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1 Introduction

Whether by sea, land or air, the entirety of trade in goods is carried out by the transportation sector.

With world trade at full steam, the transportation sector has become central in everyday life. Yet, little

is known about how the market for transportation services interacts with the market for world trade in

goods.

In this paper, we study how this interaction shapes trade flows, trade costs, the propagation of shocks

and the allocation of productive activities across countries. As we demonstrate, the transportation sector

(i) attenuates differences in the comparative advantage across countries, reallocating production from net

exporters to net importers; (ii) creates network effects in trade costs; and (iii) dampens the impact of

shocks on trade flows. These three mechanisms reveal a new role for geography in international trade

that was previously shrouded by the common assumption of exogenous trade costs.

The transportation sector includes several different segments which can be split into two categories:

those that operate on fixed itineraries, much like buses, and those that operate on flexible routes, much

like taxis. Containerships, airplanes and trains primarily belong to the first group, while trucks, gas and

oil tankers, and dry bulk ships to the second. Here we focus on oceanic shipping and, in particular, dry

bulk shipping; 80% of world trade volume is carried by ships and dry bulkers carry about half of that.1

Dry bulk ships are the main mode of transportation for commodities, such as grain, ore, and coal. They

are often termed the “taxis of the oceans,” as an exporter has to search for an available vessel and hire it

for a specific voyage, with prices set in the spot market in a decentralized fashion. Despite the operational

differences of the various transport modes, we argue that the core economic mechanisms discussed in this

paper hold for most, if not all of them.

We leverage detailed micro-data on vessel movements, as well as rich data on contracts between

exporters and shipowners to uncover some novel facts. First, satellite data of ships’ movements reveal

that most countries are either large net importers or large net exporters; related to this, at any point

in time a staggering 42% of ships are traveling without cargo (termed “ballast”). This natural trade

imbalance is a key driver of trade costs. Indeed, transportation prices are largely asymmetric and depend

on the destination’s trade imbalance: all else equal, the prospect of having to ballast after offloading leads

to higher prices. For instance, shipping from Australia to China is 30% more expensive than the reverse:

as China mostly imports raw materials, ships arriving there have limited opportunities to reload. This
1Source: International Chamber of Shipping and UNCTAD (2015). Seaborne trade accounts for about 70% of trade in

terms of value.
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phenomenon is pervasive in most, if not all modes of transportation: trucks, trains, container air and

ocean shipping, all exhibit similar price asymmetries that correlate with trade imbalances (the direction

of the imbalance, however, may be the opposite). In fact, the US-China trade deficit in manufacturing

has incentivized US exports of low value cargo, such as scrap or hay, to fill up the empty backhauls.2

In addition, we compute the elasticity of trade with respect to shipping costs, by regressing trade by

country pair on the corresponding shipping price. To do so, we employ a novel instrument inspired by

the insight that the shipping price exporters face depends on how attractive their destination is to the

ship in terms of future loading opportunities, as discussed above. The estimated trade elasticity indicates

that the transport sector has a substantial impact on world trade, especially given the large fluctuations

in shipping prices.

Inspired by these facts, we build a spatial model that centers on the interaction of the market for

transport and the market for world trade in goods, in the spirit of the search and matching literature.

The globe is split into a number of regions that trade with each other. Geography enters the model both

through regions’ location in space, as well as their natural inheritance in commodities of different value.

In each region, available ships and exporters participate in a random matching process. When matched

with an exporter, ships transport the exporter’s cargo to its destination for a negotiated price, and restart

there. Ships that do not get matched decide whether to wait at their current location or ballast elsewhere

to search there. Exporters that get matched have their cargo delivered and collect its revenue, while

exporters that do not get matched wait at port. Finally, a large number of potential exporters decide

whether and where to export, thus replenishing the exporter pool seeking transportation.

We derive the equilibrium trade costs (shipping prices), as well as an expression for the equilibrium

bilateral trade flows, that is reminiscent of a gravity equation. As ships are forward-looking, trade costs

depend on the attractiveness of both the origin and the destination, a rich object that captures a region’s

location, freight values, matching probabilities, as well as its neighbors’ attractiveness. This insight applies

beyond dry bulk. Although other transport modes require different modeling assumptions regarding their
2In 2005, about 60% of the containers sent via ships from Asia to North America came back empty (Drewry Consultants),

and those “that did come back full were often transported at a steep discount for lack of demand (...) Shippers are so eager
to fill their vessels for the return voyage to East Asia that they accept many types of unprofitable cargo, like bales of hay.”
Similarly, “airlines had become so eager to put something in their cargo holds on the inbound journey to China that rates go
as low as 30 to 40 cents a kilogram, compared with $3 to $3.50 a kilogram leaving China [...] Very bluntly speaking, they’re
flying in empty and flying out full.” (The International Herald Tribune, 01/30/2006)
In trucking, “[b]ackhaul practices are extremely important in explaining differences in prices; i.e. the truck companies

are compensating their expenses on the empty backhaul in the first leg of the trip.” (The World Bank, 2012). Even Uhaul
moving trucks are priced similarly, “Rent a moving truck from Las Vegas to San Jose and you’ll pay about $100. In the
opposite direction, the same truck will cost you 16 times that. (...) What accounts for the difference? (...) With so many
people leaving the Bay Area, there are not enough rental trucks to go around.” (SFgate, 02/15/2018).
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operational practices, in equilibrium, prices are formed by the optimizing behavior of forward-looking

transport agents and unavoidably depend, as above, on the attractiveness of origins and destinations, as

well as that of their neighbors.3

Next, we estimate the model using the collected data. We first estimate the matching function

capturing the trading process between ships and exporters, which gives the number of matches as a

function of the number of agents searching on each side of the market. A sizable literature has estimated

matching functions in different contexts (e.g. labor markets, taxicabs).4 Here, we adopt a novel approach

to flexibly recover both the matching function, as well as searching exporters, which, unlike ships and

matches, are not observed. Our approach draws from the literature on nonparametric identification

(Matzkin, 2003) and, to our knowledge, we are the first to apply it to matching function estimation. Not

imposing a functional form is important, since the shape of the underlying matching function is directly

linked to welfare (see Brancaccio et al. (2019b)); furthermore, this approach is agnostic as to the nature

of the meeting process thus allowing us to recover exporters flexibly.

We then estimate the remaining primitives including ship costs, the values of exporters’ cargo and

exporter entry costs. In particular, we recover ship sailing and port costs from the optimal ballast choice

probabilities, via Maximum Likelihood, following the dynamic discrete choice literature (Rust, 1987).

Then, we obtain exporter valuations directly from observed prices. Finally, we use trade flows to recover

exporter costs by destination.

Why is it important to account for the transport sector to study international trade in goods? We

illustrate the role of endogenous trade costs through three experiments.

First, we compare our setup to one with “iceberg” trade costs that are exogenous and depend only on

distance and the cargo’s value, as is the case in canonical trade models. We find that the transport sector

mitigates differences in the comparative advantage across countries, reducing world trade imbalances.

Indeed, under endogenous trade costs net exporters (importers) export less (more) than under exogenous

trade costs, leading to a reallocation of productive activities from net exporters to net importers. This

happens because of ships’ equilibrium behavior and in particular the strength of their bargaining position

at different regions. Net exporters offer loading opportunities to ships, thus allowing them to command
3For instance, a model for container shipping (or other modes operating on fixed itineraries), would likely feature a small

number of shipping firms that decide on their itineraries, as well as route pricing. The itinerary decision involves similar
trade-offs as the ballast choice here; e.g. what network of countries can be serviced or how to manage backhaul trips. Prices
similarly depend on the number and valuations of exporters, ship supply and crucially, the entire route serviced including
the backhaul trips.

4For instance, in labor markets, data on unemployed workers, vacancies and matches delivers the underlying matching
function. In the market for taxi rides, one observes taxis rides, but not hailing passengers; in recent work, Buchholz (2019)
and Frechette et al. (2019) have used a parametric assumption on the matching function, to recover the passengers.
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high prices, which in turn restrains their exports. The converse holds for net importers. This argument

extends to a country’s neighbors: a net exporter close to other net exporters offers even more options to

ships and prices are even higher, which inhibits the neighborhood’s exports.

Second, we illustrate that the transport sector dampens the impact of shocks on trade flows by

considering a fuel cost shock. A decline in the fuel cost has a direct and an indirect effect. The direct

effect is straightforward: as costs fall, shipping prices also fall and thus exports rise. The novel indirect

effect is that a decline in fuel costs improves a ship’s bargaining position, as it makes ballasting less costly.

This dampens the original decline in prices and the increase in exporting. Indeed, the overall increase in

world trade would have been 40% higher if ships were not allowed to optimally adjust their behavior, in

response to a 10% decline in fuel costs.

Third, we explore the spatial propagation of a macro shock: a slow-down in China. Besides the direct

effect to countries whose exports rely heavily on the Chinese economy, the optimal reallocation of ships

over space differentially filters the shock in neighboring vs. distant regions. Because of the slow-down,

fewer ships offload in China, reducing ship supply in the region. Although this impacts negatively China’s

own exports by raising prices, it benefits distant countries, such as Brazil, because ships reallocate there.

Finally, we consider the role of maritime infrastructure on world trade, as an illustration of how our

setup can be used for policy evaluation. To do so, we examine the opening of the Northwest Passage: the

melting of the arctic ice would reduce the travel distance between Northeast America/Northern Europe

and the Far East. Although the shock is local, it has global effects: as Northeast America becomes a

more attractive ballasting choice, ships have a stronger bargaining position and demand higher prices,

pushing exports down everywhere else. Moreover, we consider the impact of three natural and man-made

passages: the Panama Canal, the Suez Canal and Gibraltar and show that all passages substantially

increase world trade and welfare.

Related Literature We relate to three broad strands of literature: (i) trade and geography; (ii)

search and matching; (iii) industry dynamics.

First, our paper endogenizes trade costs and so it naturally relates to the large literature in inter-

national trade studying the importance of trade costs in explaining trade flows between countries (e.g.

Anderson and Van Wincoop, 2003, Eaton and Kortum, 2002). In much of the literature, trade costs are

treated as exogenous and follow the iceberg formulation of Samuelson (1954). Here, we consider what

happens to trade flows when the equilibrium of the transport market is taken into account, so that trans-
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port prices (an important component of trade costs, at least as large or larger than tariffs; Hummels,

2007) are determined in equilibrium, jointly with trade flows. Moreover, related to some of our empirical

findings, Waugh (2010) has argued that asymmetric trade costs are necessary to explain some empirical

regularities regarding trade flows across rich and poor countries.

We also contribute to a literature that has considered the role and features of the (container) shipping

industry; e.g. Koopmans (1949) contains an early consideration of endogenous shipping prices; Hummels

and Skiba (2004) explore the relationship between product prices at different destinations and shipping

costs; Hummels et al. (2009) explore market power in container shipping; Ishikawa and Tarui (2015)

theoretically investigate the impact of “backhaul” and its interaction with industrial policy; Cosar and

Demir (2018) and Holmes and Singer (2018) study container usage; Asturias (2018) explores the impact of

the number of shipping firms on transport prices and trade; Wong (2019) incorporates container shipping

prices featuring a “round-trip” effect in a trade model. Finally, recent work has explored the matching of

importers and exporters under frictions (Eaton et al., 2016, and Krolikowski and McCallum, 2018).

Our paper is also related to both older and more recent work on the role of geography in international

trade (e.g. Krugman, 1991, Head and Mayer, 2004, Allen and Arkolakis, 2014), as well as the impact of

transportation infrastructure and networks (e.g. Donaldson, 2018, Allen and Arkolakis, 2016, Donaldson

and Hornbeck, 2016, Fajgelbaum and Schaal, 2017). We extend this literature by demonstrating that the

transport sector reveals a new role for geography through three novel mechanisms (it attenuates differences

in the comparative advantage across countries, creates network effects and dampens the impact of shocks).

Second, our paper relates to the search and matching literature (see Rogerson et al., 2005 for a survey).

Our model is a search model in the spirit of the seminal work of Mortensen and Pissarides (1994), where

firms and workers (randomly) meet subject to search frictions and Nash bargain over a wage. An important

addition in our case is the spatial nature of our setup: there are several interconnected markets at which

agents (ships) can search. Such a spatial search model was first proposed by Lagos (2000) (and analyzed

empirically in Lagos, 2003) in the context of taxi cabs. We borrow heavily from his model; the key

difference is that prices are set in equilibrium, while in the taxi market prices are exogenously set by

regulation. This is crucial, as the role of endogenous trade costs is at the core of our paper.5 Finally,

as discussed above, our paper also contributes to the literature on matching function estimation (see
5There are several other differences between our setup and that of Lagos (2000) and Lagos (2003): we model also the

demand side (exporters/passengers); we allow for the potential of frictions in each region, while Lagos (2000) assumes that
matching is frictionless locally; we allow for several sources of heterogeneity in different regions (travel/port costs, distances,
matching rates); we allow trade to be imbalanced, while Lagos (2000) relies on taxi flows in and out of each location to be
equal- this distinction is also crucial.
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Petrongolo and Pissarides (2001) for a survey).

