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CONDITIONAL CHOICE PROBABILITY ESTIMATION
OF DYNAMIC DISCRETE CHOICE MODELS

WITH UNOBSERVED HETEROGENEITY

BY PETER ARCIDIACONO AND ROBERT A. MILLER1

We adapt the expectation–maximization algorithm to incorporate unobserved het-
erogeneity into conditional choice probability (CCP) estimators of dynamic discrete
choice problems. The unobserved heterogeneity can be time-invariant or follow a
Markov chain. By developing a class of problems where the difference in future value
terms depends on a few conditional choice probabilities, we extend the class of dynamic
optimization problems where CCP estimators provide a computationally cheap alterna-
tive to full solution methods. Monte Carlo results confirm that our algorithms perform
quite well, both in terms of computational time and in the precision of the parameter
estimates.
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1. INTRODUCTION

STANDARD METHODS FOR SOLVING dynamic discrete choice models involve
calculating the value function either through backward recursion (finite time)
or through the use of a fixed point algorithm (infinite time).2 Conditional
choice probability (CCP) estimators, originally proposed by Hotz and Miller
(1993), provide an alternative to these computationally intensive procedures
by exploiting the mappings from the value functions to the probabilities of
making particular decisions. CCP estimators are much easier to compute than
full solution methods and have experienced a resurgence in the literature on
estimating dynamic games.3 The computational gains associated with CCP es-
timation give researchers considerable latitude to explore different functional
forms for their models.

1We thank Victor Aguirregabiria, Esteban Aucejo, Lanier Benkard, Jason Blevins, Paul El-
lickson, George-Levi Gayle, Joe Hotz, Pedro Mira, three anonymous referees, and the co-editor
for their comments. We have benefited from seminars at UC Berkeley, Duke University, Uni-
versity College London, University of North Carolina, Northwestern University, The Ohio State
University, University of Pennsylvania, University of Rochester, Stanford University, University
of Texas, Vanderbilt University, University of Virginia, Washington University, University of Wis-
consin, IZA, Microeconometrics Conferences at the Cowles Foundation, the MOVE Conference
at Universitat Autònoma de Barcelona, and the NASM of the Econometric Society. Andrew
Beauchamp, Jon James, and Josh Kinsler provided excellent research assistance. Financial sup-
port was provided for by NSF Grants SES-0721059 and SES-0721098.

2The full solution or nested fixed point approach for discrete dynamic models was developed
by Miller (1984), Pakes (1986), Rust (1987), and Wolpin(1984), and further refined by Keane and
Wolpin (1994, 1997).

3Aguirregabiria and Mira (2010) recently surveyed the literature on estimating dynamic mod-
els of discrete choice. For developments of CCP estimators that apply to dynamic games, see
Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Jofre-Bonet and Pesendor-
fer (2003), Pakes, Ostrovsky, and Berry (2007), and Pesendorfer and Schmidt-Dengler (2008).
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To implement CCP estimators, two things are necessary. First, the researcher
must know how to formulate the value function—or the differenced value func-
tion across two choices—as a function of the conditional choice probabilities.
These formulations depend on the distribution of the structural errors and,
except in special cases, forming choice paths far out into the future. Second,
CCP estimators require calculating choice probabilities conditional on all state
variables. Calculating the conditional choice probabilities can be difficult when
some of the state variables are unobserved.

Our first contribution is to broaden the class of models where CCP estima-
tion can be implemented without resorting to matrix inversion or simulation.
We prove that the expected value of future utilities from optimal decision-
making can always be expressed as a function of the flow payoffs and the con-
ditional choice probabilities for any sequence of future choices, optimal or not.
When two choice sequences with different initial decisions lead to the same dis-
tribution of states after a few periods, we say there is finite dependence, gener-
alizing Altug and Miller (1998). In such cases, the likelihood of a decision can
be constructed from current payoffs and conditional choice probabilities that
occur a few periods into the future.

Key to exploiting finite dependence, however, is knowing the mappings be-
tween the conditional choice probabilities and the difference in the payoffs
between two choices. These mappings depend on the distribution of the struc-
tural errors. We show how to obtain the mappings when the structural errors
follow any generalized extreme value distribution, substantially broadening the
class of error structures that are easily adapted to CCP estimation.

Our second contribution is to develop CCP estimators that are capable of
handling rich classes of unobserved heterogeneity where there are a finite
number of unobserved states.4 Accounting for unobserved heterogeneity, and
therefore dynamic selection, is important to many economic problems and is a
standard feature of dynamic discrete choice models in labor economics.5 Our
estimators can readily be adapted to cases where the unobserved state variables
are time-invariant, such as is standard in the dynamic discrete choice literature,
as well as to cases where the unobserved states transition over time.

To operationalize our estimators, we modify the expectation–maximization
(EM) algorithm—in particular, its application to sequential estimation as de-
veloped in Arcidiacono and Jones (2003)—to include updates of the condi-
tional choice probabilities. The EM algorithm iterates on two steps. In the
expectation step, the conditional probability of each observation being in each

4An alternative is to have unobserved continuous variables. Mroz (1999) showed that using
finite mixtures when the true model has a persistent unobserved variable with continuous support
yields similar estimates to the case when the unobserved variable is treated as continuous in
estimation. For Bayesian approaches to this issue, see Imai, Jain, and Ching (2009) and Norets
(2009).

5For example, see Miller (1984), Keane and Wolpin (1997, 2000, 2001), Eckstein and Wolpin
(1999), Arcidiacono (2005), Arcidiacono, Sieg, and Sloan (2007), and Kennan and Walker (2011).
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unobserved state is calculated given the data and the structure of the model.
In the maximization step, the unobserved states are treated as observed, with
the conditional probabilities of being in each unobserved state used as weights.
Because the unobserved states are treated as known in the second step of the
EM algorithm, we show that there are natural ways to update the CCP’s in the
presence of unobserved states. Since the EM algorithm requires solving the
maximization step multiple times, it is important that the maximization step
be fast. Hence, it is the coupling of CCP estimators—particularly those that
exhibit finite dependence—with the EM algorithm which allows for large com-
putational gains despite having to iterate.

We further show how to modify our algorithm to estimate the distribution
of unobserved heterogeneity and the conditional choice probabilities in a first
stage. The key insight is to use the empirical distribution of choices—rather
than the structural choice probabilities themselves—when updating the condi-
tional probability of being in each unobserved state. The estimated probabil-
ities of being in particular unobserved states obtained from the first stage are
then used as weights when estimating the second-stage parameters, namely
those parameters entering the dynamic discrete choice problem that are not
part of the first-stage estimation. We show how the first stage of this modi-
fied algorithm can be paired with non-likelihood-based estimators proposed
by Hotz, Miller, Sanders, and Smith (1994) and Bajari, Benkard, and Levin
(2007) in the second stage. Our analysis complements their work by extending
their applicability to unobserved time dependent heterogeneity.

We illustrate the small sample properties of our estimator using a set of
Monte Carlo experiments designed to highlight the wide variety of problems
that can be estimated with the algorithm. The first is a finite horizon version
of the Rust bus engine problem with permanent unobserved heterogeneity.
Here we compare computational times and the precision of the estimates with
full information maximum likelihood. We further show cases where estima-
tion is only feasible via conditional choice probabilities such as when the time
horizon is unknown or when there are time-specific parameters and the data
stop short of the full time horizon. The second Monte Carlo experiment is a
dynamic game of firm entry and exit. In this example, the unobserved hetero-
geneity affects the demand levels for particular markets and, in turn, the value
of entering or remaining in the market. The unobserved states are allowed to
transition over time and the example explicitly incorporates dynamic selection.
We estimate the model using the baseline algorithm as well as the two-stage
method. For both sets of Monte Carlo experiments, the estimators perform
quite well in terms of the precision of the estimates as well as computational
time.

Our contributions also add to the literature on estimating dynamic games.
Bajari, Benkard, and Levin (2007) built off the approach of Hotz et al. (1994)
and estimated reduced form policy functions so as to forward simulate the fu-
ture component of the dynamic discrete choice problem. In principle, their
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method can be used for any distribution of the structural errors. In practice,
this is difficult because the probabilities associated with particular choice paths
vary with the correlation parameters. Aguirregabiria and Mira (2007) showed
how to incorporate permanent unobserved heterogeneity into stationary dy-
namic games. Their method requires inverting matrices multiple times, where
the matrices are dimensioned by the number of states.6 Further, their estima-
tor is restricted to the case where the unobserved heterogeneity only affects
the payoff functions. This limits the researcher’s ability to account for dynamic
selection by adopting a selection on observables approach to the transitions of
the state variables.

The techniques developed in this paper are being used to estimate structural
models in environmental economics, labor economics, industrial organization,
and marketing. Bishop (2008) applied the reformulation of the value functions
to the migration model of Kennan and Walker (2011) to accommodate state
spaces that are computationally intractable using standard techniques. Joensen
(2009) incorporated unobserved heterogeneity into a CCP estimator of educa-
tional attainment and work decisions. Beresteanu, Ellickson, and Misra (2010)
combined our value function reformulation with simulations of the one-period-
ahead probabilities to estimate a large scale discrete game between retailers.
Finally, Chung, Steenburgh, and Sudhir (2009), Beauchamp (2010), and Finger
(2008) used our two-stage algorithm to obtain estimates of the unobserved het-
erogeneity parameters in a first stage; the latter two applied the estimator in a
games environment.

The rest of the paper proceeds as follows. Section 2 uses Rust’s (1987) bus
engine problem as an example of how to apply CCP estimation with unob-
served heterogeneity. Section 3 sets up the general framework for our analysis.
Section 3 further shows that, for many cases, the differences in conditional
value functions only depend on a small number of conditional choice proba-
bilities and extends the classes of error distributions that can easily be mapped
into a CCP framework. Section 4 develops the estimators, while Section 5 de-
rives the algorithms used to operationalize them. Section 6 shows how the pa-
rameters governing the unobserved heterogeneity can sometimes be estimated
in a first stage. Section 7 reports a series of Monte Carlo experiments con-
ducted to illustrate the small sample properties of the algorithms as well as the
broad classes of models that can be estimated using these techniques. Section 8
concludes. All proofs are provided in the Supplemental Material (Arcidiacono
and Miller (2011b)).

6Kasahara and Shimotsu (2008) proposed methods to weaken the computational requirements
of Aguirregabiria and Mira (2007), in part by developing a procedure of obtaining nonparamet-
ric estimates of the conditional choice probabilities in a first stage. Hu and Shum (2010b) took a
similar approach while allowing the unobserved states to transition over time. Buchinsky, Hahn,
and Hotz (2005) used the tools of cluster analysis to incorporate permanent unobserved hetero-
geneity, seeking conditions on the model structure that allow them to identify the unobserved
type of each agent as the number of time periods per observation grows.
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2. MOTIVATING EXAMPLE

To motivate our approach, we first show how the tools developed in this
paper apply to the bus engine example considered by Rust (1987) when un-
observed heterogeneity is present. This example highlights several features of
the paper. First, we show how to characterize the future value term—or more
precisely, the difference in future value terms across the two choices—as a
function of just the one-period-ahead probability of replacing the engine. Sec-
ond, we show how to estimate the model when there is time-invariant unob-
served heterogeneity.7 In later sections, we extend the estimation to include
more general forms of unobserved heterogeneity as well as to show generally
how to characterize differences in future value terms as functions of only the
conditional choice probabilities from a few periods ahead.

2.1. Setup

In each period t ≤ ∞, Harold Zurcher decides whether to replace the exist-
ing engine of a bus by choosing d1t = 1 or to keep it for at least one more period
by choosing d2t = 1, where d1t + d2t = 1. The current period payoff for action
j depends on how much mileage the bus has accumulated since the last re-
placement, xt ∈ {1�2� � � �}, and the brand of the bus, s ∈ {1� � � � � S}. It is through
s that we bring unobserved heterogeneity into the bus replacement problem;
both xt and s are observed by Zurcher, but the econometrician only observes
xt .

