
Copyedited by: ES MANUSCRIPT CATEGORY: Article

[16:18 18/2/2020 OP-REST190013.tex] RESTUD: The Review of Economic Studies Page: 582 582–625

Review of Economic Studies (2020) 87, 582–625 doi:10.1093/restud/rdz013
© The Author(s) 2019. Published by Oxford University Press on behalf of The Review of Economic Studies Limited.
Advance access publication 6 March 2019

Identification and Estimation of
Dynamic Games When Players’
Beliefs Are Not in Equilibrium

VICTOR AGUIRREGABIRIA
University of Toronto and CEPR

and

ARVIND MAGESAN
University of Calgary

First version received February 2016; Editorial decision February 2019; Accepted March 2019 (Eds.)

This article deals with the identification and estimation of dynamic games when players’ beliefs
about other players’ actions are biased, that is, beliefs do not represent the probability distribution of the
actual behaviour of other players conditional on the information available. First, we show that an exclusion
restriction, typically used to identify empirical games, provides testable non-parametric restrictions of the
null hypothesis of equilibrium beliefs in dynamic games with either finite or infinite horizon. We use
this result to construct a simple Likelihood Ratio test of equilibrium beliefs. Second, we prove that this
exclusion restriction, together with consistent estimates of beliefs at two points in the support of the variable
involved in the exclusion restriction, is sufficient for non-parametric point-identification of players’ belief
functions as well as useful functions of payoffs. Third, we propose a simple two-step estimation method.
We illustrate our model and methods using both Monte Carlo experiments and an empirical application of
a dynamic game of store location by retail chains. The key conditions for the identification of beliefs and
payoffs in our application are the following: (1) the previous year’s network of stores of the competitor
does not have a direct effect on the profit of a firm, but the firm’s own network of stores at previous year
does affect its profit because the existence of sunk entry costs and economies of density in these costs;
and (2) firms’ beliefs are unbiased in those markets that are close, in a geographic sense, to the opponent’s
network of stores, though beliefs are unrestricted, and potentially biased, for unexplored markets which
are farther away from the competitors’ network. Our estimates show significant evidence of biased beliefs.
Furthermore, imposing the restriction of unbiased beliefs generates a substantial attenuation bias in the
estimate of competition effects.

Key words: Dynamic games, Rational behaviour, Biased beliefs, Rationalizability, Identification,
Estimation, Market entry-exit.
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1. INTRODUCTION

The principle of revealed preference (Samuelson, 1938) is a cornerstone in the empirical analysis
of decision models, either static or dynamic, single-agent problems or games. Under the principle

The editor in charge of this paper was Aureo de Paula.
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of revealed preference, agents maximize expected payoffs and their actions reveal information on
the structure of payoff functions. This simple but powerful concept has allowed econometricians
to use data on agents’ decisions to identify important structural parameters for which there is very
limited information from other sources. Examples of parameters and functions that have been
estimated using the principle of revealed preference include, among others, consumer willingness
to pay for a product, agents’ degree of risk aversion, intertemporal rates of substitution, market
entry costs, adjustment costs, and switching costs, preference for a political party, or the benefits
of a merger. In the context of empirical games, where players’ expected payoffs depend on
their beliefs about the behaviour of other players, most applications combine the principle of
revealed preference with the assumption that players’ beliefs about the behaviour of other players
are in equilibrium, in the sense that these beliefs represent the probability distribution of the
actual behaviour of other players conditional on the information available. The assumption of
equilibrium beliefs plays an important role in the identification and estimation of games, and as
such, is a mainstay in the empirical game literature. Equilibrium restrictions have identification
power even in models with multiple equilibria (Tamer, 2003; Aradillas-lopez, and Tamer, 2008;
Bajari et al., 2010). Imposing these restrictions contributes to improved asymptotic and finite
sample properties of game estimators. Moreover, the assumption of equilibrium beliefs is very
useful for evaluating counterfactual policies in a strategic environment. Models where agents’
beliefs are endogenously determined in equilibrium not only take into account the direct effect
of the new policy on agents’ behaviour through their payoff functions, but also through an
endogenous change in agents’ beliefs.

Despite the clear benefit that the assumption of equilibrium beliefs delivers to an applied
researcher, there are situations and empirical applications where the assumption is not realistic
and it is of interest to relax it. There are multiple reasons why players may have biased beliefs
about the behaviour of other players in a game. For instance, in games with multiple equilibria,
players can be perfectly rational in the sense that they take actions to maximize expected payoffs
given their beliefs, but they may have different beliefs about the equilibrium that has been selected.
This situation corresponds to the concept of strategic uncertainty as defined in Van Huyck et al.
(1990) and Crawford and Haller (1990), and applied by Morris and Shin (2002, 2004), and
Heinemann et al. (2009), among others. For instance, competition in oligopoly industries is often
prone to strategic uncertainty (Besanko et al., 2010). Dynamic games of oligopoly competition are
typically characterized by multiple equilibria, and the selection between two possible equilibria
implies that some firms are better off but others are worse off. Firm managers do not have
incentives to coordinate their beliefs in the same equilibrium. They can be very secretive about
their own strategies and face significant uncertainty about the strategies of their competitors.1

Strategic uncertainty may also be an important consideration in the evaluation of a policy change
in a strategic environment. Suppose that to evaluate a policy change, we estimate an empirical
game using data before and after a new policy is implemented. After the implementation of the
new policy, some players may believe that others’ market behaviour will continue according to
the same type of equilibrium as before the policy change, while others believe the policy change
has triggered the selection of a different type of equilibrium.2 Thus, at least for some period
of time, players’ beliefs will be out of equilibrium, and imposing the restriction of equilibrium
beliefs may bias the estimates of the effects of the new policy.

1. See Morris and Shin (2002) for examples of models with strategic uncertainty and related experimental evidence.
2. For example, in a game of investment there may be high investment or low investment equilibria. Prior to the

policy change the game may be in the high investment equilibrium, and after the policy change one player believes that
this equilibrium will continue to prevail while the other player switches to behaviour according to the low equilibrium.
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While strategic uncertainty under multiple equilibria is a motivation for our study, generally
our approach fits any situation where players have limited capacity to reason, in which case it
is ideal to place no restriction on what they believe and what they believe that others believe
and so on. Indeed, studies in the literature of experimental games commonly find significant
heterogeneity in players’ elicited beliefs, and that this heterogeneity is often one of the most
important factors in explaining heterogeneity in observed behaviour in the laboratory.3 Imposing
the assumption of equilibrium beliefs in these applications does not seem reasonable. Interestingly,
recent empirical papers establish a significant divergence between stated or elicited beliefs
and the beliefs inferred from players’ actions using, for example, revealed preference-based
methods (see Costa-Gomes and Weizsacker, 2008; Rutstrom and Wilcox, 2009). The results in
our article can be applied to estimate beliefs and payoffs, using either observational or laboratory
data, when the researcher wants to allow for the possibility of biased beliefs but she does not
have data on elicited beliefs, or data on elicited beliefs is limited to only a few states of the
world.

In this article, we study non-parametric identification, estimation, and inference in dynamic
discrete games of incomplete information when we assume that players are rational, in the sense
that each player takes an action that maximizes his expected payoff given some beliefs, but
we relax the assumption that these beliefs are in equilibrium. In the class of models that we
consider, a player’s belief is a probability distribution over the space of other players’ actions
conditional on some state variables, or the player’s information set. Beliefs are biased, or not in
equilibrium, if they are different from the actual probability distribution of other players’ actions
conditional on the state variables of the model. We consider a non-parametric specification of
beliefs and treat these probability distributions as incidental parameters that, together with the
structural parameters in payoff functions and transition probabilities, determine the stochastic
process followed by players’ actions. Our framework includes as a particular case games where
the source of biased beliefs is strategic uncertainty, that is, every player has beliefs that correspond
to an equilibrium of the game but their beliefs are not “coordinated”. However, our identification
and estimation results do not rely on this restriction and our approach is therefore not restricted
to this case.

The recent literature on identification of games of incomplete information is based on two
main assumptions: (1) players’ beliefs are in equilibrium such that they can be identified, or
consistently estimated, by simply using a non-parametric estimator of the distribution of players’
actions conditional on the state variables; and (2) there is an exclusion restriction in the payoff
function such that there is a player-specific state variable which enters the payoff of the player and
is excluded from the payoffs of other players, but is known to other players and thus influences
their beliefs (Bajari et al. 2010, in static games of incomplete information, and Tamer 2003;
Bajari et al. 2010, in static games of complete information). When players beliefs are not in
equilibrium, or when the exclusion restriction is not satisfied, the model is not identified.

In this context, this article presents two main identification results. First, we show that the
exclusion restriction alone provides testable non-parametric restrictions of the null hypothesis of
equilibrium beliefs, which apply to dynamic games with either finite or infinite horizon. Under
this type of exclusion restriction, the observed behaviour of a player identifies a function that
depends only on her beliefs about the behaviour of other player, and not on her preferences.
Under the null hypothesis of equilibrium beliefs, this identified function of beliefs should be
equal to the same function but where we replace beliefs by the actual expected behaviour of the
other player. We show that this result can be used to construct a formal test of the null hypothesis

3. See Camerer (2003) and recent articles by Costa-Gomes and Weizsacker (2008) and Palfrey and Wang (2009).
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of equilibrium beliefs, which a researcher can use before deciding whether or not to impose
equilibrium restrictions in estimation. The test statistic is a simple Likelihood Ratio (LR) of
the (restricted) probability of observing the data given equilibrium beliefs to the (unrestricted)
probability of observing the data with no assumptions about beliefs. This is the core result of our
article, and also serves to highlight the fact that empirical games are often over-identified, as they
assume equilibrium beliefs at every point in the support.

Second, we prove that this exclusion restriction, together with consistent estimates of beliefs
at two points in the support of the player-specific state variable (i.e. the state variable that satisfies
the exclusion restriction), is sufficient for non-parametric point-identification of players’ belief
functions and useful functions of players’ payoffs. We provide additional conditions under which
payoffs are fully identified. It is worth emphasizing that in deriving this result we impose no
restrictions on the evolution of beliefs, and that the result applies to games with either finite or
infinite horizon. The consistent estimates of beliefs at two points of the support may come either
from an assumption of unbiased beliefs at these points in the state space, or from data on elicited
beliefs for some values of the state variables. We also discuss four different approaches to select
the values of the player-specific state variable where we impose the restriction of unbiased beliefs:
(1) using the test of unbiased beliefs; (2) testing for the monotonicity of beliefs and using this
restriction; (3) minimization of beliefs bias; and (4) most visited states.

Third, we propose a simple two-step non-parametric estimation method to recover beliefs
and payoffs from the data. Given that in most applications the researcher assumes a parametric
specification of the payoff function, we also illustrate how one can extend the estimation method
to accommodate a parametric specification.

Finally, we illustrate our model and methods using both Monte Carlo experiments and an
empirical application of a dynamic game of store location by retail chains. We use Monte Carlo
experiments for two primary purposes. First, we study the properties of the test of equilibrium
beliefs under two different data generating processes, one where beliefs are in equilibrium (the
null is true) and one where they are not (the null is false). These experiments suggest that our
test has strong power to reject the null hypothesis when it is false, and has size close to the true
probability of type I error when the null is true. Second, we use the experiments to study the key
trade-off that a researcher faces when deciding whether or not to impose equilibrium restrictions:
the estimation bias induced by imposing equilibrium restrictions when they are not true against
the higher variance associated with ignoring equilibrium restrictions when they are true. To study
this issue, we estimate beliefs and payoffs with and without equilibrium restrictions in the same
two DGP’s that we use for assessing the test. The experiments show a significant bias when a
researcher wrongly imposes equilibrium restrictions. There is also a substantial loss in efficiency
and an increase in finite sample bias when we do not impose equilibrium restrictions and they
do hold in the DGP. This underscores the importance of testing for equilibrium beliefs before
deciding on an estimation strategy, as it is costly to ignore equilibrium restrictions when they
hold, and costly to impose them when they do not.

To illustrate our model and methods in the context of an empirical application, we consider a
dynamic game of store location between McDonalds and Burger King. There has been very little
work on the bounded rationality of firms, as most empirical studies on bounded rationality have
concentrated on individual behaviour.4 The key conditions for the identification of beliefs and
payoffs in our application are the following. The first condition is an exclusion restriction in a
firm’s profit function that establishes that the previous year’s network of stores of the competitor
does not have a direct effect on the profit of a firm, but the firm’s own network of stores at

4. An exception is the article by Goldfarb and Xiao (2011) that studies entry decisions in the US local telephone
industry and finds significant heterogeneity in firms’ beliefs about other firms’ strategic behaviour.
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previous year does affect its profit because of the existence of sunk entry costs and economies
of density in these costs. The second condition restricts firms’ beliefs to be unbiased in those
markets that are close, in a geographic sense, to the opponent’s network of stores. However,
beliefs are unrestricted, and potentially biased, for unexplored markets which are farther away
from the competitors’ network. Our estimates show significant evidence of biased beliefs for
Burger King. More specifically, we find that this firm underestimated the probability of entry
of McDonalds in markets that were relatively far away from McDonalds’ network of stores.
Furthermore, imposing the restriction of unbiased beliefs generates a substantial attenuation bias
in the estimate of competition effects.

This article builds on the literature on estimation of dynamic games of incomplete
information (see Aguirregabiria and Mira, 2007; Bajari et al., 2007; PAKES et al., 2007;
Pesendorfer and Schmidt-Dengler, 2008). All the articles in this literature assume that the data
come from a Markov Perfect Equilibrium (MPE). We relax that assumption.

Our research is also related to Aradillas-lopez, and Tamer (2008) who study the identification
power of the assumption of equilibrium beliefs in simple static games using the notion of level-k
rationality to construct informative bounds around players’ behaviour. In relaxing the assumption
of Nash equilibrium, they assume that players are level-k rational with respect to their beliefs
about their opponents’ behaviour, a concept which derives from the notion of rationalizability
(Bernheim, 1984; Pearce, 1984). Their approach is especially useful in the context of static
two-player games with binary or ordered decision variables under the condition that payoffs
are supermodular in the actions of the two players. These conditions yield a sequence of
closed form bounds on players’ choice probabilities that grow tighter as the level of rationality
k gets larger.5 However, the derivation of bounds on choice probabilities in dynamic games
is significantly more complicated. Even in simple two-player binary-choice dynamic games
with supermodular payoffs, the value function is not supermodular at every value of the state
variables (Aguirregabiria, 2008). As such, obtaining bounds that shrink monotonically as the
level of rationality of players increases is not possible in a dynamic game, and the assumption
of level-k rationality is of limited use. We are instead totally agnostic about the level of players’
rationality.

Our article also complements the growing literature on the use of data on subjective
expectations in microeconometric decision models, especially the contributions of Walker (2003),
Manski (2004), Delavande (2008), Van Der Klaauw and Wolpin (2008), and Pantano and Zheng
(2013). It is commonly the case that data on elicited beliefs have the form of unconditional
probabilities, or probabilities that are conditional only on a strict subset of the state variables
in the postulated model. In this context, the framework that we propose in this article can be
combined with the incomplete data on elicited beliefs in order to obtain non-parametric estimates
of the complete conditional probability distribution describing an individual’s beliefs. Most of
these previous empirical papers on biased beliefs consider dynamic single-agent models and
beliefs about exogenous future events. We extend that literature by looking at dynamic games
and biased beliefs about other players’ behaviour.

The rest of the article includes the following sections. Section 2 presents the model and basic
assumptions. In Section 3, we present our identification results. Section 4 describes estimation
methods and testing procedures. Section 5 presents our Monte Carlo experiments. The empirical
application is described in Section 6. We summarize and conclude in Section 7.

5. Other papers on the estimation of static games under rationalizability are Kline and Tamer (2012),
Uetake and Watanabe (2013), An (2017), and Gillen (2010).
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2. MODEL

2.1. Basic framework

This section presents a dynamic game of incomplete information where N players make discrete
choices over T periods. We use indexes i,j∈{1,2,...,N} to represent players, and the index −i to
represent all players other than i. T can be finite or infinite, and time is discrete and is indexed by
t ∈{1,2,...,T}. Every period t, players simultaneously choose one out of A alternatives from the
choice set Y ={0,1,...,A−1}. Let Yit ∈Y represent the choice of player i at period t. Each player
makes this decision to maximize his expected and discounted payoff, Et(

∑T
s=0βs�i,t+s), where

β ∈ (0,1) is the discount factor, and �it is his payoff at period t. The one-period payoff function
has the following structure:

�it =πit(Yit,Y−it,Xt)+εit(Yit) (2.1)

πit(.) is a real-valued function. Y−it represents the current action of the other players. Xt is a
vector of state variables which are common knowledge for all players. εit ≡ (εit(0), εit(1), ...,

εit(A−1)) is a vector of private information variables for firm i at period t.
The vector of common knowledge state variables is Xt , and it evolves over time according

to the transition probability function ft(Xt+1|Yt,Xt) where Yt ≡ (Y1t,Y2t,...,YNt). The vector
of private information shocks εit is independent of Xt and independently distributed over time
and players. Without loss of generality, these private information shocks have zero mean. The
cumulative distribution function of εit is given by Git , which is strictly increasing on R

A.