Third, we relate to the literature on industry dynamics (e.g. Hopenhayn, 1992, Ericson and Pakes,

1995). Consistent with this research agenda, we study the long-run industry equilibrium properties, in our

case the spatial distribution of ships and exporters. Moreover, our empirical methodology borrows from

the literature on the estimation of dynamic setups (e.g. Rust, 1987, Bajari et al., 2007, Pakes et al., 2007;

applications include Ryan, 2012 and Collard-Wexler, 2013). Buchholz (2019) and Frechette et al. (2019)

also explore dynamic decisions in the context of taxi cabs’ search and shift choices respectively. Finally,

Kalouptsidi (2014) has also looked at the shipping industry, albeit at the entry decisions of shipowners

and the resulting investment cycles in new ships, while Kalouptsidi (2018) focuses on industrial policy in

the Chinese shipbuilding industry.

The rest of the paper is structured as follows: Section 2 provides a description of the industry and the

data used. Section 3 presents the facts. Section 4 describes the model. Section 5 lays out our empirical

strategy, while Section 6 presents the estimation results. Section 7 demonstrates the importance of

endogenous trade costs, while Section 8 assesses the role of maritime infrastructure projects. Section 9

concludes. The Appendix contains additional tables and figures, proofs to our propositions, as well as

further data and estimation details.

2 Industry and Data Description

2.1 Dry Bulk Shipping

Dry bulk shipping involves vessels designed to carry a homogeneous unpacked dry cargo, for individual

shippers on non-scheduled routes. Bulk carriers operate much like taxi cabs: a specific cargo is transported

individually by a specific ship, for a trip between a single origin and a single destination. Dry bulk shipping

involves mostly commodities, such as iron ore, steel, coal, bauxite, phosphates, but also grain, sugar,

chemicals, lumber and wood chips; it accounts for about half of total seaborne trade in tons (UNCTAD,

2015) and 45% of the total world fleet, which includes also containerships and oil tankers.6,7

There are four categories of dry bulk carriers based on size: Handysize (10,000–40,000 DWT), Handy-

max (40,000–60,000 DWT), Panamax (60,000–100,000 DWT) and Capesize (larger than 100,000 DWT).
6As already mentioned, bulk ships are different from containerships, which carry cargo (mostly manufactured goods) from

many different cargo owners in container boxes, along fixed itineraries according to a timetable. It is not technologically
possible to substitute bulk with container shipping.

7It is not straightforward to obtain information on the share of world trade value carried by bulkers. However, mining,
agricultural products, chemicals and iron/steel jointly account for about 30% of total trade value (WTO, 2015).
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The industry is unconcentrated, consisting of a large number of small shipowning firms (Kalouptsidi,

2014): the maximum fleet share is around 4%, while the firm size distribution features a large tail of

small shipowners. Moreover, shipping services are largely perceived as homogeneous. In his lifetime, a

shipowner will contract with hundreds of different exporters, carry a multitude of different products and

visit numerous countries.

Trips are realized through individual contracts: shipowners have vessels for hire, exporters have cargo

to transport and brokers put the deal together. Ships carry at most one freight at a time: the exporter

fills up the hired ship with his cargo. In this paper, we focus on spot contracts and in particular the

so-called “trip-charters”, in which the shipowner is paid in a per day rate.8 The exporter who hires the

ship is responsible for the trip costs (e.g. fueling), while the shipowner incurs the remaining ship costs

(e.g. crew, maintenance, repairs).

2.2 Data

We combine a number of different datasets. First, we employ a dataset of dry bulk shipping contracts,

from 2010 to 2016, collected by Clarksons Research. An observation is a transaction between a shipowner

and a charterer for a specific trip. We observe the vessel, the charterer, the contract signing date, the

loading and unloading dates, the price in dollars per day, as well as some information on the origin and

destination.

Second, we use satellite AIS (Automatic Identification System) data from exactEarth Ltd (henceforth

EE) for the ships in the Clarksons dataset between July 2010 and March 2016. AIS transceivers on the

ships automatically broadcast information, such as their position (longitude and latitude), speed, and

level of draft (the vertical distance between the waterline and the bottom of the ship’s hull), at regular

intervals of at most six minutes. The draft is a crucial variable, as it allows us to determine whether a

ship is loaded or not at any point in time.

We also use the ERA-Interim archive, from the European Centre for Medium-Range Weather Forecasts

(CMWF), to collect global data on daily sea weather. This allows us to construct weekly data on the

wind speed (in each direction) on a 0.75° grid across all oceans. Finally, we employ several time series

from Clarksons on e.g. the total fleet and fuel prices, as well as country-level imports/exports, production

and commodity prices from other sources (e.g. Comtrade, IEA).

8Trip-charters are the most common type of contract. Long-term contracts (“time-charters”), however, do exist: on
average, about 10% of contracts signed are long-term.
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Mean St. Dev Median Min Max

Contract price per day (thousand US dollars) 13.9 8.6 12 3.2 43
Contract trip price (thousand US dollars) 291 304 178 30.5 1,367
Contracts per ship 2.9 2.2 2 1 10
Trip duration (weeks) 2.89 1.36 2.95 0.5 5.44
Days between contract signing and loading date 6.39 7.12 5 0 30
Prob of ship staying at port conditional on not signing a contract 0.77 0.12 0.76 0.59 0.95

Table 1: Summary statistics. The contract price per day is reported by Clarksons. To create the price per trip,
we multiply price per day with the average number of days required to perform the trip. Contracts per ship counts
the number of contracts observed for each ship in the Clarksons dataset. To proxy for trip duration, we compute
the nautical distance in miles and divide it by the average speed observed in the EE data. The probability of
staying at port is calculated from the EE data by computing the frequency at which waiting ships that did not find
a contract in a given week remain at port instead of ballasting elsewhere. We have 12,007 observations of shipping
contracts and 393,058 ship-week observations at which the ship decides to either ballast someplace or stay at its
current location.

Summary statistics Our final dataset involves 5,398 ships, which corresponds to about half the

world fleet, between 2012 and 2016.9 We end up with 12,007 shipping contracts, for which we know the

price, as well as the exact origin and destination (see Appendix A for our data matching procedure).10

As shown in Table 1, the average price is 14,000 dollars per day (or 290,000 dollars for the entire trip),

with substantial variation. Trips last on average 2.9 weeks. Contracts are signed close to the loading

date, on average six days before. The most popular loaded trips are from Australia, Brazil and Northwest

America to China, while the most popular ballast trip is from China to Australia (5.7% of ballast trips).

We have 393,058 ship-week observations at which the ship decides to either ballast someplace or stay at

its current location. Ships that do not sign a contract, remain in their current location with probability

77%, while the remaining ships ballast elsewhere. Finally, Clarksons reports the product carried in about

20% of the sample. The main commodity categories are grain (29%), ores (21%), coal (25%), steel (8%)

and chemicals/fertilizers (6%).

3 Facts

In this section, we present some novel facts about the transport sector and trade: we first discuss the

implications of trade imbalances (section 3.1) and then, we quantify the impact of transport costs on world
9We drop the first two years (until May 2012) of vessel movement data, as satellites are still launched at that time and

the geographic coverage is more limited.
10The Clarksons contracts somewhat oversample the intermediate size categories (Handymax and Panamax) and younger

ships.
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trade (section 3.2). Throughout the paper, unless otherwise noted, we split ports into 15 geographical

regions, depicted in Figure 8 in Appendix B.11

3.1 Trade Imbalances

World trade in commodities is greatly imbalanced. Indeed, most countries are either large net importers

or large net exporters. This is shown in Figure 1, which plots the difference between the number of ships

departing loaded and the number of ships arriving loaded, over the sum of the two. Australia, Brazil and

Northwest America are big net exporters, whereas China and India are big net importers.

The fact that global trade features such large imbalances is not as surprising; to a large extent, this

is due to the different natural inheritance of countries. For instance, Australia, Brazil and Northwest

America are rich in minerals, grain, coal, etc. At the same time, growing developing countries require

imports of raw materials to achieve industrial expansion and infrastructure building. For instance, in

recent years, Chinese growth has relied on massive imports of raw materials. As a result, commodities

flow out of producers such as Australia and Brazil, towards China and India.

As a consequence of the imbalanced nature of international trade, ships spend much of their time

traveling ballast, i.e. without cargo. Indeed, we find that 42% of a ship’s traveled miles are ballast, so

that a ship is traveling empty close to half the time.12 Finally, the trade imbalance is a key driver of

the trade costs that exporters face. First, a quick inspection of the data reveals that there are large

asymmetries in trade costs across space: for instance, a trip from China to Australia costs on average

7,500 dollars per day, while a trip from Australia to China costs on average 10,000 dollars per day.13 In

fact, most trips exhibit substantial asymmetry: the average ratio of the price from i to j over the price

from j to i (highest over lowest), is 1.6 and can be as high as 4.1.

We further investigate the determinants of trade costs by considering how shipping prices are associated

with the attractiveness of the destination, such as its demand for shipping. Indeed, ships may demand a

premium to travel towards a destination with low exports (e.g. China), to compensate for the difficulty

of finding a new cargo originating from that destination. As shown in Column III of Table 2, shipping to

a destination where the probability of a ballast trip afterwards is ten percentage points higher, costs 2.3%
11The trade-off is that we need a large number of observations per region, while allowing for sufficient geographical detail.

To determine the regions, we employ a clustering algorithm that minimizes the within-region distance between ports. The
regions are: West Coast of North America, East Coast of North America, Central America, West Coast of South America,
East Coast of South America, West Africa, Mediterranean, North Europe, South Africa, Middle East, India, Southeast Asia,
China, Australia, Japan-Korea. We ignore intra-regional trips and entirely drop these observations.

12This percentage is lower for smaller ships– it is 32% for Handysize, 41% for Handymax, 45% for Panamax and 49% for
Capesize.

13This price asymmetry has been documented also in container shipping; see e.g. Wong (2019) and references therein.
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Figure 1: Trade Imbalances. Difference between exports (ships leaving loaded) and imports (ships arriving loaded)
over total trade (all ships). A positive (negative) ratio indicates that a country is a net exporter (importer); a ratio
close to zero implies balanced trade.

more on average. Similarly, a 10% increase in the average distance traveled ballast after the destination,

is associated with a 1.7% increase in prices.

Finally, it is worth noting that the type of product carried affects the price paid and overall more

valuable goods lead to higher contracted prices, as shown in Column III Table 2.

3.2 Trade Elasticity

Do shipping prices have an impact on world trade? In this section we address this question in the context

of bulk shipping. Ideally, we would like to regress bilateral trade flows on shipping prices, i.e.,

logQi→jt = β0 + β1 log τ i→jt + εijt

where Qi→jt is the total trade value from country i to country j (in bulk commodities) at time period

(month) t and τ i→jt is the shipping price from i to j at t. Naturally, this regression is going to lead to

biased estimates, as prices are likely correlated with the error, εijt. Thus, an instrument is required.

The instrument we leverage is inspired by the insight that, as discussed above, the attractiveness of

an exporter’s destination impacts the shipping price it faces. Consider the trade flow from i to j, Qi→jt ;

the instrument we use for the shipping price τ i→jt consists of the tariffs levied on commodity exports from

the destination j. For example, the price to ship goods from Indonesia to China is instrumented using

the tariffs on raw materials on routes starting from China. These tariffs do not directly affect the flows
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I II III
log(price per day)

Probability of ballast 0.234∗∗ 0.556∗∗
(0.030) (0.081)

Avg duration of ballast trip (log) 0.166∗∗ 0.065∗∗
(0.014) (0.032)

Coal 0.088∗∗
(0.045)

Fertilizer 0.245∗∗
(0.051)

Grain 0.131∗∗
(0.048)

Ore 0.124∗∗
(0.045)

Steel 0.135∗∗
(0.049)

Constant 10.284∗∗ 9.127∗∗ 8.915∗∗
(0.103) (0.099) (0.408)

Destination FE Yes No No
Origin FE Yes Yes Yes
Ship type FE Yes Yes Yes
Quarter FE Yes Yes Yes

Obs 11,014 11,011 1,662
R2 0.694 0.674 0.664

**p < 0.05,*p < 0.1

Table 2: Shipping price regressions. The dependent variable is the logged price per day in USD. The independent
variables include combinations of: the average frequency of ballast traveling after the contract’s destination (Prob-
ability of ballast), the average logged duration (in days) of the ballast trip after the contract’s destination, as well
as ship type, origin, destination and quarter fixed effects (FE). The product is reported in only 20% of the sample,
so the regression in column III has substantially fewer observations. The omitted product category is cement.
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from Indonesia to China. However, they affect the value of a ship unloading in China. Indeed, tariffs on

j’s exports lead to a reduction in shipments from j, thus dampening the demand for shipping services in

j and making j a less attractive destination for ships. Therefore, when negotiating a price to ship goods

from i to j, a ship demands a higher price in order to compensate for its reduced opportunities upon

arrival at j.14 Similarly, we also use the tariffs levied on commodities imported at the exporter’s origin,

i, as an instrument for the price τ i→jt . These tariffs reduce i’s imports, leading to lower ship supply in

origin i, and, thus, higher shipping prices to export from i to j.