Mileage advances 1 unit if Zurcher keeps the current engine and is set to 0
if the engine is replaced. Thus xt+1 = xt + 1 if d2t = 1 and xt+1 = 0 if d1t = 1.
There is a choice-specific transitory shock, εjt , that also affects current period
payoffs and is an independently distributed Type 1 extreme value. The current
period payoff for keeping the engine at time t is given by θ1xt +θ2s+ε2t , where
θ ≡ {θ1� θ2} is a set of parameters to be estimated. Since decisions in discrete
choice models are unaffected by increasing the payoff to all choices by the
same amount, we normalize the current period payoff of the first choice to ε1t .
This normalization implies θ1xt + θ2s + ε2t − ε1t measures, for a brand s bus
in period t� the cost of maintaining an old bus engine for another period, net
of expenditures incurred by purchasing, installing, and maintaining a new bus
engine.

Zurcher takes into account the current period payoff as well as how his de-
cision today will affect the future, with the per-period discount factor given
by β. He chooses d1t (and therefore d2t) to sequentially maximize the expected
discounted sum of payoffs

E

{ ∞∑
t=1

βt−1[d2t(θ1xt + θ2s+ ε2t)+ d1tε1t]
}
�(2.1)

7Kasahara and Shimotsu (2009) provided conditions under which this model is identified.
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Let V (xt� s) denote the ex ante value function at the beginning of period t.8 It
is the discounted sum of current and future payoffs just before εt ≡ {ε1t � ε2t} is
realized and before the decision at t is made, conditional on making optimal
choices at t and every future period, when the bus is brand s and the mileage
is xt . We also define the conditional value function for choice j as the current
period payoff of choice j net of εjt plus the expected future utility from Zurcher
behaving optimally in the future:

vj(x� s)≡
{
βV (0� s)� if j = 1,
θ1x+ θ2s+βV (x+ 1� s)� if j = 2.

(2.2)

Let p1(x� s) denote the conditional choice probability (CCP) of replacing the
engine given x and s. The parametric assumptions about the transitory cost
shocks imply

p1(x� s)= 1
1 + exp[v2(x� s)− v1(x� s)] �(2.3)

2.2. CCP Representation of the Replacement Problem

Rust (1987) showed that the conditional value function for keeping the en-
gine, defined in the second line of equation (2�2), can be expressed as

v2(x� s)= θ1x+θ2s+β ln
[
exp[v1(x+1� s)]+exp[v2(x+1� s)]]+βγ�(2.4)

where γ is Euler’s constant. Multiplying and dividing the expression inside the
logarithm of equation (2�4) by exp[v1(x+ 1� s)] yields

v2(x� s)= θ1x+ θ2s+β ln
[
exp[v1(x+ 1� s)](2.5)

× {
1 + exp[v2(x+ 1� s)− v1(x+ 1� s)]}]+βγ

= θ1x+ θ2s+βv1(x+ 1� s)−β ln[p1(x+ 1� s)] +βγ�
where the last line follows from equation (2.3). Equation (2.5) shows that the
future value term in the replacement problem can be expressed as the condi-
tional value of replacing at mileage x+ 1 plus the probability of replacing the
engine when the mileage is x+ 1. Applying the same logic to the conditional
value function for engine replacement yields

v1(x� s)= βv1(0� s)−β ln[p1(0� s)] +βγ�(2.6)

Recall that replacing the engine resets the mileage to zero. Equation (2.2)
then implies that

v1(x+ 1� s)= v1(0� s)= βV (0� s)
8Since the optimal decision rule is stationary, subscripting by t is redundant.



DYNAMIC DISCRETE CHOICE MODELS 1829

for all x� Exploiting this property, we difference equations (2�5) and (2.6) to
obtain9

v2(x� s)− v1(x� s)= θ1x+ θ2s+β ln[p1(0� s)] −β ln[p1(x+ 1� s)]�(2.7)

Substituting equation (2.7) into equation (2.3) implies that the probability of
replacing the engine�p1(x� s)� can be expressed as a function of the flow payoff
of running the engine, θ1x+ θ2s� the discount factor, β, and the one-period-
ahead probabilities of replacing the engine, p1(0� s) and p1(x+ 1� s)�

2.3. Estimation

To estimate the model, we develop an algorithm that combines key insights
from two literatures. The first is the literature on CCP estimation when there
is no unobserved heterogeneity. In this literature, estimates of the conditional
choice probabilities are obtained in a first stage and substituted into a second-
stage maximization. The second literature is on the expectation–maximization
(EM) algorithm, which provides a way to estimate dynamic discrete choice
models when unobserved state variables are present. As we will show, the EM
algorithm can be modified to accommodate CCP estimation.

Consider a sample of N buses over T time periods where all buses begin
with zero mileage. The key insight of Hotz and Miller (1993) is that when
both x and s are observed variables, we can substitute a first-stage estimate,
p̂1(x� s), for p1(x� s) in (2.7), say p̂1(x� s).10 Next, we substitute this expression
into equation (2.3) to obtain the likelihood of replacing the engine given the
first-stage conditional choice probabilities. Writing p̂1 as the vector of condi-
tional choice probabilities and dnt ≡ {d1nt� d2nt}, we denote the likelihood con-
tribution for bus n at time t by l(dnt |xnt� sn� θ� p̂1)� It is given by the expression

d1nt + d2nte
θ1xnt+θ2sn+β ln[p̂1(0�sn)]−β ln[p̂1(xnt+1�sn)]

1 + eθ1xnt+θ2sn+β ln[p̂1(0�sn)]−β ln[p̂1(xnt+1�sn)] �(2.8)

The structural parameters θ1 and θ2 can then be estimated in a second stage
using a logit.

To illustrate how CCP estimation might be amenable to the EM algorithm,
we first demonstrate how to proceed in the infeasible case where s is unob-
served but p̂1(x� s) is known. Let πs denote the population probability of being

9Note that the conditional value functions for period t + 1 do not cancel if the future value
terms are written with respect to the second choice because v2(x+ 1� s) �= v2(0� s)�

10One candidate is a bin estimator where p̂1(x� s) is given by

p̂1(x� s)=

∑
n

∑
t

I(d1nt = 1)I(xnt = x)I(sn = s)∑
n

∑
t

I(xnt = x)I(sn = s)
�
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in state s. Integrating the unobserved state out of the likelihood function, the
maximum likelihood (ML) estimator for this version of the problem is

{θ̂� π̂} = arg max
θ�π

N∑
n=1

ln

[
S∑
s=1

πs

T∏
t=1

l(dnt |xnt� s� p̂1� θ)

]
�(2.9)

Denote by dn ≡ (dn1� � � � � dnT ) and xn ≡ (xn1� � � � � xnT ) the full sequence of
choices and mileages observed in the data for bus n. Conditioning on xn, p̂1,
and θ, the probability of observing dn is the expression inside the logarithm in
(2�9), while the joint probability of s and dn is the product of all the terms to
the right of the summation over s. Given the ML estimates (θ̂� π̂) and using
Bayes’ rule, we can calculate q̂ns, the probability n is in unobserved state s, as

q̂ns = Pr{sn = s|dn�xn; θ̂� π̂� p̂1} =
π̂s

T∏
t=1

l(dnt |xnt� s� p̂1� θ̂)

S∑
s′=1

π̂s′
T∏
t=1

l(dnt |xnt� s′� p̂1� θ̂)

�(2.10)

By definition, π̂s then satisfies:

π̂s = 1
N

N∑
n=1

q̂ns�(2.11)

The EM algorithm is a computationally attractive alternative to directly max-
imizing (2.9). At themth iteration, given values for θ(m) and π(m), update q(m+1)

ns

by substituting θ(m) and π(m) for θ̂ and π̂ in equation (2.10). Next, update π(m+1)

by substituting q(m+1)
ns for q̂ns in equation (2.11). Finally, obtain θ(m+1) from

θ(m+1) = arg max
θ

N∑
n=1

S∑
s=1

T∑
t=1

q(m+1)
ns ln[l(dnt|xnt� s� p̂1� θ)]�(2.12)

Note that at the maximization step, q(m+1)
ns is taken as given, and that the maxi-

mization problem is equivalent to one where sn is observed and q(m+1)
ns are pop-

ulation weights. Note further that the maximum likelihood estimator at the
maximization step is globally concave and thus very simple to estimate. Un-
der standard regularity conditions, (θ(m)�π(m)) converges to the ML estimator
(θ̂� π̂).11

We now show how to estimate the structural parameters when both s is un-
observed and p̂(x� s) is unknown by building on the features of the estimators

11See Dempster, Laird, and Rubin (1977) and Wu (1983) for details.
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discussed above. We modify the EM algorithm, so that instead of just updating
θ(m), π(m), and q(m)ns at the mth iteration, we also update the conditional choice
probabilities p(m)1 (x� s).

One way to update p(m)1 (xnt� sn) falls naturally out of the EM algorithm. To
see this, first note that we can express p1(x� s) as

p1(x� s)≡ Pr{d1nt = 1|sn = s�xnt = x}(2.13)

= Pr{d1nt = 1� sn = s|xnt = x}
Pr{sn = s|xnt = x}

= E[d1ntI(sn = s)|xnt = x]
E[I(sn = s)|xnt = x] �

Applying the law of iterated expectations to both the numerator and the de-
nominator, and using the fact that dnt is a component of dn, implies (2.13) can
be written as

p1(x� s)= E[d1ntE{I(sn = s)|dn�xn}|xnt = x]
E[E{I(sn = s)|dn�xn}|xnt = x] �(2.14)

But the inner expectation in (2.14) is actually qns as

qns = Pr{sn = s|dn�xn} = E[I(sn = s)|dn�xn]�(2.15)

It now follows that

p1(x� s)= E[d1ntqns|xnt = x]
E[qns|xnt = x] �(2.16)

In the algorithm defined below, we replace (2.16) with sample analogs so as to
update the conditional choice probabilities.

Our algorithm begins by setting initial values for θ(1), π(1), and p(1)1 . Estima-
tion then involves iterating on four steps, where the mth iteration follows:

Step 1. From (2.10), compute q(m+1)
ns as

q(m+1)
ns =

π(m)s

T∏
t=1

l(dnt |xnt� s�p(m)1 � θ(m))

S∑
s′=1

π(m)s′

T∏
t=1

l(dnt |xnt� s′�p(m)1 � θ(m))

�(2.17)

Step 2. Using q(m+1)
ns compute π(m+1)

s according to:

π(m+1)
s = 1

N

N∑
n=1

q(m+1)
ns �(2.18)
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Step 3. Using q(m)+1
ns update p(m+1)

1 (x� s) from

p(m+1)
1 (x� s)=

N∑
n=1

T∑
t=1

d1ntq
(m+1)
ns I(xnt = x)

N∑
n=1

T∑
t=1

q(m+1)
ns I(xnt = x)

�(2.19)

Step 4. Taking q(m+1)
ns and p(m+1)

1 (xnt� sn) as given, obtain θ(m+1) from

θ(m+1) = arg max
θ

N∑
n=1

S∑
s=1

T∑
t=1

q(m+1)
ns ln

[
l
(
dnt |xnt� sn�p(m+1)

1 � θ
)]
�(2.20)

Note that Step 3 is a weighted average of decisions to replace conditional
on x, where the weights are the conditional probabilities of being in unob-
served state s. When s is observed, Step 3 collapses to a bin estimator that
could be used in the first stage of CCP estimation.

An alternative to updating the CCP’s using a weighted average of the data
is based on the identity that the likelihood returns the probability of replacing
the engine. Substituting equation (2.7) into equation (2.3) and evaluating it at
the relevant values for bus n at time t yields

p1(xnt� s)= l(d1nt = 1|xnt� s�p1� θ)�(2.21)

Thus at the mth iteration, we could replace Step 3 of the algorithm with the
following step.

Step 3A. Using θ(m) and p(m)1 (that is, the function p(m)1 (x� s)), update
p(m+1)

1 (xnt� sn) using

p(m+1)
1 (xnt� s)= l(d1nt = 1|xnt� s�p(m)1 � θ(m)

)
�(2.22)

Here l(d1nt = 1|xnt� s�p(m)1 � θ(m)) is calculated using (2.8). The CCP updates
are tied directly to the structure of the model. We illustrate the trade-offs of
each updating method in the ensuing sections.

3. FRAMEWORK

This section lays out a general class of dynamic discrete choice models and
derives a new representation of the conditional valuation functions that we
draw on in the subsequent sections on identification and estimation. In this
section, we also use the representation to develop the concept of finite de-
pendence, and determine its functional form for disturbances distributed as
generalized extreme value.
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3.1. Model

In each period until T , for T ≤ ∞, an individual chooses among J mutually
exclusive actions. Let djt = 1 if action j ∈ {1� � � � � J} is taken at time t and =
0 otherwise. The current period payoff for action j at time t depends on the
state zt ∈ {1� � � � �Z}. In the previous section zt ≡ (xt� s), where xt is observed
but s is unobserved to the econometrician. We ignore that distinction in this
section because it is not relevant for the agents in the model. If action j is
taken at time t, the probability of zt+1 occurring in period t + 1 is denoted by
fjt(zt+1|zt).

