 2 3 4 5 6 7 8 9
Within Group stage ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↖ ↑ ↗ ↖ ↑ ↗ ↖ ↑ ↗
Groups Kids Family Health

Between Group stage ↑ ↑ ↑
↖ ↑ ↗

↖ ↑ ↗
↖ ↑ ↗

Product categories 0 Cereals
First stage ↑ ↑

↖ ↗
↖ ↗

•

Suppose that the utility function is:

U = v0(q0) + v1 (q̃1) + ...+ vG (q̃G) (2.22)

where q̃g is the vector of quantities of product varieties in group g; and vg (q̃g) is the sub-

utility from group g. Then, the demand system at the lower stage, the within-group
stage, is:

wjt = α
(1)
j + β

(1)
j ln

(
egt
Pgt

)
+
∑
k∈Jg

γ
(1)
jk ln(pkt) (2.23)

where egt is the expenditure from all the products in group g, and Pgt is a price index for

group g. According to the model, this price index depends on the parameters of the model
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in group g. The number of parameters increases quadratically with Jg instead of with J .

The demand system at the group stage is:

egt
et

= α(2)
g + β(2)

g ln

(
et
Pt

)
+

G∑
g′=1

γ
(2)
g,g′ ln(Pgt) (2.24)

where et is the total expenditure in the large category (for instance, cereals), and Pt is the

price index for the category (for instance, cereals). Finally, at the top-stage, the demand
for the category is:

et
yt

= α(3) + β(3) [ln (yt)− ln(Pt)] (2.25)

This multi-stage budgeting model can reduce substantially the number of parameters. For

instance, the a differentiated product category, say cereals, has 50 products such that the

number of parameters in the unrestricted model is 2 ∗ 50 + 50(50+1)
2

= 1, 325. Now, suppose

that we can divide the 50 products into 10 groups with 5 products each. This implies that

at the within-group stage we have 250 parameters (25 for each group), in the group stage

we have 75 parameters, and in the category stage we have 3 parameters, for a total of 328

parameters. Using one year of monthly data over 500 geographic markets, we have 6, 000

observations. If these data have enough (exogenous) variation in prices, it seems possible to

estimate this restricted system. This is the approach in Hausman (1996) that we describe

below in more detail.

2.3. Estimation
. In empirical work, the most commonly used demand systems are the Rotterdam Model

(Theil, 1975), the Translog Model (Christensen, Jorgensen and Lau, 1975), and the Almost

Ideal Demand System (AIDS) (Deaton and Muellbauer, 1980a). Since Deaton and Muell-

bauer proposed their Almost Ideal Demand System in 1980, this model has been estimated

in hundreds of empirical applications. In most of the applications, a "good" is an aggregate

product category (for instance, beef meat, or chicken meat). However, there are also some

applications for varieties of a differentiated product, such as the one in Hausman (1996) that

we examine later in this chapter. In this section we describe the typical application of this

class of model.

The typical dataset consists of aggregate market level data for a single market, over

T time periods, with information on consumption and prices for a few product categories.

For instance, Verbeke and Ward (2001) use monthly data from January 1995 to December

1998 (T = 48 data points) from a consumer expenditure survey in Belgium. They esti-

mate a demand system for fresh meat products that distinguishes three product categories:

Beef/veal, Pork, and Poultry. We index time by t. For each period t we observe aggregate

income yt, and prices and quantities of the J product categories: {yt, qjt, pjt : t = 1, 2, ..., T ;
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j = 1, 2, ..., J}. We want to estimate the demand system:

wjt = Xt αj + βj ln(yt/Pt) +
∑J

k=1 γjk ln(pkt) + ξjt (2.26)

where Xt is a vector of exogenous characteristics that may affect demand, for instance,

demographic variables. We want to estimate the vector of structural parameters θ =

{αj, βj, γjk : ∀j, k}. Typically, this system is estimated by OLS or by Nonlinear Least

Squares (NLLS) to incorporate the restriction that ln(Pt) is equal to
∑J

j=1 [Xt αj] ln(pjt)+
1
2

∑J
j=1

∑J
k=1 γjk ln(pjt) ln(pkt), and the symmetry restrictions on the parameters γ. These

estimation methods assume that prices are not correlated with the error terms ε′s. We

discuss this and other assumptions in the section.

2.4. Some limitations of demand systems in product space
. (1) Every consumer purchases/consumes each of the J products. The system of

demand equations that we have derived above is based on the assumption that the marginal

conditions of optimality hold for every product. This means that the optimal bundle for

a consumer is an interior solution such that qj > 0 for every product j. This condition is

very unrealistic when we consider the demand of differentiated products within a product

category, for instance, the demand of automobiles. In this context, a consumer buys only one

unit of a single variety (for instance, one Toyota Corola) or of a few varieties (for instance,

one Toyota Corola, and one KIA Sorento minivan). To account for this type of consumer

decisions, we need to model the consumer problem as a discrete choice model.

(2) Representative consumer. The representative consumer assumption is a very strong
one and it does not hold in practice. The demand of certain goods depends not only on

aggregate income but also on the distribution of income and on the distribution of other

variables affecting consumers’preferences, for instance, age, education, etc. The propensity

to substitute between different products can be also very heterogeneous across consumers.

Therefore, ignoring consumer heterogeneity is a very important limitation of the actual

applications in this literature.

In principle, demand systems in product space could be applied to household level data.

Suppose that we have this type of data. Let us use the subindex h for households. The

demand system becomes:

wjht = Xht αj + [Xht βj] ln(yht/Pt) +
∑J

k=1[Xht γjk] ln(pkt) + ξjht (2.27)

where Xht represents a vector of exogenous household characteristics, other than income.

Now, αj, βj, and γjk are vectors of parameters with the same dimension as Xht. This model

incorporates household observed heterogeneity in a flexible way: in the level of demand, in

price elasticities, and in income elasticities.
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Note that (typically) prices do not vary across households. Therefore, price elasticities

are identified only from the time-series (or market) variation in prices, and not from the

cross-sectional variation across households. In this context, household level data is useful

to allow for consumer heterogeneity in price responses, but it does not provide additional

sample variation to improve the precision in the estimation of price elasticities.

Household level data makes it clear the problem of observed zero consumption of some

products, that we have mentioned in point (1) above. Some households do not consume all

the product categories, even when these categories are quite broad. For instance, vegetarian

househods do not consume any meat. This class of model predicts that the household

consumes a positive amount of every product category. This prediction is typically rejected

when using household level data.

(3) The problem of too many parameters. In the standard model, the number of

parameters is 2J + J(J+1)
2
, that is, J intercept parameters (α); J income elasticities (γ);

and J(J+1)
2

free price elasticities (β). The number of parameters increases quadratically with

the number of goods. Note also that, in most applications, the sample variation in prices

comes only from time series, and the sample size T is relatively small. This feature of the

model implies that the number of products, J , should be quite small. For instance, even if

J is as small as 5, the number of parameters to estimate is 25. Therefore, with this model

and data, it is not possible to estimate demand systems for differentiated products with

many varieties. For instance, suppose that we are interested in the estimation of a demand

system for different car models, and the number of car models is J = 100. Then, the number

of parameters in the AIDS model is 5, 250, and we need many thousands of observations

(markets or/and time periods) to estimate this model. This type of data is typically not

available.

(4) Finding instruments for prices. Most empirical applications of this class of models
have ignored the potential endogeneity of prices. 3 However, it is well known that simul-

taneity and endogeneity are potentially important issues in any demand estimation. Prices

are determined in the equilibrium of the market and depend on all the exogenous variables

affecting demand and supply. Therefore, we expect prices to be correlated with the error

terms ξ in the demand equations. Correlation between regressors and the error term imply

that the OLS method is an inconsistent estimator of the parameters in demand equation.

The typical solution to this problem is using instrumental variables. In the context of this

model, the researcher needs at least as many instruments as prices, that is J . The ideal case

3An exception is, for instance, Eales and Unnevehr (1993) who find strong evidence on the endogeneity
of prices in a system of meat demand in US. They use livestock production costs and technical change
indicators as instruments.
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is when we have information on production costs for each individual good. However, this

type of information is rarely available.

(5) Predicting the demand of new goods. In the literature of demand of differentiated
products, a class of problem that has received substantial attention is the evaluation or

prediction of the demand of a new product. Trajtenberg (1989), Hausman (1996), and

Petrin (2002) are some of the prominent applications that deal with this empirical question.

In a demand system in product space, estimating the demand of a new good, say J + 1,

requires estimates of the parameters associated with that good: αJ+1, βJ+1 and {γJ+1,j :

j = 1, 2, ..., J + 1}. Of course, this makes it impossible to make counterfactual predictions,
that is, predict the demand of a product that has not been introduced in any market yet.

But it also limits the applicability of this model in cases where the new product has been

introduced very recently or in very few markets, because we may not have enough data to

estimate these parameters.

2.5. Dealing with some of the limitations: Hausman on cereals
. Hausman (1996) studies the demand for ready-to eat (RTE) cereals in US. This industry
has been characterized by the dominant position of six multiproduct firms and by the pro-

liferation of many varieties. During the period 1980-92, the RTE cereal industry was among

the most prominent introducers of new brands within U.S. industries, with approximately

190 new brands added to the pool of existing 160 brands. Hausman shows that using panel

data from multiple geographic markets, together with assumptions on the spatial structure

of unobserved demand shocks and costs, it is possible to deal with some of the problems

mentioned above within the framework of demand systems in product space. He applies the

estimated system to evaluate the welfare gains from the introduction of Apple-Cinnamon

Cheerios by General Mills in 1989.

(1) Data. The dataset comes from supermarket scanner data collected by Nielsen company.
It covers 137 weeks (T = 137) and seven geographic markets (M = 7) or standard metropol-

itan statistical areas (SMSAs), including Boston, Chicago, Detroit, Los Angeles, New York

City, Philadelphia, and San Francisco. Though the data includes information from hundreds

of brands, the model and the estimation concentrates in 20 brands classified in three seg-

ments: adult (7 brands), child (4 brands), and family (9 brands). Apple-Cinnamon Cheerios

are included in the family segment. We index markets bym, time by t, and brands by j, such

that data can be described as {pjmt, qjmt : j = 1, 2, ..., 20; m = 1, 2, ..., 7; t = 1, 2, ..., 137}.
Quantities are measured is physical units. There are not observable cost shifters.