Table 3 presents the results. Column I showcases this mechanism by regressing the per-day shipping

prices on the tariffs levied on exports from j to its first and second biggest trading partners (tariff j→(1)

and tariff j→(2)), as well as on tariffs on i’s imports from its first and second biggest trading partners

(tariff (1)→i and tariff (2)→i). We run the regression in differences to control for any fixed, route-specific

characteristics; we also control for GDP, tariffs on the route considered, as well as tariffs on all goods other

than commodities (all in differences).15 The signs of the instruments are as expected: higher tariffs tend

to increase shipping prices. These results are interesting per se, as they showcase that shipping prices

between any two countries are affected by shipping conditions on other routes, creating inter-dependencies

and network effects in trade costs; this mechanism, which is formalized in our model and is central to

the paper, is quantitatively important. Finally, the F-stat of this regression suggests that we may have a

weak instrument problem. Hence to obtain the trade elasticity below we use the LIML estimator, which

has better finite sample properties than TSLS.

The estimated trade elasticity with respect to shipping prices, shown in Column II of Table 3, is

equal to 1.03 and is statistically significant. In other words, a 1% increase in shipping prices leads to

a 1.03% decline in trade flows. The corresponding Anderson and Rubin (1949) confidence interval is

[-1.397, -0.769]. This elasticity indicates that the transport sector has a substantial impact on world

trade, especially given the large observed fluctuations in shipping prices (for instance, shipping prices

experienced an 8-fold increase in the late 2000s, see Kalouptsidi, 2014).

A few recent papers have estimated the same elasticity for the case of container shipping. Asturias

(2018), who uses population as an instrument, finds the elasticity to be about 5. Wong (2019), who uses
14This instrument is valid as it should not impact directly Qi→jt . Recall that here we focus only on raw materials, hence

the supply chain should not be a concern (e.g. the instrument would be problematic if j imports steel and exports cars and
we considered tariffs on cars). Moreover, we control directly for the tariffs from i to j and the overall level of tariffs on all
goods other than commodities.

15We obtain yearly country-level trade flows from Comtrade and tariffs from the World Bank (WITS) and we focus only
on bulk commodities; yearly average shipping prices come from our Clarksons dataset. The results are robust if we add
country fixed effects, or if we use the weighted average of tariffs instead.
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∆ log
(
τ i→jt

)
∆ log

(
Qi→jt

)
OLS LIML

∆ log
(
τ i→jt

)
−1.03∗∗

(0.425)

∆ log
(
tariff j→(1)

t

)
0.070∗

(0.040)

∆ log
(
tariff j→(2)

t

)
0.135∗∗

(0.027)

∆ log
(
tariff (1)→i

t

)
0.136
(0.096)

∆ log
(
tariff (2)→i

t

)
−0.012
(0.082)

Controls
(changes of)

GDP of i and j
tariff on i’s import (non-commodities)
tariff on j’s export (non-commodities)

tariff on j’s import from i (commodities)

Obs 452 452
R2 0.129 -
F-stat 7.30

**p < 0.05,*p < 0.1
Table 3: Elasticity of trade with respect to shipping prices. Data on yearly bilateral country-level trade value and
tariffs are obtained from the World Bank (WITS) for the period 2010-2016. We focus on trade and tariffs for bulk
commodities. To construct tariffs, we consider the minimum between the most favored nation tariff and preferential
rates, if applicable, and consider a weighted average across commodities. Shipping prices are calculated from the
per-day prices in Clarksons contracts, averaged at the year and country-pair level. We group countries in EU-27
and exclude countries without no access to sea.
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the round-trip effect as an instrument (in particular, for route i, j she uses a Bartik-style instrument to

proxy for the predicted trade volume on route j, i) finds an elasticity of about 3. It is also worth comparing

the elasticity of trade with respect to shipping prices to that with respect to tariffs, which is estimated to

be between 1.5 and 5 on average (e.g. Simonovska and Waugh, 2014, Caliendo and Parro, 2015, Brandt

et al., 2017 and Arkolakis et al., 2018). The two elasticities are comparable, with our estimate overall

somewhat lower. Recall, however, that we use total rather than waterborne trade value; therefore our

estimate should be considered a lower bound of the trade elasticity with respect to shipping prices, as it

ignores substitution towards other modes of transportation.16

4 Model

In this section, motivated by the above findings, we introduce a spatial model that centers on the inter-

action between the market for transport and the market for world trade in goods. In each period, the

timing is as follows: In each region, available ships and exporters participate in a decentralized matching

process. Ships that get matched transport their exporter’s cargo to its destination for a negotiated price,

and restart there. Ships that do not get matched decide whether to wait at their current location or

ballast elsewhere and search there. Exporters that get matched have their cargo delivered and collect

their revenue. Exporters that do not get matched wait at port. Finally, a large number of potential

exporters decide whether and where to export, thus replenishing the exporter pool seeking transportation

the following period.

We first lay out the model’s setup; we then present the agents’ value functions and derive the equi-

librium objects of interest: trade costs (shipping prices) and trade flows (gravity equation). We close the

section with a detailed discussion of our main assumptions.

4.1 Environment

Time is discrete. There are I locations/regions, i ∈ {1, 2, ..., I}. There are two types of agents, exporters

and ships. Both are risk neutral and have discount factor β.

At each location i and period t, there are eit exporters/freights that need to be delivered to another

location. An exporter obtains revenue (or valuation), r, from shipping the good. Every period, at each

location i, Ei potential exporters decide whether and where to export. If they decide to export, they pay
16For instance, if we exclude EU countries, which can easily substitute from oceanic shipping to land shipping, the elasticity

increases to 3.
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production and export costs, κij and draw their revenue r, from a distribution F rij with mean r̄ij .

There are S homogeneous ships in the world.17 In every period, a ship is either at port in some region

i, or it is traveling loaded or ballast, from some location i to some location j. A ship at port in location

i incurs a per period waiting cost cwi , while a ship sailing from i to j incurs a per period sailing cost csij .

The duration of a trip between region i and region j is stochastic: a traveling ship arrives at j in the

current period with probability dij , so that the average duration of the trip is 1/dij .18

Freights can only be delivered to their destination by ships and each ship can carry (at most) one

freight. Following the search and matching literature, we model new matches every period, mit, using a

matching function, whereby the number of matches at time t in region i is

mit = mi (sit, eit)

where sit is the number of unmatched ships in region i. mi (sit, eit) is increasing in both arguments.

Let λit denote the probability that an unmatched ship in location i meets an exporter; λit = mit/sit.

Similarly, let λeit denote the probability with which an unmatched exporter meets a ship; λeit = mit/eit.

The matching function captures the frictional trading process in a parsimonious fashion. In other words,

we do not explicitly model the meeting technology between exporters and ships, which “would introduce

intractable complexities” (Petrongolo and Pissarides, 2001); instead, the matching function captures the

several realities of the market, including information frictions, port infrastructure and heterogeneities. In

a companion paper (Brancaccio et al., 2019b), we argue that the meeting process is indeed not frictionless

and provide evidence of search frictions in bulk shipping that limit trade.

When a ship and an exporter meet, they either agree on a price to be paid by the exporter to the ship

or they both revert to their outside options. The outside option of the exporter is to remain unmatched

and wait for another ship, while the outside option of the ship is to either remain unmatched in the current

region or to ballast elsewhere. The surplus of the match over the parties’ outside options is split via the

price-setting mechanism. The price, τijr, paid to the ship delivering a freight of valuation r from region

i to destination j, is determined by generalized Nash bargaining, with γ ∈ (0, 1) denoting the exporter’s

bargaining power. The price is paid upfront and the ship commits to begin its voyage immediately to j.

Ships that remain unmatched decide whether to remain in their current region or ballast elsewhere
17We follow Kalouptsidi (2014) and assume constant returns to scale so that a shipowner is a ship.
18It is straightforward to have deterministic trip durations instead. Our specification, however, preserves tractability and

allows for some variability e.g. due to weather shocks, without affecting the steady state properties of the model.
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subject to i.i.d. logit shocks. Exporters that remain unmatched survive with probability δ > 0 and wait

in their current region.

4.2 Equilibrium

The state variable of a ship in region i includes its current location i, as well as the state (st, et), where

et = [e1t, ..., eIt] denotes the distribution of exporters over all regions, and st is an I × I matrix including

the ships that are traveling from i to j, sijt, as well as the ships at port sit, i, j = 1, ..., I. The state

variable of an exporter in i includes his location i, valuation r and destination j, as well as (st, et). In this

paper, we consider the steady state of our industry model, following the tradition of Hopenhayn (1992).

More specifically, agents view the spatial distribution of ships and exporters, (st, et), as fixed and make

decisions based on its steady-state value.

Ships Let Vij denote the value of a ship that starts the period traveling from i to j (empty or

loaded), Vi the value of a ship that starts the period at port in location i, and Ui the value of a ship that

remained unmatched at i at the end of the period (we suppress the dependence on the steady state values

(s, e)). Then:

Vij = −csij + dijβVj + (1− dij)βVij (1)

In words, the ship that is traveling from i to j, pays the per period cost of sailing csij ; with probability dij

it arrives at its destination j, where it begins unmatched with value Vj ; with the remaining probability

1− dij the ship does not arrive and keeps traveling.

A ship that starts the period in region i obtains:

Vi = −cwi + λiEj,r (τijr + Vij) + (1− λi)Ui (2)

In words, the ship pays the per period port wait cost cwi ; it gets matched with probability λi, in which

case it receives the agreed upon price, τijr, and begins traveling. The ship takes expectation over the type

of exporter it meets, i.e. its revenue and destination. With the remaining probability, 1 − λi, the ship

does not find an exporter and gets the value of being unmatched Ui.

If the ship remains unmatched, it faces the choice of either staying at i or ballasting to another region;

in the latter case, the ship can choose among all possible destinations. The unmatched ship’s value
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function is:

Ui(ε) = max
{
βVi + σεi,max

j 6=i
Vij + σεj

}
(3)

where the shocks ε ∈ RI are drawn from a type I Extreme Value (Gumbel) distribution, with standard

deviation σ. In words, if the ship stays in its current region i, it obtains value Vi; otherwise the ship

chooses another region and begins its trip there.

Let Pii denote the probability that a ship in location i chooses to remain there, and Pij the probability

it chooses to ballast to j. We have:

Pii = exp (βVi/σ)
exp (βVi/σ) +∑

l 6=i exp (Vil/σ) (4)

and

Pij = exp (Vij/σ)
exp (βVi/σ) +∑

l 6=i exp (Vil/σ) . (5)

Exporters We now turn to the value functions of exporters; we begin with existing exporters and

then consider exporter entry. An exporter that is matched in location i receives his revenue, r and pays

the agreed price, τijr for a total payoff of r− τijr. The value of an exporter that remains unmatched, U eijr,

is therefore given by

U eijr = βδ
[
λei (r − τijr) + (1− λei )U eijr

]
(6)

In words, the exporter receives no payoff in the period and survives with probability δ; if so, the following

period with probability λei he gets matched and receives r − τijr, while with the remaining probability

1− λei he remains unmatched again.

Each potential entrant, makes a discrete choice between destinations, as well as not exporting, also

subject to i.i.d. shocks εe ∈ RI , distributed according to a type I Extreme Value (Gumbel) distribution.

Therefore, a potential entrant solves:

max
{
εe0, max

j 6=i

{
ErU

e
ijr − κij + εej

}}

where we denote by 0 the option of not exporting and normalize the payoff in that case to zero.

Potential exporters’ behavior is given by the choice probabilities:

P eij ≡
exp

(
U eij − κij

)
1 +∑

l 6=i exp
(
U eil − κil

) (7)
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and

P ei0 ≡
1

1 +∑
l 6=i exp

(
U eil − κil

) (8)

where U eij ≡ ErU eijr. Therefore, the number of entrant exporters in i equals Ei (1− P ei0).

Trade Costs (Shipping Prices) As discussed above, the rents generated by a match between an

exporter and a ship, are split via Nash bargaining. This implies the surplus sharing condition:

γ [(τijr + Vij)− Ui] = (1− γ)
[
(r − τijr)− U eijr

]
(9)

where Ui ≡ EεUi (ε). We use this condition to solve out for the equilibrium price τijr, in the following

lemma:

Lemma 1. The agreed upon price between a ship and an exporter with valuation r and destination j in

location i is given by:

τijr = (1− µi) (Ui − Vij) + µir (10)

where µi = (1− γ) (1− βδ) / (1− βδ (1− γλei )).

Proof. Substitute U eijr in (9).

In other words, the price is a convex combination of the exporter’s revenue, r, and the difference

between the ship’s value of transporting the freight, Vij , and its outside option, Ui. Consistent with the

evidence in Table 2 exporters that have a higher value, r, pay higher prices.