The individual’s current period payoff from choosing j at time t is also af-
fected by a choice-specific shock, εjt , which is revealed to the individual at the
beginning of period t. We assume the vector εt ≡ (ε1t � � � � � εJt) has continu-
ous support and is drawn from a probability distribution that is independently
and identically distributed over time with density function g(εt). We model the
individual’s current period payoff for action j at time t by ujt(zt)+ εjt�

The individual takes into account the current period payoff as well as how his
decision today will affect the future. Denoting the discount factor by β ∈ (0�1),
the individual chooses the vector dt ≡ (d1t � � � � � dJt) to sequentially maximize
the discounted sum of payoffs

E

{
T∑
t=1

J∑
j=1

βt−1djt[ujt(zt)+ εjt]
}
�(3.1)

where the expectation at each period t is taken over the future values of
zt+1� � � � � zT and εt+1� � � � � εT . Expression (3.1) is maximized by a Markov deci-
sion rule which gives the optimal action conditional on t, zt , and εt . We denote
the optimal decision rule at t as dot (zt� εt), with jth element dojt(zt� εt). The
probability of choosing j at time t conditional on zt , pjt(zt), is found by taking
dojt(zt� εt) and integrating over εt :

pjt(zt)≡
∫
dojt(zt� εt)g(εt)dεt�(3.2)

We then define pt(zt) ≡ (p1t(zt)� � � � �pJt(zt)) as the vector of conditional
choice probabilities.

Denote Vt(zt), the (ex ante) value function in period t, as the discounted
sum of expected future payoffs just before εt is revealed and conditional on
behaving according to the optimal decision rule:

Vt(zt)≡E
{

T∑
τ=t

J∑
j=1

βτ−tdojτ(zτ� ετ)(ujτ(zτ)+ εjτ)
}
�
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Given state variables zt and choice j in period t, the expected value function
in period t + 1, discounted one period into the future, is

β

Z∑
zt+1=1

Vt+1(zt+1)fjt(zt+1|zt)�

Under standard conditions, Bellman’s principle applies and Vt(zt) can be re-
cursively expressed as

Vt(zt)= E

{
J∑
j=1

dojt(zt� εt)(3.3)

×
[
ujt(zt)+ εjt +β

Z∑
zt+1=1

Vt+1(zt+1)fjt(zt+1|zt)
]}

=
J∑
j=1

∫
dojt(zt� εt)

×
[
ujt(zt)+ εjt +β

Z∑
zt+1=1

Vt+1(zt+1)fjt(zt+1|zt)
]
g(εt)dεt�

where the second line integrates out the disturbance vector εt� We then define
the choice-specific conditional value function, vjt(zt), as the flow payoff of ac-
tion j without εjt plus the expected future utility conditional on following the
optimal decision rule from period t + 1 on12:

vjt(zt)= ujt(zt)+β
Z∑

zt+1=1

Vt+1(zt+1)fjt(zt+1|zt)�(3.4)

Hotz and Miller (1993) established that differences in conditional value
functions can be expressed as functions of the conditional choice probabili-
ties pjt(zt) and the per-period payoffs. Using their results, we show that we
can express the value function Vt(zt) as a function of one conditional value
function vjt(zt), plus a function of the conditional choice probabilities pt(zt).

LEMMA 1: Define p ≡ (p1� � � � � pJ), where
∑J

j=1 pj = 1 and pj > 0 for all j′�
Then there exists a real-valued function ψk(p) for every k ∈ {1� � � � � J} such that

ψk[pt(zt)] ≡ Vt(zt)− vkt(zt)�(3.5)

12For ease of exposition, we refer to vjt(zt) as the conditional value function in the remainder
of the paper.
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Substituting (3�5) into the right hand side of (3.4), we obtain

vjt(zt)= ujt(zt)+β
Z∑

zt+1=1

[
vkt+1(zt+1)+ψk[pt+1(zt+1)]

]
fjt(zt+1|zt)�(3.6)

Equation (3.6) shows that the conditional value function can be expressed as
the flow payoff of the choice plus a function of the one-period-ahead condi-
tional choice probabilities and the one-period-ahead conditional value func-
tion for any choice. We could repeat this procedure ad infinitum, substituting
for vkt1(zt+1) using (3.4) and then again with (3.5) for any choice k′, ultimately
replacing the conditional valuation functions on the right side of (3.6) with a
single arbitrary time sequence of current utility terms and conditional value
correction terms as defined in (3.5).

To formalize this idea, consider a sequence of decisions from t to T . The first
choice in the sequence is the initial choice j which sets d∗

jt(zt� j)= 1. For peri-
ods τ ∈ {t+ 1� � � � � T }, the choice sequence maps zτ and the initial choice j into
d∗
τ(zτ� j) ≡ {d∗

1τ(zτ� j)� � � � � d
∗
Jτ(zτ� j)}. The choices in the sequence then must

satisfy d∗
kτ(zτ� j) ≥ 0 and

∑J

k=1 d
∗
kτ(zτ� j) = 1. Note that the choice sequence

can depend on new realizations of the state and may also involve mixing over
choices.

Now consider the probability of being in state zτ+1 conditional on following
the choices in the sequence. Denote this probability as κ∗

τ(zτ+1|zt� j), which is
recursively defined by

κ∗
τ(zτ+1|zt� j)≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fjt(zt+1|zt)� for τ = t�
Z∑

zτ=1

J∑
k=1

d∗
kτ(zτ� j)fkτ(zτ+1|zτ)κ∗

τ−1(zτ|zt� j)�
for τ = t + 1� � � � � T�

(3.7)

The future value term can now be expressed relative to the conditional value
functions for the choices in the sequence. Theorem 1 shows that continuing
to express the future value term relative to the value of the next choice in the
sequence yields an alternative expression for vjt(zt).

THEOREM 1: For any state zt ∈ {1� � � � �Z}, choice j ∈ {1� � � � � J} and decision
rule d∗

τ(zτ� j) defined for periods τ ∈ {t� � � � �T } the conditional valuation func-
tions vjt(zt) take the form:

ujt(zt)+
T∑

τ=t+1

J∑
k=1

Z∑
zτ=1

βτ−t
[
ukτ(zτ)+ψk[pτ(zτ)]

]
(3.8)

× d∗
kτ(zτ� j)κ

∗
τ−1(zτ|zt� j)�
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Theorem 1 shows that future value terms for dynamic discrete choice mod-
els can be expressed as functions of flow payoffs and conditional choice prob-
abilities for any sequences of choices until T and the corresponding transition
probabilities associated with the choice sequences. It provides the foundation
for the identification results discussed in Arcidiacono and Miller (2011a) and
the estimators developed in Section 4. In this section, we use the theorem to de-
rive conditions to construct estimators that do not depend on utility flow terms
ukτ(zτ)+ψk[pτ(zτ)] beyond a few periods for each t. Then we show how the
functions ψk(p) are determined in the generalized extreme value case.

3.2. Finite Dependence

Equation (3.4) implies that j is preferred to k in period t if and only if
vjt(zt)−vkt(zt) > εjt −εkt� Consequently, conditional valuation functions, such
as vjt(zt) and vkt(zt), only enter the likelihood function in their differenced
form. Substituting (3.8) from Theorem 1 into expressions like vjt(zt)− vkt(zt)
reveals that all the terms in the sequence after a certain date, say ρ, would
cancel out if the state variables had the same probability distribution at ρ, that
is, if κ∗

ρ−1(zρ|zt� j)= κ∗
ρ−1(zρ|zt�k), and the same decisions are selected for all

dates beyond ρ.
In the example from Section 2, zt ≡ (xt� s), and the act of replacing an engine

next period regardless of the choice made in the current period t, thus setting
d∗

1�t+1(zt+1�1)= d∗
1�t+1(zt+1�2)= 1, restores the state variables to the same value

(xt+1� s)= (0� s) at period t + 1. Thus any (common) sequence of choices that
begins by replacing the engine next period implies that when the difference
v2t(zt)− v1t(zt) is considered in its telescoped forms using (3.8), all terms be-
yond the next period disappear.

Exploiting the power of Theorem 1 in this way can be developed within the
general framework. Consider using (3.8) to express the conditional value func-
tions for alternative initial choices j and j′. Differencing the two yields

vjt(zt)− vj′t(zt)(3.9)

= ujt(zt)− uj′t(zt)

+
T∑

τ=t+1

J∑
k=1

Z∑
zτ=1

βτ−t
[
ukτ(zτ)+ψk[pτ(zτ)]

]
× [d∗

kτ(zτ� j)κ
∗
τ−1(zτ|zt� j)− d∗

kτ(zτ� j
′)κ∗

τ−1(zτ|zt� j′)]�
We say a pair of choices exhibits ρ-period dependence if there exists a sequence
from initial choice j and a corresponding sequence from initial choice j′ such
that for all zt+ρ+1,

κ∗
t+ρ(zt+ρ+1|zt� j)= κ∗

t+ρ(zt+ρ+1|zt� j′)�(3.10)
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The sequence of choices from j and j′ then leads to the same state in expec-
tation. When ρ-period dependence holds, the difference in future value terms
for j and j′ can be expressed as a function of the ρ-period-ahead flow pay-
offs, conditional choice probabilities, and state transition probabilities. Once
ρ-period dependence is achieved, the remaining choices in both sequences are
set to be the same, implying that equation (3.9) can be written as

vjt(zt)− vj′t(zt)(3.11)

= ujt(zt)− uj′t(zt)

+
t+ρ∑
τ=t+1

J∑
k=1

Z∑
zτ=1

βτ−t+1
[
ukτ(zτ)+ψk[pτ(zτ)]

]
× [d∗

kτ(zτ� j)κ
∗
τ(zτ|zt� j)− d∗

kτ(zτ� j
′)κ∗

τ(zτ|zt� j′)]�
as the terms associated with time periods after t + ρ drop out. Conditional
on knowing the relevant ψk(p) mappings, the CCP’s, and the transitions on
the state variables, the differenced conditional value function is now a linear
function of flow payoffs from t to t + ρ. Further, only the ψk(p) mappings that
are along the two choice paths are needed: the econometrician only needs to
know ψk(p) if choice k is part of the two decision sequences. We next use some
examples to illustrate how to exploit finite dependence in practice.

3.2.1. Example: Renewal Actions and Terminal Choices

We apply the results in the previous section to cases where the differences in
future value terms across two choices only depend on one-period-ahead condi-
tional choice probabilities and the flow payoff for a single choice. In particular,
we consider renewal problems, such as Miller’s (1984) job matching model or
Rust’s (1987) replacement model, where the individual can nullify the effects
of a choice at time t on the state at time t+2 by taking a renewal action at time
t+1. For example, if Zurcher replaces the engine at t+1, then the state at time
t+ 2 does not depend on whether the engine was replaced at time t or not. Let
the renewal action be denoted as the first choice in the set {1� � � � � J}, implying
that d1t = 1 if the renewal choice is taken at time t. Formally, a renewal action
at t + 1 satisfies

Z∑
zt+1=1

f1�t+1(zt+2|zt+1)fjt(zt+1|zt)=
Z∑

zt+1=1

f1�t+1(zt+2|zt+1)fj′t(zt+1|zt)(3.12)

for all (zt+2� j� j
′). The state at t + 2 may then depend on the state at t + 1, but

only through variables that were unaffected by the choice at t.
Since the renewal action at t + 1 leads to the same expected state regardless

of the choice at t, we define d∗
1�t+1(zt+1� j) = 1 for all j. Equations (3�7) and
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(3�12) imply that κ∗
t+1(zt+2|zt� j) = κ∗

t+1(zt+2|zt� j′) for all j and j′� Expressing
the future value terms relative to the value of the renewal choice, vjt(zt) −
vj′t(zt) can be written as:

ujt(zt)− uj′t(zt)(3.13)

+β
Z∑

zt+1=1

[
u1�t+1(zt+1)−ψ1[pt+1(zt+1)]

][fjt(zt+1|zt)− fj′t(zt+1|zt)]�

Hence, the only mapping we need isψ1(p), the mapping for the renewal choice.
Hotz and Miller (1993) showed that another case where only one-period-

ahead conditional choice probabilities and the flow payoff for a single choice
are needed is when there is a terminal choice—a choice that, when made, im-
plies no further choices. Let the terminal choice be denoted as the first choice.
With no further choices being made, the future value term for the terminal
choice can be collapsed into the current period payoff. Then vjt(zt)− vj′t(zt)
follows the same expression as (3.13) when neither j nor j′ is the terminal
choice.