EXAMPLE 1: Dynamic game of market entry and exit. Consider N firms competing in a market.
Each firm sells a differentiated product. Every period, firms decide whether or not to be active in
the market. Then, incumbent firms compete in prices. Let Yit ∈{0,1} represent the decision of firm
i to be active in the market at period t. The profit of firm i at period t has the structure of equation
(2.1), �it =πit(Yit,Y−it,Xt)+εit(Yit). We now describe the specific form of the payoff function
πit and the state variables Xt and εit . The average profit of an inactive firm, πit(0,Y−it,Xt), is
normalized to zero, such that �it =εit(0). The profit of an active firm is πit(1,Y−it,Xt)+εit(1)
where:

πit(1,Y−it,Xt) = Ht

(
θM

i −θD
i
∑
j �=i

Yjt

)
−θFC

i0 −θFC
i1 Zit −1{Yit−1 =0} θEC

i (2.2)

The term Ht

(
θM

i −θD
i
∑

j �=i Yjt

)
is the variable profit of firm i. Ht represents market size (e.g.

market population) and it is an exogenous state variable. θM
i is a parameter that represents the per

capita variable profit of firm i when the firm is a monopolist. The parameter θD
i captures the effect

of the number of competing firms on the profit of firm i.6 The term θFC
i0 +θFC

i1 Zit is the fixed cost
of firm i, where θFC

i0 and θFC
i1 are parameters, and Zit is an exogenous firm-specific characteristic

affecting the fixed cost of the firm. The term 1{Yit−1 =0} θEC
i represents sunk entry costs, where

1{.} is the binary indicator function and θEC
i is a parameter. Entry costs are paid only if the firm

was not active in the market at previous period. The vector of common knowledge state variables
of the game is Xt = (Ht,Zit,Yit−1 : i=1,2,...,N). �

6. A more flexible specification allows for each firm j to have a different impact on the variable profit of firm i,

i.e., Ht

(
θM

i −∑j �=iθ
D
ij Yjt

)
.
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Most previous literature on estimation of dynamic discrete games assumes that the data come
from a MPE. This equilibrium concept incorporates four main assumptions.

ASSUMPTION MOD-1 (Payoff relevant state variables): Players’ strategy functions depend only
on payoff relevant state variables: Xt and εit . Also, a player’s belief about the strategy of other
players is a function of only common knowledge payoff relevant state variables, Xt . �
ASSUMPTION MOD-2 (Maximization of expected payoffs): Players are forward looking and
maximize expected intertemporal payoffs given beliefs. �
ASSUMPTION MOD-3 (Unbiased beliefs on own future behaviour): A player’s beliefs about his
own actions in the future are unbiased expectations of his actual actions in the future. �
ASSUMPTION ‘EQUIL’ (Unbiased or equilibrium beliefs on other players’ behaviour): Strategy
functions are common knowledge, and players’ have rational expectations on the current and
future behaviour of other players. That is, players’ beliefs about other players’ actions are
unbiased expectations of the actual actions of other players. �

First, let us examine the implications of imposing only Assumption MOD-1.7 The payoff-
relevant information set of player i is {Xt,εit}. The space of Xt is X . At period t, players observe Xt
and choose their respective actions. Let the function σit(Xt,εit) :X ×R

A →Y represent a strategy
function for player i at period t. Given any strategy function σit , we can define a choice probability
function Pit(y|x) that represents the probability that Yit =y conditional on Xt =x given that player
i follows strategy σit . That is,

Pit(y|x)≡
∫

1{σit (x,εit)=y} dGit (εit) (2.3)

It is convenient to represent players’ behaviour using these Conditional Choice Probability (CCP)
functions. When the variables in Xt have a discrete support, we can represent the CCP function
Pit(.) using a finite-dimensional vector Pit ≡{Pit(y|x) :y∈Y , x∈X }∈ [0,1]A|X |. Throughout the
article, we use either the function Pit(.) or the vector Pit to represent the actual behaviour of
player i at period t.

Without imposing Assumption “Equil” (“Equilibrium Beliefs”), a player’s beliefs about the
behaviour of other players do not necessarily represent the actual behaviour of the other players.
Therefore, we need functions other than σjt(.) and Pjt(.) to represent players i’s beliefs about the
strategy of other players. To maximize expected intertemporal payoffs at some period t, a player
needs to form beliefs about other players’ behaviour not only at period t but also at any other period
t+s in the future. Let B(t)

i,t+s(y−i|xt+s) be the probability function that represents player i’s belief
at period t about the other players’ actions at period t+s conditional on the common knowledge
state variables at that period. That is, in the beliefs function B(t)

i,t+s the index t represents the time
period in which beliefs are formed, and the index t+s, with s≥0, represents the time period when
the event that is the object of these beliefs occurs. In principle, this belief function may vary with
t due to players’ learning and forgetting, or to other factors that cause players’ beliefs to change
over time. When X is a discrete and finite space, we can represent function B(t)

i,t+s(.) using a

finite-dimensional vector B(t)
i,t+s ≡{B(t)

i,t+s(y−i|x)) :y−i ∈YN−1, x∈X }∈ [0,1]AN−1|X |. Using this

7. Fershtman and Pakes (2012) study dynamic games where a player’s private information is serially correlated,
for example, time-invariant private information. In this context, the whole past history of a rival’s decisions contains
information about the “type” (private information) of that rival. These authors propose a framework and a new equilibrium
concept (experience-based equilibrium) to deal with this dimensionality problem.
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notation, Assumption “Equil” can be represented in vector form as B(t)
i,t+s =�j �=iPj,t+s for every

player i, every t, and s≥0.
The following assumption replaces the assumption of “Equilibrium Beliefs” and summarizes

our minimum conditions on players’ beliefs.8

ASSUMPTION MOD-4: It is common knowledge that players’ private information εit is
independently distributed across players. This condition implies that a player’s beliefs should
satisfy the restriction that other players’ actions are independent conditional on common
knowledge state variables: B(t)

i,t+s(y−i|x)=�j �=i B(t)
ij,t+s(yj|x), where B(t)

ij,t+s(yj|x) represents the
beliefs of player i on the behaviour of player j. �

Assumption MOD-4 can be seen as natural implication of Assumption MOD-1 and the
assumption that private information variables are independent across players. If a player knows
that other players’ strategy functions depend only on payoff relevant state variables Xt and
εit (i.e. Assumption MOD-1) and that private information variables εit are independent across
players, then this player’s beliefs should satisfy the independence condition B(t)

i,t+s(y−i|x)=�j �=i

B(t)
ij,t+s(yj|x). Note also that assumption “Equil” implies assumption MOD-4 but, of course, it is

substantially stronger.
Assumption MOD-4 substantially reduces the dimension of the beliefs function in games with

more than two players. For example, for a given player, and given value of X, t, and t+s, the
number of free beliefs decreases to (N −1)(A−1) from AN−1 −1.

Our identification results that we present in Section 3 allow the belief functions B(t)
ij,t+s to vary

freely both over t (i.e. over the period when these beliefs of player i are formed) and over t+s
(i.e. over the period of player j’s behaviour). In particular, our model and identification results
allow players to update their beliefs and learn (or not) over time t. As we explain in Section 3,
this does not mean that we can identify beliefs B(t)

ij,t+s at every pair of periods t and t+s with

s≥0. We establish the identification of the payoff function and of contemporaneous beliefs B(t)
ijt .

However, our identification results do not impose restrictions on beliefs B(t)
ij,t+s for s>0.

ASSUMPTION MOD-5: The state space X is discrete and finite, and |X | represents its dimension
or number of elements. �

For the rest of the article, we maintain Assumptions MOD-1 to MOD-5 but we do not impose
the restriction of Equilibrium Beliefs. We assume that players are rational, in the sense that they
maximize expected and discounted payoffs given their beliefs on other players’ behaviour. These
assumptions are standard in the literature of empirical dynamic games and are a strict subset of
the assumptions required for MPE. Our departure from the literature is that we do not impose
assumption EQUIL. In this sense, we significantly relax the MPE assumption. Our approach
is agnostic about the formation of players’ beliefs. Beliefs are allowed to evolve freely over t
and t+s in the DGP. Our assumptions are neither weaker nor stronger than rationalizability. In
particular, rationalizability not only imposes assumption MOD-2, i.e., players’ are rational in
the sense that they maximize expected payoffs given their beliefs, but also that this rationality is

8. Assumptions MOD-1 and MOD-4 establish independence between players’ private information in a single
market. While the model may potentially have multiple equilibria, which is a source of biased beliefs, coordination on an
equilibrium cannot generate correlation in actions because behaviour is conditional on the equilibrium being played. In
other words, if players are playing the same equilibrium, once we condition on that equilibrium and the state variables, their
actions remain independent. When we look at data from multiple markets, players’ actions, and beliefs can be correlated
across markets. Our model with unobserved market-specific heterogeneity (Section 3.2.8) allows for this correlation.
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common knowledge among the players. We do not impose any restriction on common knowledge
rationality. However, rationalizability does not require assumptions MOD-3 and MOD-4.

2.2. Best response mappings

We say that a strategy function σit (and the associated CCP function Pit) is rational if for every
possible value of (Xt,εit)∈X ×R

A the action σit(Xt,εit) maximizes player i’s expected and
discounted value given his beliefs on the opponent’s strategy. Given his beliefs at period t, B(t)

i =
{B(t)

ij,t+s :s≥0}, player i’s best response at period t is the optimal solution of a single-agent dynamic
programming (DP) problem. This DP problem can be described in terms of: (i) a discount factor, β;
(ii) a sequence of expected one-period payoff functions, {πB(t)

i,t+s(yit+s,xt+s)+εit+s(yit+s) :s=0,

1, ..., T −t}, where

π
B(t)
it+s(yit+s,xt+s)≡

∑
y−i∈YN−1

πit+s(yit+s,y−i,xt+s) B(t)
it+s(y−i|xt+s) ; (2.4)

and (iii) a sequence of transition probability functions {f B(t)
it+s (xt+s+1|yit+s,xt+s) : s=0, 1, ...,

T −t}, where

f B(t)
it+s (xt+s+1|yit+s,xt+s) ≡ ∑

y−i∈YN−1
ft+s(xt+s+1|yit+s,y−i,xt+s) B(t)

it+s(y−i|xt+s). (2.5)

Let VB(t)
it+s(xt+s,εit+s) be the value function for player i’s DP problem given his beliefs at

period t. By Bellman’s principle, the sequence of value functions {VB(t)
it+s :s≥0} can be obtained

recursively using the following Bellman equation:

VB(t)
it (xt,εit) = max

yit∈Y

{
vB(t)

it (yit,xt)+εit(yit)
}
, (2.6)

where vB(t)
it (yit,xt) is the conditional choice value function

vB(t)
it (yit,xt) ≡ π

B(t)
it (yit,xt)+β

∑
xt+1

∫
VB(t)

it+1(xt+1,εit+1) dGit(εit+1) f B(t)
it (xt+1|yit,xt). (2.7)

Given his beliefs, the best response function of player i at period t is the optimal decision rule of
this DP problem. This best response function can be represented using the following threshold
condition:

{Yit =y} iff
{
εit(y

′)−εit(y)≤vB(t)
it (y,xt)−vB(t)

it (y′,xt) for any y′ �=y
}

(2.8)

The best response probability (BRP) function is a probabilistic representation of the best
response function. More precisely, it is the best response function integrated over the distribution
of εit . In this model, the BRP function given Xt =x is:

Pr(Yit =y|x) = ∫
1
{
εit(y′)−εit(y)≤vB(t)

it (y,x)−vB(t)
it (y′,x) for any y′ �=y

}
dGit(εit)

= �it

(
y; ṽB(t)

it (x)
)

where �it (y; .) is the CDF of the vector
{
εit(y′)−εit(y) :y′ �=y

}
and ṽB

it (x) is the (A−1)×1

vector of value differences {̃vB(t)
it (y,x) :y=1,2,...,A−1} with ṽB(t)

it (y,x)≡vB(t)
it (y,x)−vB(t)

it (0,x).
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For instance, if εit(y)’s are iid Extreme Value type 1, the best response function has the well–known
logit form:

exp
{̃

vB(t)
it (y,x)

}
∑

y′∈Y exp
{̃

vB(t)
it (y′,x)

} . (2.9)

Therefore, under Assumptions MOD-1 to MOD-3 the actual behaviour of player i, represented
by the CCP function Pit(.), satisfies the following condition:

Pit(y|x)=�it

(
y; ṽB(t)

it (x)
)
. (2.10)

This equation summarizes all the restrictions that Assumptions MOD-1 to MOD-3 impose on
players’ choice probabilities. The right-hand side of equation (2.10) is the best response function
of a rational player. The concept of MPE is completed with assumption “Equil” (“Equilibrium
Beliefs”). Under this assumption, players’ beliefs are in equilibrium, i.e., B(t)

it+s =�j �=iPjt+s for
every player i and every period t+s with s≥0. A MPE can be described as a sequence of CCP
vectors, {Pit : i=1,2,...,N; t =1,2,...,T} such that for every player i and time period t, we have
that Pit(y|x)=�it

(
y; ṽP

it (x)
)
. In this article, we do not impose this equilibrium restriction.

As we mentioned in Section 2.1, our model incorporates a concept of rationality in dynamic
games that is related but different to the concept of rationalizability. The notion of rationalizability,
well-defined as a solution concept in static games, has no counterpart in the solution of dynamic
games. Although Pearce (1984) provides an extension of the notion of rationalizability in static
games to extensive form games, two problems with this notion exist. First, the rationalizable
outcome may not be a sequential equilibrium (see the example on page 1044 of Pearce, 1984).
Second, as shown by Battigalli (1997, page 44), in some extensive form games, allowing for
the possibility that rationality is not common knowledge provides an incentive for players to
strategically manipulate the beliefs of other players.

There are also substantial computational problems in the implementation of rationalizability
in dynamic games. Aradillas-lopez, and Tamer (2008) consider a static, two-player, binary-choice
game of incomplete information that is a specific case of our framework. Under the assumption
that players’ payoffs are supermodular (or submodular) in players’ decisions, they derive bounds
around players’ conditional choice probabilities that are robust to the values of players’ beliefs
when they are level-k rational, and show that the bounds become tighter as k increases. To
extend this approach to dynamic games, one needs to calculate lower and upper bounds of choice
probabilities with respect to beliefs not only on the opponents’ current decisions but also on
their decisions in the future. In general, intermtemporal value functions are not supermodular
or submodular in players’ decisions at every state, even in the simpler dynamic games. This
complicates very substantially the computation of these bounds. We discuss this issue in more
detail in Supplementary Appendix.

3. IDENTIFICATION

3.1. Conditions on data generating process

Suppose that the researcher has panel data with realizations of the game over multiple geographic
locations and time periods.9 We use the letter m to index locations. The researcher observes a
random sample of M locations with information on {yimt, xmt} for every player i∈{1,2,...,N} over

9. In the context of empirical applications of games in IO, a geographic location is a local market.
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periods t ∈{1,2,...,Tdata}, where Tdata denotes the number of periods observed in the data. We
emphasize here that the researcher may not observe all the periods in the model, which itself can
be finite or infinite horizon. That is, in general we have that Tdata ≤T ≤∞, and our identification
results apply to both Tdata =T and Tdata <T .

We assume that Tdata is small and the number of local markets, M, is large. For the identification
results in this section we assume that M is infinite. We first study identification in a model where
the only unobservable variables for the researcher are the private information shocks {εimt}, which
are assumed to be independently and identically distributed across players, markets, and over time.
We relax this assumption in Section 3.2.7 where we allow for time-invariant market-specific state
variables that are common knowledge to all the players but unobservable to the researcher.

We want to use this sample to estimate the structural “parameters” or functions of the model:
i.e., payoffs {πit, β}; transition probabilities {ft}; distribution of unobservables {�it}; and beliefs
{B(t)

it+s} for i∈{1,2,...,N} and t ∈{1,2,...,Tdata}. Beliefs are allowed to evolve arbitrarily with t
and t+s in the DGP. For primitives other than players’ beliefs, we make some assumptions that are
standard in previous research on identification of static games and of dynamic structural models
with rational or equilibrium beliefs (see Bajari et al., 2010). We assume that the distribution of the
unobservables, �it , is known to the researcher up to a scale parameter. We study identification of
the payoff functions πit up to scale, but for notational convenience we omit the scale parameter.10

Following the standard approach in dynamic decision models, we assume that the discount
factor, β, is known to the researcher. Finally, the transition probability functions {ft} are non-
parametrically identified. Therefore, we concentrate on the identification of the payoff functions
πit and the belief functions B(t)

it+s and assume that {ft,�it,β} are known.

Let P0
imt be the vector of CCPs with the true (population) conditional probabilities Pr(Yimt =

y|i,m,t,Xmt =x) for player i in market m at period t. Similarly, let B(t)0
im be the vector of

probabilities with the true values of player i’s beliefs in market m at period t about behaviour in
all future periods, i.e., B(t)0

im ≡{B(t)0
im,t+s :s≥0}. Finally, let π0 ≡{π0

it : i=1,2; t =1,2,...,T} be the
true payoff functions in the population. Assumption ID-1 summarizes our conditions on the data
generating process.