Crucially, the price depends on ships’ equilibrium behavior through the value of traveling from i to

j, Vij (which in turn depends on Vj), as well as the value of the “outside option,” Ui. These objects

are very rich, as they capture the attractiveness of both the origin i, as well as the destination j, which

consists of numerous features. For instance, destinations that are unappealing to ships because there are

few exporters relative to ships and the probability of ballasting afterwards is high, command higher prices

(consistent with the evidence presented in Table 2). The same holds for destinations that are further away

(low dij), have low value exporters or low matching probabilities. Moreover, Vj controls for conditions at

all possible ballast destinations from j, as well as for conditions at all possible export destinations from j,

revealing the importance of network effects. Similarly, Ui controls for the attractiveness of the origin (e.g.

exporter revenues, nearby ballast opportunities, matching probability). As a result, the price between i
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and j depends on all countries, rather than just i and j.19

Trade Flows From equation (7) total flows from i to j equal

EiP eij = Ei
exp

(
U eij − κij

)
1 +∑

l 6=i exp
(
U eil − κil

) = Ei
exp (αi (r̄ij − τij)− κij)

1 +∑
l 6=i exp (αi (r̄il − τil)− κil)

where r̄ij is the average revenue from exporting from i to j, τij ≡ Erτijr and αi = βδλei/ (1− βδ (1− λei )).

To obtain this expression, we solve for U eijr from (6) to obtain U eijr = αi (r − τijr).

This equation is a “gravity equation”; it delivers the trade flow (in quantity rather than value) from

i to j as a function of two components. First, the primitives {λei , r̄ij , κij , Ei} not just for i and j but for

all regions; this is reminiscent of the analysis in Anderson and Van Wincoop (2003) who show that the

gravity equation in a trade model needs to include a country’s overall trade disposition.

Second, it is a function of the endogenous trade costs, τij , for all j, which are the key addition

here. In this model, trade costs introduce network effects between countries: indeed, τij depends on all

locations both through the outside option of the ship at the origin i, Ui , as well as the ballast and export

opportunities from the destination j, captured by Vj . Overall, any change in the primitives affects trade

flows both directly, but also indirectly through its impact on trade costs. We illustrate the importance of

this mechanism in Section 7.

Steady State Equilibrium A steady state equilibrium consists of a distribution of ships and

exporters over locations (s∗, e∗), ship choices Pij , exporter choices P eij , and prices τijr, that satisfy the

following conditions:

(i) Ship optimal behavior, Pij follows (4) and (5)

(ii) Potential exporter behavior, P eij , follows (7) and (8)

(iii) Prices τijr are determined by Nash bargaining, according to (10)

(iv) Ships and exporters satisfy the steady state equations (established in the proof of Proposition 1 in

Appendix C):

s∗i =
∑
j

Pji
(
s∗j −mj

(
s∗j , e

∗
j

))
+
∑
j 6=i

P eji
1− P ej0

mj

(
s∗j , e

∗
j

)
(11)

19It is worth noting how the model’s main outputs would change if the matching function were assumed to be mi =
min {si, ei}, so that the market were frictionless. With more ships than exporters, the shipping price is given by τij =
Ui − Vij , as the price has to be such that ships are indifferent between loading and going to destination j and remaining
unmatched. Therefore the properties of endogenous trade costs (dependence on distance, origin, destination and entire
network of countries) are independent of the presence of search frictions and still hold.
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e∗i = δ (e∗i −mi (s∗i , e∗i )) + Ei (1− P ei0) (12)

s∗ij = 1
dij

(
Pij (s∗i −mi (s∗i , e∗i )) +

P eij
1− P ei0

mi (s∗i , e∗i )
)

(13)

As shown in Proposition 1 in Appendix C, there exist (s∗, e∗) that satisfy equations (11) through (13).

4.3 Discussion

We close this section with a discussion on several of our assumptions and some caveats.

We begin our discussion with the matching process. In our model the matching function is local, so

that an exporter meets a ship only if they are in the same region, much like taxis and passengers. This

is a modeling assumption, as there is no technological or other constraint that prevents an exporter from

meeting and matching with a ship in another region. Nonetheless, there are economic disincentives that

make distant matching unlikely, suggesting this is a reasonable approximation.

More specifically, practitioners explain that contracts tend to be signed with ships that are nearby,

by arguing that “a ship is not a train” and it cannot promise exact arrival times far in advance due to

weather conditions and port congestion. These delays are costly for exporters. Moreover, ships that are

already in the region of the exporter have a distinct cost advantage over ships in other regions, since they

do not need to incur the additional cost of sailing empty to the exporter’s region. Given that ships are in

oversupply during our time period, exporters are not willing to pay (and wait) in order to contract with

ships that are far away.20 Reassuringly, the data support the local matching function assumption. For

instance, about 20% of the contracts specify different signing and loading regions. Furthermore, as shown

in Table 1, contracts are signed just 6 days on average prior to the loading date. In addition, the satellite

data reveals that ships enter the region within 12 days of loading, which is well before the signing date.

Also related to the matching process, we assume that exporter valuations are sufficiently high so that

in equilibrium, when a ship and an exporter meet, they always agree to form a match. It is easy to

see that for every origin-destination pair, there exists a threshold of exporter value, below which the

match surplus becomes negative and meetings do not result in matches. In this case, the price that a

ship demands to stop searching is too high for the low value exporters to pay and the match becomes

unprofitable. Thus, the support of the distribution of revenues, F rij , needs to be bounded below by this
20We formalize this using the model estimates produced in Section 6. In particular, we use our model to examine whether

an exporter would benefit from searching in multiple regions. We find that when we allow an exporter to search in the “best”
other region, in addition to the loading region, exporters always prefer to match with a ship in the loading region. The large
majority of matches (>80%) still take place in the loading region. In addition, the price paid and the exporter value function
are virtually unchanged.
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threshold. This assumption is reasonable in our context, since exporter revenue is an order of magnitude

higher than transport prices. Using the model estimates produced in Section 6, we find that the surplus

from matching is fairly high; on average it equals 371,270$, and it remains high even if we focus on the

lowest priced commodity, namely coal (the average surplus in this case is $249,150, well above zero). This

is not surprising: to get a sense of the magnitudes, the average value of a coal cargo is $3,864,250, while

its average shipping price is $297,720.

It is also worth noting that we model ships as ex-ante homogenous agents. Indeed, the data suggests

that ship heterogeneity is very limited. Ships do not specialize neither geographically, nor in terms of

products: the majority of ships deliver cargo to 13 out of 15 regions and carry at least 2 of the 3 main

products (coal, ore and grain). Moreover, neither shipowner characteristics, nor shipowner fixed effects

have any explanatory power in price regressions, as shown in Table 7 in Appendix B, while ballast decisions

of ships in the same region are concentrated around the same options. Finally, home-ports are not an

important consideration for shipowners, as the crew flies to their home country every 6-8 months.

We now turn to the steady state assumption of our industry model, which follows the tradition of

Hopenhayn (1992) and a large body of other work in macro, IO, trade, etc. In particular, we consider

the steady state of our dynamic system, where agents’ strategies and value functions depend only on

their own state and the long-run average aggregate state, which is constant. This assumption renders the

problem more tractable and allows us to derive simple(r) expressions for prices and trade flows.

It is worth connecting this assumption to the empirical exercise coming up. Naturally, the data exhibits

variation over time. Strictly speaking, our empirical approach relies on the assumption that agents “play

against the steady state”; i.e. their strategies rely on their own state and the long-run industry average.21

That said, the steady state assumption is not unreasonable for the data at hand, which covers a period

that is uniformly characterized by ship oversupply and relatively low demand for shipping services without

any major shocks. Moreover, given the short-lived nature of the ships’ ballasting decisions it does not

feel unreasonable that they would ignore aggregate long-run shocks when making these weekly choices; in

addition, transition dynamics to a new steady state should be short given that a ship can travel to most

ports in the world in a month.22

In this paper, we do not model ship entry and exit; exit is overall very small, while due to long

construction lags in shipbuilding (two to six years), the fleet is fixed in the short run; see Kalouptsidi
21This is reminiscent of the interpretation of the Oblivious Equilibrium (OE) concept of Weintraub et al. (2008).
22To test whether ships respond to transitory shocks, we check if weather shocks affect ships’ ballast decisions and find

that they do not.
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(2014, 2018). Our counterfactual results therefore hold in the short/medium run.23 We also do not model

speed choice (see Adland and Jia, 2018).

Finally, in the trade literature, trade costs include transport costs, tariffs and other barriers. Here

we focus on microfounding and endogenizing transport costs. In our setup, other trade barriers are

included in κij , the cost of entry into exporting. In addition, we do not consider the determination of

commodity prices; in other words, we take exporter valuations r to be exogenous. Determining this object

in equilibrium within our setup is an interesting avenue for future research.

5 Empirical Strategy

In this section we lay out the empirical strategy followed to estimate the model of Section 4. Our empirical

exercise consists of two distinct components: (i) estimation of the matching function and the searching

exporters; (ii) estimation of ship travel and wait costs, exporter valuations and costs. We describe the

empirical strategy for each component here, and present all results in Section 6.

5.1 Matching Function Estimation

A sizable literature has estimated matching functions in several different contexts (e.g. labor markets,

marriage markets, taxicabs). For instance, in labor markets, one can use data on unemployed workers,

job vacancies and matches to recover the underlying matching function. In the market for taxi rides,

one observes taxi rides, but not hailing passengers; in recent work, Buchholz (2019), and Frechette et al.

(2019) have used such data, coupled with a “parametric” assumption on the matching function to recover

the hailing passengers.24 In our data we observe ships and matches, but not searching exporters. Here,

we adopt a novel approach to simultaneously recover both exporters, as well as a nonparametric matching

function. Our approach contrasts with the literature that has imposed functional forms, most commonly

Cobb-Douglas. Since parametric restrictions are directly linked to welfare, as shown for instance in

Hosios (1990), they can be overly restrictive; for a detailed discussion of these issues see Brancaccio et al.

(2019b). In addition, parametric assumptions on the matching function indirectly impose restrictions

on the distribution of (unobserved) exporters that we recover, whereas our approach allows for more
23It is straightforward to include a ship free entry condition in the model in order to consider longer-run counterfactuals.

However in this case, we would need to take a stand on shipowners’ expectations of future demand.
24Buchholz (2019) assumes an “urn-ball” matching function. Frechette et al. (2019) construct a numerical simulation of taxi

drivers that randomly meet passengers over a grid that resembles Manhattan; this spatial simulation essentially corresponds
to the matching function, and can be inverted to recover hailing passengers.
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flexibility.25

Suppose we have a sample {sit,mit}Tt=0 for each market i. The unknowns of interest are the I matching

functions mi(·) and the exporters eit, for all i, t; henceforth, we suppress the i subscript to ease notation.

Our approach relies on the literature on nonparametric identification (Matzkin, 2003) and nonseparable

instrumental variable techniques (e.g. Imbens and Newey, 2009).

We assume that (i) the matching function m(s, e) is continuous and strictly increasing in e; (ii)

the matching function exhibits constant returns to scale (CRS), so that m (as, ae) = am (s, e) for all

a > 0 and there is a known point {s̄, ē, m̄}, such that m̄ = m (s̄, ē); (iii) the random variables s and

e are independent. Assumption (i) is natural, as more exporters lead to more matches, all else equal.

Assumption (ii) is a restriction that guarantees identification of both sets of unknowns and is discussed

further below. Assumption (iii) is made for expositional purposes and is relaxed later on.

Let Fm|s denote the distribution of matches conditional on ships, and Fe the distribution of exporters,

e. Then at a given point {st, et,mt} we have:

Fm|s=st (mt|s = st) = Pr (m (s, e) ≤ mt|s = st)

monotonicity = Pr
(
e ≤ m−1 (s,mt) |s = st

)
independence = Pr

(
e ≤ m−1 (st,mt)

)
= Fe (et) (14)

The equation Fe (et) = Fm|s=st (mt|s = st) forms the basis for identification and estimation. Indeed

note that this equation, along with the CRS assumption, allows us to recover the distribution Fe(e), for

all e: using the known point {s̄, ē, m̄} and letting a = e/ē, for all e,

Fe (aē) = Fm|s=as̄ (m (as̄, aē) |s = as̄)

= Fm|s=as̄ (am̄|s = as̄) (15)

We use (15) and vary a to trace out F̂e(e), relying on a kernel density estimator for the conditional distri-
25In Brancaccio et al. (2019a) we provide a detailed practitioner’s guide to this approach in this and other contexts. For

an application of this methodology in the context of labor markets see Lange and Papageorgiou (2018).
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bution F̂m|s=as̄ (am̄|s = as̄).26 Once the distribution F̂e is recovered, we obtain the number of exporters

et from

et = F̂−1
e

(
F̂m|s=st (mt|s = st)

)
,

and the matching function at any point (s, e) from

m (s, e) = F̂−1
m|s (Fe (e)) .

We choose the known point, {s̄, ē, m̄}, to be of the form 1 = m(s̄, 1), so that one exporter is always

matched when there are s̄ ships. We set s̄ iteratively, to be the lowest value such that mt ≤ et, for all t,

thus obtaining a conservative bound on search frictions.

The intuition behind the identification argument is as follows: the observed correlation between s and

m informs us on ∂m(s, e)/∂s, since the sensitivity of matches to changes in ships is observed and s is

independent of e by assumption; then, due to homogeneity, this derivative also delivers the derivative

∂m(s, e)/∂e; and once these derivatives are known, integration leads to the matching function, which can

be inverted to provide the number of exporters.