3.2.2. Example: Labor Supply

To illustrate how finite dependence works when more than one period is
required to eliminate the dependence, we develop the following stylized ex-
ample.13 Consider a model of labor supply and human capital. In each of T
periods an individual chooses whether to work, d2t = 1, or stay home d1t = 1.
Individuals acquire human capital, zt , by working, with the payoff to working
increasing in human capital. If the individual works in period t, zt+1 = zt + 2
with probability 0.5 and zt+1 = zt + 1 also with probability 0.5. For periods af-
ter t, the human capital gain from working is fixed at 1 additional unit. When
the individual does not work, her human capital remains the same in the next
period.

The difference in conditional value functions between working and staying
home at period t, v2t(zt)− v1t(zt), can be expressed as a function of the two-
period-ahead flow utilities and the conditional probabilities of working and
not working. To see this, consider v1t(zt), which sets the initial choice to not
work (d1t = 1). Now set the next 2 choices to work: d∗

2�t+1(zt+1�0) = 1 and
d∗

2�t+2(zt+2�0) = 1. This sequence of choices (not work, work, work) results in
the individual having 2 additional units of human capital at t+ 3. Given an ini-
tial choice to work (d2t = 1), it is also possible to choose a sequence such that
the individual will have 2 additional units of human capital at t + 3, but now
the sequence will depend on the realization of the future states. In particular,

13For an empirical application of finite dependence involving more than one period and mul-
tiple discrete choices, see Bishop (2008).
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if the decision to work at t results in an additional 2 units of human capital,
then set the choice in period t + 1 to not work, d1�t+1(zt + 2�1)= 1. However,
if working at t results in only 1 additional unit, set the choice in period t + 1
to work, d2�t+1(zt + 1�1) = 1. In either case, the third choice in the sequence
is set to not work. We can write the future value terms relative to the choices
in the sequences. The future value terms after t + 3 then cancel out once we
difference v1t(zt) from v2t(zt).14

3.3. Generalized Extreme Value Distributions

To apply (3.8) in estimation, the functional form of ψj(p) for some j ∈
{1� � � � � J} must be determined. It is well known that ψj(p)= − ln(pj) when j is
independently distributed as Type 1 extreme value. We show how to numeri-
cally calculate ψj(p) for any generalized extreme value (GEV) distribution and
then we lay out a class of problems where the mapping ψj(p) has an analytic
solution.

Suppose εt is drawn from the distribution functionG(ε1t � ε2t � � � � � εJt), where

G(ε1t � ε2t � � � � � εJt)≡ exp
[−H(exp[−ε1t]�exp[−ε2t]� � � � �exp[−εJt])

]
and G(ε1t � ε2t � � � � � εJt) satisfies the properties outlined for the GEV distribu-
tion in McFadden (1978).15 Letting Hj(Y1� � � � �YJ) denote the derivative of
H(Y1� � � � �YJ) with respect to Yj , we define φj(Y) as a mapping into the unit
interval, where

φj(Y)= YjHj(Y1� � � � �YJ)/H(Y1� � � � �YJ)�(3.14)

Note that since Hj(Y1� � � � �YJ) and H(Y1� � � � �YJ) are homogeneous of degree
0 and 1, respectively, then φj(Y) is a probability, as

∑J

j=1φj(Y) = 1. Indeed,

14There is another sequence that also results in a cancelation occurring after three periods. In
this case, we set the sequence that begins with the choice to work (d2t = 1) such that the next
two choices are to not work regardless of the human capital realizations. In this case, at t + 3,
the individual will have 2 additional units of human capital with probability 0.5 and 1 additional
unit with probability 0.5. To have the same distribution of human capital at t + 3 given an initial
choice not to work (d1t = 1) involves mixing. In particular, set the choice at t + 1 to not work
with probability 0.5, implying that the probability of not working at t + 1 is also 0.5. Setting the
choice at t + 2 to work regardless of the level of human capital implies that an additional 2 units
of human will result from the sequence with probability 0.5 with the probability of 1 additional
unit resulting from the sequence also occurring with probability 0.5. Hence, the distribution of
the states is the same given the two initial choices.

15The properties are that H(Y1�Y2� � � � �YJ) is a nonnegative real-valued function that is ho-
mogeneous of degree 1, with lim H(Y1�Y2� � � � �YJ)→ ∞ as Yk → ∞ for all j ∈ {1� � � � � J}, and
for any distinct (i1� i2� � � � � ir)� the cross-derivative ∂H(Y1�Y2� � � � �YJ)/∂Yi1 �Yi2 � � � � �Yir is non-
negative for r odd and nonpositive for r even.
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McFadden (1978, p. 80) established that substituting exp[vjt(zt)] forYj in equa-
tion (3.14) yields the conditional choice probability

pjt(zt)= evjt (zt )Hj

(
ev1t (zt )� � � � � evJt (zt )

)
/H

(
ev1t (zt )� � � � � evJt (zt )

)
�(3.15)

We now establish a relationship betweenφj(Y) andψj(p). Denoting the vec-
tor function φ(Y)≡ {φ2(Y)� � � � �φJ(Y)}, Lemma 2 shows that φ(Y) is invert-
ible. Furthermore, Lemma 2 establishes that there is a closed form expression
for ψj(p) when φ−1(p) is known.

LEMMA 2: When εt is drawn from a GEV distribution, the inverse function
φ−1(p) exists and ψj(p) is given by

ψj(p)= ln H[1�φ−1
2 (p)� � � � �φ

−1
J (p)] − lnφ−1

j (p)+ γ�(3.16)

It is straightforward to use Lemma 2 in practice by evaluating φ−1
j (p) at

pt(zt) for a given zt . To see this, note that from (3.15) we can express the vector
pt(zt) as ⎡⎣p2t(zt)

���

pJt(zt)

⎤⎦(3.17)

=
⎡⎣ ev2t (zt )−v1t (zt )H2

(
1� � � � � evJt (zt )−v1t (zt )

)
/H

(
1� � � � � evJt (zt )−v1t (zt )

)
���

evJt (zt )−v1t (zt )HJ

(
1� � � � � evJt (zt )−v1t (zt )

)
/H

(
1� � � � � evJt (zt )−v1t (zt )

)
⎤⎦ �

Making the (J − 1)-dimensional vector formed from exp[vjt(zt)− v1t(zt)] the
subject of (3�17) for any vector pt(zt) solves this (J − 1) equation system to
yield the (J − 1) unknowns φ−1

j [pt(zt)].
In some cases, ψj(p) (and therefore φ−1

j (p)) has an analytic solution. For ex-
ample, consider a case whereG(εt) factors into two independent distributions,
one being a nested logit and the other being a GEV distribution. Let J denote
the set of choices in the nest and let K denote the number of choices that are
outside the nest. Then G(εt) can be expressed as

G(εt)≡G0(ε1t � � � � � εKt)exp
[
−
(∑
j∈J

exp[−εjt/σ]
)σ]

�(3.18)

where G0(Y1�Y2� � � � �YK) satisfies the properties outlined for the GEV distri-
bution as defined by McFadden (1978). The correlation of the errors within
the nest is given by σ ∈ [0�1] and errors within the nest are uncorrelated with
errors outside the nest. When σ = 1, the errors are uncorrelated within the
nest, and when σ = 0, they are perfectly correlated. Lemma 3 then shows the
closed form expression for ψj(p) for all j ∈ J .
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LEMMA 3: If G(εt) can be expressed as in (3�18), then

ψj(p)= γ− σ ln(pj)− (1 − σ) ln
(∑
k∈J

pk

)
�(3.19)

Note that ψj(p) only depends on the conditional choice probabilities for
choices that are in the nest: the expression is the same no matter how many
choices are outside the nest or how those choices are correlated. Hence, ψj(p)
will only depend on pj′ if εjt and εj′t are correlated. When σ = 1, εjt is inde-
pendent of all other errors and ψj(p) only depends on pj .

Lemma 3 is particularly powerful when there is a renewal or terminal choice.
Recall from Section 3.2.1 that the only ψj(p) mappings needed in these cases
are for the renewal or terminal choices. The payoffs for these choices may
naturally be viewed as having an independent error. For example, in the Rust
case, bus engine maintenance actions are more likely to be correlated with each
other than with engine replacement. Another example is firm decisions when
exit is an option. Choosing how many stores or different levels of product qual-
ity is likely to have correlation patterns among the errors that are unrelated to
the payoff from exiting. As long as the error associated with the renewal or ter-
minal choice is independent of the other errors, any correlation pattern among
the other errors will still result in ψj(p)= − ln(pj) when j is the renewal or ter-
minal choice.

4. THE ESTIMATORS AND THEIR ASYMPTOTIC PROPERTIES

In estimation, we parameterize the utility function, the transition function,
and the probability density function for εt by a finite-dimensional vector θ ∈Θ,
where Θ denotes the parameter space for ujt(xt� st), fjt(xt+1|xt� st), g(εt),
and β, and is assumed to be convex and compact.16 There are then two sets
of parameters to be estimated: θ and π, where π includes the initial distri-
bution of the unobserved heterogeneity π(s1|x1) and its transition probability
matrix π(st+1|st).17

The CCP estimators we propose are derived from two sets of conditions.
First are conditions which ensure that the estimates of θ and π maximize the
likelihood function, taking the estimates of the conditional choice probabilities
as given. Second are conditions that ensure the estimated conditional choice
probabilities are consistent with either the data or the underlying structural
model.

16Identification of dynamic discrete choice models with unobserved heterogeneity is analyzed
in Kasahara and Shimotsu (2009) and Hu and Shum (2010a).

17We assume the number of unobserved states is known. Heckman and Singer (1984) provided
conditions for identifying the number of unobserved states in dynamic models. In principle, one
could estimate the model separately for different values of S, using the differences in the likeli-
hoods to choose the number of unobserved states. See McLachlan and Peel (2000, Chapter 6).
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4.1. The Likelihood

Denote pjt(x� s) as a value for the probability an individual will choose j at t
given observed states x and s. Let p indicate the (J− 1)×T ×X× S vector of
conditional choice probabilities with the elements given by pjt(x� s).18 Denote
by ljt(xnt� snt� θ�π�p) the likelihood of observing individual n make choice j
at time t, conditional on the state (xnt� snt), the parameters θ and π, and the
conditional choice probabilities p:

ljt(xnt� snt� θ�π�p)(4.1)

≡ Pr
{

arg max
j∈{1�����J}

[vjt(xnt� snt� θ�π�p)+ εjt]
∣∣xnt� snt;θ�π�p}�

When djnt = 1, the expression in (4.1) simplifies to (2.8) in the motivating ex-
ample. The corresponding likelihood of observing (dnt� xn�t+1) is then defined
as

Lt(dnt� xn�t+1|xnt� snt;θ�π�p)(4.2)

=
J∏
j=1

[ljt(xnt� snt� θ�π�p)fjt(xn�t+1|xnt� snt� θ)]djnt �

The joint likelihood of any given path of choices dn ≡ (dn1� � � � � dnT ) and ob-
served states xn ≡ (xn1� � � � � xn�T +1) is derived by forming the product of (4�2)
over the T sample periods and then integrating it over the unobserved states
(sn1� � � � � snT ). Since the probability distribution for the initial unobserved state
is π(s1|x1) and the transition probability is π(st+1|st), the likelihood of observ-
ing (dn�xn) conditional on x1 for parameters (θ�π�p) is

L(dn�xn|xn1;θ�π�p)(4.3)

=
S∑

s1=1

S∑
s2=1

· · ·
S∑

sT =1

[
π(s1|xn1)L1(dn1�xn2|xn1� s1;θ�π�p)

×
(

T∏
t=2

π(st |st−1)Lt(dnt� xn�t+1|xnt� st;θ�π�p)
)]
�

The log likelihood of the sample is then given by

N∑
n=1

lnL(dn�xn|xn1;θ�π�p)�(4.4)

18In the stationary case, the dimension is (J − 1)×X × S.
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4.2. The Estimators

Following our motivating example in Section 2, we define two estimators of
(θ�π�p). At minimal risk of some ambiguity we label them both by (θ̂� π̂� p̂).
Both estimators of (θ�π) maximize the expression obtained by substituting an
estimator for p into (4.4):

(θ̂� π̂)= arg max
θ�π

N∑
n=1

lnL(dn�xn|xn1;θ�π� p̂)�(4.5)

In one case, p̂jt(x� s) satisfies the likelihood expression ljt(x� s� θ�π�p) eval-
uated at (θ̂� π̂� p̂), meaning

p̂jt(x� s)= ljt(x� s� θ̂� π̂� p̂)�(4.6)

This constraint is motivated by the fact that the model itself generates the con-
ditional choice probabilities. Thus our first estimator solves for (θ�π�p) in the
system of equations defined by (4.6) along with satisfying (4.5). To deal with the
possibility of multiple solutions, we select the solution that attains the highest
likelihood.