ASSUMPTION ID-1. (A) For every player i, P0
imt is his best response at period t given his beliefs

B(t)0
im and the payoff functions π0. (B) A player has the same beliefs in two markets with the same

observable characteristics X, that is, for every two markets m and m′ with Xm,t+s =Xm′,t+s =x,

we have that B(t)0
im,t+s(y−i|x)=B(t)0

im′,t+s(y−i|x)=B(t)0
i,t+s(y−i|x). �

Assumption ID-1(A) establishes that players are rational in the sense that their actual behaviour
is the best response given their beliefs. Assumption ID-1(B) is common in the literature on
estimation of games under the restriction of equilibrium beliefs (e.g. Bajari et al., 2010, 2007).
Note that beliefs can vary across markets according to the state variables in Xmt . This assumption
allows players to have different belief functions in different markets as long as these markets have
different values of time-invariant observable exogenous characteristics. For instance, beliefs could
be a function of “market type”, which are determined by some market specific time-invariant
observable characteristics. If the number of market types is small (more precisely, if it does not
increase with M), then we can allow players’ beliefs to be completely different in each market
type. In section 3.2.8, we relax Assumption ID-1(B) by introducing time-invariant common-
knowledge state variables that are unobservable to the researcher. In that extended version of

10. Aguirregabiria (2010) and Norets and Tang (2014) provide conditions for the non-parametric identification of
the distribution of the unobservables in single-agent binary-choice dynamic structural models. Those conditions can be
applied to identify the distribution of the unobservables in our model.
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the model, players’ beliefs can vary across markets that are observationally equivalent to the
researcher.

In dynamic games where beliefs are in equilibrium, Assumption ID-1 effectively allows the
researcher to identify player beliefs. Under this assumption, conditional choice probabilities are
identified, and if beliefs are in equilibrium, the belief of player i about the behaviour of player j
is equal to the CCP function of player j. When beliefs are not in equilibrium, Assumption ID-1 is
not sufficient for the identification of beliefs. However, assumption ID-1 still implies that CCPs
are identified from the data. This assumption implies that for any player i, any period t, and
any value of (y,x), we have that P0

imt(y|x)=P0
it(y|x)=Pr(Yimt =y|Xmt =x), and this conditional

probability can be estimated consistently using the M observations of {Yimt ,Xmt} in our random
sample of these variables. This in turn, as we will show, is important for the identification of
beliefs themselves.

For notational simplicity, we omit the market subindex m for the rest of this section.

ASSUMPTION ID-2 (Normalization of payoff function): The one-period payoff function πit is
normalized to zero for yit =0, i.e., πit(0,y−it,xt)=0 for any value (y−it,xt). �

Assumption ID-2 establishes a normalization of the payoff that is commonly adopted in many
discrete choice models: the payoff to one of the choice alternatives, say alternative 0, is normalized
to zero.11 The particular form of normalization of payoffs does not affect our identification results
as long as the normalization imposes AN−1|X | restrictions on each payoff function πit .

3.2. Identification of payoff and belief functions

In this subsection, we examine different types of restrictions on payoffs and beliefs that can
be used to identify dynamic games.12 The main point that we want to emphasize here is that
restrictions that apply either only to beliefs or only to payoffs are not sufficient to identify this
class of models. For instance, the assumption of equilibrium beliefs alone can identify beliefs but
it is not enough to identify the payoff function. We also show that an exclusion restriction that
has been commonly used to identify the payoff function can be exploited to relax the assumption
of equilibrium beliefs.

3.2.1. Identification of value differences from choice probabilities. Let Pit(x) be the
(A−1)×1 vector of CCPs (Pit(1|x), ..., Pit(A−1|x)), and let ṽB(t)

it (x) be the (A−1)×1 vector

of differential values (̃vB(t)
it (1,x), ..., ṽB(t)

it (A−1,x)). The model restrictions can be represented

using the best response conditions Pit(x)=�
(̃

vB(t)
it (x)

)
, where �(v) is the vector-valued function

(�(1|v), �(2|v),...,�(A−1|v)). Given these conditions, and our normalization assumption ID-2,
we want to identify payoffs and beliefs.

For all our identification results, a necessary first step consists of the identification of the
vector of value differences ṽB(t)

it (x) from the vector of CCPs Pit(x). The following theorem, due
to Hotz and Miller (1993, Proposition 3), establishes this identification result.

THEOREM (Hotz–Miller inversion theorem). If the distribution function Git(ε) is continuously
differentiable over the whole Euclidean space, then, for any (i,t,x), the mapping Pit(x)=

11. As is well-known, in discrete choice models preferences can be identified only up to an affine transformation.
12. Some of the discussion in this section is similar in spirit to Pesendorfer and Schmidt-Dengler’s (2008) discussion

on underidentification in dynamic games. However, they take beliefs as given (they are identified from CCPs in their
setting).
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�
(̃

vB(t)
it (x)

)
is invertible such that there is a one-to-one relationship between the (A−1)×1

vector of CCPs Pit(x) and the (A−1)×1 vector of value differences ṽB(t)
it (x). �

Let q(P)≡ (q(1,P), q(2,P), ..., q(A−1,P)) be the inverse mapping of � such that if
P=�(v) then v=q(P). Therefore, ṽB(t)

it (x)=q(Pit(x)). For instance, for the multinomial logit
case with �(y|v)=exp{v(y)}/∑y′∈Y exp{v(y′)}, the inverse function q(Pit(x)) is q(y,Pit(x))=
ln(Pit(y|x))−ln(Pit(0|x)).

We assume the researcher knows the distribution of private information and so identification
is not fully non-parametric in nature. However, the assumption that � is known to the researcher
can be relaxed to achieve full non-parametric identification. This has been proved before
by Aguirregabiria (2010) and Norets and Tang (2014) in the context of single-agent dynamic
structural models based on previous results by Matzkin (1992) for the binary choice case, and
Matzkin (1993) for the multinomial case.13 As we do not consider this to be a focus of this article,
for the sake of simplicity, we assume throughout that the distribution � is known.

Given that CCPs are identified and that the distribution function � and the inverse mapping
q(.) are known (up to scale) to the researcher, we have that the differential values ṽB(t)

it (x) are

identified. Then, hereafter, we treat ṽB(t)
it (x) as an identified object. To underline the identification

of the value differences from inverting CCPs, we will often use q(y,Pit(x)), or with some abuse
of notation qit(y,x), instead of ṽB(t)

it (y,x).

3.2.2. Identification of payoffs and beliefs without exclusion restrictions. We can
represent the relationship between value differences and payoffs and beliefs using a recursive
system of linear equations. For every period t and (yi,x)∈[Y−{0}]×X , the following equation
holds:

qit(yi,x) = B(t)
it (x)′

[
πit(yi,x)+ c̃B(t)

it (yi,x)
]
, (3.1)

where B(t)
it (x), πit(yi,x), and c̃B

it (yi,x) are vectors with dimension AN−1 ×1. B(t)
it (x) is the

vector of contemporaneous beliefs at period t, {B(t)
it (y−i|x) :y−i ∈YN−1}; πit(yi,x) is a vector

of payoffs {πit(yi,y−i,x) :y−i ∈YN−1}; c̃B(t)
it (yi,x) is a vector of continuation value differences

{cB(t)
it (yi,y−i,x)−cB(t)

it (0,y−i,x) :y−i ∈YN−1}, and cB(t)
it (yt,xt) is the continuation value function

that provides the expected and discounted value of future payoffs given future beliefs, current
state, and current choices of all players:

cB(t)
it (yt,xt)≡β

∫
VB(t)

it+1(xt+1,εit+1) dGit(εit+1) ft(xt+1|yt,xt). (3.2)

The system of equations (3.1) summarizes all the restrictions of the model. At first glance, this
system seems to have a recursive structure such that in a dynamic game with finite horizon and
Tdata =T one could proceed with a backwards induction argument, i.e., at the last period T , the
continuation values c̃B(T )

iT are zero such that, under some restrictions, the observed behaviour at
period T could identify payoffs and beliefs at period T ; then, given beliefs and payoffs at period
T , one could argue that the continuation values at T −1, c̃B(T−1)

iT−1 , are known. However, without
further restrictions on the evolution of beliefs over time, this recursive argument does not hold.

13. This identification result is based on the assumption that there is a special state variable(s) that enters additively
in the index ṽB

it (X) and that has full support variation over the Euclidean space.
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TABLE 1
Order condition for identification models without exclusion restrictions in payoffs (number of parameters & restrictions

for each player-period)

Models without exclusion restrictions
Number of parameters (A) (B)
and restrictions Unrestricted beliefs Unbiased (Equil) beliefs

(1) Restrictions from
observed behaviour (A−1) |X | (A−1) |X |

(2) Restrictions from
unbiased beliefs 0 (N −1) (A−1) |X |

(3) Free parameters
in payoffs (A−1) |X | AN−1 (A−1) |X | AN−1

(4) Free parameters
in beliefs (N −1) (A−1) |X | (N −1) (A−1) |X |

(5) Free parameters
in c̃ (A−1) |X | (A−1) |X |

(1)+(2)−(3)−(4)−(5)
Over-under identifying rest −(A−1)|X |[AN−1 +(N −1)

] −(A−1) |X | [AN−1
]

Is the model identified? NO NO

For instance, at period T −1 the continuation values c̃B(T−1)
iT−1 depend on beliefs formed at period

T −1 about the opponents’ behaviour at period T , i.e., B(T−1)
i,T , but the beliefs identified from the

observed behaviour at period T are beliefs formed at period T about the opponents’ behaviour
at period T , i.e., B(T )

i,T . In general, beliefs B(T−1)
i,T and B(T )

i,T will be different even though both are
beliefs about the behaviour of other players at period T , for example, players may learn over time.

A backwards induction approach to the identification of beliefs and payoffs is possible with
finite horizon, Tdata =T , and the additional restriction that beliefs are not updated over time (e.g.
there is no learning), i.e., if we impose the restriction that, for any period t+s, B(t)

it+s is invariant
with respect to t. Our identification results do not impose this restriction.

The under-identification of dynamic games under the assumption of equilibrium beliefs
but no further restriction on payoffs has been noted and studied in previous articles such
as Aguirregabiria and Mira (2002a), Pesendorfer and Schmidt-Dengler (2003), and Bajari et al.
(2010), who propose different versions of the exclusion restriction in Assumption ID-3(i) below
to deal with this identification problem. Given this, it is not surprising that the model is not
identified when we leave beliefs unrestricted. Table 1 formally presents the number of parameters,
restrictions, and over- or under-identifying restrictions when beliefs are unrestricted (column A)
and when beliefs are restricted to be unbiased (column B). As a simple example, consider a
binary choice game with two players. For player i at period t, there are two payoff functions
(one for each choice of j), one belief and one continuation value difference to identify for each
value of X, for a total of 4|X | unknown parameters. As there are only |X | restrictions implied by
players’ behaviour in the system of equations (3.1), the model is clearly underidentified without
equilibrium beliefs. Assuming equilibrium beliefs adds only |X | further restrictions, and the
model is still underidentified.

3.2.3. Identification with exclusion restrictions. Assumption ID-3 presents non-
parametric restrictions on the payoff function that, combined with the assumption of equilibrium
beliefs, are typically used for identification in games with equilibrium beliefs (e.g. Bajari et al.,
2010).

ASSUMPTION ID-3 (Exclusion restriction): The vector of state variables Xt can be partitioned
into two subvectors, Xt = (St,Wt). The vectors St and Wt ∈W satisfy the following conditions:
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(i) St = (S1t,S2t,...,SNt)∈SN where Sit ∈S represents state variables that enter into
the payoff function of player i but not the payoff function of any of the other players.

πit
(
Yit,Y−it,Sit,S−it,Wt

)=πit
(
Yit,Y−it,Sit,S

′−it,Wt
)

for any S′−it �=S−it
(3.3)

(ii) The number of states in the support set S is greater or equal than the number of
actions A, i.e., |S|≥A.

(iii) The joint distribution of
(
Sit,S−it,Wt

)
, over the population of M markets where

we observe these variables, has a strictly positive probability at every point in the
joint support set SN ×W .
(iv) The transition probability of the state variable Sit is such that the value
of Si,t+1 does not depend on (Sit,S−it) once we condition on Yit and Wt , i.e.,
Pr(Si,t+1|Yit,St,Wt)=Pr(Si,t+1|Yit,Wt). �

The exclusion restriction in Assumptions ID-3(i)–(ii) appears naturally in many applications
of dynamic games of oligopoly competition in Industrial Organization. The incumbent status,
capacity, capital stock, or product quality of a firm at period t−1 are state variables that enter
in the firm’s payoff function at period t because there are investment and adjustment costs that
depend on these lagged variables. The firm’s payoff function at period t depends also on the
competitors’ values of these variables at period t, but it does not depend on the competitors’
values of these variables at t−1.

Importantly, the assumption that some of the variables which enter player j’s payoff function
are excluded from player i’s payoffs does not mean that player i does not condition his behaviour
on those excluded variables. Each player conditions his behaviour on all the (common knowledge)
state variables that affect the payoff of a player in the game, even if these variables are excluded
from his own payoff.

Assumption ID-3(iii) is a condition on the joint cross-sectional distribution of the state
variables (Sit,S−it,Wt) over the sample of M markets where we observe these variables. Since
the state variables (Sit,S−it,Wt) follow a Markov process, we can see Assumption ID-3(iii) as a
condition on the ergodic distribution of these variables.

Assumption ID-3(iv) restricts the transition probability, or transition rule, of the state variable
Sit . An important class of models that satisfies condition (iv) is when the state variable Sit is the
lagged decision, such that the transition rule for this state variable is Si,t+1 =Yit , that trivially
satisfies condition (iv). This is an important class of models because many dynamic games of
oligopoly competition belong to this class, e.g., market entry/exit, technology adoption, and
some dynamic games of quality or capacity competition, among others. Condition (iv) rules out
some interesting models too. In Example 2, we discuss two types of dynamic games of quality
competition, one that satisfies condition (iv) and the other does not. Similarly, Example 3 presents
dynamic games of machine replacement with and without condition (iv).

EXAMPLE 2: Consider a quality ladder dynamic game (e.g. Pakes and McGuire 1994). The
player-specific state variable Sit is the firm’s quality at previous period and it has support set
S ={0,1,...,|S|}. The decision variable Yit is the change in the firm’s quality at period t. The choice
set has the following restrictions: Yit ∈{−1,0,1} when 0<Sit < |S|; Yit ∈{0,1} when Sit =0; and
Yit ∈{−1,0} when Sit =|S|. The transition rule for the quality state variable is Sit+1 =Sit +Yit .
Given this transition rule, it is clear that this model does not satisfy condition (iv). Now, consider
a different dynamic game of quality competition with the same state variable Sit but now the
decision variable Yit is the firm’s quality at period t, that has also support {0,1,...,|S|}. In this
model, the transition rule for quality is Sit+1 =Yit that satisfies condition (iv). To capture the
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TABLE 2
Order condition for identification models WITH exclusion restrictions in payoffs (number of parameters and restrictions

for each player-period)

Models with exclusion restrictions
Number of parameters (A) (B)
and restrictions Unrestricted beliefs Unbiased (Equil) beliefs

(1) Restrictions from
observed behaviour (A−1) |S|N (A−1) |S|N

(2) Restrictions from
unbiased beliefs 0 (N −1) (A−1) |S|N

(3) Free parameters
in payoffs (A−1) |S| AN−1 (A−1) |S| AN−1

(4) Free parameters
in beliefs (N −1) (A−1) |S|N (N −1) (A−1) |S|N

(5) Free parameters
in c̃ (A−1) 0

(1)+(2)−(3)−(4)−(5)

Over-under identifying rest (A−1)|S|N
[

1− AN−1

|S|N−1
−(N −1)− 1

|S|N
]

(A−1)|S|N
[

1− AN−1

|S|N−1

]
Is the model identified? NO (For any N ≥2) YES (For any |S|≥A)

idea (implicit in the quality ladder model) that it is very costly to change the level of quality in
more than one unit per period, this model can include in the profit function a convex adjustment
cost function AC(Yit −Sit) such that AC(0)=0, AC(x)>0 for |x| �=0, and AC′′(x)>0. The quality
ladder model could be seen as this model when AC(x)=∞ for |x|>1. When the adjustment cost
function is finite-valued, this model is not exactly the quality ladder model but it is clear that if the
adjustment cost is large enough for quality changes |x|>1, the two models are observationally
very similar. �

EXAMPLE 3: Consider a game version of a machine replacement model of investment. In this
class of models, the firm-specific endogenous state variable Sit is the age of firm i’s machine,
with support S ={1,2,...,|S|}, and the decision Yit ∈{0,1} is a binary variable that represents
replacing the machine by a new one (if Yit =1) or keeping the old machine (if Yit =0). The
transition rule of the endogenous state variable is Sit+1 =max{(1−Yit) Sit +1, |S|}}, that does
not satisfy condition (iv). This standard machine replacement model assumes that there is not a
market for used capital such that a firm can choose between only two options: keep its existing
machine or buy a brand new machine. Now, consider an alternative model that assumes that there
is a market for used machines where it is possible to buy machines of any age, from age 0 to
age |S|. In this model, the decision variable Yit ∈{0,1,...,|S|} represents the age of the machine
that the firm chooses at period t. The transition rule of the state variable is Sit+1 =max{Yit +1,

|S|}, that satisfies condition (iv). The transaction costs of using the second-hand market can be
captured by including an adjustment cost function AC(Yit −Sit). �

Table 2 illustrates how the exclusion restriction in Assumption ID-3 reduces the degree of
under-identification. Again, consider a binary choice two player game. As explained above,
without Assumption ID-3, there are a total of 4|X | parameters to identify, 2|X | from payoffs, |X |
from beliefs, and |X | from continuation value differences. Under the assumption of equilibrium
beliefs, both beliefs and continuation values are identified. Using assumption ID-3, the number
of unknown payoff parameters is reduced from 2|X |=2|S|2|W| to 2|S| |W|. Given the |X |
=|S|2|W| restrictions from observed behaviour, as long as |S|≥2, payoffs are also identified.

Clearly, without any restriction on beliefs, the exclusion restriction is not enough to identify
the model. However, when the number of states in the set S is strictly greater than the number
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of possible actions, the restrictions implied by equilibrium conditions overidentify payoffs. We
show now that these overidentifying restrictions provide a test of the null hypothesis of unbiased
beliefs.

