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DEMAND FLUCTUATIONS IN THE READY-MIX
CONCRETE INDUSTRY

BY ALLAN COLLARD-WEXLER1

I investigate the role of demand shocks in the ready-mix concrete industry. Using
Census data on more than 15,000 plants, I estimate a model of investment and entry
in oligopolistic markets. These estimates are used to simulate the effect of eliminating
short-term local demand changes. A policy of smoothing the volatility of demand has a
market expansion effect: The model predicts a 39% increase in the number of plants in
the industry. Since bigger markets have both more plants and larger plants, a demand-
smoothing fiscal policy would increase the share of large plants by 20%. Finally, the
policy of smoothing demand reduces entry and exit by 25%, but has no effect on the
rate at which firms change their size.

KEYWORDS: Demand fluctuations, entry and exit, dynamic games, ready-mix con-
crete.

1. INTRODUCTION

Many industries face considerable uncertainty about future demand for their
products. How do these shocks affect the organization of production?

I study the effect of demand shocks in the ready-mix concrete industry. This
industry is composed of local oligopolies, as wet concrete cannot travel much
more than an hour before hardening. The ready-mix concrete industry experi-
ences large changes in demand from the construction sector from year to year,
as the size of the local construction industry fluctuates by an average of 30%
per year. Moreover, about half of all concrete is purchased by state and local
governments, and these outlays are particularly volatile, due to year-to-year
variation in tax revenues.

To investigate the role of demand volatility, I estimate a model of entry and
discrete investment in concentrated markets using an Indirect Inference Con-
ditional Choice Probability Algorithm, which allows for considerable plant het-
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erogeneity.2 This model is estimated with Census data on the histories of more
than 15,000 ready-mix concrete plants in the United States from 1976 to 1999.

Plant size is directly related to market size in the ready-mix concrete sector:
Bigger markets have both more plants and larger plants. Thus, the model’s es-
timates show that construction employment has strong positive effects on prof-
its but disproportionately affects large plants. Competition—in particular, the
presence of a first competitor—substantially reduces profits. Firms pay large
sunk costs both for entering the market and for increasing or shrinking the size
of a plant.

I look at government intervention in the ready-mix concrete market that
smooths out short-term fluctuations in demand at the county level. Specifically,
the counterfactual mimics the effect of government sequencing its contracts
so as to spread demand evenly over each five-year period. However, secular
changes in demand, those that move average demand from one five-year pe-
riod to the next, are preserved. Thus, this policy eliminates short-run—that
is, five-year—changes in demand, but preserves longer-run movement in de-
mand.

I find that this demand-smoothing policy reduces entry and exit rates, by
25%, but has no effect on the rate at which plants change their size. The modest
effect of the demand-smoothing policy on the dynamics of the industry is due to
high estimates of sunk costs of both entry and adjustment. These make it costly
for firms to react to short-lived changes in demand. In addition, when demand
becomes less volatile, firms get a more precise forecast of future demand. Thus,
the direct effect of a smoother demand process is offset by firms becoming
more responsive to the remaining changes in demand. This lessens any effect
of demand smoothing on turnover.

However, smoothing demand also has a large “market expansion” effect—it
raises the number of plants in the industry by 39%. The intertemporal volatility
of demand can have large effects on the profitability of a market. To illustrate,
consider that in the market for electricity, demand volatility is thought to raise
the profits of generators. In periods of peak demand, capacity constraints bind
and spot prices can increase quite dramatically. Alternatively, in the ready-
mix concrete market, periods of peak demand might raise costs due to the
congestion associated with multiple concrete deliveries. In the data, a 1% in-
crease in market size (as measured by construction employment) is associated
with a 0.69% increase in the number of ready-mix concrete plants. This indi-
cates a concave response to higher demand, and these nonlinearities of period
profits, with respect to demand, indicate that demand volatility affects market

2Previous versions of the paper used an algorithm analogous to that in Aguiregabiria and
Mira (2007), where the choice probabilities were updated to match those given by a computed
equilibrium of the game, given the estimated parameter vector. This technique leads to similar
estimates and counterfactual results as those presented in the paper and are available by request.
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size. Thus, some of the more interesting effects of the demand-smoothing pol-
icy are expressed in the industry’s cross-section rather than in its year-to-year
changes.

The counterfactual of smoothing demand raises investment by 44%, from
$439 million to $634 million per year, but decreases producer surplus for in-
cumbents by 20%. Moreover, since the market expansion effect is similar to an
increase in market size, the size distribution of the industry shifts toward large
plants, and the share of large plants (with more than 17 employees) climbs by
20%. Turning toward the effect on consumers, the 39% increase in the num-
ber of plants due to the demand-smoothing policy would reduce the share of
monopoly markets from 43% to 25%. The resulting increase in competition
would make prices fall, and consumers would pay $43 million less per year for
ready-mix concrete.

The effect of countercyclical fiscal policy—in particular, with regard to the
response, timing, and composition of investments—has been extensively dis-
cussed in the public finance literature (see Auerbach, Gale, and Harris (2010)
and the references therein). This paper casts light on the effect of active fiscal
policy not only on the dynamics of the industry in terms of entry and exit, but
also on market structure and industry composition.

This paper proceeds as follows. In Section 2, I discuss the ready-mix concrete
industry. Section 3 describes the data. In Section 4, I present a dynamic model
of competition. I describe estimation in Section 5 and results in Section 6. Fi-
nally, in Section 7, I analyze the effect of policies that would eliminate some of
the volatility of demand.

2. THE READY-MIX CONCRETE INDUSTRY

2.1. The Industry

2.1.1. Concrete

I focus on ready-mix concrete: concrete mixed with water at a plant and
transported directly to a construction site.3 While it is possible to produce sev-
eral hundred types of concrete, these mixtures basically use the same ingredi-
ents and machinery. Thus, one can think of ready-mix concrete as a homoge-
neous product.

3Concrete is a mixture of three basic ingredients: sand, gravel (crushed stone), and cement,
as well as chemical compounds known as admixtures. Combining this mixture with water turns
cement into a hard paste that binds the sand and gravel together.
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Ready-mix is a perishable product that must be delivered within an hour and
a half before it becomes too stiff to be workable.4,5 Concrete is also very cheap
for its weight, and so ready-mix trucks typically drive 20 minutes to deliver their
loads.6

2.1.2. Local Oligopoly

Due to these high transportation costs, concrete markets are geographically
segmented: Figure 1 shows the dispersion of ready-mix producers in the Mid-
west, with a handful of incumbents in each area. For my empirical work, I treat
each county as a separate market that evolves independently from the rest
of the industry. Furthermore, Table I shows that the vast majority of counties
in the United States have fewer than six ready-mix plants, reflecting a locally
oligopolistic market structure. However, because even the most isolated rural
areas have some demand for ready-mix concrete, most counties are served by
at least one producer.

A market with more than three firms appears to yield fairly competitive out-
comes. To illustrate, Figure 2 shows the median price of ready-mix concrete in
markets with one to seven firms.7 The first three competitors have a noticeable
effect on prices, but additional competitors have little additional impact.8

4One producer describes the economics of transportation costs in the ready-mix industry as
follows:

“A truckload of concrete contains about 7 cubic yards of concrete. A cubic yard of concrete
weighs about 4000 pounds and will cost you around $60 delivered to your door. That’s 1.5
cents a pound. If you go to your local hardware store, you get a bag of manure weighing 10
pounds for $5. That means that concrete is cheaper than shit.”

5“ASTM C 94 also requires that concrete be delivered and discharged within 1 1/2 hours or
before the drum has revolved 300 times after the introduction of water to the cement and aggre-
gates.” Kosmatka, Kerkhoff, and Panarese (2002, p. 96).

6The average price of concrete is around 1.5 cents per pound. The driving time of twenty
minutes is based on a dozen interviews conducted with Illinois ready-mix concrete producers.
Thanks to Dick Plimpton at the Illinois Ready-Mix Concrete Association for providing IRMCA’s
membership directory.

7Price is given by sales of concrete divided by tons of concrete sold, where I use data from
the material trailer to the Census of Manufacturers. I follow Syverson’s (2004) procedure, which
removes hot and cold deck imputes by dropping all price pairs that are exactly the same. Ap-
pendix G of the Supplemental Material (Collard-Wexler (2013)) discusses the construction of
price statistics in more detail.

8Caution should be exercised when interpreting these price regressions, as the number of
firms could be positively correlated with a market that has unusually high prices, as discussed
in Manuszak and Moul (2008), so the results in Figure 2 most likely underestimate the price-
competition relationship.
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FIGURE 1.—Dispersion of ready-mix concrete plant locations in the Midwest. Source: Zip
Business Patterns publicly available data set at http://www.census.gov/epcd/www/zbp_base.html
for NAICS Code 327300.

2.2. Concrete Demand

Most concrete is purchased for building, so I measure demand with employ-
ment in the construction sector. Demand is inelastic because it is a small part of
construction costs, as these do not exceed 10% of material costs for any subsec-
tor in construction. So it is implausible that the ready-mix market substantially
affects the volume of construction activity. As such, changes in construction
activity that affect the ready-mix concrete industry’s market structure are the
main source of exogenous variation.

There are large fluctuations in concrete purchases. The autocorrelation of
log county construction employment is 85% for one year, 65% for five years,

http://www.census.gov/epcd/www/zbp_base.html
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TABLE I

MOST COUNTIES IN THE UNITED STATES ARE SERVED BY FEWER THAN SIX READY-MIX
CONCRETE PLANTS

Number of Concrete Plants Number of Counties/Years Percent

0 22,502 30%
1 23,276 31%
2 12,688 17%
3 6373 9%
4 3256 4%
5 1966 3%
6 1172 2%
More than 6 3205 4%

Total 74,438

and 21% for 20 years. This low autocorrelation of construction activity indi-
cates significant year-to-year variation in demand.9

The spatial autocorrelation of demand is also negligible. Only 2�1% of the
variation in log construction employment in a county is accounted for by

FIGURE 2.—Price declines with the addition of the first competitors, but drops by very little
thereafter. Bars represent 95% confidence interval on median price.