In the second case, p̂jt(x� s) is calculated as a weighted average of dnjt over
the sample. No weight is given to dnjt if xnt �= x. When xnt = x, the weight
corresponds to the probability of individual n being in unobserved state s at
time t. To obtain the weight in this case, we define the joint likelihood of both
snt = s and the sequence (dn�xn) occurring as

Lnt(snt = s)(4.7)

≡
S∑

s1=1

· · ·
S∑

st−1=1

S∑
st+1=1

· · ·
S∑

sT =1

π(s1|xn1)Ln1(s1)

(
t−1∏
t′=2

π(st′ |st′−1)Lnt′(st′)

)

×π(st |st−1)Lnt(s)π(st+1|s)Ln�t+1(st+1)

(
T∏

t′=t+2

π(st′ |st′−1)Lnt′(st′)

)
�

Similarly, denote by Ln ≡ L(dn�xn|xn1;θ�π�p) the likelihood of observing
(dn�xn). From Bayes’ rule, the probability that snt = s conditional on (dn�xn) is
Lnt(snt = s)/Ln. Let L̂nt(snt = s) denote Lnt(snt = s) evaluated at (θ̂� π̂� p̂) and,
similarly, let L̂n denote Ln evaluated at the parameter estimates. Our second
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estimator of p̂jt(x� s) satisfies:

p̂jt(x� s)=

N∑
n=1

dnjtI(xnt = x)L̂n(snt = s)/L̂n
N∑
n=1

I(xnt = x)L̂n(snt = s)/L̂n

=
N∑
n=1

dnjt

[
I(xnt = x)L̂n(snt = s)/L̂n

N∑
n′=1

I(xn′t = x)L̂n′(sn′t = s)/L̂n′

]
�

Note that the numerator in the first line gives the average probability of
(dnjt� xnt� snt) = (1�x� s) and the denominator gives the average probability of
(xnt� snt)= (x� s). Their ratio is then an estimate of the probability of a sampled
person choosing action j at time t conditional on x and s, with the bracketed
term in the second line giving the weight placed on dnjt . The second estimator
(θ̂� π̂� p̂) solves (4.5) along with the set of conditions given in (4.8); again in
the case of multiple solutions, the solution that attains the highest likelihood is
selected.

4.3. Large Sample Properties

Our representation of the conditional value functions implies that any set
of conditional choice probabilities p̃ defined for all (j� t� x� s) induces payoffs
as a function of (θ�π). Substituting p̃ for p in (4.4) and then maximizing the
resulting expression with respect to (θ�π) yields estimates of the structural pa-
rameters, which we denote by (θ̃� π̃). If the payoff functional forms were cor-
rectly specified, (θ̃� π̃) would converge to the true parameters under standard
regularity conditions for static random utility models. Imposing the condition
that p̃ = p̂ merely ensures an internal consistency: the conditional valuation
functions used in the functional form for utility in (4�4) are based on the same
conditional choice probabilities that emerge if the individuals in the sample
actually face primitives given by (θ̂� π̂). The proof of the following theorem
shows that if the model is identified, the true set of parameters satisfies this in-
ternal consistency condition. Intuitively this explains why both our estimators
are consistent.

THEOREM 2: If the model is identified, then (θ̂� π̂� p̂) is consistent in both
cases.

The remaining large sample properties—
√

N rate of convergence and
asymptotic normality—can be established by appealing to well known results
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in the literature. The covariance matrices of the estimators are given in the
Supplemental Material.

5. THE ALGORITHM

To operationalize our estimators, we modify the EM algorithm. The EM
algorithm iterates on two steps. In the expectation step, the conditional prob-
abilities of being in each unobserved state as well as the initial conditions and
law of motion for the unobserved states are updated. The maximization step
proceeds as if the unobserved state is observed and uses the conditional prob-
abilities of being in each unobserved state as weights.

We show how the mth iteration is updated to the (m+ 1)th as well as how
to initiate the algorithm. We lay out the expectation step and the maximization
step, and then summarize the algorithm.

5.1. Expectation Step

For the sake of the exposition, we break down the expectation step into
updating q(m)nst , the probability of n being in unobserved state s at time t,
π(m)(s1|x1), the probability distribution over the initial unobserved states con-
ditional on the initial observed states, π(m)(s′|s), the transition probabilities of
the unobserved states, and finally p(m)(x� s), the conditional choice probabili-
ties.

5.1.1. Updating q(m)nst

The first step of the mth iteration is to calculate the conditional probability
of being in each unobserved state in each time period given the values of the
structural parameters and conditional choice probabilities from the mth itera-
tion, {θ(m)�π(m)�p(m)}. The likelihood of the data on n given the parameters at
the mth iteration is found by evaluating (4.3) at {θ(m)�π(m)�p(m)}:

L(m)n ≡L(dn�xn|xn1;θ(m)�π(m)�p(m)
)
�(5.1)

Similarly, we denote by L(m)n (snt = s) the joint likelihood of the data and un-
observed state s occurring at time t, given the parameter evaluation at itera-
tion m. Evaluating (4.7) at {θ(m)�π(m)�p(m)} yields

L(m)nt (snt = s)≡Lnt
(
dn�xn� snt = s|xn1;θ(m)�π(m)�p(m)

)
�(5.2)

At iteration m+ 1, the probability of n being in unobserved state s at time t,
q(m+1)
nst , then follows from Bayes rule:

q(m+1)
nst = L(m)n (snt = s)

L(m)n

�(5.3)
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5.1.2. Updating π(m)(s|x)
Setting t = 1 in (5�3) yields the conditional probability of the nth individual

being in unobserved state s in the first time period. When the state variables
are exogenous at t = 1, we can update the probabilities for the initial states
by averaging the conditional probabilities obtained from the previous iteration
over the sample population:

π(m+1)(s)= 1
N

N∑
n=1

q(m+1)
ns1 �(5.4)

To allow for situations where the distribution of the unobserved states in
the first period depends on the values of the observed state variables, we form
averages over q(m+1)

nst for each value of x. Generalizing (5.4), we set

π(m+1)(s|x)=

N∑
n=1

q(m+1)
ns1 I(xn1 = x)

N∑
n=1

I(xn1 = x)
�(5.5)

5.1.3. Updating π(m)(s′|s)
Updating the probabilities of transitioning among unobserved states re-

quires calculating the probability of n being in unobserved state s′ at time t
conditional on the data and also on being in unobserved state s at time t − 1,
qns′t|s. The joint probability of n being in states s and s′ at time t − 1 and t can
then be expressed as the product of qns�t−1 and qns′t|s. The updating formula for
the transitions on the unobserved states is then based on the identities

π(s′|s)= En[I(sn�t−1 = s)I(snt = s′)]
En[I(sn�t−1 = s)](5.6)

= En{E[I(snt = s)|dn�xn� sn�t−1 = s]E[I(sn�t−1 = s)|dn�xn]}
En{E[I(sn�t−1 = s)|dn�xn]}

= En[qns′t|sqns�t−1]
En[qns�t−1] �

where the n subscript on an expectation operator indicates that the integration
is taken over the population. The second line then follows from the law of
iterated expectations.

Substituting the relevant sample analogs at the mth iteration for qns′t|s and
qns�t−1 into (5.6) then yields our update of π(m)(s′|s). First we compute q(m+1)

ns′t|s
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according to:

q(m+1)
ns′t|s = π(m)(s′|s)L(m)

nt (s
′)

×
[

S∑
st+1=1

· · ·
S∑

sT =1

(
π(m)(st+1|s′)L(m)

n�t+1(st+1)

×
T∏

t′=t+2

π(m)(st′ |st′−1)L(m)
nt′ (st′)

)]
/(

S∑
st=1

π(m)(st |s)L(m)
nt (st)

×
[

S∑
st+1=1

· · ·
S∑

sT =1

(
T∏

t′=t+1

π(m)(st′ |st′−1)L(m)
nt′ (st′)

)])
�

Then, using the sample analog of (5.6) yields

π(m+1)(s′|s)=

N∑
n=1

T∑
t=2

q(m+1)
ns′t|s q

(m+1)
ns�t−1

N∑
n=1

T∑
t=2

q(m+1)
ns�t−1

�(5.7)

5.1.4. Updating p(m)jt (x� s)

Following our motivating example, we propose two methods to update the
CCP’s. One way is to use the current estimates of the model parameters cou-
pled with the current conditional choice probabilities. Generalizing equation
(2�22), the value of p(m+1)

jt (x� s) at the m+ 1 iteration is computed according
to

p(m+1)
jt (x� s)= ljt

(
x� s�θ(m)�π(m)�p(m)

)
�(5.8)

An alternative to updating CCP’s with the model is to use the data and the
conditional probabilities of being in each of the unobserved states, qnst . Substi-
tuting snt for sn, and qnst for qns , we can rewrite equations (2.13)–(2.16) for any
choice j at time t to show that at the model’s true parameters,

pjt(x� s)= E[dnjtqnstI(xnt = x)]
E[qnstI(xnt = x)] �
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This formulation suggests that a second way to update p(m)jt (x� s) is to use the
weighted empirical likelihood:

p(m+1)
jt (x� s)=

N∑
n=1

dnjtq
(m+1)
nst I(xnt = x)

N∑
n=1

q(m+1)
nst I(xnt = x)

�(5.9)

5.2. Maximization Step

The primary benefit of the EM algorithm is that its maximization step is
much simpler than the optimization problems defined in equations (4.4)–(4.8).
Rather than maximizing a logarithm of weighted summed likelihoods, which
requires integrating out over all the unobserved states, the maximization step
treats the unobserved states as observed and weights each observation by q(m)nst .
Thus θ(m+1) is updated by maximizing:

N∑
n=1

T∑
t=1

S∑
s=1

J∑
j=1

q(m+1)
nst ln Lt

(
dnt� xn�t+1|xnt� snt = s;θ�π(m+1)�p(m+1)

)
(5.10)

with respect to θ.

5.3. Summary

We have now defined all the pieces necessary to implement the algorithm. It
is triggered by setting initial values for the structural parameters, θ(1), the initial
distribution of the unobserved states plus their probability transitions, π(1), and
the conditional choice probabilities p(1)� Natural candidates for these initial
values come from estimating a model without any unobserved heterogeneity
and perturbing the estimates. Each iteration in the algorithm has four steps.
Given (θ(m)�π(m)�p(m)), the (m+ 1)th iteration is as follows:

Step 1. Compute q(m+1)
nst , the conditional probabilities of being in each unob-

served state, using (5.3).
Step 2. Compute π(m+1)(s1|x1), the set of initial population probabilities of

the unobserved states, and π(m+1)(s′|s), the transition parameters for the un-
observed states, using (5.5) and (5.7).

Step 3. Compute p(m+1), the conditional choice probabilities, using either
(5.8) or (5.9).

Step 4. Compute the structural parameters, θ(m+1), by maximizing (5.10).
By construction, the converged values satisfy the first order conditions of the

estimators we defined in the previous section.
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6. A TWO-STAGE ESTIMATOR

The estimation approach described above uses information from the ob-
served state transitions as well as the underlying model of the decision process.
When the CCP’s are identified from the reduced form alone, we show it is pos-
sible to estimate the parameters that govern the unobserved heterogeneity and
the conditional choice probabilities in a first stage. The structural parameters
of the dynamic discrete choice process are then estimated in a second stage.