(2) Model. Hausman estimates an Almost-Ideal-Demand-System combined with a nested

three-level structure. The nested structure is similar to the one describe in the diagram
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of Figure 2.1. The top level is the overall demand for cereal using a price index for cereal

relative to other goods. The middle level of the demand system estimates demand among

the three market segments, adult, child, and family, using price indexes for each segment.

The bottom level is the choice of brand within a segment. For instance, within the family

segment the choice is between the brands Cheerios, Honey-Nut Cheerios, Apple-Cinnamon

Cheerios, Corn Flakes, Raisin Bran (Kellogg), Wheat Rice Krispies, Frosted Mini-Wheats,

Frosted Wheat Squares, and Raisin Bran (Post). Overall price elasticities are then derived

from the estimates in all three segments. The estimation is implemented in reverse order,

beginning at the lowest level (within segment), and then using those estimates to construct

price indexes at the next level, and implementing the estimation at the next level. At the

lowest level, within a segment, the demand system is:

sjmt = α1
jm + α2

t + βj ln(ygmt) +
∑J

k=1 γjk ln(pkmt) + ξjmt (2.28)

where ygmt is overall expenditure in segment/group g. The terms α1
jm and α2

t represent

product, market and time effects, respectively, which are captured using dummies.

(2) Instruments. Suppose that the supply (pricing equation) is:

ln(pjmt) = δj cjt + τ jm + κj1 ξ1mt + ...+ κjJ ξJmt (2.29)

All the components in the right-hand-side, δj, cjt, τ jm, κ’s, and ξ’s, are unobservable to

the researcher. Variable cjt represents a cost shifter at the product level that is common

to all the city markets. Variables τ jm is city-brand fixed effect that captures differences in

transportation costs. The terns κj1 ξ1mt+ ...+κjJ ξJmt capture how the price of product j in

marketm responds to local demand shocks, ξ1mt, ξ2mt, ..., ξJmt. The identification assumption

is that these demand shocks are not (spatially) correlated across markets:

E(ξjmt ξkm′t) = 0 for any j, k and m′ 6= m (2.30)

The assumption implies that after controlling for brand-city fixed effects, all the correlation

between prices at different locations comes from correlation in costs, and not from spatial

correlation in demand shocks. Under these assumptions we can use average prices in other

local markets, P j(−m)t, as instruments, where:

P j(−m)t =
1

M − 1

∑
m′ 6=m

pjm′t (2.31)

(3) Approach to evaluate the effects of new goods. Suppose that product J is a "new"
product, though it is a product in our sample and we have data on prices and quantities of

this product such that we can estimate all the parameters of the model including α0
J , {βJk}
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and γJ . The expenditure function e(p, u) for Deaton & Muellbauer demand system is:

e(p, u) =
∑J

j=1 αj ln(pj) +
1

2

∑J
j=1

∑J
k=1 γjk ln(pj) ln(pk) + u

∏J
j=1 p

βj
j (2.32)

And let V (p, y) be the indirect utility associated with the demand system, that we can easily

obtain by solving the demand equations into the utility function. The functions e(p, u) and

V (p, y) correspond to the situation where the new product J is already in the market.

Suppose that we have estimated the demand parameters after the introduction of the good

and let θ̂ be the vector of parameter estimates. We use ê(p, u) and V̂ (p, y) to represent

the functions e(p, u) and V (p, y) when we use the parameter estimates θ̂. Similarly, we use

D̂j(p, y) to represent the estimated Marshallian demand of product j.

The concept of virtual price plays a key role in Hausman’s approach to obtain the value

of a new good. Hausman defines the virtual price of the new good J (represented as p∗J) as

the price of this product that makes its demand just equal to zero. Of course, this virtual

price depends on the prices of the other goods and on the level of income. We can define a

virtual price of product J for each market and quarter in the data. That is, p∗Jmt is implicitly

defined as the price of product J that solves the equation:

D̂j(p1mt, p2mt, ..., p
∗
Jmt) = 0 (2.33)

Hausman compares the factual situation with the new product with the counterfactual situ-

ation where everything is equal except that the price of product J is p∗Jmt such that nobody

buys this product. Let umt be the utility of the representative consumer in market m at

period t with the new product: that is, umt = V̂ (pmt, ymt). By construction, it should be the

case that ê(pmt, umt) = ymt. To reach the same level of utility umt without the new product,

the representative consumer’s expenditure should be ê(p1mt, p2mt, ..., p
∗
Jmt, umt). Therefore,

we can measure the change in welfare associated to the introduction of the new product

using the following Equivalent Variation measure:

EVmt = ê(p1mt, p2mt, ..., p
∗
Jmt, umt)− ymt (2.34)

Hausman considers this measure of consumer welfare.

This approach uses a market with prices and income (p1mt, p2mt, ..., p
∗
Jmt, ymt) as the

counterfactual to measure the value of good J in a market with actual prices and income

(p1mt, p2mt, ..., pJmt, ymt). This choice of counterfactual does not account for the potential

effect on prices of the introduction of the new product. In some applications, the welfare

gains from these competition effects can be substantial and we are interested in measuring

them. To measure these effects we should calculate equilibrium prices before and after the

introduction of the new good. This requires the estimation not only of demand parameters

but also of firms’marginal costs, as well as an assumption about competition (competitive
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market, Cournot, Bertrand). Though the Equivalent Variation presented above does not

account for competition effects, it has some attractive features. First, it has a clear economic

interpretation as the welfare gain in the absence of competition effects. Second, since it only

depends on demand estimation, it is robust to misspecification of the supply side of the

model.

3. Demand systems in characteristics space

3.1. Model
. The model is based on three basic assumptions. First, a product, say a laptop computer,
can be described as a bundle of physical characteristics: for instance, CPU speed, memory,

screen size, etc. These characteristics determine a variety of the product. Second, consumers

have preferences on bundles of characteristics of products, and not on the products per se.

And third, a product has J different varieties and each consumer buys at most one variety

of the product per period, that is, all the varieties are substitutes in consumption.

We index varieties by j ∈ {1, 2, ..., J}. From an empirical point of view, we can distinguish
two sets of product characteristics. Some characteristics are observable and measurable to

the researcher. We represent with them using a vector of K attributes Xj ≡ (X1j, X2j, ...,

XKj), where Xkj represents that "amount" of attribute k in brand j. For instance, in the

case of laptops we could define the variables as follows: X1j represents CPU speed; X2j is

RAM memory; X3j is hard disk memory; X4j is weight; X5j is screen size; X6j is a dummy

(binary) variable that indicates whether the manufacturer of the CPU processor s Intel or

not; etc. Other characteristics are not observable, or at least measurable, to the researcher

but they are known and valuable to consumers. There may be many of these unobservable

attributes, and we describe these attributes using a vector ξj, that contains the "amounts"

that variety j has of the different unobservable attributes. The researcher does not even

know even the number of unobservable attributes, that is, she does not know the dimension

and the space of ξj.

We index households by h ∈ {1, 2, ...., H} where H represents the number of households

in the market. A household has preferences defined over bundles of attributes. Consider a

product with arbitrary attributes (X, ξ). The utility of consumer h if she consumes that

product is Vh(X, ξ). Importantly, note that the utility function Vh is defined over any

possible bundle of attributes (X, ξ) that may or may not exist in the market. For a product

j that exists in the market and has attributes (Xj, ξj), this utility is Vhj = Vh(Xj, ξj). The

total utility of a consumer has two additive components: the utility from this product, and

the utility from other goods: Uh = uh(C) + Vh(X, ξ), where C represents the amount of a

composite good, and uh(C) is the utility from the composite good.
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Consumers differ in their levels of income, yh, and in their preferences. Consumer het-

erogeneity in preferences can be represented in terms of a vector of consumer attributes υh
that may be completely unobservable to the researcher. Therefore, we can write the utility

of consumer h as:

Uh = u(C;υh) + V (X, ξ;υh) (3.1)

We also assume that there is continuum of consumers with measure H, such that υh has a

well-defined density function fυ in the market.

Each consumer buys at most one variety of the product (per period). Given her income,

yh, and the vector of product prices p = (p1, p2, ..., pJ), a consumer decides which variety to

buy, if any. Let dhj ∈ {0, 1} be the indicator of the event "consumer h buys product j". A
consumer decision problem is:

max
{dh1,dh2,...,dhJ}

u(C;υh) +

J∑
j=1

dhj V (Xj, ξj;υh)

subject to : C +
∑J

j=1
djh pj ≤ yh

dhj ∈ {0, 1} and
∑J

j=1
djh ∈ {0, 1}

(3.2)

A consumer chooses between J + 1 possible choice alternatives: each of the J products and

the alternative j = 0 which represents the choice to not buy any product. The solution to this

consumer decision problem provides the consumer-level demand equations d∗j(X,p, yh;υh) ∈
{0, 1} such that:
{d∗j(X,p, yh;υh) = 1} ⇔{
u(yh − pj;υh) + V (Xj, ξj;υh) > u(yh − pk;υh) + V (Xk, ξk;υh) for any k 6= j

} (3.3)

where k = 0 the alternative of not buying any variety (that is, outside alternative), that has

indirect utility u(yh;υh). Given the demand of individual consumers, d∗j(X,p, yh;υh), and

the joint density function f(υh, yh), we can obtain the aggregate demand functions:

qj(X,p, f) =

∫
d∗j(p, yh;υh) , β) f(υh, yh) dυh dyh (3.4)

and the market shares sj(X,p, f) ≡ qj(X,p, f)

H
.

Now, we provide specific examples of this general model. Each example is based on

specific assumptions about the form of the utility function and the probability distribution

of consumer heterogeneity. These examples are also important models which are workhorses

in the literature on estimation of demand of differentiated products.