9However, the demand process has more long-term correlation than an AR process would
predict, as an AR(1) process would predict a 4% 20-year autocorrelation, given an 85% 1-year
autocorrelation. To capture long-run differences in market size, I estimate the process for demand
separately for different markets, as discussed in Section 5.3.
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changes in log construction employment in counties that border it.10 At the
county level, we can think of demand evolving autonomously and, thus, focus
on policies that interfere with county-level demand patterns, rather than state
or national patterns.

2.2.1. Government

Governments purchase half of all U.S. concrete, primarily for road construc-
tion.11 These purchases fluctuate, due to the discretionary nature of highway
spending in state and federal budgets. Government demand is a major source
of uncertainty for ready-mix producers.

2.3. Sunk Costs

Opening a concrete plant is an expensive investment. In interviews, man-
agers of ready-mix plants estimate the cost of a new plant at between three
and four million dollars, and continuing plants in 1997 had, on average, two
million dollars in capital assets. Yet, there are few expenses involved in shut-
ting down a ready-mix plant. Trucks can be sold on a competitive, used-vehicle
market, and land can be sold for other uses. The plant itself is a total loss. At
best, it can be resold for scrap metal, but many ready-mix plants are left on-site
because the cost of dismantling them outweighs their resale value.12

3. DATA

I use data on ready-mix concrete plants provided by the Center for Eco-
nomics Studies at the United States Census Bureau. My primary source is the
Longitudinal Business Database (henceforth, LBD) compiled from data used
by the Internal Revenue Service to maintain business tax records. The LBD
covers all private employers on a yearly basis from 1976 to 1999 and has in-
formation about employment and salary, along with sectoral coding and firm
identification, but does not record sales, materials, or capital.

10Moreover, any aggregate component of construction employment would show up as spatial
autocorrelation of changes in construction activity.

11According to Kosmatka, Kerkhoff, and Panarese (2002, p. 9), government accounts for 48%
of cement consumption, with road construction alone responsible for 32% of the total.

12I provide evidence of sunk costs in the ready-mix industry, including factors difficult to quan-
tify, such as long-term relationships with clients and creditors. These intangible assets may ac-
count for a large fraction of sunk costs. For instance, ready-mix operators sell about half of their
production with a six-month grace period for repayment. These accounts receivable have a value
equivalent to half of a plant’s physical capital assets. They also function as a sunk cost, as it is
more difficult to collect these accounts if the firm cannot punish non-payment by cutting off fu-
ture deliveries of concrete.
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Production of ready-mix concrete for delivery predominantly takes place at
establishments in the ready-mix sector (NAICS 327300 and SIC 3273), so I
choose the establishments in this sector.13

To construct longitudinal linkages across plants over time, I adapt the Lon-
gitudinal Business Database Number (henceforth, LBDNUM), developed by
Jarmin and Miranda (2002). This identifier is constructed from Census ID, em-
ployer ID, and name and address matches of all plants in the LBD. I use Jarmin
and Miranda’s (2002) plant birth and death flags to measure entry and exit.14

Each year, about 40 plants (or about 1.6 percent of plants) are temporarily shut
down. I do not treat temporary shutdown as exit, since the cost of reactivating
a plant is smaller than building one from scratch.

I complement the LBD with data from the Census of Manufacturers (hence-
forth, CMF) and Annual Survey of Manufacturers (henceforth, ASM), which
contain more detailed information on plants, such as inputs, outputs, and as-
sets.15 To obtain data on construction, I select all establishments from the LBD
in the construction sector (SIC 15-16-17) and aggregate them to the county
level.

The plants in my sample produce 94 percent of the ready-mix concrete
shipped in the manufacturing sector. Moreover, for these plants, ready-mix
concrete is 95 percent of their output.

3.1. Panel

Over the sample period of 1976 to 1999, there were about 350 plant births
and 350 plant deaths each year, compared to 5000 continuers. Both turnover
rates and the total number of plants were stable over the period.

The average ready-mix concrete plant employed 26 workers and sold about
$3.4 million of concrete in 1997. About half of all sales are accounted for by
material costs, while the rest is value added. However, these averages mask
substantial differences between plants. Most notably, the distribution of plant

13Plants occasionally switch in and out of the ready-mix concrete sector. I select all plants that
have belonged to the ready-mix sector at some point in their lives, but disregard plants that switch
into the concrete sector for only a small fraction of their lives, since these transient concrete plants
are typically miscoded and manufacture products such as cement or concrete pipe. Specifically, I
exclude from my sample plants that produce concrete less than 50% of the time.

14Jarmin and Miranda (2002) identified entry and exit based on the presence of a plant in
the IRS’s tax records. They took special care to flag cases where plants simply change owners or
names by matching the addresses of plants across time. If a plant changes ownership, I do not
treat this as an exit event, since the cost of changing the management at a plant should be much
lower than the cost of building a plant from scratch.

15Unfortunately, the ASM is only sent to about one-third of plants in the ready-mix concrete
sector, while the CMF is available only every five years and excludes all plants with fewer than
five employees (i.e., about one-quarter of concrete plants). Since the CMF and ASM have serious
issues with missing data, it is difficult to use them alone for longitudinal market-level studies. This
is not true of the LBD, which includes the entire population of U.S. plants.
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size is heavily skewed, with few large plants and many small ones. For instance,
5% of plants have one employee, and less than 5% of plants have more than 82
employees. Continuing plants are twice as large as either entrants (i.e., births)
or exitors (i.e., deaths), measured by capitalization, salaries, or shipments.

Plant size is a crucial difference between plants, as bigger plants ship more
concrete and are far less likely to exit. I use employment to measure size at
a plant. Employment is a better measure of size than capital stock, since it is
available for all plants in the sample, while capital stock is available for less
than 20% of plant-years. Moreover, the number of employees is more auto-
correlated than capital assets (91% versus 74% for capital), and is a better
predictor of both future production (with a correlation of 92% with total ship-
ments versus 43% for capital), and the likelihood of exit.16,17

I call a plant small if it has fewer than eight employees, medium if it has
between eight and 17 employees, and large if there are more than 17 employ-
ees.18 I also keep track of the largest size a plant attains, since a plant that was
previously large may have assets that make it easier for it to ramp up in the
future. Table II shows the probability that plants will change size, enter, or exit.
In the sample of counties that excludes large markets, 47% of plants are small,
28% are medium, and 25% are big. The history of a plant’s size matters. Large
plants exit at a rate of 2.6%—one-third the rate of small plants (8.0% )—and
plants that were large in the past are more likely to expand in the future. For
instance, a medium-sized plant that was large in the past has a 21% probability
of becoming large next year, versus only an 8% probability for a plant that has
never been large.19

I aggregate plant data by county to form market-level data. Since counties
in the United States vary greatly in size, I have taken care to exclude counties

16I use employment instead of capital stock, since employment is measured for all plants in
the data (it is derived from IRS tax returns in the LBD), while capital is available for all plants
in a market for only a small number of markets (as is discussed in Collard-Wexler (2009), which
used multiple imputation to fill in missing capital stock). In practice, given the coarseness of my
employment bins, classifying a firm based on capital or employment does not matter very much.

17Ready-mix concrete has been studied extensively by Syverson (2004), who provided evidence
of productivity dispersion across plants. In another paper, Collard-Wexler (2009), I discussed the
dynamics of productivity dispersion. Incorporating productivity differences into the model leads
to a great number of data challenges, as the data needed to construct productivity are frequently
missing or imputed. Moreover, incorporating productivity into a dynamic model leads to a focus
on variability in plant-level productivity, since these variations in productivity dwarf variations in
demand.

18I choose cutoffs of eight and 18 employees because these correspond to the 33rd and 66th
quantiles of the empirical distribution of employment.

19I do not keep track of past size if a plant is larger today than it was in the past, since it is
the largest size of previous employment that determines if a firm has the equipment and land
necessary to ramp up in the future. As well, if I kept track of past size, regardless of current size,
this would increase the number of plant-level states from seven to 10, raising the size of the state
space for the entire industry by a factor of about 14.
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TABLE II

AVERAGE YEARLY PLANT TRANSITION PROBABILITIES

Size Next Year

Current Size Out Smalla Mediumb Largec Total

Out 98�5% 1�2% 0�2% 0�1% 15,134
Small 8�0% 82�4% 8�1% 1�5% 1135
Small, Medium in Past 7�9% 73�6% 17�6% 1�0% 417
Small, Large in Past 11�7% 65�8% 16�4% 6�1% 140
Medium 3�2% 20�1% 68�6% 8�1% 686
Medium, Large in Past 3�2% 11�0% 64�4% 21�3% 307
Large 2�7% 4�1% 11�1% 82�1% 913

aSmall: Less than 8 Employees.
bMedium: 8 to 17 Employees.
cLarge: More than 17 Employees.

in states, such as Arizona, that have unusually spacious counties and a small
number of heavily populated urban counties.20

Table III presents summary statistics of the market-level data. On average,
there are 1.86 plants per market. Moreover, there is a wide range of construc-
tion employment, from 11 employees (5th percentile) to 6800 employees (95th
percentile).21

TABLE III

SUMMARY STATISTICS FOR COUNTY-AGGREGATED DATA

Standard 5th 95th
Observations Mean Deviation Percentile Percentile

Concrete Plant Data
Concrete Plants 74,435 1�86 3�24 0 6
Employment 74,435 27�24 79�03 0 110
Payroll (in 000’s) 74,435 4238 74,396 0 3600
Total Value of Shipment (in 000’s) 24,677 3181 12,010 0 14,000
Value Added (in 000’s) 24,677 1408 5289 0 6500
Total Assets Ending (in 000’s) 24,677 1090 14,134 0 4700

Construction Establishment Data
Employment 69,911 1495 5390 11 6800
Payroll (in 000’s) 69,911 37,135 163,546 110 160,000

County Area (in square miles) 72,269 1147 3891 210 3200

20Specifically, I exclude counties with more than 20 ready-mix concrete plants, which are all
urban areas. The County Business Patterns reports that there were 20 of these counties in 2007.