One advantage of estimating the CCP’s in a first stage is that, as we show
in Arcidiacono and Miller (2011a), the unrestricted flow utilities can then be
computed directly; imposing further model-based structure can be tested in
a straightforward way. Another advantage is that these first-stage estimates
can be paired with any one of several CCP estimators already developed for
models where there is no unobserved heterogeneity. For example, at the end
of this section we show how to pair our first-stage estimates with simulation-
based estimators in the second stage.

We begin by partitioning the structural parameters into those that affect the
observed state transitions, θ1, and those that do not, θ2, where θ≡ {θ1� θ2}. The
transitions on the observed state variables are then given by fjt(xt+1|xt� st� θ1).
We show how to estimate θ1, the initial probability distribution of the unob-
servables π(s1|x1), their transitions π(s′|s), and the unrestricted estimates of
the CCP’s pjt(xt� st) in a first stage. Also estimated in the first stage are the
conditional probabilities of being in an unobserved state in a particular time
period qnst . In the second stage, we use the first-stage estimates of θ1, π(s′|s),
qnst , and pjt(xt� st) to estimate the remaining parameters, θ2, which include
those parameters that govern ujt(xt� st), G(εt), and the discount factor β. The
two-stage estimator presents an attractive option when there are additional
outcomes—in this case xt+1—that are affected by the unobserved state.

6.1. First Stage

The function ljt(xnt� s� θ�π�p) imposes the structure of the economic model
on the probability a particular choice is made. In the first stage, we do not
impose this structure and replace ljt(xnt� s� θ�π�p) in equation (4�2) with
pjt(xnt� snt):

Lt(dnt� xn�t+1|xnt� snt;θ1�π�p)(6.1)

=
J∏
j=1

[pjt(xnt� snt)fjt(xn�t+1|xnt� snt� θ1)]dnjt �

The updates for q(m)nst , π(m)(s1|x1), and π(m)(s′|s) are then defined by the same
formulas used in the baseline algorithms, namely (5.3), (5.5), and (5.7). The
only difference is that when calculating the likelihood of (dnt� xn�t+1) given xnt ,
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snt , and the mth estimate of the parameters and conditional choice probabil-
ities, we evaluate (6.1) at (θ(m)1 �p(m)), which uses the empirical likelihood for
the choices rather than the structural likelihood implied by the model.

At the mth iteration, the maximization step then recovers θ(m+1)
1 and p(m+1)

from {
θ(m+1)

1 �p(m+1)
}

(6.2)

= arg max
θ1�p

N∑
n=1

T∑
t=1

S∑
s=1

J∑
j=1

q(m+1)
nst

× dnjt(lnpjt(xnt� s)+ ln fjt(xn�t+1|xnt� s� θ1))�

This optimization problem is additively separable in θ1 and p, implying the
parameters can be estimated in stages.p(m+1)

jt (x� s) has the closed form solution
given by equation (5.9), the empirical update for the CCP’s in the baseline
algorithm. To prove this claim, note that for all j and j′ in the choice set, the
first order conditions can be expressed as

N∑
n=1

q(m)nst dnjtI(xnt = x)

p(m+1)
jt (x� s)

=

N∑
n=1

q(m)nst dj′ntI(xnt = x)

p(m+1)
j′t (x� s)

�

Multiplying both sides by p(m+1)
jt p(m+1)

j′t and summing over all j′ ∈ {1� � � � � J}
gives the result.

The first stage is then initiated by setting θ(1), p(1), π(1)(s1|x1), and π(1)(s′|s).
At the mth iteration, q(m+1)

nst , π(m+1)(s1|x1), and π(m+1)(s′|s) are all updated as
in the baseline algorithm, but using the empirical likelihood for the choices.
Then p(m+1) is updated using (5�9) and θ(m+1)

1 is solved from (6�2). Since this
is a standard EM algorithm, the log likelihood increases at each iteration and
will converge to a local maximum.

6.2. Second Stage

The first-stage estimates for p are used in the second stage to obtain esti-
mates for θ2, the parameters defining ujt(xt� st), G(εt), and the discount fac-
tor β. A likelihood function could be formed to estimate these remaining pa-
rameters, but simulation methods, such as those proposed by Hotz et al. (1994)
and Bajari, Benkard, and Levin (2007), are also available.

Consider, for example, a modified version of the estimator of Hotz et al.
(1994).19 From equation (3.5), the difference between any two conditional

19See Finger (2008) for an application of our two-stage estimator, where the second stage uses
the estimator developed by Bajari, Benkard, and Levin (2007).
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value functions is

vjt(xnt� snt)− vkt(xnt� snt)=ψk[pt(xnt� snt)] −ψj[pt(xnt� snt)]�
For each unobserved state, we stack the (J−1)mappings from the conditional
choice probabilities into the differences in conditional value functions for each
individual n in each period t:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ2[pt(xnt�1)] −ψ1[pt(xnt�1)] − v2t(xnt�1)− v1t(xnt�1)
���

ψJ[pt(xnt�1)] −ψ1[pt(xnt�1)] − vJt(xnt�1)− v1t(xnt�1)
���

ψ2[pt(xnt� S)] −ψ1[pt(xnt� S)] − v2t(xnt� S)− v1t(xnt� S)
���

ψJ[pt(xnt� S)] −ψ1[pt(xnt� S)] − vJt(xnt� S)− v1t(xnt� S)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
���

0
���

0
���

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�(6.3)

Second-stage estimation is based on forward simulating the differences in con-
ditional value functions arrayed in (6�3) to obtain their differences in terms of
weighted sums of future utilities ukτ(xnτ� snτ)+ψ[pt(xnτ� snτ)] for τ ≥ t� In the
papers we cited above, these differences are simulated for all τ ≤ T or, in the
infinite horizon case, until these differences are negligible due to the combi-
nation of discounting and the simulated paths of future choices. A method of
moments estimator is then formed by squaring a weighted sum over the sample
population and minimizing it with respect to the structural parameters.

The simulation approaches in Hotz et al. (1994) and Bajari, Benkard, and
Levin (2007) involve simulating the path of the state variables as well as the
decisions significantly out into the future. With finite dependence, an alter-
native is to use the decision rules such that finite dependence holds and use
simulation only for transitions of the state variables.20 Hence, if the problem
exhibits ρ-period dependence, only simulations over ρ periods are needed. In
this case, forward simulation is particularly powerful as the paths are drawn
from the currently location of the individual. For example, Bishop (2008) uses
the techniques in this paper for a state space that has 1�12E + 184 elements
with finite dependence possible after three periods. By forward simulating, she
is able to evaluate the future value term at a small subset of likely future states.

7. SMALL SAMPLE PERFORMANCE

To evaluate the small sample properties and the computational speed of our
estimators, we now conduct two Monte Carlo studies. In each design, we illus-

20This has the added benefit of weakening the assumptions regarding the time horizon as well
as how the state variables transition far out into the future.



1852 P. ARCIDIACONO AND R. A. MILLER

trate the nature and extent of the problem that our estimators solve by show-
ing that when unobserved heterogeneity is unaccounted for, it produces biased
estimates. Taken together, the two exercises cover finite and infinite horizon
models, single agent problems and dynamic games, and cases where the unob-
served state is fixed and when it varies over time.

7.1. Renewal and Finite Horizon

Our first Monte Carlo experiment revisits the renewal problem described
in Section 2, where the unobserved state is fixed over time. We describe the
experimental design for this study, and then report our Monte Carlo results
on the computational gains and the efficiency loss of our estimators relative
to full information maximum likelihood (FIML). We also consider how well
our estimator performs in nonstationary settings when the sample period falls
short of the individual’s time horizon.

7.1.1. The Bus Engine Problem Revisited

We adapt the model discussed in Section 2 to a finite horizon setting, again
normalizing the dependence of flow utility to zero when the engine is re-
placed. The payoff of keeping the current engine depends on the state s, where
s ∈ {1�2}, and accumulated mileage x1t . Maintenance costs increase linearly
with accumulated mileage up to 25 and then flatten out. Tracking accumulated
mileage beyond 25 is therefore redundant. The flow payoff of keeping the cur-
rent engine is then specified as

u2(x1t � s)= θ0 + θ1 min{x1t �25} + θ2s�(7.1)

Mileage accumulates in increments of 0.125. Accumulated mileage depends
on the decision to replace the engine, the previous mileage, and a permanent
route characteristic of the bus denoted by x2. We assume that x2 is a multiple
of 0.01 and is drawn from a discrete equiprobability distribution between 0.25
and 1.25. Higher values of x2 are then associated with shorter trips or less
frequent use. The probability of xt+1 conditional on xt ≡ {x1t � x2} and djnt = 1,
fj(xt+1|xt), is specified as:

fj(x1�t+1|xt)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e−x2(x1�t+1−x1t ) − e−x2(x1�t+1+0�125−x1t )�

if j = 2 and x1�t+1 ≥ x1t �

e−x2(x1�t+1) − e−x2(x1�t+1+0�125)�

if j = 1 and x1�t+1 ≥ 0�

0� otherwise�

(7.2)

implying that the mileage transitions follow a discrete analog of an exponential
distribution. Since accumulated mileage above 25 is equivalent to mileage at
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25 in the payoff function, we collapse all mileage transitions above 25 to 25,
implying that f1(25|xt)= exp[−x2(25)] and f2(25|xt)= exp[−x2(25 − x1t)].

Relative to the simpler version we presented in Section 2, there are then
three changes to the conditional value function. First, the conditional value
function is now subscripted to reflect the finite horizon. Second, we have an
intercept term on the flow payoff of running the engine. Finally, the mileage
transitions are now stochastic. These modifications imply that the difference in
conditional value functions between running and replacing the engine given in
(2.7) now become

v2t(xt� s)− v1t(xt� s)(7.3)

= θ0 + θ1 min{x1t �25} + θ2s

+β
∑
xt+1

ln[p1t(xt+1� s)][f1(x1�t+1|xt)− f2(x1�t+1|xt)]�

where the sum over xt+1 goes from xt to 25 in increments of 0.125. Since x2

does not affect flow payoffs but does affect future utility through the mileage
transitions, we can estimate β.

We simulate data for a decision-maker who lives for 30 periods and makes
decisions on 1000 buses in each period. The data are generated by deriving the
value functions at each state using backward recursion. We then start each bus
engine at 0 miles and simulate the choices. The data are generated using two
unobserved states, with the initial probabilities of each unobserved state set to
0.5. The econometrician is assumed to see only the last 20 periods, implying
an initial conditions problem when s is unobserved. Summarizing the dimen-
sions of this problem, there are 2 choices, 20 periods of data, 2 unobserved
states, 201 possible mileages, and 101 observed permanent characteristics. The
number of states is therefore 20 × 2 × 201 × 101 = 812�040. Additional details
regarding the data generating process and the estimation methods are given in
the Supplemental Material.

7.1.2. CCP versus FIML

Column 1 of Table I shows the parameters of the model. Columns 2 and 3
show estimates from 50 simulations using both full information maximum like-
lihood and conditional choice probabilities, respectively, when the type of the
bus is observed. The conditional choice probabilities are estimated using a logit
that is a flexible function of the state variables.21 Both methods produce esti-
mates centered around the true values. There is some loss of precision using
the CCP estimator compared to FIML, but the standard deviations of the CCP

21The state space is too large to use a bin estimator. Alternatives to the flexible logit include
nonparametric kernels and basis functions. We use flexible logits because of their computational
convenience. See the Supplemental Material for details of the terms included in the logit.
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TABLE I

MONTE CARLO FOR THE OPTIMAL STOPPING PROBLEMa

Time Effects
s Observed

Ignoring s
CCP
(4)

s Unobserved
s Observed

CCP
(7)

s Unobserved
CCP
(8)

DGP FIML CCP FIML CCP
(1) (2) (3) (5) (6)

θ0 (intercept) 2 2�0100 1�9911 2�4330 2�0186 2�0280
(0�0405) (0�0399) (0�0363) (0�1185) (0�1374)

θ1 (mileage) −0�15 −0�1488 −0�1441 −0�1339 −0�1504 −0�1484 −0�1440 −0�1514
(0�0074) (0�0098) (0�0102) (0�0091) (0�0111) (0�0121) (0�0136)

θ2 (unobs. state) 1 0�9945 0�9726 1�0073 0�9953 0�9683 1�0067
(0�0611) (0�0668) (0�0919) (0�0985) (0�0636) (0�1417)

β (discount factor) 0�9 0�9102 0�9099 0�9115 0�9004 0�8979 0�9172 0�8870
(0�0411) (0�0554) (0�0591) (0�0473) (0�0585) (0�0639) (0�0752)

Time (minutes) 130�29 0�078 0�033 275�01 6�59 0�079 11�31
(19�73) (0�0041) (0�0020) (15�23) (2�52) (0�0047) (5�71)

aMean and standard deviations for 50 simulations. For columns 1–6, the observed data consist of 1000 buses for 20 periods. For columns 7 and 8, the intercept (θ0) is allowed
to vary over time and the data consist of 2000 buses for 10 periods. See the text and the Supplemental Material for additional details.
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estimates are all less than 50 percent higher than the FIML standard deviations
and in most cases much less. These results are comparable to those found by
Hotz et al. (1994) and by the two-step estimator of Aguirregabiria and Mira
(2002) in their Monte Carlo studies of a similar problem.22

Weighed against this loss of precision are the computational gains associated
with CCP estimation. There are two reasons explaining why it is almost 1700
times faster than FIML. The full solution method solves the dynamic program-
ming problem at each candidate value for the parameter estimates, whereas
this estimator pairs a smoothed bin estimator of the CCP’s (to handle sparse
cells as explained in the Supplemental Material) with a logit that estimates
the structural parameters. Second, the number of CCP’s used to compute the
CCP estimator is roughly proportional to the number of data points, because
of the finite dependence property. In a typical empirical application, and also
here, this number is dwarfed by the size of the state space which is the relevant
benchmark for solving the dynamic optimization problems and FIML estima-
tion.