The CRS assumption is a reasonable starting point. In the labor literature, the majority of matching

function estimates find support for constant returns to scale; as Petrongolo and Pissarides (2001) point

out “divergences from constant returns are only mild and rare”. Nonetheless, to explore the robustness

of our findings, in Section 6.1 we consider an alternative approach that does not make an assumption on

the returns to scale, but instead relies on a restriction on the distribution Fe (Poisson).

Finally, as mentioned above, independence of ships and exporters is not a natural assumption in

our setting. To relax it, we employ the literature on nonlinear IV techniques (e.g. Imbens and Newey,

2009, while for an application similar to ours see Bajari and Benkard, 2005). In particular, assume that

an instrument z exists such that s = h (z, η), with z independent of e, η. Under this formulation the

endogeneity is driven by the correlation between η and e and, therefore, s is independent of e, conditional

on η.

The approach now has two steps. In the first step, we recover η using the relationship s = h (z, η); in
26For instance, one can use a simple frequency estimator:

Fm|s=st (mt|s = st) = Pr (m ≤ mt|s = st) = Pr (m ≤ mt, s = st)
Pr (s = st)

= #1 {(m ≤ mt, s = st)}
#1 {(s = st)}

where 1 {·} denotes the indicator function and # denotes the number of times. In practice, we use a Gaussian kernel density
estimator.

25



practice we regress flexibly the number of ships s on the instrument, z, and set η equal to the residual.

In the second step, we employ (14) conditioning on both s (as before) and η:

Fm|s=st,η (mt|s = st, η) = Fe|η (et|η)

Similarly to above we recover the unknowns of interest e and m(·), by integrating both sides over η.

In this case, z consists of ocean weather conditions (unpredictable wind at sea) that shift the arrival

of ships at a port without affecting the number of exporters.27

5.2 Ship Costs and Exporter Revenues

We now turn to the ship cost parameters, {csij , cwi , σ}, for all i, j, as well as the exporter revenues r ∼ F rij
and production and export costs κij , for all i, j. The estimation amounts to essentially matching the

observed ballast decisions of ships to the model’s predicted choice probabilities Pij ; the observed prices

τijr, to the equilibrium Nash-bargained prices; and the observed trade flows (loaded trips) to the model’s

predicted equilibrium flows P eij . Intuitively, ships’ observed choices, conditional on observed prices, deliver

the ship costs. Then, in equilibrium, prices inform us on the exporter’s revenues. Finally, potential

exporters make their entry decisions taking into account the (expected) prices they will face. From these

decisions, we are able to back out the production and export cost.

Ship Costs Consider first the ship sailing costs, csij , wait costs, cwi , and the standard deviation of

the logit shocks, σ. These parameters determine ships’ optimal ballast choice probabilities, (4) and (5),

given prices, through the value functions Vij . Thus, we can estimate them via Maximum Likelihood using

the observed ship choices. In particular, we use a nested fixed point algorithm to solve for the ship value

functions at every guess of the parameter values, compute the predicted choice probabilities and then

calculate the likelihood, as in Rust (1987). We provide the details of the approach in Appendix D, where

we also prove that our value functions are well-defined using a contraction argument.

As is always the case in dynamic discrete choice, not all parameters are identified and some restriction

needs to be imposed. Here, we have I2 + 1 parameters and I2− I choice probabilities, so we require I + 1
27To proxy for the unpredictable component of weather, we divide the sea surrounding each region into 8 different zones

(Northeast, Southeast, Southwest and Northwest both within 1,500 miles of the coast and between 1,500 and 2,500 miles
from the coast), and we use the speed of the horizontal (E/W) and vertical (N/S) component of wind in each zone to proxy
for weather conditions. We run a VAR regression of these weather variables on their lag component and season fixed effects
and use the residuals, together with their squared term, as independent variables in the regression. The results are robust
to the lag structure, as well as estimating jointly for neighboring zones.
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restrictions; we show this formally, borrowing from the analysis of Kalouptsidi et al. (2018) in Appendix

E. The additional restrictions amount to using observed fuel prices to determine csij for some i, j; see

Section 6.2. Note also that the observed prices pin down the scale of payoffs (in dollars) and allow the

identification of σ.28

Exporter revenues and entry costs We next use data on shipping prices to estimate exporter

revenues. Consider the equilibrium price (10) solved with respect to the exporter’s revenue r:

r = 1− βδ (1− γλei )
(1− γ) (1− βδ) τijr −

γ (1− βδ (1− λei ))
(1− γ) (1− βδ) (Ui − Vij) (16)

Note that the only unknowns in this expression are the revenue r and the bargaining coefficient γ, and that

we have as many equations as the observed shipping prices. Indeed, λei is known from the previous step

that estimates the matching function and searching exporters (λei is simply the average ratio of matches to

exporters), β and δ are calibrated, while Ui and Vij are known once {csij , cwi , σ} have been estimated. Note

that the valuation r is different for each matched exporter, while the bargaining coefficient parameter is

a scalar, that is identical for all markets.

We first estimate the bargaining weight, γ by averaging equation (16) across regions and products; this

average relationship links the average shipping price, to the average exporter revenue (r̄ ≡ ∑ij r̄ij/I
2).

We calibrate the average exporter revenue across regions, r̄, to be equal to the average value of total trade

in commodities (obtained from external trade data from Index Mundi) and solve (16) for γ.29

Given this estimate for the bargaining weight, γ, we recover each exporter valuation r point-wise

from (16) and obtain their distribution, F rij , nonparametrically. Note that valuations are drawn from an

origin-destination specific distribution, which allows for arbitrary correlation between a cargo’s valuation

and destination.

We finally estimate the exporter entry costs, κij , which capture both the cost of production, as well as
28Unlike commonly used discrete choice models where only choices are observed and both the scale and level of utility need

to be normalized, here we also observe a component of payoffs (prices in dollars) which allows us to relax the restriction on
the scale of utility and identify σ.

29In particular, we solve (16) with respect to γ and average over i, j, r so that:

γ = (1− βδ) (r − τ)
βδEi,j,rλei τijr + (1− βδ) r − Ei,j (1− βδ (1− λei )) (Ui − Vij)

where τ̄ is the average observed price. To obtain r, we first collect the average price of the five most common commodities
(ore, coal, grain, steel, and fertilizers) from Index Mundi, and multiply it by the average tonnage carried by a bulk carrier
(this is equal to the average vessel size times its utilization rate which equals about 65%). We then set r̄ as their weighted
average based on each commodity’s frequency in shipping contracts; we find r to equal 7 million US dollars. This approach
of estimating the Nash bargaining weight is inspired by the empirical literature on oligopoly bargaining (e.g. Crawford and
Yurukoglu, 2012, Ho and Lee, 2017).
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any export costs beyond shipping prices. These are estimated from the exporters’ entry decisions, given

by the choice probabilities, P eij , defined in (7) and (8). Indeed, we recover κij from the following equation

(Berry, 1994):

lnP eij − lnP ei0 = U eij − κij . (17)

The only unknown in this equation is κij . Recall that U eij = αi(r̄ij − τij) and that both αi = βδλei/(1−

βδ(1−λei )) and the mean revenue r̄ij have been estimated, while τij is observed. Turning to the left hand

side of (17), note that from the satellite data we have information on the proportions of loaded trips from

i to j, i.e. P eij/ (1− P ei0). However, to obtain κij we need both P eij , as well as the fraction of potential

exporters who choose not to export, P ei0, or equivalently, the number of potential exporters Ei. We set Ei

equal to the total production of the relevant commodities for each region i, thus assuming that a region’s

total production serves as an upper bound to the region’s exports.30

6 Results

In this section we present the results from our empirical analysis. We calibrate the discount factor to

β = 0.995 and the exporter survival rate to δ = 0.99. In our baseline estimation we ignore the different

ship sizes, but our estimation results are similar when we consider Panamax alone or Handymax alone

(these are the categories with sufficient data). Moreover, results are robust when we estimate the model

separately by season.

6.1 Matching Function Results

We now present the estimates for the exporters and the matching function, obtained as described in

Section 5.1. The matching function is estimated separately for each region i.
30More precisely, let nit denote the number of entrant exporters in period t and region i. Then, the number of exporters

transitions as follows (see equation (18) in Appendix C):

eit+1 = δ (eit −mit) + nit

so that in steady state
ni = (1− δ) ei + δmi

or
ni = Ei (1− P ei0) = (1− δ) ei + δmi

If Ei is known, we can solve this equation for P eio since the right-hand-side is known. To determine Ei, we collect annual
country-level production data for grain (FAO), coal (EIA), iron ore (US Geological Survey), fertilizer (FAO) and steel (World
Steel Association). To transform the production tons into a number of potential freights (i.e. shipments that fit in our bulk
vessels), we first scale the production to adjust for the coverage of our data (we observe about half of the total fleet) and
then divide by the average “active” ship size, taking into account a ship’s utilization rate and the fact that a ship operates
on average 340 days per year (due to maintenance, repairs, etc)
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First, we present the results from the first stage regression of the number of ships on the unpredictable

component of weather in surrounding seas for all regions. The results, shown in Table 4, indicate that

ocean wind has a significant impact. This suggests that weather indeed affects trip duration and therefore

weather shocks exogenously shift the supply of ships at port.31,32

Joint Significance F-stat

North America West Coast 0 5.82
North America East Coast 0.03 2.22
Central America 0 4.78
South America West Coast 0.01 3.62
South America East Coast 0 5.78
West Africa 0 4.77
Mediterranean 0 4.85
North Europe 0.03 2.4
South Africa 0.03 2.54
Middle East 0 3.09
India 0 3.48
South East Asia 0 7.87
China 0 5.66
Australia 0 4.54
Japan-Korea 0 4.85

Table 4: First Stage, Matching Function Estimation. Regressions of the number of ships in each region on
the unpredictable component of weather conditions in the surrounding seas. The first column reports the joint
significance of the instruments and the second column the F-statistic. To proxy for the unpredictable component
of weather, we divide the sea surrounding each region into 8 different zones (Northeast, Southeast, Southwest and
Northwest both within 1,500 miles of the coast and betwen 1,500 and 2,500 miles from the coast), and we use the
speed of the horizontal (E/W) and vertical (N/S) component of wind in each zone to proxy for weather conditions.
We run a VAR regression of these weather variables on their lag component and season fixed effects and use the
residuals, together with their squared term, as independent variables in the regression.

Figure 2 presents the weekly average number of exporters in each region. Not surprisingly perhaps,

exporters are concentrated in Australia, the East Coast of North and South America and Southeast Asia,

which are all rich in raw materials. India, Africa and Central America have the fewest exporters.

The matching function has reasonable properties. Exporters have substantially higher chances of
31This is consistent with contracting practices, where the ship promises a range of fuel consumption based on different

weather conditions. Moreover, regressing the log of trip duration on wind speed, both upon arrival at the destination and
upon departure at the origin confirms that the weather strongly affects trip duration; indeed, trips are 11% longer on average
under bad weather conditions.

32The first stage F-stat values shown in the last column of Table 4 suggest that we may have a weak instrument problem.
As the second stage here is non-parametric, many of the available solutions do not necessarily apply. As a robustness, for
each region i, we use unpredictable shocks to trip duration towards i as an alternative instrument. In particular, while
shipowners’ traveling decisions do not react to transitory weather shocks, the duration of a trip does. Moreover, in this case
we can sign the first stage effect: longer trip duration towards region i should decrease the number of ships in i, si. The
instrument has the correct sign and the F-stat is mostly higher than 10. In addition, the recovered exporters and matching
functions are robust to our baseline results.
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Figure 2: Average weekly number of estimated exporters.

finding a match than ships, consistent with our sample period of high ship supply and low demand. The

matching rate for ships (exporters) declines as the market gets crowded with ships (exporters). Moreover,

there is significant heterogeneity in the matching function across regions. To illustrate the importance

of the nonparametric approach, we compare our estimated matching function to a typical parametric

specification: the Cobb-Douglas. This specification, which is common in the literature, imposes that the

elasticities of the matching function are constant, a property that can be restrictive (see Brancaccio et al.

(2019b)). Our nonparametric matching function strongly rejects that these elasticities are constant: on

average the range of these elasticities is 33% of the elasticity at the average level of ships and exporters

in each region. In addition, we estimate a Cobb-Douglas specification for the matching function and find

that the exporters recovered under this, more restrictive, assumption are different both in magnitude and

in the relative ranking of regions, compared to the nonparametric case.33

We close this section by discussing the robustness of our results to the CRS assumption. To do

so, instead of assuming CRS, we impose a parametric assumption on the distribution of exporters, Fe.

In particular, we assume that exporters are distributed Poisson, as we can then interpret the number

of freights et as the number of arrivals of exporters at port every week. We estimate the number of
33The Cobb-Douglas specification, mit = Ais

αi
it e

1−αi
it , is not straightforward to estimate, as eit is not observed. We rewrite

it as,

log (mit) = log (Ai) + (1− αi) log eit + αi log sit = αi0 + εit + αi log sit

and we recover αi using an instrument (the unpredictable component of weather) for sit.
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exporters and the matching function following an analogous strategy, based on Matzkin (2003).34 The

results, shown in Figure 9 in Appendix B, are robust to this alternative restriction. Moreover, we find

that the implied degree of homogeneity of the matching function under the Poisson distributed exporters

is roughly equal to one, even though we do not assume CRS.