21Yet, the range of the surface area of counties, in square miles, falls between 210 and 3200—
a 10-to-one difference—versus a 500-to-one difference for construction employment.
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4. MODEL

I adapt the theoretical framework for dynamic oligopoly developed by
Ericson and Pakes (1995) to analyze entry, exit, and investment decisions in
the ready-mix concrete industry. In each market, there are i = 1� � � � �N firms,
which are either potential entrants or incumbents. A firm i can be described
by a firm-specific state sti ∈ Si. The typical ready-mix firm owns a single plant,
and I assume that each firm owns a single ready-mix concrete plant, making
plant and firm interchangeable.22,23 Firms also react to market-level demand
Mt , and thus, the market-level state st is the composition of the states for each
firm and the aggregate state Mt :

st = {
st1� s

t
2� � � � � s

t
N�M

t
}
�

I distinguish between two components of the state sti : x
t
i , which is common

knowledge to all firms in the market, and εt
i , which is an independent and

identically distributed (i.i.d.) private information component.24 Denote by
xt = {xt

1�x
t
2� � � � � x

t
N�M

t} and εt = {εt
1� ε

t
2� � � � � ε

t
N} the market-level common

knowledge and private information state, respectively.
The difficulty in dynamic games is in computing an equilibrium for counter-

factuals. More precisely, for this application the main burden is keeping the
entire state space in memory. I choose a maximum of 10 plants per market,
since this allows me to pick up most counties in the United States (where the
95th percentile of the number of plants in a county in Table III is six), and
keeps the size of the state space manageable. A county with more than 10 ac-
tive plants at some point in its history is dropped from the sample, since the
model does not allow firms to envisage an environment with more than nine
competitors.25

Firm i can be described by a firm-specific state sti ∈ Si:

sti = {
xt
i︸︷︷︸

(Plant Size�Past Plant Size)

� εt
i︸︷︷︸

i�i�d� shock

}
(1)

22Indeed, Syverson (2004) reported that 3749 firms controlled the 5319 ready-mix plants oper-
ating in 1987.

23Due to antitrust policy in the United States, ready-mix concrete firms historically were pre-
vented from merging with upstream cement producers. In most other countries, ready-mix con-
crete plants are vertically integrated with cement producers.

24If, instead, εt
i was serially correlated, then a firm might find it optimal to condition its strategy

on past actions taken by other firms in the market. This would substantially increase the size of
the state space. For instance, if a firm conditioned its strategy on the history of the market for
even a single year, the state space would be more than 1.9 quintillion.

25To allay the potential for selection bias that this procedure entails, counties with more than
10,000 construction employees at any point between 1976 and 1999 are also dropped. This ex-
cludes 15% of markets and 35% of plants from the analysis.
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a vector of i.i.d. unobserved shocks εt
i . The firm’s observed state xt

i is whether
a firm is big, medium, or small, as well as the firm’s largest previous size, as
described in Table II.

In each period t, potential entrants choose whether or not to enter a market,
and incumbents can choose to exit the market. Conditional on being in the
market, firms pick their common knowledge state xt

i in the next period. Thus,
the firm’s action at

i is the choice of being out of the market, that is, xt+1
i = ∅, or

their state tomorrow xt+1
i (small, medium, large). Demand evolves following a

first-order Markov process with transition probabilities given by D(Mt+1|Mt).
I assume the private information vector εt

i enters into the profit function as
an additive logit shock to the value of each action at

i . Payoffs are given by

r
(
xt+1

) + τ
(
xt+1
i = at

i� x
t
i

) + εt
ia�(2)

where r(·) denote the rewards from operating in the market, and τ(·) are tran-
sition costs, that is, the costs of moving from one state to another. The Results
section of this paper is primarily concerned with estimating these reward and
transition functions.

The game’s timing is:
1. Firms privately observe εt

i and publicly observe xt .
2. Firms simultaneously choose actions at

i .
3. Demand Mt evolves to its new level Mt+1. Firm-level states evolve to xt+1

i .
4. Payoffs r(xt+1)+ τ(at

i� x
t
i)+ εt

ia are realized.
I define the firm’s ex ante (i.e., before observing εt

i) value as

V
(
xt

) = Eεti

(
max
ati

Ext+1
−i

[
r
(
xt+1

−i � x
t+1
i

) + τ
(
xt+1
i = at

i� x
t
i

)
(3)

+ εt
ia +βV

(
xt+1

)])
�

and firms pick the action that maximizes the net present value of rewards:

a∗t
i = argmax

ati

Ext+1
−i

[
r
(
xt+1

−i � x
t+1
i

) + τ
(
xt+1
i = at

i� x
t
i

) + εt
ia +βV

(
xt+1

)]
�(4)

Doraszelski and Satterthwaite (2010) showed that if εt
ia is an additive, action-

specific shock that has full support, then there will exist pure strategy Nash
equilibria for this game, that is, policies a∗(xt� εt

i) such that a unilateral, one-
shot deviation to strategy ãi(x

t� εt
i) does not lead to a higher net present value

of rewards, conditional on all other players using strategies a∗
−i(·).26 Last, I in-

troduce some additional notation. To work out the firm’s strategies, I compute

26Proposition 2 in Doraszelski and Satterthwaite (2010) describes conditions under which the
Ericson and Pakes (1995) model has a pure strategy equilibrium, essentially pointing out that
exit and entry costs need to have full support shocks to ensure the existence of a pure strategy
equilibrium. The game I describe has full support shocks to the value of entering and exiting, as
well as to the value of taking any action.
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the ex ante choice-specific value function W (at
i� x

t), that is, the net present value
of payoffs conditional on taking action at

i before εt
i is observed, defined as27

W
(
at
i� x

t
) = Ext+1|ati

[
r
(
xt+1

) + τ
(
at
i� x

t
i

) +βV
(
xt+1

)]
(5)

= Ext+1|ati

[
r
(
xt+1

) + τ
(
at
i� x

t
i

)
+βEεt+1 max

at+1
i

(
W

(
at+1
i � xt+1

) + εt+1
ai

)]
�

Given the choice-specific value function, it is easy to reckon the firm’s condi-
tional choice probability (henceforth, CCP) Ψ [at

i|xt], that is, the probability
that a firm will play action at

i in an observable state xt—before observing εt
i—

using the logit formula:

Ψ
[
at
i|xt

] = exp(W (at
i� x

t))∑
j∈Ai

exp(W (j�xt))
�(6)

5. PARAMETERIZATION AND CONDITIONAL CHOICE
PROBABILITY ESTIMATION

In this section, I first present the parameterized profit function that I esti-
mate. Second, I show the Indirect Inference Conditional Choice Probability
estimator (henceforth, IICCP) used to recover these parameters. Third, I dis-
cuss details of the estimation of conditional choice probabilities.

5.1. Profit Function

I use a simple Bresnahan and Reiss (1991) style reduced form for the reward
function, endowed with parameters θ that I estimate:

r
(
at
i� x

t |θ) =
∑

α∈{Big�Medium�Small}
1
(
at
i = α

)
(7)

×
(

θα
1︸︷︷︸

Fixed Cost

+ θα
2M

t+1︸ ︷︷ ︸
Demand Shifter

+θα
3g

(∑
−i

xt+1
−i �= out

)
︸ ︷︷ ︸

Competition Parameters

)
�

27Remember that V and W are linked together by

V
(
xt

) = Eε
at
i

(
max
ati

W
(
at
i� x

t
) + εati

)
�



1016 ALLAN COLLARD-WEXLER

where g(·) is a nonparametric function of the number of competitors. This
reward function is linear in parameters that I exploit during estimation.28

Transition costs are

τ
(
at
i� x

t
i|θ

) = θl�m
4

∑
l>0�m �=l

1
(
at
i = l� xt

i =m
)
�(8)

so a firm pays a transition cost to change its state. However, I assume that a
firm does not pay any exit costs.29

Sections 5.2 and 5.3 discuss the estimation of the parameters θ of the profit
and transition cost function. The reader can skip to Section 6 for estimates of
these parameters.

5.2. Indirect Inference CCP Algorithm

Applying the Ericson and Pakes (1995) framework to data has proven dif-
ficult, due to the complexity of computing a solution to the dynamic game
and multiple equilibria.30 For single-agent problems, Hotz and Miller (1993)
and Hotz, Miller, Sanders, and Smith (1994) bypassed the computation of op-
timal policies by estimating policies directly from agents’ choices. This idea
has been adapted to strategic settings by several recent papers in Industrial
Organization—most prominently, Bajari, Benkard, and Levin (2007), Pakes,
Berry, and Ostrovsky (2007), Pesendorfer and Schmidt-Dengler (2008), Ryan
(2012), and Dunne, Klimek, Roberts, and Xu (2006).