3.2.4. Tests of equilibrium beliefs and monotonicity in beliefs. Though Assumptions
ID-1 to ID-3 are not sufficient for the identification of payoffs and beliefs, they provide enough
restrictions to test the null hypothesis of unbiased beliefs. We present here our test in a game with
two players but the test can be extended to any number of players.

There are N =2 players, i and j, the vector of state variables X is (Si,Sj,W), and players’
actions are Yi and Yj. Let s0

j be an arbitrary value in the set S of the player-specific state

variable. And let S(a) and S(b) be two different subsets included in the set S−{s0
j } such that

they satisfy two conditions: (1) each of the sets has A−1 elements; and (2) S(a) and S(b) have
at least one element that is different. Since |S|≥A+1, it is always possible to construct two
subsets that satisfy these conditions. Given these sets, we can define the (A−1)×(A−1) matrices
of contemporaneous beliefs 	B(a)

it (si,w) and 	B(b)
it (si,w), where 	B(a)

it (si,w) has elements

{B(t)
it (yj,si,sj,w)−B(t)

it (yj,si,s0
j ,w) : for yj ∈Y−{0} and sj ∈S(a)}, and 	B(b)

it (si,w) has the same

definition but for subset S(b). Similarly, we can define matrices 	Q(a)
it (si,w) and 	Q(b)

it (si,w),
with elements {qit(yi,si,sj,w)− qit(yi,si,s0

j ,,w) : for yi ∈Y−{0} and sj ∈S(a)}, and matrices

	P(a)
jt (si,w) and 	P(b)

jt (si,w), with elements {Pjt(yj|si,sj,w)− Pjt(yj|si,s0
j ,w) : for yj ∈Y−{0}

and sj ∈S(a)}.
PROPOSITION 1: Suppose that Assumptions MOD1 to MOD5 and ID-1 to ID-3 hold. Then:

(1.1) The (A−1)×(A−1) matrix of contemporaneous beliefs 	B(a)
it (si,w)[

	B(b)
it (si,w)

]−1
is identified from the CCPs of player i as 	Q(a)

it (si,w)[
	Q(b)

it (si,w)
]−1

;

(1.2) Under the assumption of unbiased beliefs, 	B(a)
it (si,w)

[
	B(b)

it (si,w)
]−1

is also

identified from the CCPs of the other player, j, as 	P(a)
jt (si,w)

[
	P(b)

jt (si,w)
]−1

;

(1.3) Combining (1.1) and (1.2), the assumption of unbiased contemporaneous beliefs
for player i implies the following (A−1)2 restrictions between CCPs:

	Q(a)
it (si,w)

[
	Q(b)

it (si,w)
]−1 −	P(a)

jt (si,w)
[
	P(b)

jt (si,w)
]−1 =0 �

Proof. In the Supplementary Appendix.

Under the conditions of Proposition 1, for every value of (Si,W) we can use player i’s CCPs
to construct (A−1)2 values that according to the model depend only on the beliefs of player i
and not on payoffs, i.e., the observed behaviour of player i identifies these functions of beliefs.
Of course, if we assume that beliefs are unbiased, we know that these beliefs are equal to the
choice probabilities of the other player, and therefore we have a completely different form, with
different data, to identify these functions of beliefs. If the hypothesis of equilibrium beliefs is
correct, then both approaches should give us the same result. Therefore, the restriction provides
a natural approach to test for the null hypothesis of equilibrium or unbiased beliefs.
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We describe in detail how to implement a formal test for equilibrium beliefs in Section 4.3
below.

EXAMPLE 4: Suppose that the dynamic game has two players making binary choices: N =2 and
A=2. Then, subsets S(a) and S(b) have only one element each: S(a) ={s(a)} and S(b) ={s(b)} with
s(a) �=s0, s(b) �=s0, and s(a) �=s(b). By Proposition 1, for a given selection of (s0,s(a),s(b)), and a
given value of (Si,W), the hypothesis of unbiased beliefs implies one testable restriction. The
restriction has this form:

qit(1,si,s(a),w)−qit(1,si,s0,w)

qit(1,si,s(b),w)−qit(1,si,s0,w)
− Pjt(1|si,s(a),w)−Pjt(1|si,s0,w)

Pjt(1|si,s(b),w)−Pjt(1|si,s0,w)
=0 (3.4)

It is clear that we can estimate non-parametrically all the components of this expression and
implement a test. �

In addition to knowledge of whether beliefs are in equilibrium or not, researchers can be
interested in other properties of the beliefs function. In some applications, it is economically
interesting to know whether beliefs are monotone in the player-specific variable. For example,
in a model of market entry with multiple number of stores, such as our empirical application in
Section 6, the beliefs function represents the probability of opening a new store. One of the player-
specific state variables is the stock of stores opened at previous periods. The beliefs function can
be increasing, decreasing, or non-monotonic in the stock of opponent’s stores depending on a
firm’s beliefs about the opponent’s degree of cannibalization and economies of density.

Suppose that the state variable Sj is ordered. Without making any further assumptions, we can
in fact test whether beliefs functions are monotone with respect to this state variable. To see this,
consider again the case with A=2. For a given value of (Si,W) and a given selection of values
{s(1),s(2),s(3)} such that s(1) <s(2) <s(3), define:

δit(s
(1),s(2),s(3))≡ qit(1,si,s(3),w)−qit(1,si,s(2),w)

qit(1,si,s(2),w)−qit(1,si,s(1),w)
. (3.5)

By Proposition 1, we know that δit(s(1),s(2),s(3)) is identified and is a function of player i’s
contemporaneous beliefs about player j:

δit(s
(1),s(2),s(3))= B(t)

ijt (1,si,s(3),w)−B(t)
ijt (1,si,s(2),w)

B(t)
ijt (1,si,s(2),w)−B(t)

ijt (1,si,s(1),w)
. (3.6)

Moreover, it is clearly the case that δit(s(1),s(2),s(3))≥0 if and only if the beliefs function B(t)
ijt is

monotonic (either increasing or decreasing) in Sj. Therefore, in addition to a test of equilibrium
beliefs, we also have a test of monotonicity versus non-monotonicity of the beliefs function.

Note that the identification result in Proposition 1 applies both to non-stationary dynamic
models (e.g. finite horizon, time-varying payoff, and/or transition probability functions) and
to infinite horizon stationary models. Suppose that the researcher is willing to assume that
the primitives of the model, other than beliefs, satisfy the stationary conditions, i.e., infinite
horizon and time-invariant payoff and transition probability functions. Then, the identification
result in Proposition 1 can be used to test for convergence of beliefs to a stationary equilibrium.
More specifically, the identification result can be applied to every period t in the sample such
that the researcher can check whether the belief biases captured by the expression 	Q(a)

it (si,w)[
	Q(b)

it (si,w)
]−1 −	P(a)

jt (si,w)
[
	P(b)

jt (si,w)
]−1

decline over time or not.
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3.2.5. Identification with exclusion restrictions and partially unbiased beliefs. The
following assumption presents a restriction on beliefs that is weaker than the assumption
of equilibrium beliefs and that together with Assumptions ID-1 to ID-3 is sufficient to
non-parametrically identify beliefs and useful functions of payoffs in the model.

ASSUMPTION ID-4: Let S(R) ⊂S be a subset of values in the set S, with dimension |S(R)|≡R
that is strictly smaller than |S|.

(i) For every state x= (s,w) with sj ∈S(R), the contemporaneous beliefs of player

i on the behaviour of player j, B(t)
ijt (yj|x), are known to the researcher, either

because beliefs are unbiased at these states, i.e., B(t)
ijt (yj|x)=Pjt(yj|x), or because

the researcher has information on elicited beliefs at these states.
(ii) Let P(R)

−it(si,w) be the RN−1 ×AN−1 matrix with elements {P−it(y−i|si,s−i,w) :
y−i ∈YN−1, s−i ∈S(R)

−i }. For every period t and any value of (Si,W), this matrix has

rank AN−1.

Condition (i) establishes that there are some values of the opponents’ stock variables S−i for
which the researcher has direct information on beliefs, either because at these states strategic
uncertainty disappears and beliefs about opponents’ choice probabilities become unbiased, or
alternatively, because the researcher has data on elicited beliefs for a limited number of states.
Since S(R) is a subset of the space S, it is clear that Assumption ID-4(i) is weaker than the
assumption of equilibrium beliefs, or alternatively, it is weaker than the condition of observing
elicited beliefs for every possible value of the state variables. Note that the assumption does not
necessarily mean that there is a subset of markets where beliefs are always in equilibrium. The
assumption says that there is a subset of points in the state space such that a player’s beliefs are
unbiased every time that a point in that subset is reached, in any market. As such, in two markets
m1 and m2, players may have beliefs out of equilibrium at some time period t, but the state in
market m1 may transit to a point where beliefs are unbiased at period t+1 while the state in
market m2 does not.

Condition (ii) is needed for the rank condition of identification. A stronger but more intuitive
condition than (ii) is that P−it(y−i|x) is strictly monotonic with respect to S−i over the subset
S(R)

−i . That is, the actual choice probabilities of the other players depend monotonically on the state
variables in S−i. Note that this intuition only applies to the case where S−i is a scalar variable,
as would be the case in a two player game.

EXAMPLE 5: For the dynamic game in Example 1, we have that Sit = (Zit,Yi,t−1) such that the
space S is equal to Z×Y , with Z being the space of Zit and Y is the binary set {0,1}. Suppose
that the set S(R) consists of a pair of values {z∗,0} and {z∗,1}, where z∗ is a particular point in
the support Z . Assumption ID-4 establishes that for every value of Sit we have that:

B(t)
it (1 | Sit,Sjt =[z∗,0]) = Pjt(1 | Sit,Sjt =[z∗,0])

B(t)
it (1 | Sit,Sjt =[z∗,1]) = Pjt(1 | Sit,Sjt =[z∗,1])

(3.7)

That is, when the value of Zj is z∗, player i has unbiased beliefs about the behaviour of player j

whatever is the value of Sit and Yjt−1. In this example, P(R)
−it(Sit) is the 2×2 matrix:

P(R)
jt (Sit)=

[
Pjt(0 | Sit,Sjt =[z∗,0]) , Pjt(1 | Sit,Sjt =[z∗,0])
Pjt(0 | Sit,Sjt =[z∗,1]) , Pjt(1 | Sit,Sjt =[z∗,1])

]
(3.8)

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/87/2/582/5370183 by U

niversity of Toronto Library user on 25 M
arch 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[16:18 18/2/2020 OP-REST190013.tex] RESTUD: The Review of Economic Studies Page: 601 582–625

AGUIRREGABIRIA & MAGESAN IDENTIFICATION DYNAMIC GAMES 601

Condition (ii) on the rank of P(R)
jt is satisfied if Pjt(1|Sit,Sjt =[z∗,0]) �=Pjt(1|Sit,Sjt =[z∗,1]), i.e.,

if being an incumbent in the market at previous period has a non-zero effect on the probability of
being in the market at current period. This is a very weak condition that we expect to be always
satisfied in a dynamic game of market entry and exit. �

The choice of the subset S(R) of values where we impose the restriction of unbiased beliefs
seems a potentially important modelling decision. In Section 3.2.6 below, we discuss different
approaches for the selection of subset S(R).

Proposition 2 presents our main result on the joint identification of beliefs and payoffs. It
establishes the identification of contemporaneous beliefs, B(t)

ijt , and of the payoff differences

πit
(
yi,y−i,sa

i ,w
)−πit

(
yi,y−i,sb

i ,w
)

for any pair of values sa
i and sb

i of the player-specific

state variable Sit . Consider the order condition of identification for payoffs and beliefs under
Assumptions ID-1 to ID-4. When the number of players in the game is two, this condition
becomes R≥A, that can be satisfied for models where the number of states |S| is strictly greater
than the number of actions A. In games with more than two players, we have that R≥A is not
sufficient to guarantee the order condition. However, if the support of the player-specific state
variable |S| is large enough, then for any number of players N and any number of actions A,
there is always a value of R between A and |S| such that the order condition for identification is
satisfied. More generally, note that the order condition can be represented as:

1−(R/|S|)
1−(A/|S|)N−1

≤ 1

N −1
. (3.9)

If |S| is large enough such that R/|S| is close enough to 1, then it is clear that for any value of N
and A, it is possible to find a value of R strictly smaller than |S|that satisfies this condition.

PROPOSITION 2: Suppose that Assumptions MOD1 to MOD5 and ID-1 to ID-4 hold, and: (i) R

is large enough such that the order condition [1−(R/|S|)]/
[
1−(A/|S|)N−1

]
≤ (N −1)−1 holds;

and (ii) matrix Q(R)
it (si,w), with dimension A×RN−1 and elements {qit(yi,si,s−i,w) :yi ∈Y , s−i ∈

S(R)
−i }, has rank equal to A. Then, for dynamic games with either finite or infinite horizon we have

that for any period t in the sample:

(2.1) The contemporaneous beliefs functions {B(t)
ijt (yj|s,w) : j �= i} are non-

parametrically identified everywhere.
(2.2) Function gB

it (yi,y−i,si,w)≡πit
(
yi,y−i,si,w

)+ c̃B
it (yi,y−i,w) is

non-parametrically identified everywhere.
(2.3) For any two values of Sit , say (sa,sb) the payoff difference πit(y,y−i,sa,w)−
πit(y,y−i,sb,w) is identified everywhere. �

Proof. In the Supplementary Appendix.

Remark 1. The condition that the rank of Q(R)
it (si,w) is equal to A, in condition (ii), is satisfied

if the CCP function of player i is strictly monotonic in S−i over the subset S(R)
−i . That is, the

actual choice probabilities of the other players depend monotonically on the state variables in
S−i. Note that for the identification of the payoff function we need that beliefs (or the choice
probabilities of players other than i) depend monotonically on S−i over the subset S(R)

−i . And for
the identification of beliefs we also need that the choice probability of the own player i depends
on S−i over the subset S(R)

−i . That is, to identify beliefs we need that player i is playing a game
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such that the values of the state variables of the other players affect his decision through the effect
of these variables in their beliefs. If the other players’ actions do not have any effect on the payoff
of player i, then his beliefs do not have any effect on his actions and therefore his actions cannot
reveal any information about his beliefs.

Remark 2. In games with only two players, we can get identification of payoffs and beliefs by
imposing the restriction of unbiased beliefs at only R=A values of the player-specific state
variable. When the number of players increases, identification requires that we impose the
restriction of unbiased beliefs in an increasing fraction of states. For instance, in a binary choice
model (A=2) with |S|=10 states, the minimum value of the ratio R/|S| to achieve identification
is 20% in a model with two players, 72% with three players, 87% with four players, 93% with five
players, and so on. In the limit, as the number of players goes to infinity, identification requires that
the ratio R/|S| goes to one, i.e., in the limit we need to impose the restriction of unbiased beliefs
at every possible state. This result is quite intuitive given that, as the number of players increases,
the number of parameters in the payoff function increases exponentially according to the function
AN−1. Nevertheless, when the number of players is not too large, such as N ≤5, beliefs and payoff
differences are identified even when we allow beliefs to be biased in a non-negligible fraction of
states.

Remark 3. Proposition 2 emphasizes how an exclusion restriction, that is common in applications
of dynamic games, provides identification of contemporaneous beliefs, and payoff differences
under very weak restrictions on players’ beliefs and on their evolution over time. However, this
proposition does not provide full identification of payoffs, only of payoff differences. A possible
way to obtain full identification of payoffs is to impose one further restriction on payoffs. If,
for every value of

(
yi,y−i,w

)
, one of the |S| payoff values πit

(
yi,y−i,si,w

)
is known, either

through a normalization or because the researcher has data on payoffs at these points, then
payoffs are immediately identified everywhere.14 For instance, in some applications of interest,
particularly in empirical IO, only the number of competitors taking an action, not the identity
of the competitors, enters in a player’s payoff. The number of payoff parameters is substantially
reduced in such applications and identification can be achieved even if we allow beliefs to be
biased in a large fraction of states.

Also, if beliefs do not evolve over time so that B(t)
ijt+s is constant with respect to t and the game

has a finite horizon, the model is identified. In such a case the researcher can use a backwards
induction argument as discussed above in Section 3.2.2. This is a very strong assumption, and
we do not consider it further here.

For the rest of the article, we focus our attention on dynamic games with two players. We use
subindexes i and j to represent the two players.

3.2.6 Where to assume unbiased beliefs? As we mentioned above, the choice of the
subset S(R) where we impose the restriction of unbiased beliefs is a potentially important
modelling decision. Here, we describe three different approaches that may help the researcher
when making this modelling decision.

(a) Applying the test of equilibrium beliefs. Consider a two-player binary-choice version of the
game. We can apply the test of unbiased beliefs to any possible triple of values of the excluded

14. If s∗ is the value of S where payoffs are known, the researcher can use the identified difference πit (yi,y−i,s∗,w)

−πit (yi,y−i,si,w) to recover πit (yi,y−i,si,w) for any si, and then continue substituting in payoff differences to recover
all other payoffs.
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state variable, say (s(a)
j ,s(b)

j ,s(c)
j ). If a triple passes the test (i.e. its p-value if greater than say

10%), we can select two of the values in the triple as members of the set S(R) where we impose
the restriction of unbiased beliefs. If multiple triples pass the test, then we can select two values
from the triple that has the largest p-value in the test. This approach can be simply generalized to
games with any number of players and choice alternatives.