6.2 Ship Costs and Exporter Revenues

In our baseline specification, we construct seven groups for the sailing cost csij , roughly based on the

continent and coast of the origin; and we estimate port wait costs cwi , for all i.35 Note that csij is the

per week sailing cost from i to j and its major component is the cost of fuel. Following the discussion

on identification in Section 5.2, we set this cost for one of the groups (for trips originating from the East

Coast of North and South America) equal to the average weekly fuel price (40,000 US dollars). Moreover,

since the fuel cost is paid by the exporter when the ship is loaded, we add it to the observed prices.

The first two columns of Table 5 report the results.36 Sailing costs are fairly homogeneous. Port

wait costs are more heterogeneous and large, ranging between 90,000 and 290,000 US dollars per week.

Consistent with industry narratives, waiting at port is costly, both due to direct port and security fees, as

well as the rapid depreciation of the ship’s machinery and electronics and antifouling costs caused by the

accumulation of microorganisms during immobility. Ports in the Americas are the most expensive, while

ports in China, India, and Southeast Asia are the cheapest. The standard deviation of the logit shocks,

σ, is estimated at about 16,000 US dollars, roughly 5% of the average trip price including the fuel cost

payment. This suggests that the logit shocks do not account for a large part of utility or ballast decisions.

As shown in Figure 10 in the Appendix, the model’s fit is very good, as our predicted choice probabilities

are very close to the observed ones.37

34Recall our basic equation, Fm|s (m|s) = Fe (e). If Fe(e) is Poisson with parameter ρ, we have:

Fm|s (m|s) = Fe (e) = exp (−ρ)
e∑

k=0

ρk

k!

If ρ were known, we could solve this equation for eit, all i, t, since the right-hand-side is known. We determine ρ iteratively
by requiring again that the inequalities mit ≤ eit always hold.

35The seven groups are: (i) Central America, West Coast Americas; (ii) East Coast Americas; (iii) West and South Africa;
(iv) Mediterranean, Middle East and North Europe; (v) India; (vi) Australia and Southeast Asia; (vii) China, Japan and
Korea.

36The standard errors are computed from 200 bootstrap samples with the resampling done at the ship level. We combine
these bootstrap samples with those of the matching function to incorporate the error from the matching function estimation.

37As our data comes from a period of historically low shipping prices, our estimated value functions are negative. This
is partly due to the fact that we are not modeling ships’ expectations, so the value function does not take into that under
mean-reverting demand for seaborne trade prices will eventually go up (see Kalouptsidi, 2014). If we compute the equilibrium
under higher exporter revenues that lead to prices closer to the ones observed before 2010, the ship value function indeed
becomes positive.
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Figure 3: Exporter valuations. The left panel of the figure plots the estimates for the average exporters’ valuation
across regions. The right panel correlates the average exporters’ valuation with the share of exports in grain (source,
Comtrade). The size of the circle proxies the number of observations.

In the left panel of Figure 3 we plot the average exporter revenues across origins, while the third

column of Table 5 reports the estimates. We estimate the bargaining coefficient to equal γ = 0.3. There

is substantial heterogeneity in exporter revenues across space. South and North America have the highest

revenues, while China, Japan, and Southeast Asia have the lowest. This ranking is reasonable, as for

instance, Brazil exports grain which is expensive, whereas Southeast Asia exports mostly coal, which is

one of the cheapest commodities. We generalize this example by focusing on grain, the most expensive

frequently shipped commodity. In particular, using data from Comtrade, we explore whether regions that

have a high share of grain exports tend to have higher estimated revenues. The results, shown in the

right panel of Figure 3, reveal that indeed there is a positive correlation between the two. Of course,

there may be other factors determining the valuation of an exporter such as inventory costs, just in time

production, etc. On average, the price τij is equal to about 5% of the mean valuation r̄ij , consistent with

other estimates in the literature (e.g. UNCTAD, 2015, Hummels et al., 2009). Finally, the estimated

exporter costs, κij , exhibit substantial heterogeneity across destinations from a given origin, as well as

across origins. On average κij is the same order of magnitude as the average valuation r̄ij , reminiscent of

a free entry condition into exporting. Moreover, we find that exporter costs are lower between an origin i

and a destination j if the same language is spoken at i and j, which is reasonable since κij includes both

production costs, as well as other exporting costs, as discussed in Section 4.3.
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Port Costs Sailing Costs Exporters Valuations Preference Shock
cw cs r̄ σ

North America West Coast 227.65 46.75 9,047.58
(8.77) (0.36) (497.1)

North America East Coast 272.3 - 14,639.72
(4.31) - (261.11)

Central America 175.41 46.75 8,129.37
(5.06) (0.36) (400.22)

South America West Coast 265.55 46.75 12,561.15
(7.77) (0.36) (425.65)

South America East Coast 292.5 - 16,813.61
(5.23) - (455.06)

West Africa 145.3 47.65 9,452.09
(4.84) (0.33) (659.51)

Mediterranean 121.89 46.16 4,364.56
(3) (0.28) (269.17)

North Europe 122.48 46.16 5,761.4
(1.71) (0.28) (202.04)

South Africa 220.11 47.65 8,621.94
(7.28) (0.33) (420.55)

Middle East 118.45 46.16 5,409.67
(2.14) (0.28) (252.23)

India 97.23 45.93 4,800.29
(1.8) (0.28) (366.23)

South East Asia 93.14 40.99 1,734.75
(1.02) (0.28) (81.99)

China 91.07 40.89 2,708.65
(0.98) (0.25) (160.27)

Australia 193.29 40.99 5,929.6
(2.85) (0.28) (160.19)

Japan-Korea 100.41 40.89 2,863.02
(1.9) (0.25) (214.54)

16.53
(0.1070)

Table 5: Ship costs and exporter valuation estimates. All the estimates are in 1,000 USD. Standard errors
computed from 200 bootstrap samples. The sailing cost for the East Coast of North and South America is set equal
to the weekly fuel cost at 40,000 US dollars.

7 The Role of Endogenous Trade Costs

In this section, we illustrate the importance of endogenous trade costs. In particular, we demonstrate

that the transportation sector (1) mitigates differences in the comparative advantage across countries

reallocating productive activities from net exporters to net importers; (2) creates network effects in trade
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costs; and (3) dampens the impact of shocks on trade flows. We illustrate these mechanisms, by studying

how our setup compares to one with exogenous “iceberg” trade costs, the impact of a fuel cost shock and

the spatial propagation of a macro shock (a Chinese slow-down). These mechanisms also shape the policy

analysis considered in the next section.

Exogenous Trade Costs

We begin by showcasing how endogenous trade costs attenuate differences in the comparative advantage

across countries (mechanism 1) and generate network effects (mechanism 2) by comparing our setup to

one with exogenous trade costs. Typical trade models assume that trade costs are “iceberg”, so that a

percentage of the traded good’s value is lost in transportation; this percentage is often a function of the

distance between the origin and destination (Samuelson, 1954). In our setup, this amounts to assuming

that the price paid for transportation from origin i to destination j is a function of only the distance,

1/dij , and the exporter valuation r̄ij . We thus construct a measure of exogenous trade costs by flexibly

regressing the observed shipping prices between i and j on distance and r̄ij . This ensures that the overall

level of shipping prices is the same. We then consider the trade patterns under these (counterfactual)

trade costs, using the exporters’ choices, (7) and (8).

Strikingly, we find that in this world of exogenous iceberg trade costs, trade is substantially less

balanced: trade imbalances are 24% higher on average. Indeed, net exporters experience a 9.4% increase

in their exports, (and up to 24% for Australia), while net importers experience a 4.7% decline in their

exports (and up to 22% for India). In other words, the transportation sector acts as a smoothing factor

for world trade.

The core mechanism is related to the ship’s equilibrium behavior and in particular the strength of its

bargaining position. Consider a ship that is located near a large net exporter, such as Brazil. As loading

chances are high, the ship’s bargaining position upon meeting an exporter (i.e. its outside option) is

strong and the ship can extract a high price, which in turn, tends to restrain Brazilian exports compared

to a world with exogenous trade costs.38 In contrast, consider a ship located near a net importer, such

as India. The ship is unlikely to reload there. This lack of options puts the ship in a weak bargaining

position and forces it to accept lower prices, which in turn increases Indian exports compared to the case

of exogenous trade costs. The left panel of Figure 4 presents the change in each region’s exporting under

exogenous trade costs and reveals that indeed net exporters experience a disproportionally large increase
38In addition, the likely destinations are net importers where ships’ value are low. This further increases prices faced by

next exporters like Brazil and dampens exports and trade imbalances.
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Figure 4: Exogenous Trade Costs: the left panel presents the change in exports. The right panel correlates the
change in exports under exogenous trade costs and a region’s centrality, defined as the distance-weighted sum of
the imbalance of all other regions, i.e.

∑
j (1/dij) (exportsj-importsj).

in their exports.

This implies that in a world of endogenous trade costs, differences in the comparative advantage

across countries are attenuated, as productive activities are reallocated from (efficient) net exporters to

(inefficient) net importers. In our setup this corresponds to production decreasing in high r̄/low κ countries

which face higher trade costs all else equal and increasing in low r̄/high κ ones, which face lower trade

costs. Indeed, total net value of trade increases by 10% under exogenous trade costs. In addition, we find

that this argument extends to a region’s neighborhood; this is because trade costs depend on the entire

network of neighboring countries. Indeed, a net exporter close to other net exporters offers even more

options to ships and prices are even higher, which inhibits the neighborhood’s exports. Hence, a country’s

own trade imbalance, as well as the imbalance of its neighborhood, are crucial factors determining its

trade disposition. To demonstrate these neighborhood effects, we consider a centrality measure for each

region that consists of the weighted sum of trade imbalance in all regions, where the weights are given

by the distance (i.e. ∑j (1/dij) (exportsj-importsj)). The right panel of Figure 4 correlates the change

in exports to this centrality measure and shows that the overall imbalance of a neighborhood matters:

regions whose neighborhood is overall a net-exporting one, offer high outside options to ships, which

pushes prices up and thus exports down (and vice versa).
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A Shock to Fuel Costs

Here we explore how world trade reacts to a fuel cost shock. This shock directly affects the main (variable)

cost of transportation, cs, and as a result also changes ship optimal behavior. This exercise illustrates how

the transport sector dampens the impact of the shock (mechanism 3), while at the same time reallocating

production across countries (mechanism 1).39,40

Consider a 10% decrease in cs. The left panel of Figure 5 presents the resulting change in world

exports, while the right panel presents the impact of the shock on several outcomes of interest. A decline

in cs has a direct and an indirect effect. The direct effect is straightforward: as costs fall, shipping prices

also fall and thus exports rise.41 Indeed, we see that exports increase everywhere, on average by 4.4%.

The indirect effect is that the decline in sailing costs lowers the cost of ballasting. This implies that the

ships’ outside option, U , is now higher, which leads, all else equal, to an increase in prices that dampens

the direct effect (mechanism 3). This is intuitive: reduced sailing costs imply that ships are less “tied”

to their current region (and indeed ballast miles increase by 17%), and, as their bargaining position is

stronger, they negotiate higher prices. The dampening is substantial: as shown in the second column in

the right panel of Figure 5, if ships were not allowed to optimally adjust their behavior, the increase in

trade would have been 41% higher.

In addition, as fuel costs decline and the importance of the transport sector is reduced, trade is driven

to a greater extent by comparative advantages. Indeed, as shown in the right panel of Figure 5, net

exporters experience an increase in exports of about 5%, while net importers experience an increase of

about 3% (mechanism 1). This is largely driven by the indirect effect: ships ending a trip at net importing

regions, are now less likely to wait there given the lower sailing cost; their outside option is higher and

they can command higher prices that further reduce exports from these regions. Indeed, if ships were

not allowed to optimally adjust their behavior, the increase in the exports of net importing regions would

have been more than twice as high.
39For a more detailed analysis of the impact of fuel costs and ship fuel efficiency see Brancaccio et al. (2018).
40In this and all remaining counterfactuals, we compute the steady state spatial equilibrium distribution of ships and

exporters. In Appendix F, we provide the computational algorithm employed. The use of nonparametric techniques in the
estimation of the matching function may require substantial extrapolation in the counterfactuals; reassuringly, we find that
the counterfactual matches and ships are always strictly within the range of our data.

41Formally, there is a direct increase in the surplus of all matches, since now a match between a ship and a freight is more
valuable. Using the ship and freight value functions, the match surplus is given by

Sijr = r −
csij

1− β(1− dij)
+ dijβ

1− β(1− dij)
Vj − Ui − Ueijr.

A decline in csij , holding everything else constant, directly increases Sijr. All else equal, this reduces export prices, τ, which
in turn increases the value of an unmatched exporter, Ueijr, and thus induces more entry into the export market.
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2 4 6 8
  Percentage change 
       in exporting 

Total Effect Direct Effect

Exports 4.41% 6.21%
Export value 6.57% 9.01%
Shipping prices −1.66% −2.90%
Exports for net exp. 5.37% 6.06%
Exports for net imp. 2.74% 6.45%
Ballast miles 16.63 0
Ship outside option 11.18% 0

Figure 5: Fuel Cost Shock: impact of a 10% decline in cs. The left panel presents the change in exports. In the
right panel, the first column presents the total effect of the shock, while the the second column presents the direct
effect that does not allow ships to optimally adjust their behavior.