I estimate the model by matching the optimal choice probabilities Ψ(ai|x�θ)
to the data. The natural way to do this would be to compute an equilibrium to
the dynamic game’s given parameters θ. However, doing this for each candi-
date parameter vector θ is computationally impractical.

Instead, I have adapted a conditional choice probability estimator that can
be applied to games. My CCP algorithm can handle the very large state space
in this problem (over 350,000 states), and I use a Simulated Indirect Infer-
ence Criterion approach for estimation (Keane and Smith (2003), Gourieroux,
Monfort, and Renault (1993), and Gourieroux and Monfort (1996)).31

28This “reduced-form” profit function is an approximation to the profits earned by competitors.
For estimation purposes, I need to assume that the specification error in r is orthogonal to the
state variables x.

29While entry, fixed costs, and exit costs are not strictly collinear, Monte Carlo experiments
indicate that it is quite difficult to jointly identify all three of these costs. Appendix D of the
Supplemental Material (Collard-Wexler (2013)) shows the identification of this model, as well as
some intuition for why it is difficult to separately identify fixed costs, entry costs, and exit costs.

30Even with the high performance Stochastic Algorithm used in this paper, it takes more than
an hour to compute a solution.

31In a previous version of this paper, I computed present estimates using an approach in the
spirit of Aguiregabiria and Mira (2007), which iteratively updates the strategies used by firms.
I find that using an iterated technique yields very similar results to those presented in the paper.
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ALGORITHM—CCP Indirect Inference Algorithm (CCPII):
1. Replace optimal choice probabilities Ψ with an estimate from the data P̂ .

Estimate the demand transition process D̂[Mt+1|Mt].
I assume a single symmetric Markov-Perfect equilibrium played in each ob-

served state x. Thus, I can recover the empirical analogue to Ψ by looking at
the empirical frequency of actions in different states P̂ = {Pr(at

i|xt)}ati �xt . Like-
wise, I can estimate the demand transition process (denoted D̂) using the ob-
served demand transitions in the data. I discuss the details of the estimation of
P̂ and D̂ in Section 5.3.

2. Compute the W function up to a vector of parameters θ, conditional on poli-
cies Ψ(at

i|xt)= P̂[at
i|xt].

A final rewriting of the W function is now in order to aid with the estimation
of the model. The rewards and transition costs in equations (7) and (8) are
linear in parameters θ, so the profit function can be rewritten as r(ai� x|θ) −
τ(ai� xi|θ) = θ · �ρ(ai�x), where �ρ is a function that returns a vector. This implies
that the W function is separable in dynamic parameters, as in Bajari, Benkard,
and Levin (2007), since

W (ai�x|θ) = E

∞∑
t=1

βt
(
r
(
at
i� x

t |θ) − τ
(
at
i� x

t
i|θ

))
(9)

= θ · E

∞∑
t=1

βt �ρ(
at
i� x

t
) ≡ θ · Γ (ai�x)�

Note that the Γ function only depends on the expected evolution of the state
and actions in the future, rather than on the parameter vector θ:

Γ (ai�x)= E

∞∑
t=1

βt �ρ(
at
i� x

t
)
�(10)

I compute the Γ function using forward simulation, in which I simulate the
evolution of the state x and action ai by drawing from the choice probabilities
Ψ and the demand transition process D. Since I have replaced these objects by
their empirical analogues P̂ and D̂, I can perform this forward simulation with-
out solving the model. The forward simulation is done with a discrete action
stochastic algorithm (henceforth, DASA) that is close to Pakes and McGuire
(2001), presented in Appendix B of the Supplemental Material.

The optimal choice probabilities Ψ can be rewritten as a function of Γ P̂ and
θ (where I include the subscript P̂ to emphasize that Γ depends on my estimate
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of CCPs):

Ψ
(
ai|x�Γ P̂� θ

) = exp(θ · Γ P̂(ai� x))∑
j∈A

exp(θ · Γ P̂(j�x))
�(11)

3. Simulated Indirect Inference Estimation
I use an indirect inference criterion function to estimate the model.32 The

estimator matches regression coefficients from the data (denoted β̂) with re-
gression coefficients from simulated data generated by the model, conditional
on a parameter θ (denoted β̃(θ)). I use a multinomial linear probability model
as an auxiliary model. It is simple to estimate and is a close analogue to the
multinomial dynamic logit model.33

I define the outcome vector from the data as yn and the predicted choice
probabilities given by the model ỹn(θ) for observation n as

yn =
⎡
⎣1(an = small)

1(an = medium)

1(an = big)

⎤
⎦ � ỹn(θ) =

⎡
⎣Ψ(small|xn�Γ�θ)

Ψ(medium|xn�Γ�θ)

Ψ(large|xn�Γ�θ)

⎤
⎦ �(12)

where the outcome vector ỹn(θ) is the predicted choice probabilities Ψ .34 I run
an ordinary least squares (OLS) regression on yn = Znβ̂ and find the OLS co-
efficients of the multinomial linear probability model. Likewise, I run an OLS
regression on the predicted choice probabilities ỹn to obtain the coefficients
for the model β̃(θ), given parameter θ.

The criterion function minimizes the distance between the regression coef-
ficient in the data and in the simulated data:

Q(θ) = (
β̂− β̃(θ)

)′
W

(
β̂− β̃(θ)

)
�(13)

32Indirect Inference is less sensitive to error in the Γ function than maximum likelihood and,
like many GMM estimators, can be consistent even if there is simulation error in Γ , and this
simulation error does not vanish asymptotically. For some intuition, if the exit rate in the data is
1%, but the model predicts an exit probability of almost 0%, then a maximum likelihood criterion
would have an infinite log-likelihood, while an indirect inference criterion would find an error of
1%. I find it easier to minimize this criterion function versus a criterion of the form ‖yn − ỹn(θ)‖,
which is closer to traditional GMM.

33The auxiliary model does not need to be a consistent estimator and need not have an inter-
pretation of any sort. Its sole responsibility is to provide rich description of the patterns of a data
set and to be simple to estimate.

34Theorem 1 in Appendix D of the Supplemental Material proves that using the choice prob-
abilities Ψ as predicted actions gives the same θ’s as drawing action an ∼ Ψ(·|xn�Γ�θ) from the
predicted choice probabilities when one uses an infinite number of simulation draws.
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where W is a weighting matrix. I use W = Var[β̂]−1, the inverse of the covari-
ance matrix from the OLS regression. Appendix D of the Supplemental Ma-
terial shows conditions under which the estimator is consistent, which is an
extension of the consistency of Indirect Inference estimators.35

5.3. Conditional Choice Probabilities

5.3.1. Detecting Market Unobservables

I assumed that the unobserved state εati
is an i.i.d. logit, which rules out

persistent market-level unobservables. This is a problem. Some markets have
higher costs than others, due to, for instance, the presence of unionized work-
ers in Illinois but not in Alabama. In addition, some markets have higher de-
mand for concrete that is not captured by employment in the construction
sector—for instance, because asphalt, but not concrete, melts on roads in Texas
but not in Maine.36

To detect market unobservables, Table IV runs binary logit regressions of
a plant’s decision to be active in the market (i.e., have a plant) on construc-
tion employment, the number of competitors, plant size in the prior year, and
largest ever plant size. Column I presents the base estimates, Column II in-
cludes market-fixed effects via a conditional logit, and Column III has state-
and year-fixed effects. Column IV includes indicators for market categories μ,
which I henceforth refer to as market-category effects. These categories are
constructed by rounding the average number of plants in a county to the near-
est integer. Finally, Columns V, VI, VII, and VIII show alternative category
controls based on the lagged average number of firms, the average number of
firms before 1983 (on data from 1984 to 1999), average log construction em-
ployment, and average total shipments of concrete, again grouped into four
categories.37

35In a prior version of the paper, I estimated the model by iterating on the conditional choice
probabilities, that is, updating them using parameter estimates θ. To implement this procedure
(which requires the assumption of a single equilibrium for the dynamic game in order to be
consistent), I need to add extra steps where:

4. Replace P̂[ai|x] with Ψ [ai|x� θ̂], where θ̂ is the current estimate of the parameters in the
profit function and Ψ [ai|x� θ̂] are computed equilibrium policy functions given θ̂.

5. Repeat steps 2–4 until θ converges.
When I iterate on the conditional choice policies, I get results that are very similar to the

results obtained when I do not.
36There are numerous differences between markets, such as their road network, intensity of

use of concrete in construction, density, area served, and input costs for cement and gravel. Thus,
construction employment alone cannot possibly capture all components of a market’s profitabil-
ity.