To implement this method, especially in a case where the set of possible triples has large
cardinality, the researcher needs to account for the fact that this is a problem of multiple testing.
If decisions about the individual hypotheses are based on the unadjusted marginal p-values, pure
sampling error will eventually lead the researcher to find triples in the sample where the null
hypothesis of equilibrium beliefs cannot be rejected, even if this is not true in the population.
Bonferroni’s correction is a simple and well-known approach to adjust p-values for multiple
testing. The survey article by Romano et al. (2010) describes recent developments based on
resampling that result in an improved ability to reject false hypotheses.

The effective application of this approach to select the points in the set S(R) requires an
additional condition. For the two-player binary-choice game, the DGP should be such that beliefs
are unbiased at no less than three points in the support set S. If beliefs are unbiased at only two
points, then, in general, the test of unbiased beliefs will reject the null hypothesis at any triple,
and we cannot detect the points with unbiased beliefs using this approach. More generally, in a
two-player game with A choice alternatives, to detect A points with unbiased beliefs, we need
that in the DGP there are at least A+1 points where beliefs are unbiased.

(b) Testing for the monotonicity of beliefs and using this restriction. Suppose that the state variable
Sj is ordered and the CCP function Pjt(yj|si,sj) is strictly monotonic in this state variable.
In Section 3.2.4 above, we showed that we can use our estimate of δq ≡[qit(1,si,Sj =s(3))
−qit(1,si,Sj =s(2))]/[qit(1,si,Sj =s(2))− qit(1,si,Sj =s(1))] to test for the monotonicity of the

beliefs function B(t)
ijt with respect to Sj, i.e., strict monotonicity implies that δq >0. Suppose that

we cannot reject the strict monotonicity of the beliefs function. Then, if the data generating process
is such that the player-specific variable has a large support on the real line, the monotonicity of
both CCPs and beliefs implies that the CCP function Pjt and the beliefs function B(t)

ijt converge to
each other at extreme points of the support, and it is natural to assume unbiased beliefs at these
extreme points.

(c) Minimization of the player’s beliefs bias. Every choice of the set S(R) implies a different
estimate of payoffs and of the beliefs at states within and outside the set S(R), and therefore
a different distance between the vector of player contemporaneous beliefs B(t)

ijt and the actual

CCPs of player j, i.e.,
∥∥∥B(t)

ijt −Pjt

∥∥∥. The researcher may want to be conservative and minimize the

departure of his model with respect to the paradigm of rational expectations or unbiased beliefs.
If that is the case, the researcher can select the set S(R) to minimize a bias criterion such as the
distance

∥∥∥B(t)
ijt −Pjt

∥∥∥.

In our empirical application, in Section 6, we apply these arguments to justify our selection
of the points in the state space where we impose the restriction of unbiased beliefs. We should
note that the model selection methods proposed in this section can introduce a finite sample
bias in our estimators of structural parameters and our inference using those estimators. This
is the well-known problem of pre-testing (Leeb and Potscher, 2005) that is pervasive in many
applications in econometrics. The sampling error at the model selection stage is not independent
of the sampling error in the post-selection parameter estimates, and it can affect and distort
the sampling distributions of these estimates. Different authors have advocated using bootstrap
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methods to construct correct post-selection inference methods. Recent work by Leeb and Potscher
(2005, 2006) shows the limitations of some of these methods. In a recent article, Berk et al. (2013)
propose a new method to perform valid post-model selection inference. Their method consists in
doing simultaneous inference of the parameter estimates for all the possible models that can be
selected. This method can be applied to our problem.

3.2.7. Unobserved market-specific heterogeneity. In Assumption ID-1, we require that
a player has the same beliefs at any two markets with the same observable characteristics (to the
econometrician). While this restriction15 is strictly weaker than the assumption of equilibrium
beliefs (which assumes common and correct beliefs across observationally equivalent markets),
in some applications it can be quite restrictive and it is important to know whether it can be
relaxed, and at what cost.

We can allow for non-common beliefs across observationally identical markets by including
a common knowledge (to players) market level unobservable, say ωm. Suppose that the
unobservable variable ωm is i.i.d. across markets with a distribution that has finite support. Payoff,
beliefs, and CCP functions include variable ω as an argument, i.e., πit(Y,X,ω), B(t)

ijt (Yj|X,ω), and
Pit(Yi|X,ω). Suppose, for the moment, that the CCP function Pit(Yi|X,ω) is identified for every
value (Yi,X,ω). Under this condition, it is straightforward to show that our identification results
in Propositions 1 and 2 extend to this model. Therefore, the only new identification problem
associated to including unobserved market heterogeneity comes from the identification of the
CCPs Pit(Yi|X,ω).

Kasahara and Shimotsu (2009) (hereafter KS) study the identification of CCPs and the
distribution of unobserved types in non-parametric finite-mixture Markov decision models.16

Proposition 4 in KS provides identification conditions when the problem is non-stationary,
that is, time-dependent CCPs and transition probabilities. Given the inherent non-stationarity
of our model (since beliefs are not restricted over time), this is the relevant result in our context.
The conditions for identification in KS Proposition 4 always hold in our model, except for one
condition. They assume that the transition probability function ft(Xt+1|Yt,Xt) has full support
over the whole state space X , i.e., ft(Xt+1|Yt,Xt)>0 for all t and any (Xt+1,Yt,Xt). This
condition rules out dynamic models with a deterministic transition rule for some state variables,
e.g., games of market entry.

4. ESTIMATION AND INFERENCE

Our constructive proofs of the identification results in Propositions 1–3 suggest methods for
estimation and testing of the non-parametric model. Section 4.1 presents our test for the null
hypothesis of unbiased beliefs. Section 4.2 provides a description of a non-parametric estimation
method. In most empirical applications, the payoff function is parametrically specified. For
this reason, in Section 4.3 we extend the estimation method to deal with parametric models.
In the Supplementary Appendix, we derive the asymptotic properties of the estimators and
tests.

15. See also Otsu et al. (2016) for a procedure to test for this restriction.
16. Hu and Shum (2013) extend identification results in Kasahara and Shimotsu (2009) to a richer model with

time-variant serially correlated unobserved heterogeneity with a Markov chain structure.
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4.1. Test of unbiased beliefs

Recall from Proposition 1 above that unbiased beliefs for player i implies the following (A−1)2

restrictions between CCPs of players i and j:

	Q(a)
it (si,w)

[
	Q(b)

it (si,w)
]−1 −	P(a)

jt (si,w)
[
	P(b)

jt (si,w)
]−1 =0 (4.1)

Remember that, by Hotz–Miller inversion theorem, qit(yi|x) is a known function of the vector
of CCPs Pit(x), i.e., qit(yi|x)≡�−1(yi,Pit(x)). In the context of the two player binary choice
model,17 the subsets S(a) and S(b) are single element sets: S(a) ={s(a)} and S(b) ={s(b)}. For each
s(k) ∈Sj \{s(a),s(b)} it is possible to show that the following restrictions hold if player i’s beliefs
are unbiased:

�−1(Pit(1|si,s(k),w))−�−1(Pit(1|si,s(a),w))

�−1(Pit(1|si,s(b),w))−�−1(Pit(1|si,s(a),w))
= Pjt(1|si,s(k),w)−Pjt(1|si,s(a),w)

Pjt(1|si,s(b),w)−Pjt(1|si,s(a),w)
(4.2)

There are |Sj|−2 such restrictions for each value of (Si,W), for a total of |Si||W| (|Sj|−2)
restrictions.18

Consider the non-parametric multinomial model where the probabilities are the CCPs of
players i and j̇. The log-likelihood function of this multinomial model is:

�
(
Pi,Pj

) = ∑
m,t

yimt lnPit(xmt)+(1−yimt)ln[1−Pit(xmt)]

+ ∑
m,t

yjmt lnPjt(xmt)+
(
1−yjmt

)
ln
[
1−Pjt(xmt)

]
,

(4.3)

where Pi and Pj are the vectors of CCPs for player i and j, respectively, for every value period t
and every value of Xmt . These vectors of CCPs are the “parameters” of this non-parametric model.
The null hypothesis of unbiased beliefs imposes the set of restrictions (4.2) on the parameters Pi
and Pj.

A LR Test seems a natural candidate for testing the set of restrictions (4.2) implied by the null
hypothesis of unbiased beliefs. The LR test statistic is given by:

LR=2
[
�
(

P̂u
i ,P̂u

j

)
−�
(

P̂c
i ,P̂

c
j

)]
(4.4)

where
(

P̂u
i ,P̂u

j

)
is the Unconstrained Maximum Likelihood estimator of

(
Pi,Pj

)
from the non-

parametric multinomial likelihood in (4.3), i.e., the frequency estimator of the CCPs, and
(

P̂c
i ,P̂

c
j

)
is the Constrained Maximum Likelihood estimator of

(
Pi,Pj

)
given the set of restrictions in (4.2).

Under mild regularity conditions, the asymptotic distribution of this LR is Chi-squared with Tdata
|Si| |W| (|Sj|−2) degrees of freedom.19

17. The extension to several players and actions is straightforward.
18. The restrictions hold automatically for k =a or k =b.
19. In principle, we could also have used a standard Lagrange Multiplier (LM) test. This is asymptotically equivalent

to the test we present here.
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4.2. Estimation with non-parametric payoff function

Non-parametric estimation proceeds in two steps.

Step 1: Non-parametric estimation of CCPs and transition probabilities. For every player, time
period, and state value x and x′, we estimate CCPs Pit(yi|x), and (if necessary) the transition
probabilities ft(x′|y,x). We also construct estimates of qit(yi,x) by inverting the mapping �, i.e.,
qit(yi,x)=�−1(yi,Pit(x)).

Step 2: Estimation of preferences and beliefs. We select the subset S(R) with the values of Sj for
which we assume that player i’s beliefs are unbiased. Given this set and the estimates in Step 1,
we construct, for any period t and any value of (Yi,Si,W), the matrix R×A matrix P(R)

−it(si,w) as

defined in Assumption ID-4, and the R×1 vector q(R)
it (yi,si,w) with elements {qit(yi,si,s−i,w):

S−i ∈S(R)
−i }. Remember that the function gB

it (yi,yj,si,w) is the function the sum of current payoff

and continuation values, i.e., πit
(
yi,yj,si,w

)+ c̃B
it (yi,yj,w), and let gB

it (yi,si,w) be the A×1 vector
with gB

it (yi,yj,si,w) for every value of yj. Then, we apply the following formulas.
(i) In the Proof of Proposition 2, we show that gB

it (yi,si,w) is identified as:

gB
it (yi,si,w)=

[
P(R)

−it(si,w)′ P(R)
−it(si,w)

]−1
P(R)

−it(si,w)′ q(R)
it (yi,si,w); (4.5)

(ii) In that proof, we also show that contemporaneous beliefs are identified using the following
expression,20

B(t)
it (x)=[G̃it(x)

]−1
qit(x), (4.6)

where, B(t)
it (x) is an A×1 vector with {B(t)

it (yj|x) :yj ∈Y}; qit(x) is an A×1 vector with elements
{qit(1,x), ..., qit(A−1,x)} at rows 1 to A−1, and a 1 at the last row; and G̃it(x) is an A×A matrix
where the element (yi,yj +1) is gB

it (yi,yj,si,w) and the last row of the matrix is a row of ones.
(iii) Finally, by definition of the function gB

it (yi,y−i,si,w) we have that

πit(yi,yj,si,w)−πit(yi,yj,s
∗,w)=gB

it (yi,yj,si,w)−gB
it (yi,yj,s

∗,w) (4.7)

for some value s∗ of the player-specific state variable that we take as a benchmark. Then, we can
apply the |S| restrictions in Proposition 3(i) to obtain the payoffs πit(yi,yj,si,w).

In the Supplementary Appendix, we prove the consistency and asymptotic normality of the
estimators of payoffs and beliefs that apply this procedure.

4.3. Estimation with parametric payoff function

In most applications the researcher assumes a parametric specification of the payoff function.
A class of parametric specifications that is common in empirical applications is the linear in
parameters model:

πit(Yit,Yjt,Sit,Wt)=h(Yit,Yjt,Sit,Wt) θit, (4.8)

20. There is a somewhat subtle relationship between our identification result here and the literature on non-
parametric identification of finite mixture models (e.g. Hall and Zhou 2003; Kasahara and Shimotsu 2009). In particular,
the result that payoffs are identified if beliefs are known and invertible at a sufficiently large subset of points in the state
space has a parallel with the structure of finite mixture of distributions with an exclusion restriction. In that literature such
an identification result is not particularly useful, as it requires knowledge of the mixture weights at different values of the
excluded variable. In the present context, it is motivated through elicited beliefs or theoretical assumptions.
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where h(Yi,Yj,Si,W) is a 1×K vector of known functions, and θit is a K ×1 vector of unknown
structural parameters in player i’s payoff function. Let θi be the vector with all the parameters in
the payoff of player i: θi ≡{θit : t =1,2, ...,Tdata}.
EXAMPLE 6: Consider the dynamic game in Example 1. The profit function in equation (2.2)
can be written as h(Yit,Yjt,Sit,Wt) θi, where the vector of parameters θi is (θM

i , θD
i , θFC

i0 , θFC
i1 ,

θEC
i )′ and

h(Yit,Yjt,Sit,Wt)=Yit
{

Ht , −HtYjt , −1, −Zi,−1{Yit−1 =0} }. � (4.9)

To estimate θi we propose a simple three steps method. The first two steps are the same as for
the non-parametric model.

Step 3: Given the estimates from Step 2, we can apply a pseudo maximum likelihood method in
the spirit of Aguirregabiria and Mira (2002b) to estimate the structural parameters θi. Define the
following pseudo likelihood function for the model with i.i.d. extreme value ε′s:

Q(θi,Bi,Pi)≡
M∑

m=1

Tdata∑
t=1

log

⎛⎝ exp
{̃

hB,P
it (yimt,xmt) θi + ẽB,P

it (yimt,xmt)
}

∑A−1
yi=0exp

{̃
hB,P

it (yi,xmt) θi + ẽB,P
it (yi,xmt)

}
⎞⎠ (4.10)

h̃B,P
it (yi,x) is the discounted sum of the expected values of {h(yjt+syjt+s,xt+s) :s=0, 1, ..., T −t}

given that the state at period t is x, that player i chooses alternative yi at period t and then
behaves according to the choice probabilities in P, and believes that player j behaves according
to the probabilities in B. And ẽB,P

it (yi,x) is also a discounted sum, but of expected future

values of
∑A−1

yi=0Pit+s(yi|xmt+s) [γ −lnPit+s(yi|xmt+s)], that represents the expected value of
εim,t+s(Yimt+s) when Yim,t+s is optimally chosen, and γ is Euler’s constant. From Steps 1 and 2,
we have consistent estimates of CCPs, P̂i, and beliefs, B̂i. Then, a consistent pseudo maximum
likelihood estimator of θi is defined as the value θ̂

(1)
i that maximizes Q(θi,B̂i,P̂i). Note that the

sample criterion function Q(θi,B̂i,P̂i) is just the log likelihood function of a Conditional Logit
model with the restriction that the parameter multiplying the discounted sum ẽB,P

it is equal to 1.
The estimator is root-M consistent and asymptotically normal.21

5. MONTE CARLO EXPERIMENTS

We use Monte Carlo experiments to illustrate the identification, estimation, and inference
framework presented in previous sections. We study the ability of our test to reject the null

21. Iterative procedures can often be used to improve on the finite sample properties of two-step estimators in
dynamic games which can suffer from imprecise non-parametric estimates in the first step (Aguirregabiria and Mira
(2007); Kasahara and Shimotsu, 2012). In principle, Steps 1 to 3 here can also be applied recursively to try to improve the
statistical properties of our estimators. Though the resulting K-step estimator is consistent and asymptotically normal,
stronger restrictions are needed to guarantee that these iterations improve the asymptotic or/and finite sample properties
of the estimator relative to the two-step estimator. In the context of dynamic games with equilibrium beliefs, Kasahara and
Shimotsu (2012) show that in the sequence of K-step estimators the finite sample bias declines monotonically only if the
mapping associated to this iterative procedure satisfies a local contraction property. Pesendorfer, and Schmidt-Dengler
(2010) illustrate with an example that this iterative procedure can converge to an inconsistent estimator if the local
contraction property does not hold. In our model with biased beliefs, the iterative mapping is different and the finite
sample properties of these K-step estimators require further investigation.
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hypothesis when it is false (the power of the test), and how frequently we reject the null when
it is in fact true (the size of the test). We also study a key trade-off that a researcher faces when
deciding to impose equilibrium restrictions on the data in the estimation of a dynamic game. By
imposing the assumption of equilibrium beliefs, the researcher is able to rely on the identification
power afforded by the equilibrium restrictions, which results in more precise estimates. This
is particularly relevant in small samples. However, the identification power associated with
equilibrium restrictions comes with a price—the possibility of biased estimates if the restrictions
are not true in the DGP (the model is misspecified). We study the magnitude of this bias in the
context of a simple application.

The model we consider in our experiments is a particular case of the dynamic game of market
entry and exit in Example 1. We consider an infinite horizon game with two players. The per
period profit functions of the two players are given by:

π1mt(1,Y2mt,Xmt) = (1−Y2mt) θM
1 +Y2mt θD

1 −θFC
01 −(1−Y1mt−1) θEC

1

π2mt(1,Y1mt,Xmt) = (1−Y1mt) θM
2 +Y1mt θD

2 −θFC
02 −θFC

12 Z2mt −(1−Y2mt−1) θEC
2

(5.1)

We normalize the profits to not being active to be zero for both players: π1mt(0,Y2mt,Xmt)=
π2mt(0,Y1mt,Xmt)=0. The players’ payoffs to being active are symmetric except for the variable
Z2mt which enters player 2’s payoffs but not player 1’s. Z2mt is an exogenous time variant
characteristic which affects the fixed cost of player 2, but does not have a (direct) effect on
the payoff of player 1. Following the notation in previous sections, we can describe the vector of
observable state variables by Xmt = (S1mt,S2mt) with S1mt =Y1mt and S2mt = (Z2mt,Y2mt−1).