3.2. Logit model of product differentiation
. Consider the following specification assumptions on the general model presented above.
First, the utility from the outside product is linear and has the same form and parameters for
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all consumers: u(C;υh) = α C. Second, the utility of purchasing product j is V (Xj, ξ̃j;υh) =

Xjβ + ξj + εhj, where ε‘s are Extreme Value Type 1 and independently and identically

distributed (i.i.d.) over consumers and products. Then, Uhj = −α pj + Xj β + ξj + εhj and

the the Extreme Value assumption on the ε variables implies that the market shares have

the following closed-form logit structure.

sj =
qj
H

=
exp {δj}

1 +
∑J

k=1 exp {δk}
(3.5)

where δj ≡ −α pj + Xj β + ξj represents the mean utility of buying product j.

The parameter α represents the marginal utility of income and it is measured in utils

per dollar. In the vector β, the parameter βk associated to characteristic Xjk (the k − th
element of vector Xj) represents the marginal utility of this characteristic and it is measured

in utils per unit of Xjk. Therefore, for any product attribute k, the ratio of parameters βk/α

is measured in dollars per unit of Xjk such that it is a monetary measure of the marginal

utility of the attribute.

3.3. Nested Logit model
. As explain below, the logit model imposes strong restrictions on the own and cross price
elasticities of products. The Nested Logit model relaxes these restriction.

Suppose that we partition J+1 products (including the outside product) in G+1 groups.

We index groups of products by g ∈ {0, 1, ..., G}. Let Jg represent the set of products in
group g. The utility function has the same structure as in the Logit model with the only

(important) difference that the variables εhj have the structure of a nested logit model:

εhj = λ ε
(1)
hg + ε

(2)
hj (3.6)

where ε(1)
hg and ε

(2)
hj are i.i.d. Extreme Value type 1 variables, and λ is a parameter. This

model implies the following closed-form expression for the market shares:

sj =
exp {λ Ig}∑G
g′=0 exp {λ Ig′}

exp {δj}∑
k∈Jg exp {δk}

(3.7)

where Ig is denoted the inclusive value of group g and it is defined as follows:

Ig ≡ ln

∑
j∈Jg

exp {δj}

 (3.8)

This inclusive value can be interpretated as the expected utility of a consumer who chooses

group g knowing the δ values of the products in that group but before knowing the realization

of the random variables ε(2)
hj . That is,

Ig ≡ Eε(2)
(

max
j∈Jg

[
δj + ε

(2)
hj

])
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where Eε(2)(.) represents the expectation over the distribution of the random variables ε(2)
hj .

Because this interpretation, inclusive values are also denoted as Emax values. When the

variables ε(2)
hj have a Extreme Value type 1 distribution, this Emax or inclusive value has the

simple form presented above as the logarithm of the sum of the exponential of δ’s.

The equation for the market shares in the nested Logit model has an intuitive interpreta-

tion as the product of between-groups and within-groups market shares. Let s∗g ≡
∑

j∈Jg sj

be the aggregate market share of all the products and group g. And let sj|g ≡ sj/
∑

k∈Jg sk

be the within-group market share of product j in its group g. By definition, we have that

sj = s∗g sj|g. The nested Logit model implies that within-group market shares have the logit

structure sj|g = exp {δj} / exp{Ig}, and the group market shares have the logit structure
exp {λ Ig} /

∑G
g′=0 exp {λ Ig′}.

Goldberg and Verboven (2001) estimate a nested logit model for the demand of automo-

biles in European car markets.

3.4. Random Coeffi cients Logit
. Suppose that the utilities V (Xj, ξ̃j;υh) and u(C;υh) are linear in parameters, but these

parameters are household specific. That is, Uhj = −αh pj + Xj βh + ξj + εhj where ε‘s are

still i.i.d. Extreme Value Type 1, and[
αh
βh

]
=

[
α
β

]
+ vh with vh ∼ i.i.d. N(0,Σ) (3.9)

Then, we can write utilities as:

Uhj = −α pj + Xj β + ξj + ṽhj + εhj (3.10)

where ṽhj = −vαh pj+v
β1
h X1j+ ...+v

βK
h XKj that has an heteroskedastic normal distribution.

Then, the expression for the market shares is:

sj =
qj
H

=

∫
exp {δj + ṽhj}

1 +
∑J

k=1 exp {δk + ṽhk}
f(ṽh | p,X,Σ) dṽh (3.11)

with δj ≡ −α pj + Xj β + ξj still represents the mean utility of buying product j.

In general, for any distribution of consumer heterogeneity υh, the model implies a map-

ping between the J × 1 vector of mean utilities δ = {δj : j = 1, 2, ..., J} and the J × 1 vector

of market shares s = {sj : j = 1, 2, ..., J}.

sj = σj(δ | p,X,Σ) for j = 1, 2, ..., J (3.12)

or in vector form s = σ(δ | p,X,Σ).

Berry, Levinsohn, and Pakes (1995) estimate a random coeffi cients logit model tostudy

the demand of automobiles in the US.



50 2. DEMAND ESTIMATION

The importance of allowing for random coeffi cients. In general, the more flexible
is the structure of the unobserved consumer heterogeneity, the more flexible and realistic can

be the elasticities of substitution between products that the model can generate. The logit

model imposes strong, and typically unrealistic, restrictions on demand elasticities. The

random coeffi cients model can generate more flexible elasticities.

In discrete choice models, the Independence of Irrelevant Alternative (IIA) is a property

of consumer choice that establishes that the ratio between the probabilities that a consumer

chooses two alternative, say j and k, should not be affected by the availability or the at-

tributes of other alternatives:

IIA :
Pr(dhj = 1)

Pr(dhk = 1)
depends only on attributes of j and k

While IIA may be a reasonable assumption when we study the demand of single individual,
it is quite restrictive when we look at the demand of multiple individuals because these

individuals are heterogeneous in their preferences. The logit model implies IIA. In the logit

model:
Pr(dhj = 1)

Pr(dhk = 1)
=
sj
sk

=
exp

{
−α pj + Xj β + ξj

}
exp {−α pk + Xk β + ξk}

⇒ IIA

This property implies a quite restrictive structure for the cross demand elasticities. In the

logit model, for j 6= k, we have that ∂ ln sj
∂ ln pk

= −α pk sk, which is the same for any product j.
A 1% increase in the price of product k implies the same % increase in the demand of any

product other than j. This is very unrealistic.

3.5. Berry’s Inversion Property
. Berry (1994) shows that, under some regularity conditions (more later), the demand system
s = σ(δ | p,X,Σ) is invertible in δ such that there is an inverse function σ−1and:

δ = σ−1(s | p,X,Σ) (3.13)

or for a product j, δj = σ−1
j (s | p,X,Σ). The form of the inverse mapping σ−1 depends on

the PDF fṽ.

This inversion properly has important implications for the structural estimation of the

demand system. Under this inversion, the unobserved product characteristics ξj enter addi-

tively in the equation δj = σ−1
j (s | p,X,Σ). Under this additivity, and the mean indepen-

dence of the unobservables ξj conditional on the exogenous product characteristics X, we

can construct moment conditions and obtain GMM estimators of the structural parameters

that deal with the endogeneity of prices.

Example: Logit model (Masnki, 1983; Berkovec and Rust, 1985). In the logit model,
the demand system is sj = exp {δj} /D, where D ≡ 1 +

∑J
k=1 exp {δk}, such that ln(sj) =

δj − ln(D). Let s0 be the market share of the outside good such that, s0 = 1−
∑J

k=1 sk. For
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the outside good, s0 = 1/D, such that ln(s0) = − ln(D). Combining the equations for ln(sj)

and ln(s0) we have that:

δj = ln (sj)− ln (s0) (3.14)

and this equation is the inverse mapping σ−1
j (s | p,X,Σ) for the logit model. �

Example: Nested Logit model. In the nested Logit model, the demand system is sj = s∗g

sj|g where s∗g = exp {λ Ig} /D and sj|g = exp {δj} / exp{Ig}, such that ln(sj) = ln(s∗g) −
ln(sj|g) with ln(s∗g) = λ Ig− ln(D) and ln(sj|g) = δj−Ig. For the outside alternative, we have
that ln(s0) = − ln(D). Combining these expressions we can obtain that ln (sj) = (λ − 1)

Ig + ln (s0) + δj. And taking into account that Ig = [ln(s∗g)− ln(s0)]/λ, we have that:

δj = [ln(sj)− ln(s0)] +

(
1− λ
λ

)
[ln(s∗g)− ln(s0)] (3.15)

and this equation is the inverse mapping σ−1
j (s | p,X,Σ) for the nested Logit model. �

We also have a closed-form expression for σ−1
j in the case of the Nested Logit model.

However, in general, for the Random Coeffi cients model we do not have a closed form ex-

pression for the inverse mapping σ−1
j . Berry (1994) and Berry, Levinsohn, and Pakes (1995)

propose a fixed point algorithm to compute the inverse mapping for the Random Coeffi -

cients logit model. They propose the following fixed point mapping: δ = F (δ | s,p,X,Σ) or

δj = Fj(δ | s,p,X,Σ) where:

Fj(δ | s,p,X,Σ) ≡ δj + ln(sj)− ln (σj(δ|p,X,Σ)) (3.16)

It is straightforward to see that δ is a fixed point of the mapping F (δ | s,p,X,Σ) if and

only if δ = σ−1(s | p,X,Σ). Therefore, finding a solution (fixed point) in δ to the system of

equation δ = F (δ | s,p,X,Σ) is equivalent to finding the inverse function σ−1(s | p,X,Σ)

at a particular value of (s,p,X,Σ).

Defnition: Contraction. Let X be a set in Rn, let ‖.‖ be the Euclidean distance, and let
f(x) be a function from X into X . We say that f(x) is a contraction (with respect to X and
‖.‖) if and only if there is a constant λ ∈ [0, 1) such that for any pair of values x and x′ in

X we have that ‖f(x)− f(x′)‖ ≤ λ ‖x− x′‖. �

Contraction mapping Theorem. If f : X → X is a contraction, then the following results (A)
and (B) hold. (A) there is only one solution in X to the fixed point problem x = f(x). (B)

Let x∗ be this unique solution such that x∗ = f(x∗). For any arbitrary value x0 ∈ X define

the sequence {xk : k ≥ 1} such that xk = f(xk−1). Then, limk→∞ xk = x∗. �

Berry (1994) shows that this mapping F (δ | s,p,X,Σ) is a contraction as long as the

values of δ are not too small. As established by the Contraction Mapping Theorem, this
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implies that the mapping has a unique fixed point and we can find it by using the fixed point

iteration algorithm. For this model, the algorithm proceeds as follows.