37A more thorough discussion of market-category controls can be found in Appendix C.1 of
the Supplemental Material.
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TABLE IV

BINARY LOGIT REGRESSIONS OF THE DECISION TO HAVE AN ACTIVE PLANT WITH
MARKET-FIXED EFFECTS AND MARKET-CATEGORY EFFECTSa

Dependent Variable: Activity I II (FE†) III IV (μ) V VI VII VIII

Log County Construction 0�17*** 0�03 0�19*** 0�02* 0�03*** 0�20*** 0�09*** 0�07***
Employment (0�01) (0�02) (0�01) (0�01) (0�01) (0�01) (0�02) (0�01)

First Competitor −1�40***−1�26***−0�85***−1�07***−1�01***−0�69***−0�73***−0�85***
(0�05) (0�04) (0�04) (0�04) (0�04) (0�01) (0�04) (0�04)

Second Competitor 0�00 −0�54*** −0�03 −0�48***−0�47*** −0�03 0�04 −0�03
(0�04) (0�04) (0�04) (0�04) (0�04) (0�04) (0�04) (0�04)

Third Competitor 0�03 −0�33*** 0�04 −0�32***−0�32*** 0�00 0�07 0�03
(0�04) (0�04) (0�05) (0�05) (0�05) (0�06) (0�05) (0�05)

Log Competitors Above 4 0�02 −0�13*** 0�09** −0�06* −0�10* 0�10** 0�10** 0�09**
(0�03) (0�03) (0�03) (0�03) (0�03) (0�05) (0�03) (0�03)

Small 6�89*** 6�50*** 6�92*** 6�73*** 6�75*** 7�06*** 6�89*** 6�91***
(0�04) (0�03) (0�04) (0�04) (0�04) (0�05) (0�04) (0�04)

Small, Medium in Past 6�85*** 6�36*** 6�82*** 6�60*** 6�61*** 6�92*** 6�85*** 6�83***
(0�05) (0�04) (0�05) (0�05) (0�05) (0�06) (0�05) (0�05)

Small, Large in Past 6�41*** 5�90*** 6�34*** 6�19*** 6�19*** 6�42*** 6�40*** 6�36***
(0�07) (0�06) (0�07) (0�07) (0�07) (0�08) (0�07) (0�07)

Medium 7�72*** 7�34*** 7�66*** 7�54*** 7�56*** 7�95*** 7�72*** 7�66***
(0�06) (0�05) (0�06) (0�06) (0�06) (0�08) (0�06) (0�06)

Medium, Large in Past 7�72*** 7�26*** 7�60*** 7�47*** 7�47*** 7�82*** 7�71*** 7�63***
(0�08) (0�08) (0�08) (0�08) (0�08) (0�10) (0�08) (0�05)

Large 7�85*** 7�48*** 7�71*** 7�63*** 7�64*** 7�91*** 7�83*** 7�73***
(0�06) (0�05) (0�06) (0�06) (0�06) (0�07) (0�06) (0�06)

Market-Fixed Effects X
State-Fixed Effects X
Year-Fixed Effects X
Market Classification

Variable�
Average Number of Plants X
Lagged Average Plants X
Before 1983 Average Plants X
Construction Employment X
Total Shipments of Concrete X

Observations 409,850 409,850 409,850 260,170 409,850 409,850 409,850 409,850
Markets 2029 2029 2029 2029 2029 2029 2029 2029
Log-Likelihood −37,541 −32,759 −37,429 −36,713 −36,695 −22,230 −37,524 −37,384
χ2 49,545 301,019 51,517 52,775 51,795 34,019 50,302 51,538

aStandard errors are clustered by market. † Market-fixed effects are implemented via a conditional logit. � Average
number of plants (μ) is the mean number of plants in a market, rounded to the nearest integer. Lagged Average Plants
is the mean number of plants in the market for years preceding t , rounded to the nearest integer. Before 1983 Average
Plants is the mean number of plants in a market before 1983, rounded to the nearest integer. Only years from 1983
to 1999 are used in the regression for this market classification variable in Column V. Construction Employment
Classification and Total Shipments of Concrete use the mean of these variables in a market to classify markets into
four categories. ∗ , ∗∗ , ∗∗∗ indicate statistical significance at the 5%, 1%, and 0.1% levels, respectively.
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The effects of the second, third, and additional competitors are close to
zero in Column I; they turn negative when I include market-fixed or market-
category effects in Columns II and IV. If the market-level shock is ignored,
then the number of competitors will be positively correlated with market un-
observables. This leads to upward bias in the competition coefficient.

The effect of past plant size has a substantial effect on the probability of
activity today, which is to be expected, given the sunk costs of opening a ready-
mix concrete plant. However, this effect of past size is smaller in Columns II
and IV than in Column I. Past plant size is also related to market size—both
observed and unobserved. Thus, past plant size also proxies for serial correla-
tion in unobserved market demand and is biased upwards.

The effect of log country construction employment falls when market-
category or market-fixed effects are added. Market effects wash out a large part
of the correlation between demand and the number of firms in a market, since
much of this comes from cross-sectional variation. As discussed in the context
of production function estimation by Griliches and Hausmann (1986), the re-
maining time-series variation in demand is more likely to suffer from measure-
ment error, which attenuates the demand coefficient. Much of the treatment of
market-category effect to follow is a “hack” to navigate the twin issues of up-
wardly biased competition coefficients and attenuated demand coefficients.38

Adding year- and state-fixed effects (Column III) does not substantially
change the coefficients from Column I (no effects). Heterogeneity across mar-
kets is the issue, rather than year-to-year shocks. Moreover, while there are
large differences between states in their use of ready-mix concrete, these do
not capture much of the differences between markets.

5.3.2. Market Categories

While estimating market-level policy functions is straightforward, it runs into
serious data constraints, since I cannot identify parameters from the cross-
section. To render the market-fixed effects tractable, I collapse market effects
into market-category effects μ. This classification scheme is based on an en-
dogenous variable, but the estimates in Column V that use the lagged num-
ber of firms, a variable that is not endogenous, are indistinguishable from the
market-category estimates in Column IV.39 Likewise, Appendix C.2 of the Sup-

38This problem is similar to the use of fixed effects in a production function regression dis-
cussed in Griliches and Hausmann (1986), where fixed effects eliminate the most important
source of variation in capital stock, thereby leading to a downward bias on the capital coeffi-
cient. These two biases are a serious problem: having no market-level controls leads to a market
where the number of firms sloshes around, since competition effects are too small to pin down
the number of firms, while a model with market-fixed effects predicts a response to demand that
is too small and too few changes in the number of plants.

39However, this classification scheme, which is based on the lagged number of firms, is harder
to fit into the model, since a market can switch categories, which makes the market category a
state variable.
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plemental Material shows estimates based on categories constructed from es-
timated market-fixed effects. These types of categories yield similar estimates
as those in Column III using market categories μ.

However, other plausible market-category controls do not work. These in-
clude the number of firms in a pre-period (Column VI), average log construc-
tion employment (Column VII), total shipments of concrete (Column VIII),
and the square mileage of a county and its density. They are similar to the
estimates without market controls in Column I.

5.3.3. Estimating CCPs

Since the εt
ai

’s are logit draws, I estimate the conditional choice probabilities
with a multinomial logit of a firm’s choice of its size next year (at

i), presented
in Table V. Column II has market-category effects μ (henceforth, P̂μ), but
Column I does not (henceforth, P̂).40

These multinomial logits illustrate the identification in the model. Firms are
more likely to exit, or less likely to enter, if there are more competitors or
higher demand. Second, past plant size explains a firm’s current choice of size
and activity, indicating the role of sunk costs. Finally, for this model, the ε
shocks are not inconsequential, as these generate entry and exit not connected
to observable shifters of profits: demand and competition.

As seen in the findings from Table IV, introducing market-category effects
leads to significantly more negative effects of competitors. In particular, the ef-
fect of more than one competitor is positive without market-category effects.
Positive effects of competition have a toxic effect on both estimation and coun-
terfactuals, since simulating the model forward with positive spillovers between
firms makes the market tip from no firms to being completely filled up with
firms.

Finally, both the no-effect and category effects estimates show that the effect
of demand is much higher for large plants than small ones, as the effect of
log construction employment is 0.13 for small plants, versus 0.29 and 0.51 for
medium and large plants, respectively. This happens because larger markets
have bigger plants, and I return to this issue in Section 6.41

5.3.4. Estimating Demand Transitions

The demand transition matrix D is estimated by market category μ using

a bin estimator D̂μ[i|j] =
∑

(l�t) 1(Mt+1
l

∈Bi�M
t
l
∈Bj)∑

(l�t) 1(Mt
l
∈Bj)

with 10 bins (that differ by cate-

40Due to limited data, rather than estimating coefficients on the logit βμ�0
ai

+ βμ�X
ai

X that all
vary by market category, I assume that the market effects are just additive constants, that is,
βμ�0

ai
+βX

ai
X . The main issue is that it is difficult to estimate the effect of, say, the third competitor

in a market that has, on average, one firm in it—hence in market category μ= 1, as we rarely see
three firms in this type of market.

41It is important for the CCPs to be able to replicate firms’ expectations over the evolution of
the ready-mix concrete market. Section 6.1 discusses this issue.
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TABLE V

MULTINOMIAL LOGIT ON THE CHOICE TO BE LARGE, MEDIUM, OR SMALL

I II (Market Category)
Dependent Independent
Variable Variable Coeff. S.E. Coeff. S.E.