We focus on the estimation of the parameters in player 1’s payoff and beliefs functions. Given
the payoff structure in equation (5.1) above, only the payoffs and beliefs of player 1 are identified
under our identification assumptions.22 We can re-write the payoff function as:

π1t(1,Y2mt,Xmt) = α1 −δ1 Y2mt +Y1m,t−1 θEC
1 (5.2)

where the parameters α1 and δ1 are defined as α1 ≡ θM
1 −θFC

01 −θEC
1 and δ1 ≡θM

1 −θD
1 . The

exogenous variable Z2mt is independently and identically distributed over markets and time, with
a discrete uniform distribution with support {−2,−1,0,1,2}. This variable is key to identify the
payoffs and beliefs of player 1. Essentially Z2mt plays the role of an instrument in the sense that
it satisfies an exclusion restriction. It affects player 1’s payoffs only through its effect on the
behaviour of player 2.

We keep all the parameters in the payoff functions constant across all experiments. These
values are: α1 =α2 =2.4; δ1 =δ2 =3.0; θFC

2 =−1.0; θEC
1 =θEC

2 =0.5; β1 =β2 =0.95; Z2mt
∼ i.i.d. Uniform with support {−2,−1,0,+1,+2}. To provide an economic interpretation for the
magnitude of these parameters note that: the firm 1’s entry cost represents 17.1% of its average
profit as a monopolist; firm 1’s reduction in profit from monopoly to duopoly is 103.4%; and firm’s
2 profit as a monopolist increases by 81.6% when Z2 goes from −2 to 2. For Experiment B with
biased beliefs, λ1 =λ2 =1 if Z2 ∈{−2,2} and λ1 =λ2 =0.5 if Z2 ∈{−1,0,1}. In each experiment
we consider, the sample is comprised by a total of M =500 markets and Tdata =5 periods of data.
This is a realistic sample size, and in fact is precisely the size of the sample we consider in our
empirical application in Section 6. We approximate the finite sample distribution of the estimators

22. Specifically, there is no variable with at least three points of support (i.e. A+1=3) that enters player 1’s payoffs
directly and does not enter player 2’s payoffs directly. In principle Y1mt−1 could play the role of the player-specific variable
for identifying player 2’s payoffs and beliefs, but since it can only take two values it is always at an “extreme point”.
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using 10,000 Monte Carlo replications. The initial conditions for the endogenous state variables
{Y1m0,Y2m0} are drawn uniformly at random.

We implement two experiments. In experiment U players’ beliefs are in equilibrium, the DGP
is a MPE from the model. In experiment players’ have biased beliefs according to the following
model. For each player i∈{1,2} and any market m and period t, beliefs are B(t)

imt(xmt)=λim(xmt)
Pjmt(xmt), where λim(xmt)∈[0,1] is an exogenous function that captures player i’s bias in beliefs.
Note that, given this specification of the DGP, beliefs are endogenous because they depend on
the other player’s choice probabilities that, of course, are endogenous. Therefore, to obtain these
beliefs we need to solve for a particular equilibrium or fixed point problem. Given λ1m(.) and
λ2m(.), players’ choice probabilities P1m(xmt) and P2m(xmt) solve a fixed point problem that we
could describe as a biased beliefs MPE such that Pim(y|xmt)=�

(
y; ṽB

i (xmt)
)

and Bim =λim Pjm.
We fix the following values for the bias functions λim:

λim(xmt) =
⎧⎨⎩

1 if z2mt ∈{−2,2}

0.5 if z2mt ∈{−1,0,1}
. (5.3)

That is, if the exogenous characteristic z2mt is at an “extreme” value, i.e., z2mt ∈{−2,2}, then there
is not any strategic uncertainty or bias beliefs: players’ beliefs are in equilibrium. However, if
z2mt lies in the interior of the support set, then beliefs are biased. More specifically, when beliefs
are biased, both players are over-optimistic such that they underestimate (by 50%) the probability
of the opponent will be active in the market. Note that given our choice of distribution of z2mt ,
beliefs are (on average) out of equilibrium at 60% of the sample observations.

5.1. Test of equilibrium beliefs

Figures 1 and 2 present the results of applying our test to simulated data from the two experiments.
To construct these figures: (i) we have calculated the LRT statistic for each of the 10,000
simulated sample; (ii) we have constructed a very fine grid of values in the interval [0,0.15]
for the significance level (or size) of the test, α; and (iii) for each value α in this grid, we have
obtained the corresponding critical value in the probability distribution of the Chi-square with 16
degrees of freedom, χ2

16(α), and then computed the frequency of simulated samples where the
LRT statistic is greater than this critical value, i.e., the empirical frequency for rejecting the null
hypothesis. Figures 1 and 2 present these empirical frequencies for every value of α. We also
present the 45 degree line.

Figure 1 corresponds to the experiment with biased beliefs (B). The empirical frequency
presented in Figure 1 is the power of the test, i.e., the probability of rejecting the null hypothesis
when it is false. This empirical probability of rejection is very close to one for any conventional
value of α, showing that the test has strong power to reject the hypothesis of equilibrium beliefs
when it is false.

Figure 2 deals with the experiment with unbiased beliefs (U). Here, we see that the empirical
frequency of rejecting the null tracks the true probability (i.e. significance level) very closely. That
is, the test has the appropriate size, and we do not systematically over- or under-reject the null when
it is true, at least given the DGP we are considering here. The asymptotic Chi-square distribution
is a good approximation to the distribution of the test statistic under a realistic sample size.

5.2. Estimation of preferences and beliefs

Tables 3 and 4 summarize the remainder of the results of our experiments. Table 3 reports the
Mean Absolute Bias (MAB) and the standard deviation from the Monte Carlo distribution of the
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Figure 1

Rejection probability when the null is false (Experiment “B”)

Figure 2

Rejection probability when the null is true (Experiment “U”)

estimators of payoffs, beliefs, and choice probabilities. Table 4 presents MABs when we consider
a large sample with one million observations. The motivation behind these experiments is to study
the consequences of imposing the restriction of unbiased beliefs when it does not hold in the DGP,
and to evaluate the loss of precision of our estimates when we do not impose the restriction of
unbiased beliefs.

(a) Benchmark. Columns (5) and (6), in Table 3 present MABs and standard deviations of
estimates when beliefs are unbiased in the DGP, and we impose this restriction in the estimation.
This is the typical estimation framework in the dynamic games literature with a DGP that satisfies
the assumptions that are typically maintained. In parentheses, we report the corresponding statistic
as percentage of the true value of the parameter. The bias in the estimates of payoff parameters
ranges from 6% for the parameter that captures competition effects (δ1) to 18% for the entry
cost parameter (θEC

1 ). The estimates of beliefs and CCPs are quite precise: MABs and standard
deviations for these estimates are always smaller than 9% of the true value.

(b) Loss of precision when relaxing the assumption of unbiased beliefs. The main purpose of
experiments “U” is to evaluate the loss of identification power in a finite sample when we do not
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TABLE 3
Monte Carlo experiments(1)

Biased beliefs in the DGP Unbiased beliefs in the DGP
Estimation Estimation Estimation Estimation

with equilibrium no equilibrium with equilibrium no equilibrium
restrictions restrictions restrictions restrictions

(1) (2) (3) (4) (5) (6) (7) (8)
Parameter MAB(2) Std MAB Std MAB Std MAB Std
(true value) (%)(3) (%) (%) (%) (%) (%) (%) (%)

Payoffs
α1(2.4) 0.521 0.332 0.308 0.245 α1(2.4) 0.180 0.135 0.525 0.441

(21.7%) (13.8%) (12.8%) (10.2%) (7.5%) (5.6%) (21.9%) (18.4%)
δ1(3.0) 0.456 0.277 0.284 0.224 δ1(3.0) 0.178 0.134 0.581 0.509

(15.2%) (9.2%) (9.5%) (7.5%) (5.9%) (4.5%) (19.4%) (17.0%)
θEC

1 (0.5) 0.108 0.081 0.205 0.160 θEC
1 (0.5) 0.091 0.069 0.172 0.128

(21.6%) (16.3%) (40.9%) (32.0%) (18.3%) (13.8%) (34.5%) (25.7%)

Beliefs at Z2=0 :B1(Y1t−1,Y2t−1)
B1(0,0) (0.410) 0.409 0.066 0.148 0.110 B1(0,0) (0.658) 0.058 0.044 0.101 0.082

(99.8%) (16.0%) (36.2%) (26.8%) (8.8%) (6.6%) (15.4%) (12.4%)
B1(0,1)(0.442) 0.442 0.035 0.111 0.086 B1(0,1) (0.814) 0.031 0.023 0.081 0.114

(100%) (7.9%) (25.1%) (19.5%) (3.8%) (2.8%) (9.9%) (14.0%)
B1(1,0) (0.403) 0.403 0.035 0.091 0.072 B1(1,0) (0.559) 0.031 0.024 0.068 0.053

(100%) (8.7%) (22.7%) (17.9%) (5.6%) (4.3%) (12.2%) (9.5%)
B1(1,1)(0.437) 0.437 0.021 0.070 0.053 B1(1,1) (0.727) 0.026 0.020 0.054 0.041

(100%) (4.8%) (16.0%) (12.2%) (3.6%) (2.7%) (7.4%) (5.7%)

CCPs at Z2=0 :P1(Y1t−1,Y2t−1)
P1(0,0) (0.829) 0.073 0.034 0.051 0.038 P1(0,0) (0.704) 0.037 0.028 0.063 0.047

(8.8%) (9.7%) (4.1%) (4.6%) (5.2%) (4.0%) (8.9%) (6.6%)
P1(0,1) (0.814) 0.090 0.026 0.035 0.026 P1(0,1) (0.598) 0.025 0.019 0.046 0.040

(11.1%) (3.1%) (4.3%) (3.2%) (4.2%) (3.2%) (7.6%) (6.7%)
P1(1,0) (0.891) 0.056 0.015 0.022 0.027 P1(1,0) (0.841) 0.014 0.011 0.028 0.021

(6.3%) (1.7%) (2.5%) (3.1%) (1.9%) (1.3%) (3.3%) (2.5%)
P1(1,1) (0.880) 0.072 0.013 0.017 0.012 P1(1,1) (0.761) 0.016 0.012 0.023 0.018

(8.1%) (1.4%) (1.9%) (1.4%) (2.1%) (1.6%) (3.1%) (2.3%)

Note (1): Summary of DGPs in Monte Carlo experiments. In all the experiments the values of the parameters are
α1 =α2 =2.4, δ1 =δ2 =3.0, θFC

2 =−1.0, θEC
1 =θEC

2 =0.5, and β1 =β2 =0.95. Z2mt ∼Uniform over {−2,−1,0,+1,+2}
i.i.d. In Experiment B with biased beliefs, λ1 =λ2 =1 if Z2∈{−2,2} and λ1 =λ2 =0.5 if Z2∈{−1,0,1}. Number of Monte
Carlo Replications is 10,000. And number of observations in each replication, M = 500 and T = 5. Note (2): MAB =
Mean absolute bias. Std = Standard deviation. Note (3): (%) = Percentage of the true value of the parameter.

impose the restrictions of equilibrium beliefs. Columns (7) and (8) correspond to an estimation of
the model that does not impose equilibrium restrictions but where the data comes from a population
or DGP where beliefs are in equilibrium. We can see there is a price to pay for not exploiting the
equilibrium restrictions: mean absolute bias and standard deviation increase substantially when
we do not enforce the assumption of equilibrium beliefs. The standard deviation of the payoff
estimates is 2–3 times larger when we do not impose the equilibrium restrictions. For instance,
for the payoff parameter δ1 that measures the competition effect, the bias increases from 5.9%
to 19.4%, and the standard deviation increases from 4.5% to 17.0%. This highlights the value of
being able to test for equilibrium beliefs before deciding on an estimation strategy, as relaxing
the assumption of equilibrium beliefs does not come for free. Nevertheless, when we do not
impose equilibrium restrictions, the estimates are still quite informative about the true value of
the parameters. Note finally that the loss of precision in the estimation of beliefs and CCPs is
substantially less severe than in the estimation of payoffs.

(c) Consequences of imposing the assumption of equilibrium beliefs when it is not true. In
experiment “B” (columns 1+-4 of table 3) the DGP is such that beliefs are not in equilibrium.
Comparing columns 1 and 3, we can see the increase in bias induced by imposing the assumption
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TABLE 4
Monte Carlo experiment(1): one replication with 1 million observations

Biased Beliefs in the DGP Unbiased beliefs in the DGP
Estimation Estimation Estimation Estimation

with equilibrium no equilibrium with equilibrium no equilibrium
restrictions restrictions restrictions restrictions

(1) (2) (3) (4)
Parameter MAB(2) MAB MAB MAB
(true value) (%)(3) (%) (%) (%)

Payoffs
α1(2.4) 0.523 0.005 α1(2.4) 0.002 0.017

(21.7%) (0.2%) (0.1%) (0.7%)
δ1(3.0) 0.365 0.009 δ1(3.0) 0.001 0.013

(12.2%) (0.3%) (0.0%) (0.4%)
θEC

1 (0.5) 0.051 0.003 θEC
1 (0.5) 0.002 0.004

(10.2%) (0.6%) (0.3%) (0.8%)
Beliefs at Z2 =0 :B1(Y1t−1,Y2t−1)
B1(0,0) (0.410) 0.408 0.007 B1(0,0) (0.658) 0.003 0.007

(99.6%) (1.7%) (0.4%) (1.1%)
B1(0,1) (0.442) 0.444 0.007 B1(0,1) (0.814) 0.001 0.003

(100%) (1.6%) (0.1%) (0.4%)
B1(1,0) (0.403) 0.399 0.004 B1(1,0) (0.559) 0.004 0.001

(99.0%) (1.0%) (0.6%) (0.1%)
B1(1,1) (0.437) 0.437 0.006 B1(1,1) (0.727) 0.001 0.000

(100%) (1.5%) (0.1%) (0.0%)
CCPs at Z2=0 :P1(Y1t−1,Y2t−1)
P1(0,0) (0.829) 0.072 0.003 P1(0,0)(0.704) 0.001 0.005

(8.7%) (0.4%) (0.2%) (0.7%)
P1(0,1) (0.814) 0.092 0.003 P1(0,1) (0.598) 0.001 0.003

(11.3%) (0.4%) (0.2%) (0.5%)
P1(1,0) (0.891) 0.055 0.002 P1(1,0) (0.841) 0.001 0.000

(6.3%) (0.2%) (0.1%) (0.0%)
P1(1,1) (0.880) 0.077 0.001 P1(1,1) (0.761) 0.001 0.000

(8.2%) (0.2%) (0.2%) (0.0%)

Note (1): Summary of DGPs in Monte Carlo Experiments. In all the experiments the values of the parameters are
α1=α2=2.4 , δ1=δ2=3.0, θFC

2 =−1.0, θEC
1 =θEC

2 =0.5, and β1=β2=0.95. Z2mt∼Uniform over {−2,−1,0,+1,+2}
i.i.d. In Experiment B with Biased beliefs, λ1=λ2=1 if Z2∈{−2,2} and λ1=λ2=0.5 if Z2∈{−1,0,1}. Number of Monte
Carlo Replications is 1, and the number of observations is 1,000,000. Note (2): MAB = Mean absolute bias. Note (3):
(%) = Percentage of the true value of the parameter.

of equilibrium beliefs incorrectly. The bias increases from 12.8% to 21.7% for the parameter
α1, and from 9.5% to 15.2% for parameter δ1. Surprisingly, the bias of the estimate of the entry
cost parameter actually decreases when we wrongly impose equilibrium restrictions. This is a
finite sample property, and we have confirmed this point by implementing an experiment with
1,000,000 observations and a single Monte Carlo simulation, that we report in Table 4. Columns
1 and 2 in Table 4 show that the MABs of the entry cost parameter is only 0.6% when equilibrium
restrictions are not imposed and it increases to 10.2% when these restrictions are wrongly imposed.
Going back to columns 1 to 4 in Table 3, we can see that though the precision of the estimates
decreases significantly when we do not impose equilibrium restrictions, the combination of bias
and variance shows very significant gains in the estimates of payoffs and beliefs when we allow
for biased beliefs.

In sum, the experiments illustrate that it can be very important to choose the appropriate
estimation framework given the DGP. Not imposing equilibrium beliefs in estimation when
beliefs are in equilibrium in the DGP is costly in terms of precision and finite sample bias,
while incorrectly imposing equilibrium restrictions in estimation can be very costly both in terms
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of finite sample and asymptotic bias. This underscores the importance of testing for equilibrium
beliefs before deciding on an estimation strategy.

6. EMPIRICAL APPLICATION

We illustrate our model and methods with an application of a dynamic game of store location.
Recently there has been significant interest in the estimation of game theoretic models of market
entry and store location by retail firms. Most studies have assumed static games: see Mazzeo
(2002), Seim (2006), Jia (2008), Zhu and Singh (2009), and NISHIDA (2014), among others.
Holmes (2011) estimates a single-agent dynamic model of store location by Wal-Mart. Beresteanu
and Ellickson (2005), Toivanen and Waterson (2011), Suzuki (2013), and WALRATH (2016)
propose and estimate dynamic games of store location.