Fixed Point algorithm

- Start with an initial guess δ0.

- At iteration R ≥ 1, we calculate σj(δ
R−1| p,X,Σ) for every product j by evaluating

the multiple integration expression in equation (3.11) and then we update the vector δ using

the updating equation:

δR = Fj(δ
R−1 | s,p,X,Σ) = δR−1

j + ln(sj)− ln
(
σj(δ

R−1|p,X,Σ)
)

(3.17)

- Given δR, we check for convergence. If
∥∥δR − δR−1

∥∥ is smaller than a pre-specified
small constant (for instance, 10−6), we stop the algorithm and take δR as the solution or

fixed point of the algorithm. Otherwise, we proceed with iteration R + 1. �

3.6. Dealing with limitations of demand models in product space
. Discrete choice demand models can deal with some limitations of demand systems in
product space.

[1] Representative consumer assumption. The model is micro founded. It takes into
account that the shape of demand and price sensitivity is intimately related to consumer

heterogeneity in tastes. Therefore, we can estimate with precision demand systems where J

is large. In fact, for these models, large J implies more precise estimates.

[2] Too many parameters problem. The number of parameters does not increase with
the number of products J but with the number of observable product attributes K.

[3] Instruments for prices. As we describe below, in the regression equation σ−1(s |
p,X,Σ) = −α pj + Xj β + ξj we can use the observable exogenous characteristics of other

products, Xk : k 6= j, as instruments for price. In the equation for product j, the character-

istics of other products, {Xk : k 6= j}, are valid instruments for the price of product j. To see
this, note that the variables {Xk : k 6= j} are not correlated with the error term ξj but they

are correlated with the price pj. The later condition may not be obvious because it depends

on an assumption about price decisions. Suppose that product prices are the result of price

competition between the firms that produce these products. To provide a simple intuition,

suppose that there is one firm per product and consider the Logit model of demand. The

profit function of firm j is pj qj − Cj(qj)− Fj where Cj(qj) and Fj are the variable and the
fixed costs of producing j, respectively. For the Logit model, ∂qj/∂pj = −αqj(1 − sj) and
the marginal condition of optimality for the price of product j is:

pj = C ′j(qj) +
1

α(1− sj)
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Though this is just an implicit equation, it makes it clear that pj depends (through sj) on

the characteristics of all the products. If Xkβ (for k 6= j) increases, then sj will go down,

and according to the previous expression the price pj will also decrease. Therefore, we can

estimate the demand parameters by IV using as instruments of prices the characteristics of

the other products. We provide further details in the next section.

[4] Problems to predict the demand of new products. Predicting the demand of new
products does not require knowing additional parameters. Given the structural parameters

β, α, and Σ, we can predict the demand of a new hypothetical product which has never

been introduced in the market. Suppose that the new product has observed characteristics

{xJ+1, pJ+1} and ξJ+1 = 0. For the moment, assume also that: (1) incumbent firms do not

change their prices after the entry of the new product; and (2) incumbent firms do not exit

or introduce new products after the entry of the new product. Then, the demand of the new

product is:

qJ+1 = H

∫
exp

{
−α pJ+1 + XJ+1 β + ξJ+1 + ṽhJ+1

}
1 +

∑J+1
k=1 exp {−α pk + Xk β + ξk + ṽhk}

f(ṽh|p,X,Σ) (3.18)

Note that to obtain this prediction we need also to use the residuals {ξk} that can be obtained
from the estimation of the model. Given any hypothetical new product with characteristics

(XJ+1, pJ+1, ξJ+1), the model provides the market share of this new product, its demand

elasticity, and the effect of introducing this new product on the market share of any pre-

existing product.

3.7. Estimation
. Suppose that the researcher has a dataset from a single market at only one period but
for a product with many varieties: M = T = 1 but J is large (for instance, 100 varieties or

more). The researcher observes the dataset {qj, Xj, pj : j = 1, 2, ..., J}. Given these data,
the researcher is interested in the estimation of the parameters of the demand system: θ = (α,

β, Σ). For the moment, we assume that market size H is known to the researcher. But it

can be also estimated as a parameter. For the asymptotic properties of the estimators, we

consider that J →∞.
The econometric model is:

sj = σj (X, p, ξ; θ) (3.19)

Unobserved product characteristics ξ are correlated with prices p (endogeneity). Dealing

with endogeneity in nonlinear models where unobservables do not enter additively is compli-

cated. In principle, we would like to avoid using a Maximum Likelihood approach because

it requires the specification of how the vector of prices p depends on the exogenous variables

(X, ξ), and an assumption about the probability distribution of the vector of unobservables
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ξ. If these assumptions on the supply side of the model are incorrect, the maximum like-

lihood estimator provides inconsistent estimates of demand parameters. We would prefer

using a method that does not require these additional assumptions.

In this context, an important contribution of Berry (1994) and Berry, Levinsohn, and

Pakes (1995) was to show that there is a general class of models with the invertibility
property described above. This property implies that we can represent the model using a
equation where the unobservables ξ enter additively:

σ−1
j (s |p,X,Σ) = −α pj + Xj β + ξj (3.20)

Given this representation of the model, we can estimate the structural parameters θ =

{α, β, Σ} using GMM. The key identification assumption is the mean independence of the
unobserved product characteristics and the exogenous product characteristics.

Assumption: E
(
ξj | X1, ..., XJ

)
= 0.

Instrumental Variables (IV) and Generalized Method of Moments (GMM)
estimation. Under the previous assumption, we can use the characteristics of other products
(Xk : k 6= j) to construct moment conditions to estimate structural parameters in equation

(3.20). For instance, we can use the average characteristics of other products as the vector

of instruments, 1
J−1

∑
k 6=j Xk. It is clear that E

(
1

J−1

∑
k 6=j Xk ξj

)
= 0, and we can estimate

θ using GMM. Suppose that we have a vector of instruments Zj (for instance, Zj = [Xj,
1

J−1

∑
k 6=j Xk]) such that the following identification conditions hold:

(ID.1) E(Zj ξj) = 0;

(ID.2) dim(Zj) ≥ dim(θ);

(ID.3) E
[(

∂σ−1j (s|p,X,Σ)

∂Σ
, pj, Xj

)′(
∂σ−1j (s|p,X,Σ)

∂Σ
, pj, Xj

)
| Zj

]
is non-singular.

Under conditions (ID.1) to (ID.3), the moment restrictions E(Zj ξj) = 0 can identify the

vector of parameters θ.

To obtain the GMM estimator of θ, we replace the population moment restrictions E(Zj

ξj) = 0 with their sample counterpart. To do this, we replace the population expectation

E(.) with the sample mean 1
J

∑J
j=1(.), and the unobservable ξj with its expression in terms

of observables and parameters of the model. Then, the sample moment conditions becomes:

1

J

J∑
j=1

Zj

(
σ−1
j (s|p,X,Σ) + α pj −Xj β

)
= 0 (3.21)

If the number of these restrictions (that is, the number of instruments in the vector Zj) is

equal to the number of parameters in θ, then the model is just identified and the GMM

estimator is defined as the value of θ that solves exactly this system of sample moment

conditions. When the number of restrictions is greater than the number of parameters, the



3. DEMAND SYSTEMS IN CHARACTERISTICS SPACE 55

model is over-identified, and the GMM estimator is defined as the value of θ that minimizes

a quadratic form of the moment restrictions. Let m(θ) be function that represents in a

compact form the sample moments 1
J

∑J
j=1 Zj [σ−1

j (s|p,X,Σ)+ α pj −Xj β] as a function

of θ. The GMM estimator is defined as:

θ̂ = arg min
θ

[m(θ)′ W m(θ)] (3.22)

where W is a weighting matrix.

3.7.1. Choice of instruments

. When J is large, a possible concern with the instruments 1
J−1

∑
k 6=j Xk is that they may

have very little sample variability across j. To deal with this problem we can define instru-

ments that take into account some intuitive features on price competition between differ-

entiated products. Product j faces stronger competition if there are other products with

similar characteristics. Therefore, we expect that the price of product j declines with the

number of its close neighbors, where these close neighbors are defined as other products with

similar characteristics as product j. To implement this idea, define d∗ as the average dis-

tance between the observable characteristics of all the products in the market. That is, d∗ =
1

J(J−1)/2

∑J
j=1

∑
k>j ‖Xk −Xj‖. Let τ ∈ (0, 1) as small constant such that we can say that

when the distance between two products is smaller or equal that τd∗, then the two products

are very similar, for instance, τ = 0.25. We can define a set of close neighbors for product j

as:

Nj = {k 6= j : ‖Xk −Xj‖ ≤ τd∗} (3.23)

Let |Nj| represents the number of elements in the set Nj. We can construct the vector of
instruments,

Zj = [Xj, |Nj| ,
1

|Nj|
∑

k∈Nj Xk] (3.24)

This vector of instruments can have more sample variability than 1
J−1

∑
k 6=j Xk and it can

be also more correlated with pj.

The vector of instruments Zj should have at least as many variables as the number of

parameters θ = {α, β, Σ}. Without further restrictions we have that dim(Σ) = K(K+1)
2

where dim(Xj) = K, such that dim(θ) = (K + 1) + K(K+1)
2

. Note that the vector of

instruments suggested above, Zj = [Xj, |Nj| , 1
|Nj |
∑

k∈Nj Xk], has only 2K+1 elements such

that the order condition of identification (ID.2) does not hold, that is, dim(Zj) = 2K + 1 <

(K + 1) + K(K+1)
2

= dim(θ).

Several solutions have been applied to deal with this under-identification problem. A

common approach is to impose restrictions on the variance matrix of the random coeffi cients

Σ. The most standard restriction is that Σ is a diagonal matrix (that is, zero correlation

between the random coeffi cients of different product attributes) and there is (at least) one
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product attribute without random coeffi cients (i.e. one element in the diagonal of Σ is equal

to zero). Under these restrictions, we have that dim(θ) = 2K and the order condition of

identification holds.