Small Small 6�59 (0.03) 6�42 (0.03)
in t + 1 Small, Medium in Past 6�45 (0.04) 6�18 (0.04)

Small, Large in Past 5�94 (0.06) 5�72 (0.06)
Medium 6�02 (0.05) 5�81 (0.05)
Medium, Large in Past 5�41 (0.08) 5�16 (0.08)
Large 4�58 (0.06) 4�37 (0.06)
Log County Employment 0�13 (0.01) −0�06 (0.01)
First Competitor −1�42 (0.04) −1�71 (0.04)
Second Competitor 0�10 (0.03) −0�46 (0.03)
Third Competitor 0�16 (0.04) −0�26 (0.04)
Log of Competitors Above 3 0�11 (0.03) −0�04 (0.03)
Market Category μ X
Constant −3�94 (0.06) −3�17 (0.06)

Medium Small 6�25 (0.05) 6�08 (0.05)
in t + 1 Small, Medium in Past 6�96 (0.06) 6�70 (0.06)

Small, Large in Past 6�43 (0.08) 6�22 (0.08)
Medium 9�16 (0.06) 8�96 (0.06)
Medium, Large in Past 9�08 (0.08) 8�83 (0.08)
Large 7�44 (0.07) 7�23 (0.07)
Log County Employment 0�29 (0.01) 0�12 (0.01)
First Competitor −1�54 (0.05) −1�87 (0.05)
Second Competitor 0�00 (0.04) −0�53 (0.04)
Third Competitor 0�06 (0.05) −0�32 (0.05)
Log of Competitors Above 3 0�02 (0.03) −0�11 (0.03)
Market Category μ X
Constant −6�72 (0.08) −5�99 (0.09)

Large Small 5�04 (0.08) 4�88 (0.08)
in t + 1 Small, Medium in Past 4�53 (0.13) 4�28 (0.13)

Small, Large in Past 5�78 (0.11) 5�58 (0.11)
Medium 7�46 (0.08) 7�27 (0.08)
Medium, Large in Past 8�37 (0.09) 8�13 (0.09)
Large 9�76 (0.07) 9�56 (0.07)
Log County Employment 0�52 (0.01) 0�34 (0.02)
First Competitor −1�61 (0.05) −1�94 (0.06)
Second Competitor −0�03 (0.05) −0�58 (0.05)
Third Competitor −0�02 (0.06) −0�42 (0.06)
Log of Competitors Above 3 −0�04 (0.04) −0�17 (0.04)
Market Category μ X
Constant −8�58 (0.11) −7�83 (0.11)

Observations 409,850 409,850
Log-Likelihood 84,855 83,814
Likelihood Ratio 400,760 402,841
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gory); the demand level within a bin is set to the mean demand level. Note that
construction employment varies considerably across market categories, for ex-
ample, from 285 to 4200 employees from market category 1 to 4.

Finally, the Γ μ function is computed by market category μ using CCP’s P̂μ

and demand transition process D̂μ.42

6. RESULTS

I fix the discount factor to 5% per year. The covariates of the multinomial
linear probability model (denoted zn) used to estimate the β̂ coefficients, and
used in an auxiliary model in the CCPII, are indicators for the firm’s current
state, the number of competitors in a market, and the log of construction em-
ployment in the county. These coefficients vary by market category μ and by
action chosen ai. Thus, the model matches moments conditioned on market
category μ.

Table VI presents estimates of the dynamic model. In line with interviews
with producers in Illinois, I calibrate the entry costs for a medium-sized plant to
$2 million. This allows me to convert parameters in variance units into dollars.
To make sense of the magnitudes of these estimates, note that average sales
are $3.4 million per year. The variance of ε is estimated to $133,000 per year,
or about 4% of sales, which is below year-to-year changes in profits due to
changes in productivity.43,44 The magnitude of ε is important, since these i.i.d.
shocks generate both turnover and changes in plant size that are unrelated to
changes in demand.

The fixed costs of operating a plant are about $244,000 for a medium-sized
plant, slightly less for a small plant, and slightly more for a large plant. Dou-
bling the number of construction workers in a county increases profits by $6000
for a small plant versus $11,000 and $14,000 for a medium- and a large-sized
plant, respectively. This reflects the fact that bigger markets have both more
plants and larger plants.

42I can go one step further and include market categories in a firm’s profit function, which
allows me to estimate a profit function rμ(at

i� x
t |θ) where rewards are additively separable in the

market-category level component:

rμ
(
at
i� x

t |θ) = r
(
at
i� x

t |θ) + ξμ
a + εati

and have a market/action effect ξμ
ai

. I have also estimated this model with market-category fixed
effect. I find that estimating market-category profit shifters yields inferior fit as compared to the
procedure used in the paper.

43Collard-Wexler (2009) estimated a similar model that allows for productivity differences be-
tween producers and found large differences in per-period profits due to differences in produc-
tivity.

44I could have used revenues of ready-mix plants to convert my estimates into dollars. When
I compute plant-level variable profits as the difference between plant-level revenues and plant-
level costs, I obtain implausibly high rates of return on capital (on the order of 30%). Thus,
I choose not to use revenue data in the estimation of the model.
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TABLE VI

ESTIMATES FOR THE DYNAMIC MODEL OF ENTRY, EXIT, AND INVESTMENTa

Coeff. S.E.∗

Fixed Cost Small −139 (6)
Medium −244 (10)
Large −285 (6)

Log Construction Small 20 (1)
Employment Medium 35 (2)

Large 45 (1)
1st Competitor Small −48 (4)

Medium −58 (5)
Large −63 (6)

Log Competitors Small −17 (3)
(Above 1) Medium −44 (4)

Large −48 (3)

Transition Costs
Out→Small −1002 (11)
Out→Medium† −2000 (107)
Out→Large −1771 (53)
Small→Medium −332 (7)
Small, Past Medium→Medium −772 (32)
Small, Past Large→Medium −325 (8)
Small→Large −1809 (73)
Small, Past Medium→Large −608 (19)
Small, Past Large→Large −343 (16)
Medium→Small −107 (6)
Medium, Past Large→Small −314 (6)
Medium→Large 101 (14)
Medium, Past Large→Large −43 (7)
Large →Small −254 (7)
Large→ Medium −403 (6)

Standard Deviation of Shock 133

aAll estimates in thousands of dollars. † The entry costs of a medium-sized plant are calibrated to $ 2 million.
∗ Standard Errors are computed using 100 block bootstrap replications, where I reestimate the demand transition
process D̂μ and the conditional choice probabilities P̂μ , then minimize the criterion function Q to find θ̂. I block
bootstrap by market, resampling a market’s history from 1976 to 1999, so the computed standard errors account for
serial correlation within a market.

Indeed, Figure 3, which plots local polynomial regressions of the log of con-
struction employment in the county against both the average size of a plant
(measured by payroll) and the number of plants in a county, shows that plant
size is increasing with market size. For instance, a county with 150 construc-
tion sector employees has an average payroll per concrete plant of $400,000,
while a county with 1010 construction employees has an average that is closer
to $600,000. This effect is not specific to the ready-mix concrete industry, as
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FIGURE 3.—Larger markets have both more plants and larger plants. Local polynomial re-
gressions with shaded areas representing the 95% confidence interval.

Campbell and Hopenhayn (2005) have also documented this link for retail
trade. Moreover, this implies that any change in the size of a market will al-
ter the industry’s size distribution.

Second, there is a linear relationship between the size of establishments and
the log of construction employment for the small markets examined in this
paper. Regressing the log of the number of concrete plants on log construc-
tion employment, I find a coefficient of 0.69, so a 1% increase in construction
employment increases the number of firms by less than 1%. This implies that
the number of plants in a county is a concave function of construction em-
ployment. The concavity of the number of plants per market as a function of
construction employment will turn out to have important implications when I
run counterfactuals that reduce demand volatility.

The number of competitors in a county has a large effect on profits. The
first competitor reduces profits by $58,000 for a medium-sized plant, and dou-
bling the number of competitors (beyond the first competitor) reduces profits
by $44,000 per year. The first competitor has a larger impact than subsequent
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competitors, which echoes the Bertrand-like nature of competition in the in-
dustry. 45

The patterns in the transition costs reflect the transition patterns for plant
size found in Table II. Entry costs are $1.0 million for small plants and $1.7
million for large plants. This is in line with substantial differences in machin-
ery and land for bigger plants. There are also large costs of increasing the size
of a plant. It takes about $0.3 million to grow a plant from small to medium,
$1.8 million to ramp it up from small to large, and $0.1 million to take a plant
from medium to large. Thus, it is cheaper to enter as a small plant and grow to a
large plant in the next period, and, indeed, 80% of plants enter as small plants.
Finally, the model also estimates substantial costs of ramping back down the
size of a plant. These large transition costs imply that plants have a weak re-
sponse to demand shocks on both the extensive (i.e., entry) and intensive (i.e.,
size) margin.

A bigger past size reduces the costs of growing a plant at some future point,
and small plants that were medium or large in the past find it easier to ramp
back up. Likewise, a medium-sized plant that was large in the past has a lower
cost of reverting back to being a large plant. This dependence of transition
costs on size in previous years lowers implicit adjustment costs, since a plant
can shrink today and retain the ability to cheaply increase its size in the future.

6.1. Model Fit

To evaluate the fit of the model, I compare the evolution of the concrete in-
dustry to the one predicted by the model. I obtain the model’s prediction by
computing an equilibrium to the dynamic game with a discrete action stochas-
tic algorithm (DASA), presented in Appendix A of the Supplemental Material,
given the estimated parameters (henceforth θ̂) in Table VI. The DASA is an
adaptation of the stochastic algorithm of Pakes and McGuire (2001).46 This
equilibrium needs to be computed for all four market categories, since they
have different demand D̂μ processes.

Using computed policies and the demand transition process, I simulate the
model from the observed states in 1976 until 1999.47 Table VII shows moments
for the data (Column I), the simulation from the model’s prediction given es-

45If I remove market indicators from the covariates z in the auxiliary regression, I find sub-
stantially smaller effects of competition. Thus, it is still important to target these market-level
moments.

46To compute counterfactual industry dynamics, I assume the existence of a single symmetric
Markov perfect equilibrium per market category μ. Besanko, Doraszelski, Kryukov, and Satterth-
waite (2010) showed that this assumption may be problematic.