We study store location of McDonalds (MD) and Burger King (BK) using data for the U.K.
during the period 1991–1995. The dataset was collected by Otto Toivanen and Michael Waterson,
who use it in their article Toivanen and Waterson (2005). We divide the UK into local markets
(districts) and study these companies’ decision of how many stores, if any, to operate in each local
market. The profits of a store in a market depends on local demand and cost conditions and on the
degree of competition from other firms’ stores and from stores of the same chain. There are sunk
costs associated with opening a new store, and therefore this decision has implications for future
profits. Firms are forward-looking and maximize the value of expected and discounted profits.
Each firm has uncertainty about future demand and cost conditions in local markets. Firms also
have uncertainty about the current and future behaviour of the competitor.

In this context, the standard assumption is that firms have rational expectations about other
firms’ strategies, and that these strategies constitute a MPE. Here, we relax this assumption. The
main question that we want to analyse in this empirical application is whether the beliefs of each of
these companies about the store location strategy of the competitor are consistent with the actual
behaviour of the competitor. The interest of this question is motivated by Toivanen and Waterson
(2005) empirical finding that these firms’ entry decisions do not appear to be sensitive to whether
the competitor is an incumbent in the market or not. As we have illustrated in our Monte Carlo
experiments, imposing the restriction of equilibrium beliefs can generate an attenuation bias in
the estimation of competition effects when this restriction is not true in the DGP. We investigate
here this possible explanation.23

6.1. Data and descriptive evidence

Our working sample is a five-year panel that tracks 422 local authority districts (local markets),
including the information on the stock and flow of MD and BK stores into each district. It also
contains socioeconomic variables at the district level such as population, density, age distribution,

23. The nature of the econometric bias in the parameters that represent strategic interactions depends on the
relationship between true and rational beliefs. It is useful to illustrate this issue using a simple model. Suppose that the
relationship between qi(x) and the true beliefs Bi(x) is qi(x)=π0 +π1 Bi(x), where π0 and π1 are structural parameters
from the payoff function. Suppose that the relationship between actual beliefs Bi(x) and the rational beliefs Pj(x) is
Bi(x)= f (Pj(x)), where f (.) is a continuous and differentiable function in the space of probabilities. And suppose that
the researcher imposes the restriction of rational beliefs, such that he estimates the model qi(x)=π0 +π1 Pj(x)+e,
where by construction the error term e is equal to π1[f (Pj(x))−Pj(x)]. It is straightforward to show that under mild
regularity conditions the least square estimator of the parameter π1 converges in probability to π1 f ′(Ex[Pj(x)]), where
f ′(.) is the derivative of the function f (.). In this case, we have an attenuation bias in the estimator of the parameter π1

iff f ′(Ex[Pj(x)])<1. Note that this condition is different to a condition on the level of the bias of beliefs. That is, the
condition f ′(Ex[Pj(x)])<1 is compatible with Ex[Bi(x)] being either smaller or larger than Ex[Pj(x)].
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TABLE 5
Descriptive statistics on local markets (Year 1991) (422 local authority districts (excluding Greater London districts))

Variable Median Std. Dev. Pctile 5% Pctile 95%

Area (square km) 300 732 36 1671
Population (thousands) 94.85 93.04 37.10 280.50
Share of children: Age 5–14 (%) 12.43 1.00 10.74 14.07
Share of young: 15–29 (%) 21.24 2.46 17.80 25.17
Share of pensioners: 65–74 (%) 9.01 1.50 6.89 11.82
GDP per capita (thousand £) 92.00 12.14 74.40 112.70
Claimants of UB/Population ratio (%) 2.75 1.27 1.24 5.11
Average weekly rent per dwelling (£) 25.31 10.61 19.11 35.07
Council tax (£) 240 56 118 310
Number of BK stores (Year 1990) 0.00 0.43 0.00 1.00
Number of MD stores (Yyear 1990) 0.00 0.94 0.00 2.00

average rent, income per capita, local retail taxes, and distance to the UK headquarters of each
of the firms. The local authority district is the smallest unit of local government in the UK,
and generally consists of a city or a town sometimes with a surrounding rural area. There are
almost 500 local authority districts in Great Britain. Our working sample of 422 districts does not
include those that belong to Greater London.24 The median district in our sample has an area of
300 square kilometres and a population of 95,000 people.25 Table 5 presents descriptive statistics
for socioeconomic and geographic characteristics of our sample of local authority districts.

Table 6 presents descriptive statistics on the evolution of the number of stores for the two
firms.26 In 1990, MD had more than three times the number of stores of BK, and it was active
in more than twice the number of local markets than BK. Conditional on being active in a local
market, MD had also significantly more stores per market than BK. These differences between
MD and BK have not declined significantly over the period 1991–1995. While BK has entered
in more new local markets than MD (69 new markets for BK and 48 new markets for MD), MD
has opened more stores (143 new stores for BK and 166 new stores for MD).

Table 7 presents the annual transition probabilities of market structure in local markets as
described by the number of stores of the two firms. According to this transition matrix, opening
a new store was an irreversible decision during this sample period, i.e., no store closings are
observed during this sample period. In Britain during our sample period, the fast food hamburger
industry was still young and expanding, as shown by the large proportion of observations/local
markets without stores (41.6%). Although there is significant persistence in every state, the less
persistent market structures are those where BK is the leader. For instance, if the state is “BK =1
& MD=0”, there is a 20% probability that the next year MD opens at least one store in the
market. Similarly, when the state is “BK =2 & MD=1”, the chances that MD opens one more
store the next year are 31%.

Table 8 presents estimates of reduced form Probit models for the decision to open a new store.
We obtain separate estimates for MD and BK. Our main interest is in the estimation of the effect
of the previous year’s number of stores (own stores and competitor’s stores) on the probability

24. The reason we exclude the districts in Greater London from our sample is that they do not satisfy the standard
criteria of isolated geographic markets.

25. As a definition of geographic market for the fast food retail industry, the district is perhaps a bit wide. However,
an advantage of using district as definition of local market is that most of the markets in our sample are geographically
isolated. Most districts contain a single urban area. And, in contrast to North America where many fast food restaurants
are in transit locations, in UK these restaurants are mainly located in the centres of urban areas.

26. Toivanen and Waterson present a detailed discussion of why the retail chain fast food hamburger industry in
the UK during this period can be assumed as a duopoly of BK and MD.
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TABLE 6
Evolution of the number of stores (422 local authority districts (excluding Greater London districts))

Burger King
1990 1991 1992 1993 1994 1995

#Markets with stores 71 98 104 118 131 150
Change in #Markets with stores – 27 6 14 13 19
# of stores 79 115 128 153 181 222
Change in # of stores – 36 13 25 28 41
Mean #stores per market 1.11 1.17 1.23 1.30 1.38 1.48
(conditional on #sStores>0)

McDonalds
#Markets with stores 206 213 220 237 248 254
Change in #markets with stores 7 7 17 11 6
# of stores 281 316 344 382 421 447
Change in # of stores 35 28 38 39 26
Mean #stores per market 1.36 1.48 1.56 1.61 1.70 1.76
(conditional on #stores>0)

TABLE 7
Transition probability matrix for market structure (Annual transitions. Market structure: BK = x & MD = y, where x

and y are number of stores)

%
Market structure at t+1

Market BK = 0 BK = 0 BK = 0 BK = 1 BK = 1 BK = 1 BK≥2 BK≥2 BK≥2
structure at t MD = 0 MD = 1 MD≥2 MD = 0 MD = 1 MD ≥2 MD = 0 MD = 1 MD≥2

BK = 0 & MD = 0 95.1 3.6 0.2 1.0 – – – 0.1 –
BK = 0 & MD = 1 – 87.2 4.2 – 7.4 1.0 – – 1.4
BK = 0 & MD ≥2 – – 82.7 – – 15.8 – – 1.4
BK = 1 & MD = 0 – – – 76.0 18.0 2.0 4.0 – –
BK = 1 & MD = 1 – – – – 87.1 8.1 – 3.3 1.4
BK = 1 & MD ≥2 – – – – – 86.5 – – 13.5
BK ≥2 & MD = 0 – – – – – – 84.6 15.4 –
BK ≥2 & MD = 1 – – – – – – – 69.0 31.0
BK≥2 & MD≥2 – – – – – – – – 100.0
Frequency 41.6 23.3 6.6 2.2 10.9 8.8 0.6 1.4 4.5

of opening new stores. We include as control variables population, GDP per capita, population
density, proportion of population 5–14, proportion population 15–29, average rent, and proportion
of claimants of unemployment benefits. To control for unobserved local market heterogeneity,
we also present two fixed effects estimations, one with county fixed effects and the other with
local district fixed effects.27 We only report estimates of the marginal effects associated with
the dummy variables that represent previous year number of stores. The main empirical result
from Table 8 is that, regardless of the set of control variables that we use, the own number of
stores has a strong negative effect on the probability of opening a new store but the effect of the
competitor’s number of stores is either negligible or even positive. This finding is very robust
to different specifications of the reduced form model, and it is analogous to the result from the
reduced-form specifications in Toivanen and Waterson (2005). The estimate of the marginal effect
of the number of own stores increases significantly when we control for unobserved heterogeneity
using fixed effects. However, the estimated marginal effect of the number of competitor’s stores

27. With only five observations (time periods) per district, the estimator with district fixed-effects may contain
substantial biases. Despite its potential bias, the comparison of the district-FE estimator with the county-FE estimator
and the estimator without fixed effects provide some interesting results.
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TABLE 8
Reduced form probits for the decision to open a store

Estimated marginal effects1 (	P(x) when dummy from 0 to 1)
Burger King McDonalds

Explanatory variable No FE County FE District FE No FE County FE District FE

Own number of stores at t − 1
Dummy: Own #stores = 1 −0.021∗∗ −0.036∗∗ −0.885∗∗ −0.035∗∗ −0.045∗∗ −0.550∗∗

(0.005) (0.007) (0.063) (0.010) (0.012) (0.056)
Dummy: Own #stores = 2 −0.023∗∗ −0.030∗∗ −0.210∗ −0.047∗∗ −0.060∗ −0.757∗∗

(0.004) (0.005) (0.085) (0.006) (0.008) (0.041)
Dummy: Own #stores ≥ 3 −0.019∗∗ −0.027∗∗ −0.056 −0.043∗∗ −0.053∗∗ −0.816∗∗

(0.005) (0.005) (0.036) (0.006) (0.008) (0.038)
Competitor’s number of stores at t − 1

Dummy: Comp.’s #stores = 1 0.032∗∗ 0.037∗ −0.025 0.020 0.032∗ 0.052∗∗
(0.011) (0.014) (0.055) (0.013) (0.018) (0.073)

Dummy: Comp.’s #stores = 2 0.045∗ 0.052∗ −0.017 0.041 0.076 −0.007∗∗
(0.023) (0.029) (0.031) (0.029) (0.046) (0.093)

Dummy: Comp.’s #stores ≥ 3 0.089∗ 0.101∗ 0.011 −0.041∗∗ −0.050∗∗ −0.104∗∗
(0.048) (0.059) (0.084) (0.007) (0.009) (0.020)

Pred. Prob. Y = 1 at mean X 0.024 0.027 0.014 0.045 0.054 0.085
Time dummies YES YES YES YES YES YES
Control variables2 YES YES YES YES YES YES
County Fixed Effects NO YES NO NO YES NO
District Fixed Effects NO NO YES NO NO YES
Number of Observations3 2110 1715 535 2110 1855 640
Number of Local Districts3 422 343 107 422 371 128
Log likelihood −371.89 −340.26 −110.54 −467.46 −449.02 −198.50
Pseudo R-square 0.229 0.252 0.624 0.159 0.161 0.441

Note 1: Estimated marginal effects are evaluated at the mean value of the rest of the explanatory variables. Note 2: Every
estimation includes as control variables log-population, log-GDP per capita, log-population density, share population 5–
14, share population 15–29, average rent, and proportion of claimants of unemployment benefits. Note 3: FE estimations
do not include districts where the dependent variable does not have enough time variation. Note 4: ∗ and ∗∗ denote
significance at the 5% and 1% level, respectively.

barely changes. The estimates show also a certain asymmetry between the two firms: the absence
of response to the competitor’s number of stores is more clear for BK than for MD. In particular,
when BK has three stores in the market there is a significant reduction in MD’s probability of
opening a new store. This negative effect does not appear in the reduced form probit for BK.

Taken at face value, the empirical evidence suggests that Burger King is either indifferent to
or prefers to enter in markets where McDonald’s already has a presence. This behaviour cannot
be rationalized by standard static models of market entry where firms compete and sell substitute
products. In such a model, Burger King’s current profit is always higher (ceteris paribus) if it enters
in a market where McDonalds is not present than if its entry is in a market where McDonalds
already has a store. In the case of complementary goods, a firm may like to locate near another
to capitalize positive spillover effects on business/traffic. However, it seems quite reasonable to
consider that a MD store and a BK store are substitutes from the point of view of consumer
demand at a given point in time. We discuss below other possible sources of positive spillover
effects. We explore three, non-mutually exclusive, explanations for BK’s observed behaviour: (a)
spillover effects; (b) forward looking behaviour (dynamic game); and (c) biased beliefs about the
behaviour of the competitor.

(a) Spillover effects. The competitor’s presence may have a positive spillover effect on the profit
of a firm. There are several possible sources of this spillover effect. For example, one firm may
infer from another’s decision to open a store that market conditions are favourable. That is, there
may be informational spillover effects. Alternatively, one firm may benefit from another firm’s
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entry through cost reductions, or from product expansion through advertising. As such, we allow
for the possibility of spillover effects in our specification of demand, but since we do not have
price and quantity data at the level of local markets, we do not try to identify the source of the
spillover effect. While the natural interpretation of the spillover effect in the context of our model
is a product expansion due to an advertising effect of retail stores, this should be interpreted as a
reduced form’ specification of different possible spillover effects.

(b) Forward looking behaviour. Opening a store is a partly irreversible decision that involves
significant sunk costs. Therefore, it is reasonable to assume that firms are forward looking when
they make this decision. Moreover, dynamic strategic effects may help explain the apparent
absence of competitive effects when we study behaviour in the context of a static model of entry.
Suppose that firms anticipate, with some uncertainty, the total number of hamburger stores that
a local market can sustain in the long-run given the size and the socioeconomic characteristics
of the market. For simplicity, suppose that this number of “available slots” does not depend on
the ownership of the stores because the products sold by the two firms are very close substitutes.
In this context, firms play a game where they “race” to fill as many “slots” as possible with their
own stores. Diseconomies of scale and scope may generate a negative effect of the own number
of stores on the decision of opening new stores. However, in this model, during most of the period
of expansion the number of slots of the competitor has zero effect on the decision of opening a
new store. Only when the market is filled or close to being filled do the competitor’s stores have
a significant effect on entry decisions.

(c) Biased beliefs. Competition in actual oligopoly industries is often characterized by strategic
uncertainty. Firms face significant uncertainty about the strategies of their competitors. Although
MD and BK should know a lot about each another’s strategies from a long history of play, the
U.K. in the early 90s represented a relatively new market.28 So while MD and BK likely know
the possible strategies and thus the set of potential equilibria, the firms are competing for the
first time in a new setting and may have not been sure, particularly during the initial stages
of competition, which of the equilibria would be played by the opponent. While the possible
equilibrium best responses are common knowledge, there is strategic uncertainty about which
of these will be played. In the context of our application, it may be the case that MD’s or/and
BK’s beliefs overestimate the negative effect of the competitor’s stores on the competitor’s entry
decisions. For instance, if MD has one store in a local market, BK may believe that the probability
that MD opens a second store is close to zero. These over-optimistic beliefs about the competitor’s
behaviour may generate an apparent lack of response of BK’s entry decisions to the number of
MD’s stores.

6.2. Model

Consider two retail chains competing in a local market. Each firm sells a differentiated product
using its stores. Let Kimt ∈{0,1,...,|K|} be the state variable that represents the number of stores
of firm i in market m at period t−1. And let Yimt ∈{0,1,...,A−1} be the number of new stores
that firm i opens in the market during period t.29 Following the empirical evidence during our
sample period, we assume that opening a store is an irreversible decision. Also, for almost all

28. See Toivanen and Waterson (2011) for an historical account of the early years of the hamburger fast food
restaurant industry in U.K. McDonalds opened its first restaurant in U.K. in 1974, but it was not until 1981 that it opened
outlets outside the London area. Burger King started operating in U.K. in 1988 after acquiring Wimpy.

29. We abstract from store location within a local market and assume that every store of the same firm has the same
demand.
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the observations in the data we have that Yimt ∈{0,1}, and therefore we consider a binary choice
model for Yimt , i.e., A=2.30

The total number of stores of firm i in market m at period t is Nimt ≡Kimt +Yimt . Firm i is
active in the market at period t if Nimt is strictly positive. Every period, the two firms know the
stocks of stores in the market, Kimt and Kjmt , and simultaneously choose the new (additional)
number of stores, Yimt and Yjmt . Firm i’s total profit function is equal to variable profits minus
entry costs and minus fixed operating costs: �imt =VPimt −ECimt −FCimt .