Column 4 shows the results for CCP methods when bus type is unobserved
but the heterogeneity in bus type is ignored in estimation. Averaging over the
two unobserved states, the expected benefit of running a new engine is 2.5. The
estimate of θ0 when unobserved heterogeneity is ignored is lower than this due
to dynamic selection. Since buses with s = 1 are less likely to be replaced, they
are disproportionately represented at higher accumulated miles. As a result,
the parameter on accumulated mileage, θ1, is also biased downward. These
results suggest that neglecting to account for unobserved heterogeneity can
induce serious bias, confirming, for this structural dynamic framework, early
research by Heckman (1981) on unobserved heterogeneity in duration models.

In columns 5 and 6, we estimate the model that treats s as unobserved. We
used the second CCP estimator, which updates the CCP’s using the estimated
relative frequencies of being in the unobserved state, updated via a reduced
form logit explained in the Supplemental Material. To handle the initial con-
ditions problem that emerges from only observing engine replacements after
Zurcher has been operating his fleet for 10 periods, the initial probability of
being in an unobserved state (at period 11) is estimated as a flexible function
of the initial observed state variables.23 Again, both FIML and CCP methods
yielded estimates centered around the truth. There is surprisingly little preci-
sion loss from excluding the brand variable in the data and modeling s as un-
observed. Our results also show that the loss from using the CCP estimator is

22The main difference between our specification and theirs is that we exploit the renewal prop-
erty. This approach circumvents simulation into the indefinite future as done by Hotz et al. (1994)
and avoids inverting matrices with dimension equal to the number of elements in the state space
(just over 40,000 in our case) as done by Aguirregabiria and Mira (2002).

23This approach is also used by Keane and Wolpin (1997, 2000, 2001), Eckstein and Wolpin
(1999), and Arcidiacono, Sieg, and Sloan (2007).
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smaller than FIML; all standard deviations are less than 25 percent higher than
the standard deviations of the corresponding FIML estimates. That the differ-
ence in precision shrinks occurs because some of the structure of the model is
imposed in the CCP estimation through the probabilities of being in particular
unobserved states.

Regardless of which method is used, treating bus brand as an unobserved
state variable, rather than observed, increases computing time. The increased
computational time in the CCP estimator is fully explained by the iterative
nature of the EM algorithm, because each iteration essentially involves esti-
mating the model as if the brand is observed.24 Similarly, though not quite as
transparently, FIML does not evaluate the likelihood of each bus history given
the actual brand (as in column 2), but the likelihood for both brands. This ex-
plains why estimation time for FIML essentially doubles (because there are
two brands), increasing by more than 2 hours, whereas CCP increases by a
factor of 80, or by 6 1

2 minutes.

7.1.3. Nonstationary Problems With Short Panels

To further explore the properties of our estimators, we made the exer-
cises more complex, thus making FIML estimation infeasible. As analyzed in
Arcidiacono and Miller (2011a), dynamic discrete choice models are partially
identified even when there are no data on the latter periods of the optimiza-
tion problem. In particular, suppose individuals have information about their
future, which is never captured in the data, that affects their current choices.
In life cycle contexts, this might include details about inheritances, part time
work opportunities following retirement, and prognoses of future health and
survival. In this model, Zurcher might know much more about the time horizon
and how engine replacement costs will evolve in the future. Both factors affect
the optimal policy; he will tend to replace bus engines when they are cheaper,
extending the life of some and shortening the life of others to take advantage of
sales, and toward the end of the horizon he will become increasingly reluctant
to replace engines at all.

We now assume that the cost of running old engines and replacing them
varies over time, and substitute a time dependent parameter θ0t for θ0 in equa-
tion (7�1)� To emphasize the fact that the time shifters affect the costs for each
bus the same way, we subscript bus-specific variables by n. Equation (7�1) be-
comes

u2t(x1nt� sn)− u1t(x1nt� sn)= θ0t + θ1x1nt + θ2sn�

We assume Zurcher knows both the value of T and the sequence {θ01� � � � � θ0T }.
In contrast, the econometrician does not observe the values of θ0t and knows
only that the data end before T .

24We did not explore the possibility of speeding up the EM algorithm using techniques devel-
oped by Jamshidian and Jennrich (1997) and others.
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Implementing FIML amounts to estimating the value of the integer T , the
sequence {θ01� � � � � θ0T }, and the parameters of interest {θ2� θ3�β}. If T comes
from the (unbounded) set of positive integers, then the model is not identified
for panels of fixed length. In practice, strong parametric assumptions must be
placed on the length of the horizon, T , and how aggregate effects, here mod-
eled by θ0t , evolve over time after the sample ends.25 In contrast, implementing
the second of our CCP estimators (that exploits the finite dependence prop-
erty and updates using the estimated relative frequencies of the unobserved
variable) does not require any assumptions about the process driving θ0t or the
horizon length. This is because the conditional choice probabilities from the
last period of the data convey all the relevant information regarding the time
horizon and the future values of θ0t , enabling estimation of the flow payoffs up
to one period before the sample ends.26

We again set T to 30, but now assume the econometrician only observes pe-
riods 11–20, increasing the number of buses from 1000 to 2000 to keep the size
of the data sets comparable to the previous Monte Carlo experiments.27 Re-
sults with s both observed and unobserved are given in the last two columns
of Table I. When s is observed, adding time-varying intercepts has virtually no
effect on the precision of the other parameters or on the computational time.
When s is unobserved, computation time almost doubles relative to CCP es-
timation with no time-varying effects (from 6.59 minutes to 11.31 minutes),
and the standard deviations of the parameters increase by up to 50 percent.
However, the estimates are still centered around the truth and are reasonably
precise, demonstrating that structural estimation in these more demanding en-
vironments can be quite informative.

7.2. Dynamic Games

The second Monte Carlo experiment applies our estimators to infinite hori-
zon dynamic games with private information. To motivate the exercise, we first
show how our framework can be adapted to stationary infinite horizon games
with incomplete information. We then apply our estimators to an entry and

25Similarly the first CCP estimator is not feasible. To update p(m+1)
1t (xnt � sn) for period t

with l1(xnt� sn� θ
(m)�π(m)�p(m)) using (5.8), we require p(m)1�t+1(xn�t+1� sn). (See, for example,

equation (2.8) in Section 2.) But an input p(m−1)
1�t+2 (xn�t+2� sn) is required in l1(xn�t+1� sn� θ

(m−1)�

π(m−1)�p(m−1)) to update p(m)1�t+1(xn�t+1� sn) for period t + 1 and so on. The upshot is that the full
θ0t sequence and also T is estimated, as in FIML.

26More generally, in problems exhibiting finite dependence of ρ, the second estimator provides
estimates up to ρ periods before the sample ends.

27The data in period 20 are only used to create the conditional choice probabilities used in the
future value term for period 19. This is because the econometrician requires one-period-ahead
CCP’s to create differences in the conditional value functions for the current period.
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exit game.28 Here the unobserved states affect demand and evolve over time
according to a Markov chain. Finally, we report on the performance of the
baseline estimators as well as the alternative two-stage estimator developed in
Section 6.

7.2.1. Adapting Our Framework to Dynamic Games

We assume that there are I firms in each of many markets and that the sys-
tematic part of payoffs to the ith firm in a market not only depends on its own
choice in period t (denoted by d(i)t ≡ (d(i)1t � � � � � d

(i)
Jt ), the state variables zt), but

also the choices of the other firms in that market, which we now denote by
d(−i)t ≡ (d(1)t � � � � � d

(i−1)
t � d(i+1)

t � � � � � d(I)t ). Consistent with the games literature,
we assume that the environment is stationary. Denote by U(i)

j (zt� d
(−i)
t ) + ε(i)jt

the current utility of firm i in period t, where ε(i)jt is an identically and inde-
pendently distributed random variable that is private information to the firm.
Although the firms all face the same observed state variables, these state vari-
ables will affect the firms in different ways. For example, a characteristic of
firm i will affect the payoff for firm i differently than a characteristic of firm i′.
Hence, the payoff function is superscripted by i.

Firms make simultaneous choices in each period. We denote the prob-
ability firm i’s competitors choose d(−i)t conditional on the state variables
zt as P(d(−i)t |zt). Since ε(i)t is independently distributed across all the firms,
P(d(−i)t |zt) has the product representation

P
(
d(−i)t |zt

)=
I∏
i′=1
i′ �=i

(
J∑
j=1

d(i
′)

jt p
(i′)
j (zt)

)
�(7.4)

We impose rational expectations on the firm’s beliefs about the choices of
its competitors and assume firms are playing stationary Markov-perfect equi-
librium strategies. Hence, the beliefs of the firm match the probabilities given
in equation (7.4). Taking the expectation of U(i)

j (zt� d
(−i)
t ) over d(−i)t , we define

the systematic component of the current utility of firm i as a function of the
firm’s state variables as

u(i)j (zt)=
∑

d
(−i)
t ∈JI−1

P
(
d(−i)t |zt

)
U(i)
j

(
zt� d

(−i)
t

)
�(7.5)

The values of the state variables at period t+1 are determined by the period
t choices by both the firm and its competitors as well as the period t state

28The empirical literature on dynamic games with exit began with Gowrisankaran and Town
(1997). Two-step estimation of dynamic games with exit includes Beauchamp (2010), Beresteanu,
Ellickson, and Misra (2010), Collard-Wexler (2008), Dunne, Klimek, Roberts, and Xu (2009),
Gowrisankaran, Lucarelli, Schmidt-Dengler, and Town (2009), and Ryan (2009).
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variables. Denote by Fj(zt+1|zt� d(−i)t ) the probability of zt+1 occurring given
action j by firm i in period t, when its state variables are zt and the other firms
in its markets choose d(−i)t � The probability of transitioning from zt to zt+1 given
action j by firm i in then given by

f (i)j
(
zt+1|zt

)=
∑

d
(−i)
t ∈JI−1

P
(
d(−i)t |zt

)
Fj
(
zt+1|zt� d(−i)t

)
�(7.6)

The expression for the conditional value function for firm i is then no dif-
ferent than what was described in Section 3 subject to the condition that we
are now in a stationary environment. For example, equation (3.6) is modified
in the stationary games environment to29

v(i)j (zt)= u(i)j (zt)+β
Z∑

zt+1=1

[
v(i)k (zt+1)+ψk

[
p(i)(zt+1)

]]
f (i)j (zt+1|zt)�(7.7)

One caveat is that multiple equilibria may be an issue. As illustrated in
Pesendorfer and Schmidt-Dengler (2010), iterating to obtain the equilibrium
may make it impossible to solve for particular equilibria. One of the benefits
of our two-stage estimator applied to games is that no equilibrium is itera-
tively solved for in the first stage. Instead, conditional choice probabilities are
taken from the data themselves, with the data on another outcome used to pin
down the distribution of the unobserved states. With consistent estimates of
the conditional choice probabilities from the first stage, we can then estimate
the structural parameters of the dynamic decisions by taking them as given—
no updating of the CCP’s is required.