47Since the estimation of θ used year-to-year moments, rather than predictions on the entire
time path of the industry, I am evaluating the model based on moments that were not used in
estimation.
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TABLE VII

MODEL FIT

I II III
Real Data Simulated Data Simulated Data

Moments (1976–1999) Using Model θ̂a Using CCP P̂μa

Plant-Level Moments
Share of Small Plants 48% (1%) 53% (1%) 52% (1%)
Share of Medium Plants 27% (0%) 23% (1%) 26% (1%)
Share of Large Plants 25% (1%) 24% (1%) 22% (1%)
Entry Rate 5�8% (0�0%) 2�9% (0�2%) 7�0% (0�2%)
Exit Rate 5�4% (0�0%) 2�9% (0�2%) 7�3% (0�2%)
Ramping Up Rate 10% (0�1%) 10% (0�3%) 11% (0�2%)
Ramping Down Rate 9% (0�1%) 10% (0�5%) 9% (0�2%)

Market-Level Moments
Number of Plants per Market 2�0 (0�2) 2�0 (0�4) 2�3 (0�1)
No Plants in Market 2% (0%) 4% (1%) 18% (1%)
Monopoly Market 46% (1%) 43% (1%) 32% (0%)
Duopoly 26% (1%) 29% (1%) 18% (0%)
More Than 2 Plants 26% (1%) 24% (1%) 32% (1%)

Number of Plants in Category 1 1�08 (0�00) 1�18 (0�02) 1�42 (0�06)
Number of Plants in Category 2 1�76 (0�01) 1�80 (0�05) 2�20 (0�06)
Number of Plants in Category 3 2�62 (0�01) 2�32 (0�08) 2�98 (0�08)
Number of Plants in Category 4 4�15 (0�04) 4�25 (0�16) 4�44 (0�10)
Coefficient of Variation
Number of Plants Within Market 0�7 (0�1) 0�6 (0�2) 1�7 (0�0)
Correlation Demand and Plant Size 0�23 (0�01) 0�26 (0�01) 0�23 (0�01)
Correlation Demand

and Number of Plants 0�54 (0�01) 0�67 (0�01) 0�28 (0�01)

aData are simulated using either II—computed policies given estimated parameters θ̂ or III—estimated condi-
tional choice probabilities P̂μ , taking as an initial condition the markets in 1976. The market block bootstrapped
standard errors shown in parentheses use 50 bootstrap replications.

timates θ̂ (Column II), and simulation using the estimated CCP’s P̂μ (Col-
umn III).

The model does well at matching the distribution of plant size, as 47% of
plants are small in the data, versus 53% in the simulation, and 25% plants
are large in the data, versus 24% in the simulation. However, the model
under-predicts the amount of turnover, as entry and exit rates are 5.5% in the
data, versus 2.9% in the simulation. Essentially, the model under-predicts the
amount of idiosyncratic shocks that yield entry and exit, rather than demand
driven turnover. Yet, the model does better at matching the frequency at which
firms change their sizes, predicting that 10% of plants increase their size and
9% reduce their size each year, which replicates the rate at which plants grow
and shrink in the data.

The model also predicts market structure quite accurately. There are, on
average, two plants per market in the data, and the model also forecasts 2.0
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plants. Decomposing predicted market structure, in the data 1% of markets
have no plants, 45% are monopoly markets, 27% are duopoly markets, and
26% of markets have more than two plants. The model predicts the same num-
ber of monopoly markets (43%) and slightly fewer markets with more than
two plants (24%). The model also does a good job at matching the number
of plants in each market category μ, even though the only way that market
categories matter is through differences in the estimated demand transition
process D̂μ.

To highlight the model’s ability to predict changes in the number of plants,
I compute the coefficient of variation (henceforth, CV) of the number of plants
within a market. The data and the model predict a CV of 0.7 and 0.6, respec-
tively. The correlation between market size and the number of firms is 0.5 in
the data, versus 0.7 in the model’s prediction. Likewise, the correlation be-
tween market size and plant size (where plant size is just the integers 1, 2, and
3, corresponding to small, medium, and large) is 0.23, which is well matched by
the model (0.26). In sum, the model captures many features of the path of the
ready-mix concrete industry from the late 1970s to 2000.

The 25-year forecasts using the CCPs in Column III also match the path
of the ready-mix concrete industry. This precision is important, as the accu-
racy of the CCPII’s estimates rely on the ability of the estimated CCPs to re-
produce firms’ expectations about the evolution of the industry. The distribu-
tion of plant size, as forecast by the CCPs, is much like in the data, with 52%
small plants, 26% medium plants, and 22% large plants. Entry and exit rates
are somewhat higher—7.1%, versus 5.6% in the data—while the rate at which
plants either grow or shrink is 9%, close to the data. Finally, the CCPs forecast
somewhat more plants in the industry than what is indicated by the data—2.3
plants per market, versus 2.0 in the data.

7. COUNTERFACTUAL INDUSTRY DYNAMICS

There are substantial local fluctuations in construction activity. How do
these demand shocks affect the ready-mix concrete industry? The counter-
factual that I consider would remove much of the short-term fluctuation in
construction activity at the county level.

Consider the policy where local governments allocate construction budgets
to smooth out changes in demand. Government commits to a five-year se-
quence of contracts so that demand remains constant over the next five years.
Demand stays fixed at its five-year expected level (given current demand), so
on average, plants receive the same level of demand over the next five years
both with and without this policy. After five years are up, demand reverts to
the level it would have had absent demand smoothing, and the smoothing pol-
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icy is repeated. The long-run path of demand remains unchanged; this policy
simply eliminates short-run “wiggles” in demand.48,49

For illustrative purposes, I also show the effect of two other demand-
smoothing policies. The first is constant demand. Second, to directly investi-
gate the effect of demand smoothing on the equilibrium strategies used by
firms, such as how responsive they are to demand shocks, I consider “myopic”
firms. These firms believe that demand is constant over time, but in fact, de-
mand evolves following the process estimated in the data (D̂μ).

Demand smoothing may alter the rate at which firms both enter and exit, as
well as how often firms ramp up and shrink down their size. Moreover, remov-
ing fluctuations may change the stationary distribution of the industry, so I also
look at the effect of the demand-smoothing policy on the size distribution and
market structure of the ready-mix concrete industry.

7.1. Demand Smoothing, Turnover, and Size Changes

Table VIII shows statistics on entry, exit, and size changing in the ready-mix
concrete industry for the four different demand processes I consider. I present
annual statistics 25 years after the policy has been put into place to allow the
industry to adjust to the new demand process.50

The five-year demand-smoothing policy reduces turnover on the entry/exit
margin, and yet has little effect on the frequency at which firms change their
size. The turnover rate falls by 25%—from 3.0% in the unsmoothed case to
2.2% with five-year smoothing. The rate at which firms change their size is
approximately the same: 17% versus 20% in the unsmoothed case. Moreover,

48This policy would be fairly easy to implement, since it simply relies on local governments
being able to borrow and save over relatively short periods of time and assumes that construction
projects, such as roads, are efficiently broken up across years.

49More formally, I compute the smoothed demand level S as a function of initial demand
M0 =M as

S(M) = 1
5

4∑
t=0

ED

[
Mt |M0 =M

]
�

And the smoothed process is fixed in periods t in which t mod 5 �= 0 and evolved in periods where
t mod 5 = 0 via

M ∼D5(Mt |M0)�
where D5 is the five-year transition process generated by repeating the one-year transition process
D for five years.

50These annual averages are computed for years 25 to 50 after the policy has been put into
place. There is additional exit and entry in the first 25 years as the market adjusts to its new
stationary distribution, but these are relatively few in number, compared with overall turnover.
I use the effect 25 years after the policy has been put into place to separate the dynamics of
transitioning to a new stationary distribution from the entry and exit patterns in the stationary
distribution itself.
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TABLE VIII

DEMAND SMOOTHING, TURNOVER, AND SIZE CHANGING

Unsmoothed 5 Years of Constant Firms Believe
Demand (D̂μ) Smoothing Demand Demand is Constant

Turnover
Entry Rate 2�7% 2�2% 2�2% 4�1%
Exit Rate 2�9% 2�0% 2�1% 4�5%
Change in Size Rate 20% 18% 17% 18%

Investment
Sunk Entry Costs

per Year (in Million $) 132 137 107 155
Size Changing Costs

per Year (in Million $) 307 496 407 337
Total Plants 3643 5433 4264 3879

even when all demand changes are eliminated, the turnover and the size chang-
ing rates are similar to those where demand is smoothed over only five-year
periods.

Meddling with the demand process would reduce—but not eliminate—
turnover. This is consistent with both the descriptive work of Dunne, Roberts,
and Samuelson (1988) and the fact that the entry and exit rates (per incumbent
plant) are virtually uncorrelated at the county-year level.51 These indicate that
turnover is not generated solely by market-level shocks, which would lead to ei-
ther entry or exit—not both, but rather, by idiosyncratic shocks εt

i , such as pro-
ductivity shocks.52 Remembering that the model under-predicts the amount of
turnover due to idiosyncratic shocks, this 25% decrease in turnover most likely
overstates the effect of reducing demand volatility on turnover.

Yet, this explanation is incomplete, since it ignores firms’ anticipation of
changes in demand. Indeed, increased demand volatility makes firms less sen-
sitive to demand shocks. As an example, industry dynamics with either constant
or i.i.d. demand are identical, as both demand processes imply that a firm’s ex-
pected level of demand never changes, even though one demand process has
no volatility, and the other one is highly volatile. If I take firms that use the
policies corresponding to a constant level of demand, but subject them to the
demand process estimated in the data (the myopic counterfactual), I find that
the turnover rate would increase by 50% to 4.3% per year, and the rate at
which firms change their size would remain at 16% per year. Moreover, I find
that firms become far more sensitive to variation in demand. A market-fixed ef-

51Dunne, Roberts, and Samuelson (1988) showed that entry and exit rates are highly correlated
at the industry level, while I show that, in the ready-mix concrete industry, these are uncorrelated
at the county-year level.