Another approach which has been used in some papers is including additional moments

restrictions that come from "micro-moments" or more precisely, market shares for some

demographic groups of consumers. This is the approach in Petrin (2002). A third possible

approach is to extend the set of instruments beyond 1
|Nj |
∑

k∈Nj Xk. In this case, one could

use the two step method in Newey (1990) to otain the set of optimal instruments.

3.7.2. Weak instruments problem

. Armstrong (2016) points out a potential inconsistency in this GMM estimator when the

number of products is large but the number of markets and firms is small. BLP instruments

affect prices only through price-cost margins. If price-cost margins converge fast enough to

a constant as J →∞, then GMM-BLP estimator is inconsistent. This is an extreme case of
weak instruments. This is also a potential issue in small samples: the bias and variance of

the estimator can be very large in small samples. Armstrong (2016) studies this issue under

different data structures. Suppose that the dataset has variation over products (J products

indexed by j), firms (N firms indexed by n), and markets or time periods (T markets indexed

by t), such that we observe prices and quantities pjnt and qjnt. Armstrong shows that the

inconsistency depends on the form of the demand system (that is, standard Logit or random

coeffi cients model), and on whether the number of products per firm J/N goes to a constant,

to zero, or to infinity when J goes to infinity.

Consider first the case of the standard logit model with single product firms such that

J/N = 1. Under Bertrand competition, the price equation has the following form:

pj = MCj +
1

α

1

1− sj
(3.25)

BLP instruments affect price pj only through the term 1
1−sj . If

√
J

[
1

1− sj

]
→ constant as

J → ∞, then the GMM-BLP estimator is inconsistent, and in fact it is not asymptotically
different to using instrumental variables that are independent of prices and do not have any

identification power. This is an extreme case of a problem of weak instruments.

In contrast, the GMM-BLP estimator can be root-J consistent when the industry (data)

is such that firms are multiproduct. Note that a multiproduct firm maximizes the joint

profit from all its products and obtains price-cost margins which are above those when the

products are sold by single-product firms. With this industry.data, price-cost margins are

larger and converge more slowly to a constant as as J → ∞. More precisely, as J → ∞,
keeping constant the number of firms N , the rate of convergence of markups to a constant is
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slower than
√
J . That is, in this case there is a constant α < 1/2 such that Jα

[
1

1− sj

]
→

constant, and this implies that Logit or random coeffi cients Logit are consistent as J →∞.
Armstrong (2016) shows that the GMM-BLP estimator of the Random Coeffi cients Logit

model is inconsistent when the number of markets T is fixed and the number of products

per firm J/N is also fixed. The estimator is consistent when T and N are fixed and firms are

asymmetric in their characteristics. Consistency can be also achieved if T goes to infinity

and N and J are fixed.

3.7.3. Alternatives to BLP instruments

. An alternative to BLP instruments are Hausman-Nevo instruments and Arellano-Bond or

Dynamic Panel Data instruments.

Hausman-Nevo instruments. The dataset includes T geographic markets and J products.
The T markets belong to R regions where cost shocks are spatially correlated within region,

but demand shocks are not. Suppose that the unobservable ξjt has the following variance-

components structure:

ξjt = ξ
(1)
j + ξ

(2)
t + ξ

(3)
jt (3.26)

and ξ(3)
jt is not spatially correlated, that is, for any pair of markets t and t

′, E(ξ
(3)
jt ξ

(3)
jt′ ) = 0.

Under these conditions, we can control for ξ(1)
j and ξ

(2)
t using product and market fixed

effects and we can construct instrumental variables for that are correlated with prices and

uncorrelated with ξ
(3)
jt . More precisely, define Zjt = 1

TR−1

∑
t′∈TR,t′ 6=t pjt′ where TR is the

number of markets in region R (where market t belongs) and TR is the set of markets in
region R. Since ξ(3)

jt is not spatially correlated, we have that E(Zjt ξ
(3)
jt ) = 0. And Zjt is

correlated with pjt because cost shocks are spatially correlated within the region.

Arellano-Bond or Dynamic Panel Data instruments. Now, consider that the subindex
t represents time such that the dataset consists of J products over T periods of time, where

T is small and J is large. The demand error term ξjt has the structure in equation (3.26) and

ξ
(3)
jt is not serially correlated: for any two time periods t and t

′, E(ξ
(3)
jt ξ

(3)
jt′ ) = 0. Consider

the demand equation in first differences, that is, the equation at period t minus the equation

at t− 1:

σ−1
j (st |pt,Xt,Σ)− σ−1

j (st−1 |pt−1,Xt−1,Σ) = −α ∆pjt + ∆Xjt β + ∆ξjt (3.27)

where ∆pjt ≡ pjt − pjt−1, ∆Xjt ≡ Xjt −Xjt−1, and ∆ξjt ≡ ξjt − ξjt−1. Consider the instru-

ments Zjt = {sjt−2, pjt−2}. Under these assumptions Zjt are valid instrumental variables,

E(Zjt ∆ξ
(3)
jt ) = 0. If shocks in marginal costs are serially correlated, then Zjt is correlated

with the price difference ∆pjt after controlling for the exogenous regressors ∆Xjt.
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3.7.4. Computation of the GMM estimator

. Berry, Levinsohn, and Pakes (1995) proposes a Nested Fixed Point (NFXP) algorithm to

compute the GMM estimator of θ.4 As indicated by its name, this method can be described

in terms of two nested fixed point algorithms: an inner algorithm that consists of fixed point

iterations to calculate the values σ−1
j (s |p,X,Σ) for a given value of Σ; and an outer Newton

algorithm that minimizes the GMM criterion function with respect to θ.

Let Q(θ) = m(θ)′ W m(θ) be the GMM criterion function such that the GMM estimator

can be defined as the value θ̂ that satisfies the condition ∂Q(θ̂)/∂θ = 0. Newton’s method is

based on a first order Taylor’s approximation to the condition ∂Q(θ̂)/∂θ = 0 around some

value θ0 such that, by the Mean Value Theorem, there exists a scalar λ ∈ [0, 1) such that for

θ∗ = (1− λ)θ0 + λθ̂ we have that:

∂Q(θ̂)

∂θ
=
∂Q(θ∗)

∂θ
+
∂2Q(θ∗)

∂θ∂θ′
[θ̂ − θ0] (3.28)

Therefore, we have that ∂Q(θ∗)/∂θ + ∂2Q(θ∗)/∂θ∂θ′ [θ̂ − θ0] = 0, and solving for θ̂, we get:

θ̂ = θ0 −
[
∂2Q(θ∗)

∂θ∂θ′

]−1 [
∂Q(θ∗)

∂θ

]
(3.29)

If we knew the value θ∗, then we could obtain the estimator θ̂ using this expression. However,

note that θ∗ = (1− λ)θ0 + λθ̂ suhc that it depends on θ̂ itself. We have a "chicken and egg"

problem. To deal with this problem, Newton’s method proposes an iterative procedure.

Newton’s algorithm

- We start with an initial candidate for estimator, θ0.

- At every iteration R ≥ 1 we update the value of θ, from θR−1 to θR, using the following

formula:

θR = θR−1 −
[
∂2Q(θR−1)

∂θ∂θ′

]−1 [
∂Q(θR−1)

∂θ

]
(3.30)

- Given θR and θR−1, we check for convergence. If
∥∥θR − θR−1

∥∥ is smaller than a pre-
specified small constant (for instance, 10−6), we stop the algorithm and take θR as the

estimator θ̂. Otherwise, we proceed with iteration R + 1. �

The Nested Fixed Point algorithm makes it explicit that the evaluation of the criterion

function Q(θ) at any value of θ, and of its first and second derivatives, requires the solution

of other fixed point problem to evaluate the inverse mapping σ−1
j (s| p,X,Σ).

Nested Fixed Point algorithm

- We start with an initial guess θ0 = (α0, β0,Σ0).

4The term Nested Fixed Point (NFXP) algorithm was coined by Rust (1987) in the context of the
estimation dynamic discrete choice structural models.
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- At every iteration R ≥ 1 of the outer (Newton) algorithm, we take ΣR−1 and apply

the Fixed Point described above (equation (3.17)) to compute the inverse mapping σ−1
j (s|

p,X,ΣR−1). We also apply the same Fixed Point algorithm to calculate numerically the

gradient vector ∂σ−1
j (s| p,X,ΣR−1)/∂Σ and the Hessian matrix ∂2σ−1

j (s| p,X,ΣR−1)/∂Σ∂Σ′.

Given these objects, we can obtain the gradient vector ∂Q(θR−1)
∂θ

and the Hessian matrix
∂2Q(θR−1)
∂θ∂θ′ . Then, we apply one Newton iteration as described in equation (3.30).

- Given θR and θR−1, we check for convergence. If
∥∥θR − θR−1

∥∥ is smaller than a pre-
specified small constant (for instance, 10−6), we stop the algorithm and take θR as the

estimator θ̂. Otherwise, we proceed with iteration R + 1. �

The Nested Fixed Point algorithm may be computationally intensive because it requires

the repeated solution of the fixed point problem that calculates the inverse mapping σ−1
j (s|

p,X,Σ), which itself requires Monte Carlo simulation methods to approximate the multiple

dimension integrals that define the market shares. Some alternative algorithms have been

proposed to reduce the number of times that the inner algorithm is called to computed the

inverse mapping. Dubé, Fox, and Su (2012) propose the MPEC algorithm. Lee and Seo

(2015) propose a Nested Pseudo Likelihood method in the same spirit as Aguirregabiria and

Mira (2002).

3.8. Nonparametric identification
. Empirical applications of discrete choice models of demand make different parametric as-
sumptions such as the normal distribution of the random coeffi cients, and the additive sepa-

rability of observable and unobservable product characteristics in the utility function. Berry

and Haile (2014) show that these parametric functional forms and distributional assumptions

are not essential for the identification of this type of demand system. The identification re-

lies primarily on the standard requirement that instruments be available for the endogenous

variables.