Chinese Slow-down

Finally, we explore the spatial propagation of a macro shock: a slow-down in China. This experiment

showcases how the transport sector creates network effects (mechanism 2), while again reallocating pro-

duction (mechanism 1).

We consider a reduction in the revenue of freights going to China, r̄i,china, by 10%. The left panel of

Figure 6 plots the change in exports, while the right panel collects some statistics. We begin by looking

at China itself. Chinese exports decline by 11%, even though they are not directly affected by the change

in r̄i,china: the entirety of this decline is driven by the transport sector. Indeed, endogenous trade costs

create a complementarity between imports and exports: the high Chinese imports, led to a large number

of ships ending their trip in China and looking for a freight there, which in turn reduced trade costs for

Chinese exporters (mechanism 1). Therefore, when imports decline, fewer ships end up in China and

Chinese exporters are hurt.

Next, note that, as China is a large importer that trades with multiple countries, world exports natu-

rally decline. Indeed, China’s large trading partners, such as Australia, Indonesia and Brazil, experience

a substantial decline in their exports; total exports decline by 11%. However, in addition to this direct

effect, the optimal reallocation of ships over space differentially filters the shock in neighboring vs. dis-

tant regions (mechanism 2). Even though distant countries, such as Brazil, also experience a decline

in exports, they benefit from the reallocation of ships across space. In particular, prior to the shock, a
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large fraction of the fleet was located in the Southeast Pacific region, with ships traveling between China

and its neighbors, mainly Australia and Indonesia. Following the shock, these ships reallocate to other

parts of the world, pushing up exports there all else equal and dampening the overall decline from the

direct effect. To see this, the right panel of Figure 6 shows that if ships were not allowed to optimally

adjust their behavior, the decline in exports for distant countries would have been more than double (e.g.

Brazilian exports would have fallen by 21% rather than 9%). This underscores the importance of being

close to a large net importer like China: exporting countries in that “pocket” of the world, gained not just

by directly exporting to China, but also indirectly from the increased supply of ships in that region.42

−30 −15 0
  Percentage change 
       in exporting 

Total Effect Direct Effect

Exports −11.33% −15.23%
Export value −15.44% −23.57%
Chinese exports −11.51% 0
Neighbors exports −19.08% −19.89%
Non-neighbors exports −5.34% −11.63%
Ballast miles −2.41% 0

Figure 6: Chinese Slow-down: impact of a 10% decline of the revenue from exporting to China. The left panel
presents the change in exports. In the right panel, the first column presents the total effect of the slow-down, while
the second column presents the direct effect that does not allow ships to optimally adjust their behavior. China’s
neighbors include Japan/S.Korea, Australia, Southeast Asia and India. China’s non-neighbors include all other
regions.

8 The Role of Maritime Infrastructure

How much do large maritime infrastructure projects contribute to world trade? We use our estimated

setup to address this question by first evaluating a future project, the Northwest Passage. We then

examine the impact of three natural and man-made passages: the Panama Canal, the Suez Canal, and

Gibraltar.

The Northwest Passage is a sea route connecting the northern Atlantic and Pacific Oceans through

the Arctic Ocean, along the northern coast of North America. This route is not easily navigable due to
42China’s neighbors do not see their exports decline even further, because when Chinese imports decline, ships’ outside

options fall everywhere, reducing shipping prices all else equal and dampening the decline in exports (mechanism 3).

38



Arctic sea ice; with global warming and ice thinning, it is likely that the passage will soon be open for

shipping. The opening of the Northwest passage would reduce the distance between East Coast of North

America and the Far East, as well as Northern Europe and the Far East.

  Percentage change 
       in exporting 8 −1 0 1

Total Effect
on Exports

Direct Effect
on Exports

Total 0.3 % 0.5 %
Northeast America 7.78 % 5.23 %
North Europe 1.18% 1.33%
China −0.11% 1.21%
Japan-S.Korea −0.26% 1.16%
Brazil −0.8% 0
Australia −1.0% 0
Northwest America −1.1% 0

Figure 7: Northwest Passage: The left panel presents the change in exports under the opening of the Northwest
passage. In the right panel, the first column presents the total effect of the opening, while the second column the
direct effect that does not allow ships to optimally adjust their behavior.

To simulate the impact of this new route, we reduce the nautical distance between Northeast America

and Northern Europe to and from China/Japan/S.Korea by 30%.43 The left panel of Figure 7 presents

the resulting change in exports by region, while the right panel collects some statistics.

Not surprisingly, Northeast America sees its exports increase by 8%, while Northern Europe by 1.2%.

Interestingly, exports from China and Japan/S.Korea are only marginally affected (0.3% for Japan, and

-0.1% for China). On one hand, the import-export complementarity pushes exports up; but on the other

hand ballasting is now less costly for ships: when in China or Japan ships can now ballast to the East

Coast of North America more cheaply. The ships’ higher outside option tends to increase prices and

decrease exporting (mechanism 3).

Figure 7 reveals that other countries, not directly affected by the opening of the Northwest Passage,

experience changes in their trade. This illustrates how network effects lead to the propagation of local

shocks (mechanism 2). For instance, Brazil, Northwest America and Australia see their exports fall by

1%, even though none of these countries are directly affected by this passage. Indeed, ships that used to

ballast to these regions now choose to ballast to Northeast America, that experiences a 17% increase in

ships ballasting there. Overall, global welfare increases by 1.84%.
43We calculate this change in travel distance via the Northwest Passage from Ostreng et al. (2013).
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Change in Exports Max Min Most Affected Change in Welfare

Suez −3.51% 4.14% −25.95% Middle East −5.25%
Panama −3.23% 1.31% −28.16% Northeast America −3.28%
Gibraltar −6.37% 2.57% −44.73% Mediterranean −5.03%

Table 6: Impact of Panama, Suez and Gibraltar on world expots. The real and counterfactual maritime routes
among regions are calculated using the Dijkstra’s Algorithm. These are combined with ships’ average speed to
compute trip duration with and without the corresponding passage.

We also quantify the impact of three existing passages (Panama, Suez, Gibraltar) by considering the

change in world trade in their absence. These passages reduce nautical distance and thus the duration of

specific trips. Table 6 presents the results. All passages substantially increase world trade and welfare.

Removing the Panama Canal leads to a decline in world trade of 3%, but up to 28% in the Northeast

America. Welfare falls by 3.3%. Removing the Suez Canal reduces trade by 3.5% and up to 26% in

the Middle East, while welfare falls by 5.25%. Finally, Gibraltar seems to be the most critical one, as

removing it would reduce world trade by close to 7% and up to 44% in the Mediterranean with an overall

welfare decline of 5%.

9 Conclusion

In this paper we focus on the importance of the transportation sector in world trade. We build a spatial

model where both trade flows and trade costs are equilibrium objects. Different experiments showcase

that the transportation sector unveils a new role for geography through three mechanisms: it mitigates

differences in the comparative advantage across countries, creates network effects and dampens the impact

of shocks. While our empirical implementation focuses on bulk shipping, similar mechanisms are present

in most, if not all, modes of transportation. We also demonstrate our setup’s potential to be used for

policy evaluation by considering the quantitative impact of maritime infrastructure projects, such as the

opening of the Northwest Passage. It is straightforward to use our setup in other counterfactuals, such

as tariffs, trade wars, environmental regulations and port infrastructure. Finally, embedding our setup

within a general equilibrium framework that endogenizes product prices is an exciting avenue for future

research.
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Appendix

A Construction of Ship Travel Histories and Searching Ships

Here, we describe the construction of ships’ travel histories. The first task is to identify stops that ships

make using the EE data. A stop is defined as an interval of at least 24 hours, during which (i) the average

speed of the ship is below 5 mph (the sailing speed is between 15 and 20 mph) and, (ii) the ship is located

within 250 miles from the coast. A trip is the travel between two stops.

The second task is to identify whether a trip is loaded or ballast. To do so, we use the ship’s draft:

high draft indicates that a larger portion of the hull is submerged and therefore the ship is loaded. The

distribution of draft for a given vessel is roughly bimodal, since as described in Section 2, a hired ship is

usually fully loaded. Therefore, we can assign a “high” and a “low” draft level for each ship and consider

a trip loaded if the draft is high (in practice, the low draft is equal to 70% of the high draft). As not all

satellite signals contain the draft information, we consider a trip ballast (loaded) if we observe a signal

of low (high) draft during the period that the ship is sailing. If we have no draft information during the

sailing time, we consider the draft at adjacent stops. Finally, we exclude stops longer than six weeks, as

such stops may be related to maintenance or repairs.

The third and final task is to refine the origin and destination information provided in the Clarksons

contracts. Although the majority of Clarksons contracts provide some information on the origin and

destination of the trip, this is often vague (e.g. “Far East”, “Japan-S. Korea-Singapore”), especially in

the destinations. We use the EE data to refine the contracted trips’ origins and destinations by matching

each Clarksons contract to the identified stop in EE that is closest in time and, when possible, location.

In particular, we use the loading date annotated on each contract to find a stop in the ship’s movement

history that corresponds to the beginning of the contract. For destinations where information in Clarksons

is noisy we search the ship’s history for a stop that we can classify as the end of the contract. In particular,

we consider all stops within a three month window (duration of the longest trip) since the beginning of

the contract. Among these stops we eliminate all those that (i) are in the same country in which the ship

loaded the cargo and (ii) are in Panama, South Africa, Gibraltar or at the Suez canal and in which the

draft of arrival is the same as the draft of departure (to exclude cases in which the ship is waiting to pass

through a strait or a canal). To select the end of the contract among the remaining options we consider

the following possibilities:
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1. If the contract reports a destination country and if there are stops in this country, select the first

of these stops as the end of the trip;

2. If the destination country is “Japan-S. Korea-Singapore”, and if there are stops in either Japan,

China, Korea, Taiwan or Singapore, we select the first among these as the end of the trip;

3. If the contract does not report a destination country and there are stops in which the ship arrives

full and leaves empty, we select the first of these as the end of the trip.

We check the performance of the algorithm by comparing the duration of some frequent trips, with

distances found online (at https://sea-distances.org), and find that durations are well matched.

Next, we turn to the construction of searching ships st = [st1, ..., stI ] and matchesmt = [mt1, · · · ,mtI ],

where sit denotes the number of ships in region i and week t that are available to transport a cargo and

mit the realized matches in region i and week t. To construct sit we consider all ships that ended a

trip (loaded or ballast) in region i and week t − 1. We exclude the first week post arrival in the region

to account for loading/unloading times (on average (un)loading takes 3-4 days but the variance is large;

removing one week will tend to underestimate port wait times). To construct mit, we consider the number

of ships that began a loaded trip from region i in week t.

B Additional Figures and Tables
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Figure 8: Definition of regions. Each color depicts one of the 15 geographical regions.
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Figure 9: Recovered exporters in our baseline specification and under a Poisson distributional assumption.
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Figure 10: Ballast discrete choice model fit. The left panel depicts the observed and predicted probabilities of
staying at port (Pii) for all regions i. The right panel depicts the observed and predicted probabilities of ballasting
(Pij) to all regions i 6= j.
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log(price per day)
I II III IV

I {orig. = home country} 0.004
(0.019)

I {dest. = home country} −0.012
(0.015)

log (Number Employees) 0.008
(0.007)

log (Operating Revenues) 0.003
(0.005)

Time FE Qtr×Yr Qtr×Yr Qtr×Yr Qtr×Yr
Shipowner FE No Yes No No
Ship characteristics Yes Yes Yes Yes

Region FE Orig. Orig. Orig. Orig.
& Dest. & Dest. & Dest. & Dest.

Observations 7,263 7,263 7,973 7,973
Adj. R2 0.530 0.540 0.537 0.537

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table 7: Regression of shipping prices on shipowner characteristcs and fixed effects. Shipping prices, ships’
characteristics (age and size), and the identity of the shipowner are obtained from Clarksons. Information on
shipowner characteristics is obtained from ORBIS. In particular, we match the shipowners in Clarksons to ORBIS;
we do so for two reasons: (i) ORBIS allows us to have reliable firm identities, as shipowners may appear under
different names in the contract data; (ii) ORBIS reports additional firm characteristics (e.g. number of employees,
revenue, headquarters). Here we identify the shipowner with the global ultimate owner (GUO); results are robust
to controlling for the identity of the domestic owner (DUO) and the shipowner as reported in Clarksons. Finally,
the data used span the period 2010-2016.