52See Collard-Wexler (2009) for the importance of productivity volatility in this industry.
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fect regression of the number of plants on log construction employment yields
a coefficient of 0.16 when firms use policies corresponding to variable demand,
versus 0.30 when their policies correspond to constant demand. Thus the ex-
pectations of future changes in demand blunt the response to current demand
shocks, and this is why we see such a small reaction, in terms of turnover and
investment, to demand changes.

Using the estimates of the model in Table VI, I find that, in the base case,
sunk entry costs are $132 million per year, and transition costs are $307 million
per year. With the demand-smoothing policy, these costs rise to $137 million
per year of sunk entry costs, and $496 million per year of size changing costs.

This 44% increase in investment is almost entirely due to the 39% increase
in the number of plants in the industry under the demand-smoothing policy. In
short, plants invest at the same rate, but there are more of them.

7.2. Demand Smoothing and Industry Composition

Table IX shows the effects of the demand-smoothing policy on the number
of plants in the industry, fixed costs, plant size, and the industry’s market struc-
ture. As in Table VIII, I show annual averages for the industry between 25 and
50 years after the policy was put into place. I compare constant demand to the
unsmoothed case and then look at the effects of the five-year smoothing policy.

7.2.1. Constant Demand

The constant demand process predicts 16% more plants than the un-
smoothed demand process (4264 versus 3645). Market structure also differs,

TABLE IX

DEMAND SMOOTHING AND INDUSTRY COMPOSITION

Unsmoothed Constant 5 Years
Demand Demand of Smoothing

Total Plants 3645 4264 5433
Fixed Costs

(per Period in Millions of $) 717 878 1109

Industry Composition
Small Plants 54% 48% 49%
Medium Plants 23% 23% 24%
Big Plants 23% 29% 28%

Market Structure
Markets With no Plants 5% 8% 1%
Markets With 1 Plant 43% 36% 25%
Market With 2 Plants 28% 24% 29%
Markets With More Than 2 Plants 25% 32% 46%
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as the number of plants per market is more dispersed under constant demand,
with 8% of markets having no plants, versus 5% in the unsmoothed case, and
32% of markets having more than two plants, versus 25% in the unsmoothed
case. Constant demand spreads out the distribution of the net present value
of demand, as a market with high demand will have high demand forever, and
likewise, markets that have low demand retain it in perpetuity.

This difference in the cross-sectional distribution of demand also changes
the industry’s plant size distribution, as 29% of plants are large under constant
demand, versus 23% under unsmoothed demand. Figure 3 showed that bigger
markets have larger plants. Thus, a change in the distribution of market size
alters the industry’s plant size distribution.53

7.2.2. Five Years of Smoothing

Since demand is very volatile and shocks are short-lived, removing five-year
changes in demand has a large effect on the intertemporal variance of demand.
This policy increases the number of plants from 3645 to 5433, and raises fixed
costs from $717 million to $1109 million per year.

If profits per consumer are either increasing or decreasing with demand
(holding market structure fixed), then period profits are either a convex or
concave function of demand. This has important implications on the effect of
smoothing demand volatility. With a concave profit function (with respect to
demand), by Jensen’s inequality, less intertemporal volatility of demand raises
the expected profitability of a market. I call this the “market expansion effect”
of demand smoothing.

Figure 3 showed that the relationship between the number of plants in a
market and construction demand is concave. This implies that profits per con-
sumer are decreasing with demand.54 I speculate that this effect is due to con-
gestion costs for concrete deliveries when demand is particularly high. There
are greater costs involved in making multiple deliveries because of labor and
machinery shortages or because some deliveries cannot be made during the
weeks of the year when demand peaks. Congestion is more likely when yearly
demand is higher.

In contrast, in other industries, reducing demand volatility might lower the
number of firms in the market. For instance, in the market for electric power,
short-run profits are a convex function of short-run demand because aggregate

53I find more large plants, even though, in principle, I could find either more small plants or
more big plants given the distribution of demand in different markets.

54This implication can be tested by estimating the elasticity of profits (measured by sales minus
all input costs) with respect to construction employment. I find a very inelastic response to con-
struction employment when running this regression. However, attenuation bias is also a plausible
explanation for this estimate.
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bid curves typically take a highly convex “hockey stick” shape.55 Thus, with
lower demand volatility one might expect fewer power plants to be built.

The “market expansion effect” for the ready-mix concrete industry increases
a market’s profitability, and this raises the number of firms at which the free-
entry condition binds. The number of markets served by more than one plant
increases from 52% to 74%. As well, the increase in market size generated by
the demand-smoothing policy’s “market expansion effect” raises the share of
large plants from 23% to 28%, while the share of small plants goes down from
54% to 49%, and the share of medium plants stays about the same.

Note that the five-year demand-smoothing policy has very different effects
than the constant demand policy: It only reduces the intertemporal variance of
demand, while the constant demand policy also increases the cross-sectional
dispersion of demand. These two effects make it difficult to untangle the effects
of a constant demand policy.

7.3. Consumer and Producer Surplus

Table X summarizes the differences in welfare between the five-year
demand-smoothing policy and unsmoothed demand. I show these effects on
the net present value of surplus (henceforth, NPV) for consumers, incumbents,
and potential entrants.

For the 19% of markets that were formerly monopoly markets, but became
competitive, prices would fall by 3%, based on the estimates in Figure 2. Tak-
ing into account all changes in market structure, decreases in price due to ad-
ditional competition (holding purchases of concrete fixed) transfer $43 million
per year, or $860 million in NPV, from producers to consumers. This number
is a lower bound on the increase in consumer surplus, as any elasticity in the
demand for concrete would add to it.

TABLE X

WELFARE EFFECTS OF DEMAND-SMOOTHING POLICIESa

Change in Net Present Value of

Consumer Surplus $860 Million
Producer Surplus for Incumbents −$609 Million
Producer Surplus for Potential Entrants −$36 Billion

aNumbers in this table refer to the difference in the net present value of surplus (using a 5% discount rate) between
five years of smoothing and unsmoothed demand, averaged between 25 and 50 years after the policies were put into
place, using 1976 as an initial state.

55See, for instance, the aggregate bid curves in Figure 2-1 on page 34 of http://www.
monitoringanalytics.com/reports/PJM_State_of_the_Market/2010/2010-som-pjm-volume2-sec2.
pdf.

http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2010/2010-som-pjm-volume2-sec2.pdf
http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2010/2010-som-pjm-volume2-sec2.pdf
http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2010/2010-som-pjm-volume2-sec2.pdf
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In an oligopoly model with free entry, it is not clear how an increase in the
number of firms in a market will affect producer welfare. I find that producer
surplus for incumbents would decrease from $3.3 billion to $2.7 billion in NPV
under the demand-smoothing policy, representing a 20% fall.56 I also com-
pute producer surplus for potential entrants, who represent 80% of the “firms”
in the data. Their surplus falls from $134 billion to $98 billion in NPV when
the demand-smoothing policy is implemented, a 31% decrease. However, the
numbers for the surplus of potential entrants are suspect, since the vast ma-
jority of this surplus is derived from 98�7% of potential entrants who choose
never to enter, yet receive a payoff from their private information shock εa0 .
Surplus from firms that do not enter is truly an artifact of the model, since how
do we interpret the profits of firms that choose not to enter?57

8. CONCLUSION

Due to the turbulence of local construction markets, the ready-mix concrete
industry is subject to large fluctuations in demand. These fluctuations have sub-
stantial effects on the composition, size, and investment level in the industry.
Specifically, I considered a policy in which the government would sequence its
construction budgets in such a way as to eliminate five-year changes in demand,
while retaining longer-run movements.

I estimated an oligopoly model of entry/exit and discrete investment and
used it to evaluate the industry’s response to this policy. This model allowed
for considerable heterogeneity between plants, in terms of current and past
size, as well as persistent differences between local markets.

Demand need not have a linear effect on plant profits, especially if marginal
costs increase with the number of concrete deliveries. Absent linearity, any
changes in the volatility of demand affect the profitability of a market, and
hence, the number of plants it can support. For this industry, a reduction in
intertemporal volatility of demand has a “market expansion” effect. This effect

56To compute producer surplus, I reformulate the problem in terms of choice-specific value
functions. Thus producer surplus is just

PS =
∑

i is incumbent

V i
(
xi0) +

∞∑
t=0

βt
∑

i is entrant

V i
(
xit

)
�(14)

which is just the ex ante value function for incumbents, plus the discounted value of entrants in
the future, which needs to be monitored, since I assume that if an entrant does not enter, they
get a continuation value of 0. The ex ante value function is V (x) = ∑

j∈Ai
W (j|x)Ψ(j|x) + γ −∑

j∈Ai
ln(Ψ(j|s))Ψ(j|s).

57Potential entrants represent more than 80% of the players in the game, and potential en-
trants who choose to enter are 1�3% of all potential entrants, as is illustrated in the first row of
Table II. These figures rely crucially on the assumption that there are 10 firms in each market, so
the number of potential entrants is given mechanically as 10 minus the number of incumbents.
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is similar to an increase in market size, and raises both the number and average
size of plants in the industry.

This demand-smoothing policy lowers the amount of turnover in the indus-
try by 25%, but leaves the rate at which firms change their size unaffected.
In this industry, large sunk- and size-changing costs make it expensive to re-
spond to demand shocks. Furthermore, firms are unlikely to react to demand
shocks when demand is very volatile, since these demand shocks convey little
information on future profitability.

High volatility of plant-level demand, and associated plant-level profitability,
is a feature of many industries. As Collard-Wexler, Asker, and De Loecker
(2011) showed, the volatility of plant profitability, driven in part by demand,
differs substantially across similar industries in various countries. This paper
indicates that the consequences of volatility may not be expressed by higher
turnover or more volatile investment. Instead, demand volatility transforms
the size and structure of the industry.
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