7.2.2. An Entry and Exit Game

Our second Monte Carlo experiment illustrates the small sample properties
of our algorithms in a games environment. We analyze a game of entry and
exit. In this game, d(i)t ≡ (d(i)1t � d

(i)
2t ), where d(i)1t = 1 means i exits the industry

in period t and d(i)2t = 1 means the firm is active, either as an entrant (when
d(i)2�t−1 = 0) or as a continuing incumbent (when d(i)2�t−1 = 1). When a firm exits,
it is replaced by a new potential entrant.

Following the notational convention in the rest of the paper, we partition
the state variables of the firm, zt , into those the econometrician observes, xt ,
and the unobserved state variables, st � The observed state has two compo-
nents. The first is a permanent market characteristic, denoted by x1, and is

29The results described earlier for the single agent case on finite dependence, the structure of
the errors, and estimating conditional choice probabilities in the presence of unobserved states
apply to games as well.
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common across firms in the market. Each market faces an equal probability
of drawing any of the possible values of x1 where x1 ∈ {1�2� � � � �10}. The sec-
ond observed characteristic, x2t , is whether or not each firm is an incumbent,
x2t ≡ {d(1)2�t−1� � � � � d

(I)
2�t−1}. Firms that are not incumbents must pay a start-up cost,

making it less likely that these firms will choose to stay in the market. The ob-
served state variables are then xt ≡ {x1�x2t}.

The unobserved state variable st ∈ {1� � � � �5}, which we interpret as a de-
mand shock, follows a first order Markov chain. We assume that the probabil-
ity of the unobserved state remaining unchanged in successive periods is fixed,
π ∈ (0�1). If the state does change, any other state is equally likely to occur,
implying that the probability of st+1 conditional on st when st �= st+1 is (1−π)/4.

The flow payoff of firm i being active, net of private information ε(i)2t , is mod-
eled as

U(i)
2

(
x(i)t � s

(i)
t � d

(−i)
t

)= θ0 + θ1x1 + θ2st + θ3

I∑
i′=1�i′ �=i

d(i
′)

2t + θ4

(
1 − d(i)2�t−1

)
�(7.8)

We normalize U(i)
1 (x

(i)
t � s

(i)
t � d

(−i)
t )= 0; U(i)

2 (x
(i)
t � s

(i)
t � d

(−i)
t ) is then used to form

u(i)2 (xt� st) by way of (7.5).
We assume that the firm’s private information, ε(i)jt , is distributed Type 1 ex-

treme value. Since exiting is a terminal choice with the exit payoff normalized
to zero, the Type 1 extreme value assumption and (7.7) imply that the condi-
tional value function for being active is

v(i)2 (xt� st)= u(i)2 (xt� st)(7.9)

−β
∑
xt+1∈X

∑
st+1∈S

(
ln
[
p(i)1 (xt+1� st+1)

])
f (i)2 (xt+1� st+1|xt� st)�

The future value term is then expressed as a function solely of the one-period-
ahead probabilities of exiting and the transition probabilities of the state vari-
ables.

We also generated price data on each market, denoted by yt to capture the
idea that unobserved demand shocks typically affect other outcomes apart
from the observed decisions. Prices are a function of the permanent market
characteristic, x1, the number of firms active in the market, and a shock de-
noted by ηt . We assume the shock follows a standard normal distribution and
is independently distributed across markets and periods. The shock is revealed
to each market after the entry and exit decisions are made. The price equation
is then specified as

yt = α0 + α1x1 + α2st + α3

I∑
i=1

d(i)2t +ηt�
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Note that we cannot obtain consistent estimates of the price equation by re-
gressing prices on the x and the entry/exit decisions. This is because the unob-
served state st would be part of the residual and is correlated with the entry/exit
decisions. As we show in the results section, ignoring this selection issue results
in the estimates of the effects of competition on price being upward biased.

The number of firms in each market is set to six and we simulated data for
3000 markets. The discount factor is set at β= 0�9� Starting at an initial date
with six potential entrants in the market, we ran the simulations forward for 20
periods. To show that our algorithms can easily be adapted to cases where there
is an initial conditions problem, we used only the last 10 periods to estimate the
model. Initial probabilities of being in each unobserved state are again esti-
mated as a flexible function of the state variables in the first observed period.30

Note that multiple equilibria may be possible here. We did not run into this
issue in the data creation or in estimation and we assume that one equilibrium
is being played in the data. A key difference between this Monte Carlo experi-
ment and the renewal Monte Carlo is that the conditional choice probabilities
have an additional effect on both current utility and the transitions on the state
variables due to the effect of the choices of the firm’s competitors on profits.

7.2.3. Results

Column 1 of Table II shows the parameters of the data generating process.
Columns 2 and 3 show what happens when st is observed and when it is ignored.
When st is observed, all parameters are centered around the truth, with the av-
erage estimation time being 8 seconds. Column 3 shows that ignoring st results
in misleading estimates of the effects of competition on prices and profits. The
parameters in both the profit function and the price equation on the number of
competitors (θ3 and α3) are biased upward, significantly underestimating the
effect of competition.31

Column 4 reports our results for the estimator when the conditional choice
probabilities are updated using the model. All estimates are centered around
the truth, with the average computational time being a little over 21 minutes.
Column 5 updates the conditional choice probabilities with a reduced form
logit of the type analyzed in the renewal problem. The standard deviations of
the estimated profit parameters (the θ’s) increase slightly relative to the case
when the CCP’s are updated with the model. Computation time also increases
by a little over 25 percent.

Column 6 presents results using the two-stage method. Here, the distribu-
tions for the unobserved heterogeneity and the CCP’s are estimated in a first

30Further details of the reduced form for the initial conditions parameters can be found in the
Supplemental Material.

31Estimating the price process with market fixed effects did not change this result. In this case,
α3 was estimated to be around −0.2, again underestimating the effects of competition.
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TABLE II

MONTE CARLO FOR THE ENTRY/EXIT GAMEa

DGP st Observed Ignore st CCP Model CCP Data Two-Stage No Prices
(1) (2) (3) (4) (5) (6) (7)

Profit parameters
θ0 (intercept) 0 0�0207 −0�8627 0�0073 0�0126 −0�0251 −0�0086

(0�0779) (0�0511) (0�0812) (0�0997) (0�1013) (0�1083)
θ1 (obs. state) 0�05 −0�0505 −0�0118 −0�0500 −0�0502 −0�0487 −0�0495

(0�0028) (0�0014) (0�0029) (0�0041) (0�0039) (0�0038)
θ2 (unobs. state) 0�25 0�2529 0�2502 0�2503 0�2456 0�2477

(0�0080) (0�0123) (0�0148) (0�0148) (0�0158)
θ3 (no. of competitors) −0�2 −0�2061 0�1081 −0�2019 −0�2029 −0�1926 −0�1971

(0�0207) (0�0115) (0�0218) (0�0278) (0�0270) (0�0294)
θ4 (entry cost) −1�5 −1�4992 −1�5715 −1�5014 −1�4992 −1�4995 −1�5007

(0�0131) (0�0133) (0�0116) (0�0133) (0�0133) (0�0139)

Price parameters
α0 (intercept) 7 6�9973 6�6571 6�9991 6�9952 6�9946

(0�0296) (0�0281) (0�0369) (0�0333) (0�0335)
α1 (obs. state) −0�1 −0�0998 −0�0754 −0�0995 −0�0996 −0�0996

(0�0023) (0�0025) (0�0028) (0�0028) (0�0028)
α2 (unobs. state) 0�3 0�2996 0�2982 0�2993 0�2987

(0�0045) (0�0119) (0�0117) (0�0116)
α3 (no. of competitors) −0�4 −0�3995 −0�2211 −0�3994 −0�3989 −0�3984

(0�0061) (0�0051) (0�0087) (0�0088) (0�0089)
π (persistence of unobs. state) 0�7 0�7002 0�7030 0�7032 0�7007

(0�0122) (0�0146) (0�0146) (0�0184)

Time (minutes) 0�1354 0�1078 21�54 27�30 15�37 16�92
(0�0047) (0�0010) (1�5278) (1�9160) (0�8003) (1�6467)

aMean and standard deviations for 100 simulations. Observed data consist of 3000 markets for 10 periods with 6 firms in each market. In column 7, the CCP’s are updated
with the model. See the text and the Supplemental Material for additional details.
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stage along with the parameters that govern the price process. The only pa-
rameters estimated in the second stage are those that govern the current flow
payoffs. The standard deviations of the coefficient estimates are similar to the
case when the CCP’s are updated with the model. Computation time, however,
is faster, averaging a little over 15 minutes.

Finally, we consider the case when no price data are available. When data
are only available on the discrete choices, is it still possible to estimate a speci-
fication where the unobserved states are allowed to transition over time? Col-
umn 7 shows that in some cases the answer is “Yes.” Estimating the model
without the price data and updating the CCP’s using the model again produces
estimates that are centered around the truth, with the standard deviations of
the estimates similar to those of the two-stage method. The one parameter that
is less precisely estimated is the persistence of the unobserved state. Computa-
tion time is also fast at a little less than 17 minutes. These results suggest that
the additional information on prices is not particularly helpful. Note, however,
that there are six entry/exit decisions for every one price observation. In unre-
ported results, we reduced the maximum number of firms in a market to two
and, in this case, including price data substantially improved the precision of
the estimates.

Although the Monte Carlo results show that rich forms of unobserved het-
erogeneity can be accounted for using our methods, there are both computa-
tional and identification limitations to accommodating large numbers of unob-
served state variables. With regard to identification, the number of unobserved
states that can be accommodated is limited by variation in the observed state
variables as well as the length of the panel. There are also computational re-
strictions, as integrating out large numbers of unobserved state variables sub-
stantially complicates forming the likelihood of the data, which is a necessary
input to forming the conditional probabilities of being in particular unobserved
states. Even though this is less of an issue here than in full solution meth-
ods where the unobserved states would have to be integrated out within the
likelihood maximization routine, increasing the number of unobserved states
nonetheless will increase computational time. The increase in computational
time is somewhat mitigated through our assumption that the unobserved states
follow a Markov process.32 Namely, consider forming the joint likelihood that
an individual made choice dt and was in unobserved state st . The way in which
events after t and before t affect this likelihood operate fully through the cu-
mulative probability of being in each of the unobserved states at t− 1 and t+ 1
given dt and st ; the paths into the states at t − 1 and t + 1 do not matter except
through this cumulative probability.

32The computational time becomes even less of a concern when the unobserved states are
permanent.
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8. CONCLUSION

CCP methods can reduce the computational time of estimating dynamic dis-
crete choice models. This paper extends the class of models that are easily
adapted to the CCP framework by broadening the set of dynamic discrete
choice problems, where few conditional choice probabilities are needed, as
well as showing how to incorporate unobserved heterogeneity into CCP esti-
mation.

We establish that future utility terms can always be expressed as a function of
conditional choice probabilities and the flow payoffs for any choice sequence.
When two choice sequences with different initial choices lead to the same dis-
tribution of states after a few periods, then estimation requires only conditional
choice probabilities for a few periods ahead.

We further show how to accommodate unobserved heterogeneity via finite
mixture distributions into CCP estimation. The computational simplicity of the
estimator extends to unobserved state variables that follow a Markov chain.
Our baseline algorithm iterates between updating the conditional probabilities
of being in a particular unobserved state, updating the CCP’s for any given
state (observed and unobserved), and maximizing a likelihood function where
the future values terms are in large part functions of the CCP’s.

When the transition on the unobserved states and the CCP’s are identi-
fied without imposing the structure of the underlying model, it is possible to
estimate the parameters that govern the unobserved heterogeneity in a first
stage. We update the CCP’s using the unrestricted distribution of discrete
choices weighted by the estimated probabilities of being in particular unob-
served states. This approach provides a first-stage estimator for blending un-
observed heterogeneity into non-likelihood-based approaches such as Hotz et
al. (1994) and Bajari, Benkard, and Levin (2007) in a second stage to recover
the remaining structural parameters.

Our estimators are
√

N consistent and asymptotically normal. We undertake
two Monte Carlo studies—modeling a dynamic optimization problem and a dy-
namic game—to investigate small sample performance. These studies indicate
that substantial computational savings can result from using our estimators
with little loss of precision.
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