Let vhj be the utility of consumer h for purchasing product j. Define vh = (vh1, ..., vhJ)

that has CDF Fv(vh|X,p, ξ), where (X,p, ξ) are the vectors of characteristics of all the

products. In this general model, the interest is in the nonparametric identification of the

distribution function Fv(vh|X,p, ξ). The following assumption plays a key role in the iden-

tification results by Berry and Haile (2014).

Assumption BH-1. Unobserved product characteristics, ξj, enter in the distribution
of consumers’preferences vh through the term X1j + ξj, where X1j is one of the observable

product attributes.

Fv(vh | X,p, ξ) = Fv(vh | X(−1),p, X1 + ξ) (3.31)
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where X(−1) represents the observable product characteristics other than X1, and X1 + ξ

represents the vector (X11 + ξ1, ..., X1J + ξJ).

Assumption BH-1 implies that the marginal rate of substitution between the observable

characteristic X1j and the unobservable ξj is constant. The restriction that it is equal to one

is without lost of generality. Under this assumption, it is clear that:

sj = Pr
(
j = arg max

k
vik | X(−1),p, X1 + ξ

)
= σj

(
X(−1),p, X1 + ξ

)
(3.32)

For notational convenience, we use ξ∗j to represent Xj1 + ξj and the vector ξ
∗ to represent

X1 + ξ such that we can write the market share function as σj
(
X(−1),p, ξ

∗).
Assumption BH-2. The mapping s = σj

(
X(−1),p, ξ

∗) is invertible in ξ∗ such that
we have, ξ∗j = Xj1 + ξj = σ−1

j

(
s | X(−1),p

)
.

What are the economic conditions that imply this inversion property? Connected sub-
stitutes. The assumption of Connected substitutes can be described in terms of two
conditions.

(i) All goods are weak gross substitutes, that is, for any k 6= j, σj
(
X(−1),p, ξ

∗) is weakly
decreasing in ξ∗k. A suffi cient condition is that, as in the parametric model, higher values of

ξ∗j raise the utility of good j without affecting the utilities of other goods.

(ii) "Connected strict substitution". Starting from any inside good, there is a chain of

substitution [that is, σj is strictly decreasing in ξ
∗
k] leading to the outside good.

Connected strict substitution requires only that there is not a subset of products that

substitute only among themselves, that is, all the goods must belong in one demand system.

Suppose that we have data from T markets, indexed by t. We can write the inverse

demand system as:

X
(1)
jt = σ−1

j

(
st | X(−1)t,pt

)
− ξjt

Let Zt be a vector of instruments [we explain below how to obtain these instruments] and

suppose that: (a) E[ξjt | Zt] = 0 ; (b) [completeness] if E[B(st,X(−1)t,pt) | Zt] = 0, then

B(st,X(−1)t,pt) = 0 almost surely. Important: Completeness requires that dim(Zt) ≥
dim(st,X(−1)t,pt), that is, instruments for all 2J endogenous variables (st,pt)

Under these conditions, all the inverse functions σ−1
j are nonparametrically identified.

Then, ξjt is identified and we can again invert σ
−1
j to identify the demand system σ.

Sources of instruments. Note that we need not only J instruments for prices but
also J instruments for for market shares st. Instruments for st must affect quantities not

only through prices. For instance, supply/marginal cost shifters or Hausman-Nevo are IVs

for prices but they are not useful for st because they affect quantities only through prices.
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The vector X1t is a natural candidate as IV for st. By the implicit function theorem,
∂σ−1 (st,pt)

∂s′t
=

[
∂σ (δt,pt)

∂δ′t

]
. Identifying the effects of st on σ−1 is equivalent to identifying

the effects of ξ∗ on market shares σ. The vector X1t directly shifts the indices ξ
∗ , so these

are natural instruments for market shares in the inverse demand function.

Identification of Utility [Welfare analysis]. Without further restrictions, identification of

the system of demand equations σ does not imply identification of the distribution of random

utilities Fv. In general, to identify changes in consumer welfare we need Fv.

Assumption BH-3 [Quasi-linear preferences]. vhj = µhj − pj where the variables
µhj are independent of pj conditional on (ξ∗,X(−1)).

Under Assumption 3, the distribution Fv is identified from the demand system σ.

4. Consumer valuation of product innovations

Product innovation is ubiquitous in most industries, and a key strategy for differentiation.

During the last decades we have witnessed a large increase in the number of varieties of

different products. Evaluating consumer value of new products, and of quality improvements

in existing products, has received substantial attention in the context of:

- Improving Cost of Living Indexes (COLI).

- Costs and benefits of firms’product differentiation.

- Social value of innovations.

The standard approach is based on: Estimation of a demand system of differentiated

products; Constructing consumer indirect utility function (or surplus function) with and

without the new product. Typically, one of the two scenarios (with or without) is a coun-

terfactual.

In the definition of the counterfactual scenario the researcher needs to account for the

value of unobservables in the counterfactual scenario. for instance, industry time-trends,

unobserved product characteristics, distribution of consumer idiosyncratic product-specific

shocks. Trajtenberg (JPE, 1989). Petrin (JPE, 2002). Valuing new goods with product

complementarity: Gentzkow (AER, 2007)

4.1. An Application: Hausman (1996) on cereals
. Hausman (1996) presents an application of demand in product space to an industry with
many varieties: ready-to eat (RTE) cereals in US. This industry has been characterized by

the proliferation of many varieties. We have described the Hausman’s data, model, and

estimation method in section 2.5 above. Here we describe Hausman’s evaluation of the

welfare effects of the introduction of a new brand, Cinnamon Cheerios.
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Hausman uses the estimated demand system to evaluate the value of a new variety that

was introduced during this period: apple-cinamon cheerios (ACC). He first obtains the value

of the price ACC that makes the demand of this product equal to zero. He obtains a virtual

price of $7.14 (double the actual observed price $3.5). Given this price, he calculates the

consumer surplus (alternatively the CV or the EV).

He obtains estimated welfare gains of $32,268 per city and weekly average with a standard

error of $3,384. Aggregated at the level of US and annually, the consumer-welfare gain is

$78.1 million (or $0.31 per person per year) which is a sizable amount of consumer’s surplus.

Valuation of new products. Consider an individual with preference parameters (αh, βh, εh)

facing a set of products J with vector of prices p. The indirect utility function is defined as

(income effects are assumed away because linearity):

v(p, αh, βh, εh) = max
j∈J

[
−αhpj + xjβh + ξj + εhj

]
(4.1)

To measure aggregate consumer welfare, Hausman uses the money-metric welfare function

in McFadden (1981) and Small & Rosen (1981). As indicated by its name, an attractive

feature of this welfare measure is that its units are monetary units. To obtain this money

metric, we divide utility by the marginal utility of income. The money-metric welfare for

consumer h is defined as 1
αh
v(p, αh, βh, εh). The money metric at the aggregate market level

is W (p) =

∫
1
αh

v(p, αh, βh, εh) dF (αh, βh, εh). For the random coeffi cients logit model:

W (p) =

∫
1

αh
ln

[
J∑
j=0

exp
{
−αhpj + xjβh + ξj

}]
dF (αh, βh) (4.2)

We can include x and J as explicit arguments of the welfare function: W (p,x,J ). We can

useW to measure the welfare effects of a change in: Prices, W (p1,x,J )−W (p0,x,J ); Prod-

ucts characteristics: W (p,x1,J )−W (p,x0,J ); Set of products: W (p,x,J 1)−W (p,x,J 0).

Some limitations.

[1] Problems to evaluate radical innovations with new types of characteristics.
[2] Logit errors. There is very limited "crowding" of products, that is, limJ→∞W (J ) =

∞. See the section below on the Logit model and the value of new products.
[3] Outside alternative. Unobserved "qualities" ξjt are relative to the outside alterna-

tive. For instance, if there exist quality improvements in the outside alternative, then this

approach underestimates the welfare improvements in this industry.

4.2. Trajtenberg (JPE, 1989)
. Trajtenberg (1989) on computed tomography scanners. The computed tomography (CT)
scanner is considered a key innovation in imaging diagnosis in medicine during the 1970s.

The first was installed in the US in 1973, and soon after 20 firms entered in this market
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with different varieties, General Electric being the leader. Clients are hospitals. Three

characteristics are key to scanner quality: scan time, image quality, and reconstruction time.

Data. Period: 1973-1981. 55 products. Product characteristics (price, scan speed,

resolution, reconstruction speed) and sales in US. Identity and attributes of the buying

hospital. Hospital-year level data: the dependent variable is the product choice of hospital

h at year t.

Model. The model is a nested logit where scanners are divided in two groups depending

the part of body for which the scanner is designed to scan. Then, the groups are "head

scanners" and "body scanners". The utility function is quadratic in the three product

attributes (other than price).

Estimation results. The estimation method does not account for the endogeneity of

prices. The estimated elasticity of substitution between the two groups is very close to

zero. That is, it seems that head scanners and body scanners are very different products are

there is almost zero substitution between these two groups. The estimated parameters α for

prices are significant but this parameter has the wrong sign for body scanners. This result

is probably comming from the correlation of prices an unobserved quality.

Welfare effects. The counterfactual experiment consists of eliminating all CT scanner

products, keeping only the outside product. The estimated welfare effect of CT scanners

during this period is $16 million of 1982. Using data of firms’R&D investment, Trajtenberg

obtains a social rate of return of 270%. That is, every dollar of investment in the R&D of

CT scanners generate 2.7 dollars in return. This is a very substantial rate of return.

4.3. Petrin (JPE, 2002) on minivans
. The aim of this study was to evaluate the consumer welfare gains from the introduction

of a new type of car, the minivan. Estimation of a BLP demand system of automobiles.

Combine market level and micro moments. Observing average family size conditional on

the purchase of a minivan and asking the model to match this average helps to identify

parameters that capture consumer taste for the characteristics of minivans.

In 1984, Chrysler introduced the Dodge caravan (its minivan). It was an immediate

success. GM and Ford responded by quickly introducing their own minivans in 1985. By

1998, there were 6 firms selling a total of 13 different minivans, Chrysler being the leader

(44%).