The specification of the variable profit function is:

VPimt = (Wm γ ) Nimt

[
θVP

0i +θVP
can,iNimt +θVP

com,iNjmt

]
(6.1)

Wm is a vector of exogenous market characteristics such as population, population density,
percentage of population in age group 15–29, GDP per capita, and unemployment rate. γ is
a vector of parameters where the coefficient associated to the Population variable in Wmt is
normalized to one. Therefore, the index Wmγ is measured in number of people and we interpret
it as “market size”. According to this specification, the term θVP

0i +θVP
can,i Nimt +θVP

com,i Njmt

represents variable profits per-capita and per-store. θVP
0i +θVP

can,i is the variable profit (per capita)

when firm i has a single store in the market. The term θVP
can,iNimt captures cannibalization effects

between stores of the same chain as well as possible economies of scale and scope in variable
costs. The term θVP

com,iNjmt captures the effect of competition from the other chain.
Entry cost have the following form:

ECimt = 1{Yimt >0}
[
θEC

0i +θEC
K,i 1{Kimt >0}+θEC

Z,i Zimt +εit

]
(6.2)

1{.} is the indicator function, and θEC
0i , θEC

K,i , and θEC
Z,i are parameters. θEC

0i is an entry cost that is

paid the first time that the firm opens a store in the local market. θEC
0i +θEC

K,i is the cost of opening
a new store when the firm already has stores in the market. If there are economies of scope in the
operation of multiple stores in a market, we expect the parameter θEC

K,i to be negative such that the
entry cost of the first store is greater than the entry cost of additional stores. Zimt represents the
geographic distance between market m and the closest market where firm i has stores at period
t−1 (i.e. Zimt is zero if Kimt >0). The term θEC

Z,i Zimt tries to capture economies of density as in
Holmes (2011). The random variable εit is a private information shock in the cost of opening a
new store, and it is i.i.d. normally distributed.31

The specification of fixed costs is:

FCimt = 1{Nimt >0}
[
θFC

0i +θFC
lin,i Nimt +θFC

qua,i(Nimt)2
]

(6.3)

θFC
0i is a lump-sum cost associated with having any positive number of stores in the market. The

term θFC
lin,i Nimt +θFC

qua,i (Nimt)2 takes into account that operating costs may increase (or decline)
with the number of stores in a quadratic form.

30. The empirical distributions of store openings in our sample are the following. For McDonalds: zero stores, 1,954
observations (92.6%); one store, 146 (6.9%); two stores, 10 (0.5%). For Burger King: zero stores, 1,982 observations
(93.9%); one store, 115 (5.5%); two stores, 11 (0.5%); three stores, 2 (0.1%).

31. Here, we assume that the entry decision is made and the entry cost is paid at the same year that the store opens
and starts operating in the market. In other words, we assume there is no “time-to-build”, or at least that it is substantially
shorter than one year. This timing assumption is quite realistic for franchise stores of large retail chains.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/87/2/582/5370183 by U

niversity of Toronto Library user on 25 M
arch 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[16:18 18/2/2020 OP-REST190013.tex] RESTUD: The Review of Economic Studies Page: 619 582–625

AGUIRREGABIRIA & MAGESAN IDENTIFICATION DYNAMIC GAMES 619

Given this specification, the vector of state variables involved in the exclusion restriction of
Assumption ID-3 is Sjmt = (Kjmt,Zjmt). A firm’s variable profit and fixed cost depend on both
his own and his opponents current number of stores, Nimt and Njmt . These two components of
the profit function do not incorporate an exclusion restriction. Instead, our exclusion restrictions
appear in the specification of the entry cost function. The entry cost of firm i depends on his own
stock of stores at previous period, Kimt , and on the distance from market m to the closest store
of the chain at year t−1, Zimt . However, the competitors’ number of stores in the previous year,
Kjmt , and the distance from market m to the closest store of the competitor in the previous year,
Zjmt , do not directly affect the current profit of the firm. This satisfies the exclusion restriction in
assumption ID-3. Of course a firm’s beliefs about the probability distribution of the opponents’
choice, Yjmt , depend on Sjmt = (Kjmt,Zjmt).

Note that the stock variable Kjmt does enter player i’s payoffs through the current number
of stores, i.e., Njmt =Kjmt +Yjmt . However, the number of stores of the competitor is in fact his
decision at period t. The game can be described either using as decisions variables the incremental
number of stores, Yjmt , or the number of stores, Njmt . We have preferred using the incremental
number of stores as the decision variable to emphasize that it is a binary choice model. Therefore,
once we condition on the competitor’s current number of stores Njmt (i.e. the competitor’s current
decision), the competitor’s stock of stores, Kjmt , is inconsequential for player i’s payoff. However,
firm j cares about his own stock because the cost of adding new stores to his existing stock depends
on how many he already has open.

The maximum value of Kimt in the sample is 13, but it is less than or equal to three for 99% of the
observations in the sample. We assume that the set of possible values of Kimt is {0,1,2,3}, where
Kimt =3 represents a number of stores greater or equal than three. When Kimt =3, we impose the
restriction that firm i does not open additional stores in this market: Pimt(1|xmt , Kimt =3)=0. The
variable Zimt , that represents the distance to the closest chain store, is discretized into eight cells
of 30 miles intervals: Zimt =1 represents a distance of less than 30 miles, Zimt =2 for a distance
of between 30 and 60 miles, ..., Zimt =7 for a distance of between 180 and 210 miles, and Zimt =8
for a distance greater than 210 miles. Market characteristics in the vector Wm have very little time
variability in our sample and we treat them as time invariant state variables in order to reduce the
dimensionality of the state space.32 Therefore, the set S is equal to {0,1,2,3}×{1,2,...,8} and it
has 32 grid points, and the whole state space X is equal to S×S and it has 1,024 points.

Assumption ID-4, which restricts beliefs over a subset of the state space, takes the following
form in this application. We assume that the two firms have unbiased beliefs about the entry
behaviour of the opponent in markets which are relatively close to the opponents network, i.e.,
for small values of the distance Zjmt . However, beliefs may be biased for markets that are farther
away to the opponent’s network. More formally, we assume that:

Bimt(yj|xmt)=Pjmt(yj|xmt) if zjmt ≤z∗ (6.4)

We have estimated the model for different values of z∗. The main intuition behind this assumption
is that markets that are far away from a firm’s network are unexplored markets for which there is
more strategic uncertainty.

The selection of the points in the support of Z where we impose the restriction of unbiased
beliefs is based on the criteria that we have proposed in Section 3.2.6 above. Following the
criterion of “testing for the monotonicity of beliefs”, we have that the probabilities of market

32. For those market characteristics with some time variation, we fix their values at their means over the sample
period. We have also estimated the model using different values, such as the value at the first year in the sample, or at the
last year (i.e. perfect forecast), and all the estimated parameters did not change up to the fourth significant digit.
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entry for BK and MD are strictly decreasing in their own distance variable Z. Furthermore, we
cannot reject the monotonicity of beliefs with respect to this player-specific variable. According
to this criterion, we could impose unbiased beliefs either at the smallest or at the largest values in
the support of variable Z. Following the criterion of “minimization of the player’s beliefs bias”,
we have estimated the model under different selections for the points in the support of Z where
we impose unbiased beliefs. In table 9, we present estimates under two different selections for
unbiased beliefs: Z ∈{0,1}and Z ∈{0,1,2}. The estimation results are very similar under these
two selections. We have also estimated the model imposing unbiased beliefs at the largest values
of Z , i.e., Z ∈{6,7,8}. The estimation results were quite different. In particular, we obtained
substantially larger biases for beliefs. Therefore, a conservative criterion, based on minimizing the
deviation with respect to the paradigm of unbiased beliefs, recommends imposing the restriction
of unbiased beliefs at small values of the player-specific state variable.

Our assumption on players’ beliefs implies that the degree of bias in firms’ beliefs declines over
time with the geographic expansion of these retail chains. When the retail chains have sufficiently
expanded geographically, we have that the distances zjmt become smaller than the threshold value
z∗ such that firms’ beliefs become unbiased for every market and state. The probability of this
event increases over time. It is straightforward to check if this condition is satisfied for every
market and firm in the data after some year in the sample. For our choices of the threshold value
z∗, this condition is almost, but not exactly, satisfied in the last year of our sample, 1995.

6.3. Estimation of the structural model

Table 9 presents estimates of the dynamic game under three different assumptions on beliefs.
Columns (1) and (2) present estimates under the assumption that beliefs are unbiased for every
value of the state variables. In columns (3) and (4), we impose the restriction of unbiased beliefs
only when the distance to the competitor’s network is shorter than 60 miles, i.e., z∗ =2. In columns
(5) and (6), beliefs are unbiased when that distance is shorter than 30 miles, i.e., z∗ =1. For each
of these three scenarios, the proportion of observations at year 1995 for which we impose the
restriction of unbiased beliefs is 100%, 38%, and 29%, respectively.

(a) Estimation with unbiased beliefs. The estimation shows substantial differences between
estimated parameters in the variable profit function of the two firms. The parameter θVP

can is negative
and significant for BK but positive and also statistically significant for MD. Cannibalization effects
dominate in the case of BK. In contrast, economies of scope in variable profits seem important
for MD. The estimates of the parameter that captures the competitive effect, θVP

com, are smaller
in magnitude than the estimates of θVP

can, but they are statistically significant. According to these
estimates, the competitive effect of MD’s market presence on BK’s profits is smaller than the
reverse effect.

The estimates of fixed cost parameters illustrates a similarity across firms in the structure of
fixed costs of operation. The fixed operating cost increases linearly, not quadratically, with the
number of stores, and the lump-sum component of the cost is relatively small. However, there
a substantial economic differences between the firms in the magnitude of these costs. The fixed
cost that BK pays per additional store is almost twice the fixed cost MD pays.

Entry costs are particularly important in this setting because they play a key role in the
identification of the dynamic game, through the exclusion restrictions. The estimates of these
costs are very significant, both statistically and economically. Entry costs depend significantly on
the number of installed stores of the firm, K , and on the distance to the firm’s network, Z . The
signs of these effects, negative for θEC

K and positive for θEC
Z , are consistent with the existence of

economies of scope and density between the stores of the same chain. McDonalds has smaller
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TABLE 9
Estimation of dynamic game for McDonalds and Burger King models with unbiased and biased beliefs(1) (Data: 422

markets, 2 firms, 5 years = 4,220 observations)

β =0.95 (not estimated)
(1) (2) (3) (4) (5) (6)

Unbiased Beliefs Biased Beliefs: Z∗ =2 Biased Beliefs: Z∗ =1
BurgerKing McDonalds BurgerKing McDonalds BurgerKing McDonalds

Variable profits:
θVP

0 0.5413 0.8632 0.4017 0.8271 0.4342 0.8582
(0.1265)∗ (0.2284)∗ (0.2515)∗ (0.4278)∗ (0.2820) (0.4375)

θVP
can cannibalization −0.2246 0.0705 −0.2062 0.0646 −0.1926 0.0640

(0.0576)∗ (0.0304)∗ (0.1014)∗ (0.0710) (0.1140)∗ (0.0972)
θVP

com competition −0.0541 −0.0876 −0.1133 −0.0856 −0.1381 −0.0887
(0.0226)∗ (0.0272) (0.0540)∗ (0.0570) (0.0689)∗ (0.0622)

Fixed costs:
θFC

0 fixed 0.0350 0.0374 0.0423 0.0307 0.0490 0.0339
(0.0220) (0.0265) (0.0478) (0.0489) (0.0585) (0.0658)

θFC
lin linear 0.0687 0.0377 0.0829 0.0467 0.0878 0.0473

(0.0259)∗ (0.0181)∗ (0.0526)∗ (0.0291) (0.0665) (0.0344)
θFC

qua quadratic −0.0057 0.0001 −0.0007 0.0002 −0.0004 0.0004
(0.0061) (0.0163) (0.0186) (0.0198) (0.0253) (0.0246)

Entry cost:
θEC

0 fixed 0.2378 0.1887 0.2586 0.1739 0.2422 0.1764
(0.0709)∗ (0.0679)∗ (0.1282)∗ (0.0989)∗ (0.1504) (0.1031)

θEC
K (K) −0.0609 −0.107 −0.0415 −0.1190 −0.0419 −0.1271

(0.043) (0.0395)∗ (0.096) (0.0628)∗ (0.109)∗ (0.0762)∗
θEC

Z (Z) 0.0881 0.0952 0.1030 0.1180 0.0902 0.1212
(0.0368)∗ (0.0340)∗ (0.0541)∗ (0.0654)∗ (0.0628) (0.0759)∗

Log-Likelihood −848.4 −840.4 −838.7
Test of unbiased beliefs:
For BK: D̂ (d.o.f) (p-value) 66.841 (32) (0.00029) 66.841 (32) (0.00029)
For MD: D̂ (d.o.f) (p-value) 42.838 (32) (0.09549) 42.838 (32) (0.09549)

Note 1: Bootstrap standard errors in parentheses. Note 2: ∗ and ∗∗ denote significance at the 5% and 1% level, respectively.

entry costs, and a larger absolute value of the parameter θEC
K , which indicates that there are

stronger economies of scope in the network of McDonalds stores.
In summary, the estimated model with unbiased beliefs shows significant differences in the

variable profits and entry costs of the firms. Cannibalization is stronger between BK stores, while
MD exhibits substantial economies of scope both in variables profits and entry costs. Competition
effects seem relatively weak but statistically significant.

(b) Tests of unbiased beliefs. Our test of unbiased beliefs clearly rejects the null hypothesis
for BK, with a p-value of 0.00029, though we cannot reject the hypothesis of unbiased beliefs
for MD.33

(c) Estimation with biased beliefs. As expected, (bootstrap) standard errors increase
significantly when we estimate the model allowing for biased beliefs. Nevertheless, these standard
errors are not large and the estimation provides informative and meaningful results. Comparing
these parameter estimates with those in the model with equilibrium restrictions, the most important
changes are in the parameters of variable profits of BK. In particular, the estimate of the parameter
that measures the competitive effect of MD on BK is now more than twice the initial estimate with
equilibrium beliefs. In contrast to the result with unbiased beliefs, we find that the competitive
effect of MD on BK is stronger that the effect of BK on MD. This result is consistent with the
findings in our Monte Carlo experiments: imposing the restriction of unbiased beliefs when it is

33. To implement this test we use a vector δ̂i ={̂δi(Si) :Si ∈S} of |S|=32 statistics.
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incorrect introduces a “measurement error” in beliefs which in turn generates an attenuation bias
in the estimate of the parameter associated with the strategic interactions. For the identification
of this structural parameter the sample variation in beliefs plays an important role.

Interestingly, BK’s estimated profit function has a lower level when we allow for biased beliefs
than when we enforce unbiased beliefs: variable profits are lower, and fixed costs and entry costs
are larger. This is fully consistent with our finding that the bias in BK’s beliefs are mostly in
the direction of underestimating the true probability that MD will enter in unexplored markets.
If we impose the assumption of unbiased beliefs, BK’s profit must be relatively high in order to
rationalize entry into markets where MD is also likely to enter or to expand its number of stores.
Once we take into account the over-optimistic beliefs of BK about the behaviour of MD, revealed
preference shows that BK profits are not as high as before. In fact, in the estimates that allow for
biased beliefs we find that the differences in the profit function of MD and BK are even larger.

(d) Implications of biased beliefs on BK’s profits. Finally, we have implemented a
counterfactual experiment to obtain a measure of the effects of biased beliefs on BK’s profits
in the UK, or more specifically on its profits in the set of local markets that we include in our
analysis, that excludes Greater London districts. We compare the value of BK’s profits during
years 1991 to 1994 given its actual entry decisions with this firm’s profits if its entry decisions
were based on unbiased beliefs on MD’s behaviour. According to our estimates, having unbiased
would increase BK’s total profits in these markets by the following magnitudes: 2.78% in year
1991, 2.11% in 1992, 1.20% in 1993, and 0.87% in 1994. Remember that biased beliefs occur
in markets which are relatively far away from the firm’s network of stores, that these markets are
relatively smaller, and that biased beliefs decline over time in the sample period as the result of
geographic expansion. Though the magnitude of these gains from correct beliefs seem modest in
this case, they also illustrate that they can be substantial for firms smaller than Burger King that
operate only in a few local markets where beliefs are biased.

7. CONCLUSION

This article studies a class of dynamic games of incomplete information where players’ beliefs
about the other players’ actions may not be in equilibrium. We present new results on identification,
estimation, and inference of structural parameters and beliefs in this class of games when the
researcher does not have data on elicited beliefs, or these data are limited to players’ beliefs at
only some values of the state variables. Specifically, we propose a new test of the null hypothesis
that beliefs are in equilibrium. This test is based on standard exclusion restrictions in dynamic
games. We also derive sufficient conditions under which payoffs and beliefs are point identified.
These conditions then lead naturally to a sequential estimator of payoffs and beliefs. We illustrate
our model and methods using both Monte Carlo experiments and an empirical application of a
dynamic game of store location by McDonalds and Burger King. They key conditions for the
identification of beliefs and payoffs in our application are the following. The first condition is an
exclusion restriction in a firm’s profit function that establishes that the previous year’s network
of stores of the competitor does not have a direct effect on the profit of a firm, but the firm’s
own network of stores at previous year does affect its profit through the existence of sunk entry
costs and economies of density in these costs. The second condition restricts firms’ beliefs to be
unbiased in those markets that are close, in a geographic sense, to the opponent’s network of stores.
However, beliefs are unrestricted, and potentially biased, for unexplored markets which are farther
away from the competitors’ network. Our estimates show significant evidence of biased beliefs
for Burger King. We find that Burger King underestimated the probability of entry of McDonalds
in markets that were relatively far away from McDonalds’ network of stores. Furthermore, we
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find that imposing the restriction of unbiased beliefs, when this restriction is rejected, generates
a substantial attenuation bias in the estimation of the competition effects.
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