C Steady State Existence

Proposition 1. Suppose that the matching function is continuous, ε and εe have full support, Ei and S

are finite and ei ≤ Ei/(1 − δ). Then, a steady state exists, i.e. there exist (s∗, e∗) that satisfy equations

(11) through (13).
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Proof. We first derive equations (11) and (12). Consider the model’s state transitions. Exporters in

region i at time t transition as follows:

eit+1 = δ (eit −mi (sit, eit)) + Ei (1− P ei0) (18)

with Ei (1− P ei0) the (endogenous) flow of new freights. Ships at location i transition as follows:

sit+1 = (sit −mi (sit, eit))Pii +
∑
j 6=i

djisjit (19)

In words, out of sit ships, mit ships get matched and leave i, while out of the ships that did not find a

match, fraction Pii chooses to remain at i rather than ballast away; moreover, out of the ships traveling

towards i, fraction dji arrive. Finally, ships that are traveling from i to j, sijt evolve as follows:

sijt+1 = (1− dij) sijt + Pij (sit −mi (sit, it)) +
P eij

1− P ej0
mi (sit, eit) (20)

In words, fraction dij of the traveling ships arrive, fraction Pij of ships that remained unmatched in

location i chose to ballast to j and finally, P eij/ (1− P ei0) of ships matched in i depart loaded to j.

Suppose sijt,eit approach sij ,ei as t→∞. Then (19) becomes:

si = (si −mi (si, ei))Pii +
∑
j 6=i

djisji (21)

while for ships traveling from j to i, (20) becomes:

sji = (1− dji) sji + Pjisj +
(

P eji
1− P ej0

− Pji

)
mj (sj , ej) (22)

or

djisji = Pjisj +
(

P eji
1− P ei0

− Pji

)
mj = Pji (sj −mj) +

P eji
1− P ej0

mj

where mi = mi (si, ei). Summing this with respect to j 6= i we obtain:

∑
j 6=i

djisji =
∑
j 6=i

Pji (sj −mj) +
∑
j 6=i

P eji
1− P ej0

mj

and replacing in (21) we get (11).
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Equation (12) is a direct consequence of (18).

The steady state equations (11) and (12) have a fixed point over a properly defined subset of R2I , by the

Leray-Schauder-Tychonoff theorem (Bertsekas and Tsitsiklis, 2015) which states that if X is a non-empty,

convex and compact subset of R2I and h : X → X is continuous, then h has a fixed point. Indeed, let

h : R2I → R2I , h = (hs, he) with:

hsi (s, e) =
I∑
j=1

Pji (s, e) (sj −mj (sj , ej)) +
∑
j 6=i

P eji
1− P ej0

mj (s, e)

hei (s, e) = δ (ei −mi (si, ei)) + Ei
∑
j 6=0,i

P eij (s, e)

for i = 1, ..., I. Let X = ∏I
i=1 [0, Ei/(1− δ)]×∆s, where ∆s =

{
si ≥ 0 : ∑I

i=1 si ≤ S
}
. X is nonempty,

convex and compact, while h is continuous on X. We assume that the matching function is such that

λ, λe are zero at the origin and continuous. It remains to show that F (X) ⊆ X. Let (s, e) ∈ X. Then,

ei ≤ Ei/(1− δ) and ∑I
i=1 si ≤ S. Now,

hsi (s, e) =
I∑
j=1

Pji (s, e) (sj − λj (sj , ej) sj) +
∑
j 6=i

P eji
1− P ej0

λj (s, e) sj

or

hsi (s, e) =
I∑
j=1

sj

[
Pji (s, e) (1− λj (sj , ej)) +

P eji
1− P ej0

λj (s, e)
]

where let P eii = 0 (no inter-region trips). Summing over i gives:

I∑
i=1

hsi (s, e) =
I∑
j=1

sj

[
I∑
i=1

Pji (s, e) (1− λj (sj , ej)) +
I∑
i=1

P eji
1− P ej0

λj (s, e)
]

or
I∑
i=1

hsi (s, e) =
I∑
j=1

sj [1− λj (sj , ej) + λj (s, e)] ≤ S

Hence hsi (s, e) ∈ ∆s.

Finally, consider he; since mi ≥ 0, we have

hei ≤ δei + Ei
∑
j 6=0,i

P eij (s, e) ≤ δei + Ei ≤ δ
Ei

1− δ + Ei = Ei
1− δ

Hence hei (s, e) ∈ [0, Ei/(1− δ)] .
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D Estimation of Ship Costs

Since our model features a number of inter-related value functions (V,U), it does not fall strictly into

the standard Bellman formulation. Hence, we provide Lemma 2, which proves that our problem is

characterized by a contraction map and thus the value functions are well defined.

Lemma 2. For each value of the parameter vector θ ≡
{
csij , c

w
i , σ

}
all i, j, the map Tθ : RI → RI ,

V → Tθ(V ) with,

Tθ(V )i = −cwi + λi
∑
j 6=i

Gijτij + λi
∑
j 6=i

Gij

[
−

csij
1− β (1− dij)

+ βdij
Vj

1− β (1− dij)

]
+ (1− λi)Ui(θ, V )

where τij ≡ Erτijr is the mean price from i to j and Gij = P eij
1−P ei0

, is a contraction and V (θ) is the unique

fixed point.

Proof. Fix θ. Let φij = 1
1−β(1−dij) . The map Tθ(V ) is differentiable with respect to V ∈ RI with Jacobian:

∂Tθ(V )
∂V

= β (DG+ (I −D)P )� Z (23)

where D is a diagonal matrix with λi it’s i diagonal entry; P is the matrix of choice probabilities, G is the

matrix of matched trips, Z is an L×L matrix whose (i, j) element is φijdij and � denotes the pointwise

product. We next drop θ for notational simplicity; the (i, j) entry of ∂T
∂V is

(
∂T

∂V

)
ij

= 1 {i = j} − βλiGijdijφij − (1− λi)
∂Ui
∂Vj

Now,
∂Ui
∂Vj

= 1
e
βV i
σ +∑

k e
Vik
σ

e
Vij
σ
∂Vij
∂Vj

= βPijdijφij

and thus (
∂T

∂V

)
ij

= 1 {i = j} − β (λiGij + (1− λi)Pij) dijφij

which in matrix form becomes (23) (as a convention set dii = 1). Let H = (DG+ (I −D)P )� Z. Take

||H|| = maxi
∑
j |Hij |. Note that G,P are stochastic matrices and the diagonal matrix D is positive with

entries smaller than 1. Thus DG+ (I −D)P is stochastic. It is also true that 0 < dijφij ≤ 1. Thus,

∑
j

|Hij | =
∑
j

(λiGij + (1− λi)Pij) dijφij ≤
∑
j

(λiGij + (1− λi)Pij) ≤ 1

47



and therefore ||H|| ≤1. We deduce that ||∂Tθ(V )
∂V || 5 β < 1.

In brief, our estimation algorithm proceeds in the following steps:

1. Guess an initial set of parameters {csij , cwi , σ}.

2. Solve for the ship value functions via a fixed point. Set an initial value V 0. Then at each iteration

l and until convergence:

(a) Solve for V l
ij from:

V l
ij =

−csij + dijβV
l
j

1− β (1− dij)

(b) Update U l from:

U li = σ log

exp βV
l
i

σ
+
∑
j 6=i

exp
V l
ij

σ

+ σγeuler

where γeuler is the Euler constant.44

(c) Update V l+1
i from:

V l+1
i = −cwi + λiEj,rτijr + λi

∑
j 6=i

P eij
1− P ei0

V l
ij + (1− λi)U li

where we use the actual average prices from i to j, i.e., Ej,rτijr = ∑
j 6=i

P eij
1−P ei0

τ ij . Note that λi

is known (it is simply the average ratio 1
T

∑
mit/sit). Similarly, P eij

1−P ei0
, the probability that an

exporter ships from i to j (conditional on exporting), is obtained directly from the observed

trade flows (see Section 5.2).

3. Form the likelihood using the choice probabilities:

L =
∑
i

∑
j

∑
k

∑
t

yijkt logPij(csij , cwi , σ) =
∑
i

∑
j

logPij(csij , cwi , σ)nij

where yijkt is an indicator equal to 1 if ship k chose to go from i to j in week t, nij is the number

of observations (ship-weeks) that we observe a ship in i choosing j, and Pij(csij , cwi , σ) are given by

(4) and (5).
44This formula for the ex ante value function Ui ≡ EεUi(ε) is the closed form expression for the expectation of the maximum

over multiple choices, and is obtained by integrating Ui(ε) over the distribution of ε.
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E Identification of Ship Port and Sailing Costs

Proposition 2. Given the choice probabilities Pij(θ), the parameters θ = { c
s
ij

σ ,
cwi
σ ,

1
σ} satisfy a (I2− I)×

(I2 + 1) linear system of equations of full rank I2 − I. Hence, I + 1 additional restrictions are required

for identification.

Proof. Let φij = 1
1−β(1−dij) . The Hotz and Miller (1993) inversion states:

σ log Pij
Pii

= Vij(θ)− βVi(θ)

Substituting from (1) we obtain:

σ log Pij
Pii

= −φijcsij + βdijφijVj(θ)− βVi(θ) (24)

It also holds that (see Kalouptsidi et al., 2018):

logPij = Vij
σ
− Ui
σ

+ γeuler

or:

σ logPij = −φijcsij + βdijφijVj(θ)− Ui + σγeuler (25)

and

σ logPii = βVi(θ)− Ui + σγeuler (26)

Now, replace Vij from (25) into the definition of V , (2) to get:

Vi(θ) = −cwi + λiτi + σλi
∑
j 6=i

Gij logPij − σλiγeuler + Ui

where Gij = P eij
1−P ei0

and τi ≡ Ej,rτijr = ∑
j 6=iGijτij . Substitute Ui from (26):

Vi(θ) = − 1
1− β c

w
i + σ

1− β

(1− λi)γeuler + λi
∑
j 6=i

Gij logPij − logPii

+ 1
1− βλiτi

so that given the CCP’s, Vi is an affine function of cwi and σ. Next, we replace this into the Hotz and
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Miller (1993) inversion (24) to obtain:

csij = β

φij(1− β)c
w
i −

β

1− βdijc
w
j +

+σ

 β

1− β

dij
(1− λj)γeuler + λj

∑
l 6=j

Gjl logPjl − logPjj

− 1
φij

(1− λi)γeuler + λi
∑
l 6=i

Gil logPil − logPii

−
− σ

φij
log Pij

Pii
+ β

1− βdijλjτj −
β

(1− β)φij
λiτi

Note that
1

φij(1− β) = 1− β(1− dij)
1− β = 1 + βdij

1− β

and set ρij = βdij
1−β , then

1
(1−β)φij = 1 + ρij .

We divide by σ:
csij
σ

= (1 + ρij)
cwi
σ
− ρij

cwj
σ
− [β (1 + ρij)λiτi − ρijλjτj ]

1
σ

+

+ρij

(1− λj) γeuler + λj
∑
l 6=j

Gjl logPjl − logPjj

−β(1+ρij)

(1− λi) γeuler + λi
∑
i 6=j

Gil logPil − logPii



− 1
φij

log Pij
Pii

This is a linear system of full rank in the parameters { c
s
ij

σ ,
cwi
σ ,

1
σ}, since

csij
σ can be expressed with respect

to { c
w
i
σ ,

1
σ}.

F Algorithm for computing the steady state equilibrium

Here, we describe the algorithm employed to compute the steady state of our model to obtain the coun-

terfactuals of Sections 7 and 8.

1. Make an initial guess for {s0
i , e

0
i , V

0
i } all i.

2. At each iteration l, inherit {sli, eli, V l
i } all i

(a) Update the ship’s and exporter’s optimal policies by repeating the following steps K times.45

45K is chosen to accelerate convergence in the spirit of standard modified policy iteration methods.
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i. Solve for V l+1
ij from:

V l+1
ij =

−csij + dijβV
l
j

1− β (1− dij)

ii. Update U l+1
i from:

U l+1
i = σ log

exp βV
l
i

σ
+
∑
j 6=i

exp
V l
ij

σ

+ σγeuler

iii. Compute the equilibrium prices using

τ lijr =
γ
(
1− βδ

(
1− λe,li

))
1− βδ

(
1− γλe,li

) (
U l+1
i − V l+1

ij

)
+ (1− γ) (1− βδ)

1− βδ
(
1− γλe,li

) r̄ij
iv. Update P eij :

P eij
l+1 =

exp
(
βδλei (r̄ij−τ lij)
1−βδ

(
1−λe,li

) − κij)
1 +∑

l 6=i exp
(
βδλei (r̄ij−τ lij)
1−βδ

(
1−λe,li

) − κil)
v. Update V l

i :

V l+1
i = −cwi + λiEj,rτijr + λi

∑
j 6=i

 P e,l+1
ij

1− P e,l+1
i0

V l+1
ij + (1− λi)U l+1

i

vi. Obtain the ships ballast choices P l+1
ij , all i, j.

3. Update to {s̃l+1, ẽl+1} from:

ẽl+1
i = δi

(
eli −ml

i

)
+ Ei

(
1− P e,l+1

i0

)

and

s̃l+1
i =

∑
j

P l+1
ji

(
slj −ml

j

)
+
∑
j

P e,l+1
ji

1− P e,l+1
j0

ml
j

4. If
∥∥∥s̃l+1 − sl

∥∥∥ < ε,
∥∥∥ẽl+1 − el

∥∥∥ < ε and
∥∥∥V l+1 − V l

∥∥∥ < ε, stop, otherwise update freights and ships

as follows:

sl+1 = αsl + (1− α) s̃l+1

el+1 = αel + (1− α) ẽl+1,
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where α is a smoothing parameter.
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