Data. Period: 1981-1993. J = 2407. Product-year panel. Variables: Quantity sold;

price, acceleration, dimensions, drive type, fuel effi ciency, a measure of luxury. Consumer

expenditure survey (CEX).links demographics of purchasers of new vehicles to the vehicles

they purchase. In the CEX, we observe 2,660 new vehicle purchases over the period and

sample. Used to estimate the probabilities of new vehicle purchases for different income
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groups. Observed purchases of minivans (120), station wagons (63), SUVs (131), and full-

size vans (23). Used to estimate average family size and age of purchasers of each of these

vehicle types.

Table 2.1: Petrin (2002) Market shares by type of automobile

Tables 2.2 to 2.4 present estimates of demand parameters separated in three groups:

price coeffi cients, marginal utilities of product characteristics, and random coeffi cients.

Table 2.2: Petrin (2002) Parameter estimates. Price coeffi cients
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Table 2.3: Petrin (2002) Parameter estimates. Product characteristics

Table 2.4: Petrin (2002) Parameter estimates. Random coeffi cients
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Table 2.5 presents estimates of the parameters in the marginal cost function.

Table 2.5: Petrin (2002) Parameter estimates. Marginal costs

Price effects of the introduction of minivans. Petrin used the estimated model to
implement the counterfactual experiment of eliminating minivan cars from consumers’choice

set. This experiment takes into account that in the counterfactual scenario without minivans

the equilibrium prices of all the products will change. Table 2.6 presents equilibrium prices

with and without minivans. The introduction of minivans (particularly, Dodge caravan) had

an important negative effect on the prices of many substitutes that were top-selling vehicles

in the large-sedan and wagon segments of the market. There were also some price increases

due to cannibalization of own products.

Table 2.6: Petrin (2002) Prices with and without minivans
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Consumer welfare effects of introducing minivans. The preferred estimates are
those of the model with random coeffi cients, using BLP instruments, and using micro mo-

ments. Based on these estimates, the mean per capita Compensated Variation of introducing

minivans is $1247. This is a very substantial welfare gain. Petrin compares this estimated

welfare gain with the ones using other models and estimates of the model: OLS logit; IV

logit; and IV BLP without micro moments. These other models and methods imply esti-

mated welfare gains which are substantially smaller than the preferred model. This is mainly

because these methods under-estimate the marginal utility of income parameters.

Petrin also provides a decomposition of the welfare gains in the contribution of product

characteristics xj and ξj, and of the logit errors εhj. For the preferred model, the mean

per capita welfare gain of $1247 is decomposed in a contribution of $851 from product

characteristics, and a contribution of $396 from the logit errors. The other models and

methods imply very implausible contributions from the logit errors.

Table 2.7: Petrin (2002) Consumer welfare effects of minivans

4.4. Logit model and the value of new products
. The Logit errors can have unrealistic implications on the evaluation of welfare gains. Be-
cause of these errors, welfare increases unboundedly (though concavely) with J . To illustrate

this, consider the simpler case where all the products are identical excelt for the logit errors.

In this case, the aggregate welfare function is W = ln(
∑J

j=0 exp{δ}) = δ ln(J + 1), which

is an increasing and concave function of the number of products J . Though the BLP or

Random Coeffi cients-Logit model limits the influence of the logit errors, this model is still

subject to this problem.
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Ackerberg and Rysman (2005) propose a simple modification of the logit model that can

contribute to correct for this problem. Consider a variation of the BLP model where the

dispersion of the logit errors depends on the number of products in the market. For j > 0,

Uhj = −αhpj + xjβh + ξj + σ(J) εhj. The parameter σ(J) is strictly decreasing in J and it

goes to 0 as J goes to ∞. As J increases, the differentiation from the ε′s becomes less and

less important. Function σ(J) can be parameterized and its parameters can be estimated

together with the rest of the model. Though Ackerberg and Rysman consider this approach,

they favor a similar approach that is simpler to implement. They consider the model:

Uhj = −αhpj + xjβh + ξj + f(J, γ) + εhj (4.3)

where f(J, γ) is a decreasing function of J parameterized by γ. For instance, f(J, γ) = γ

ln(J). It can be also extended to a nested logit version. For group g: fg(J, γ) = γg ln(Jg).

The reasons for the specification f(J, γ) instead of σ(J, γ) is simplicity in estimation.

4.5. Valuing new goods with product complementarity
. The class of discrete choice demand models we have considered so far rule out comple-
mentarity between products. This is an important limitation in some relevant contexts. For

instance, in the evaluation of the merger between two firms producing complements, such

as Pepsico and Frito-Lay, or in the evaluation of the welfare effects of new products that

may complement with existing products. Sometimes there are both substitution and com-

plementarity effects. For instance, in the case of radio stations which play recorded music;

between a movie based on a book novel and the book itself; or, arguably, between Uber and

taxis. Gentzkow (2007) extends McFadenn / BLP framework to allow for complementarity,

and studies the demand and welfare effect of online newspapers.

4.5.1. Model

. Now consumers can choose bundles of products. We start with a simple example. There

are two products A and B. The set of possible choice for a consumer is {0, A, B, AB}. The
utilities of these choice alternatives are 0, uA, uB, and uAB = uA + uB + Γ. The parameter

Γ measures the degree of demand complementarity between products A and B. For choice

alternative j, let Pj = Pr(uj = max{0, uA, uB, uAB}) be the probability or proportion of
consumers that choose alternative j. Importantly, in contrast to the discrete choice demand

models considered above, this model PA and PB are not the market shares of products A

and B, respectively. Now, to obtain the market shares of these products we should take

into account the share of consumer we choose to buy the bundle AB. Let sA and sB be the

market shares of products A and B, respectively. We have that:

sA = PA + PAB

sB = PB + PAB

(4.4)
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ProductsA andB are substitutes if ∂sA/∂pB > 0, and they are complements if ∂sA/∂pB <

0. Complements / substitutes is closely related to the sign of Γ. Figure 2.2 illustrates this

relationship. We represent uA in horizontal axis and uB in the vertical axis. We consider

three cases: case 1 with Γ = 0; case 2 with Γ > 0; and case 3 with Γ < 0. For each case, we

partition the space in four regions where each region represents the values (uA, uB) for which

an alternative is the optimal choice. Consider the effect of a small increase in the price of

product B. Because it is a marginal increase, it affects only those consumers who are in the

frontier of the choice sets. More precisely, the increase in pB implies that all the frontiers

shift vertically and upward. That is, to keep the same choice as with previous prices the

utility uB should be larger.

Figure 2.2: Gentzkow (2007) Choice regions and effect of Γ

In case 1 with Γ = 0, this implies that PAB declines and PA increases but they do it

by the same absolute magnitude such that sA = PA + PAB does not change. Therefore,

with Γ = 0, we have that ∂sA/∂pB = 0 and products A and B are neither substitutes nor

complements.

In case 2 with Γ > 0, we can distinguish two different types of marginal consumers: those

located in a point like m and those in a point like o in Figure 2.2 panel 2. For consumers

in point m, an increase in pB makes them switch from choosing the bundle AB to choosing

A. As in case 1, this change does not affect the demand of product A. However, we have

now also the consumers in point o. These consumers switch from buying the bundle AB

to buying nothing. This implies a reduction in PAB without an increase in PA such that it

has a negative effect on the demand of product A. Therefore, with Γ > 0, we have that

∂sA/∂pB < 0 and products A and B are complements in demand.
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In case 3 with Γ < 0, we can also distinguish two different types of marginal consumers:

those located in a point like m and those in a point like o in Figure 2.2 panel 3. Similarly

as in the previous two cases, for consumers in point m, an increase in pB does not have any

effect on the demand of product A. For consumers in point o, and increase in pB makes

them switch from buying product B to buying product A. This implies an increase in the

demand of product A. Therefore, with Γ < 0, we have that ∂sA/∂pB > 0 and products A

and B are substitutes in demand.

Suppose that: uhA = βA − α pA + vhA; and uhB = βB − α pB + vhB. Allowing for

correlation between unobservables vhA and vhB is very important. Observing that frequent

online readers are also frequent print readers might be evidence that the products in question

are complementary, or it might reflect the correlation between unobservable tastes for goods.

Suppose that (vhA, vhB) are standard normals with correlation ρ. The parameters of the

model are: βA, βB, α, ρ, Γ. The researcher (with consumer level data) observes prices and

bundles market shares: PA, PB, PAB.

4.5.2. Identification
. Even with micro-level data with information on shares PA, PB, PAB, the parameters (βA,

βB, α, ρ, Γ) are not identified. Even if α is known, we have 3 data points and 4 para-

meters. Without further restrictions, a high value of PAB can be explained by either high

Γ or high ρ. We want to distinguish between these two interpretations because they have

different economic and policy implications. Gentzkow considers two sources of identifica-

tion: (1) Exclusion restrictions; and (2) Panel data and restrictions on the structure of the

unobservables.

(a) Exclusion restrictions. Suppose that there is an exogenous consumer characteristic
(or vector) z that enters in consumer valuation of product A but not of product B: βA(z),

but βB does not depend on z. For instance, if B is a print newspaper and A is its online

version, z could be Internet access at work (at home could be more endogenous). Suppose z

is binary for simplicity. Now, the data [PA(z), PB(z), PAB(z): z ∈ {0, 1}] can identify βA(0),

βA(1), βB, Γ, and ρ. Intuition: if Γ > 0 (complementarity), then z = 1 should increase

PA(z) and PAB(z). Otherwise, if Γ = 0, then z = 1 should increase PA(z) but not PAB(z).

(2) Panel Data. Suppose that we observe consumer choices at different periods of time.
And suppose that: vjht = ηjh + εjht. The time-invariant effects ηAh and ηBh are correlated

with each other; but εAht and εAht are independent and i.i.d. over h, t. Preference parameters

are assumed to be time invariant. Suppose that T = 2. We have 8 possible choice histories, 7

probabilities, and 4 parameters: βA, βB, Γ, and ρ. Identification intuition: if Γ > 0, changes

over time in demand should be correlated between the two goods. If Γ = 0, changes over

time should be uncorrelated between goods.
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4.5.3. Data

. Survey: 16,179 individuals in Washington DC, March-2000 and Feb. 2003. Information on

individual and household characteristics, and readership of: print local newspapers read over

last week; major local online newspapers over last week. Two main local print newspapers:

Times and Post. One main online newspaper: post.com. Three products: Times, Post, and

post.com. Outside alternative being all the other local papers.

Figure 2.2: Gentzkow (2007) Time series of readers

4.5.4. Empirical results

. Estimation results from reduced-form OLS regressions and from a structural model without

heterogeneity suggest that the print and online editions of the Post are strong complements.

According to those estimates, the addition of the post.com to the market increases profits

from the Post print edition by $10.5 million per year. However, properly accounting
for consumer heterogeneity changes the conclusions substantially. Estimates of
the model with both observed and unobserved heterogeneity show that the print and online

editions are significant substitutes. Table 2.8 presents estimates of the Γ parameters.
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Table 2.8: Gentzkow (2007) Estimates of Γ parameters

Table 2.9 presents estimates of the effect of the online edition on the print one. Raising

the price of the Post by $0.10 would increase post.com readership by about 2%. Removing the

post.com from the market entirely would increase readership of the Post by 27,000 readers per

day, or 1.5%. The estimated $33.2 million of revenue generated by the post.com comes at a

cost of about $5.5 million in lost Post readership. For consumers, the online edition generated

a per-reader surplus of $0.30 per day, implying a total welfare gain of $45 million per year.

Reduced-form OLS regressions and a structural model without heterogeneity suggest that

the print and online editions of the Post are strong complements.

Table 2.9: Gentzkow (2007) Effect of Online on Print
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5. Appendix

5.1. Derivation of demand systems
.
5.1.1. The Linear Expenditure System

. The utility function has the Stone-Geary form:

U = (q0 − γ0)α0 (q1 − γ1)α1 ... (qJ − γJ)αJ (5.1)

The marginal utility of product j is Uj = αj
U

qj − γj
. Therefore, the marginal condition of

optimality Uj − λpj = 0 implies that αj
U

qj − γj
= λpj, or equivalently,

pj qj = αj
U

λ
+ pj γj (5.2)

Adding up this expression over the J + 1 products and using the budget constraint and the

restriction
∑J

j=0 αj = 1, we have that y = U
λ

+
∑J

j=0 pj γj such that:

U

λ
= y −

J∑
j=0

pjγj (5.3)

Plugging this expression into equation pj qj = αj
U
λ

+ pj γj, we obtain the equations of the

Linear Expenditure System:

qj = γj + αj

[
y − Pγ
pj

]
(5.4)

where Pγ is the aggregate price index
∑J

i=0 pi γi.

5.1.2. Constant Elasticity of Substitution demand system

. The utility function is:

U =

(
J∑
j=0

qσj

)1/σ

(5.5)

The marginal utility is Uj =
qσ−1
j U∑J
i=0 q

σ
i

such that the marginal condition of optimality for

product j is
qσ−1
j U∑J

i=0 [αi qi]
σ
− λ pj = 0. We can re-write this condition as:

qσ−1
j∑J

i=0 [αi qi]
σ

U

λ
= pj qj (5.6)

Adding the expression over the J + 1 products, we have that:

y =

J∑
j=0

pj qj =
U

λ
(5.7)
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That is,
U

λ
= y. Plugging this result into the marginal condition for product j above, and

taking into account that
∑J

i=0 q
σ
i = Uσ, we have that:

qσj
Uσ

y = pj qj (5.8)

This equation can be re-written as:

qj =

[
y

pj

]1/(1−σ) [
1

Uσ

]1/(1−σ)

(5.9)

Plugging this expression in the definition of the utility function, we can get:

U =

(
J∑
j=0

[
y

pj

]σ/(1−σ)
)1/σ [

1

Uσ

]1/(1−σ)

(5.10)

Solving for U , we have:

U =

(
J∑
j=0

[
y

pj

]σ/(1−σ)
)(1−σ)/σ

=
y

Pσ
(5.11)

where Pσ is the price index:

Pσ =

(
J∑
j=0

[pj]
−σ/(1−σ)

)−(1−σ)/σ

(5.12)

Finally, plugging these results into the expression qj =
[
y
pj

]1/(1−σ) [
1
Uσ

]1/(1−σ)
, we get the

CES demand equations:

qj =
y

Pσ

[
pj
Pσ

]−1/(1−σ)

(5.13)



6. EXERCISES 75

6. Exercises

6.1. Exercise 1
. To answer the questions in this exercise you need to use the dataset verboven_cars.dta
Use this dataset to implement the estimations describe below. Please, provide the STATA

code that you use to obtain the results. For all the models that you estimate below, impose

the following conditions:

- For market size (number of consumers), use Population/4, that is, pop/4

- Use prices measured in euros (eurpr).

- For the product characteristics in the demand system, include the characteristics: hp,

li, wi, cy, le, and he.

- Include also as explanatory variables the market characteristics: ln(pop) and log(gdp).

- In all the OLS estimations include fixed effects for market (ma), year (ye), and brand

(brd).

- Include the price in logarithms, that is, ln(eurpr).

- Allow the coeffi cient for log-price to be different for different markets (countries). That

is, include as explanatory variables the log price, but also the log price interacting (multi-

plying) each of the market (country) dummies except one country dummy (say the dummy

for Germany) that you use as a benchmark.

Question 1.1 Obtain the OLS-Fixed effects estimator of the Standard logit model. Interpret
the results.

Question 1.2 Test the null hypothesis that all countries have the same price coeffi cient.
Question 1.3 Based on the estimated model, obtain the average price elasticity of demand
for each country evaluated at the mean values of prices and market shares for that country.

6.2. Exercise 2
. The STATA datafile eco2901_problemset_01_2012_airlines_data.dta contains a panel
dataset of the US airline industry in 2004. A market is a route or directional city-pair, for

instance, round-trip Boston to Chicago. A product is the combination of route (m), airline

(f), and the indicator of stop flight or nonstop flight. For instance, a round-trip Boston

to Chicago, non-stop, with American Airlines is an example of product. Products compete

with each other at the market (route) level. Therefore, the set of products in market m

consists of all the airlines with service in that route either with nonstop or with stop flights.

The dataset contains 2, 950 routes, 4 quarters, and 11 airlines (where the airline "Others" is

a combination of multiple small airlines). The following table includes the list of variables

in the dataset and a brief description.
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Variable name Description

route_city : Route: Origin city to Destination City
route_id : Route: Identification number
airline : Airline: Name (Code)
direct : Dummy of Non-stop flights
quarter : Quarter of year 2004
pop04_origin : Population Origin city, 2004 (in thousands)
pop04_dest : Population Destination city, 2004 (in thousands)
price : Average price: route, airline, stop/nonstop, quarter (in dollars)
passengers : Number of passengers: route, airline, stop/nonstop, quarter
avg_miles : Average miles flown for route, airline, stop/nonstop, quarter
HUB_origin : Hub size of airline at origin (in million passengers)
HUB_dest : Hub size of airline at destination (in million passengers)

In all the models of demand that we estimate below, we include time-dummies and the

following vector of product characteristics:

{ price, direct dummy, avg_miles, HUB_origin, HUB_dest, airline dummies }

In some estimations we also include market (route) fixed effects. For the construction of mar-

ket shares, we use as measure of market size (total number of consumers) the average popu-

lation in the origin and destination cities, in number of people, that is, 1000*(pop04_origin

+ pop04_dest)/2.

Question 2.1. Estimate a Standard Logit model of demand: (a) by OLS without route
fixed effects; (b) by OLS with route fixed effects. Interpret the results. What is the average

consumer willingness to pay (in dollars) for a nonstop flight (relative to a stop flight), ceteris

paribus? What is the average consumer willingness to pay for one million more people of

hub size in the origin airport, ceteris paribus? What is the average consumer willingness to

pay for Continental relative to American Airlines, ceteris paribus? Based on the estimated

model, obtain the average elasticity of demand for Southwest products. Compare it with the

average elasticity of demand for American Airline products.

Question 2.2. Consider a Nested Logit model where the first nest consists of the choice
between groups "Stop", "Nonstop", and "Outside alternative", and the second nest consists

in the choice of airline. Estimate this Nested Logit model of demand: (a) by OLS without

route fixed effects; (b) by OLS with route fixed effects. Interpret the results. Answer the

same questions as in Question 2.1.

Question 2.3. Consider the Nested Logit model in Question 2.2. Propose and implement
an IV estimator that deals with the potential endogeneity of prices. Justify your choice

of instruments, for instance, BLP, or Hausman-Nevo, or Arellano-Bond, ... Interpret the

results. Compare them with the ones from Question 2.2.
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Question 2.4. Given your favorite estimation of the demand system, calculate price-cost
margins for every observation in the sample. Use these price cost margins to estimate a

marginal cost function in terms of all the product characteristics, except price. Assume

constant marginal costs. Include also route fixed effects. Interpret the results.

Question 2.5. Consider the route Boston to San Francisco ("BOS to SFO") in the fourth
quarter of 2004. There are 13 active products in this route-quarter, and 5 of them are

non-stop products. The number of active airlines is 8: with both stop and non-stop flights,

America West (HP), American Airlines (AA), Continental (CO), US Airways (US), and

United (UA); and with only stop flights, Delta (DL), Northwest (NW), and "Others". Con-

sider the "hypothetical" merger (in 2004) between Delta and Northwest. The new airline,

say DL-NW, has airline fixed effects, in demand and costs, equal to the average of the fixed

effects of the merging companies DL and NW. As for the characteristics of the new airline in

this route: avg_miles is equal to the minimum of avg_miles of the two merging compa-

nies; HUB_origin = 45; HUB_dest = 36; and the new airline still only provides stop flights

in this route.

(a) Using the estimated model, obtain airlines profits in this route-quarter

before the hypothetical merger.

(b) Calculate equilibrium prices, number of passengers, and profits , in this

route-quarter after the merger. Comment the results.

(c) Suppose that, as the result of the merger, the new airline decides also to

operate non-stop flights in this route. Calculate equilibrium prices, number of

passengers, and profits , in this route-quarter after the merger. Comment the

results.
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