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 Vol. 25, No. 4, Winter 1994

 Computing Markov-perfect Nash equilibria:
 numerical implications of a dynamic
 differentiated product model

 Ariel Pakes*

 and

 Paul McGuire**

 In this article we develop and illustrate a simple algorithm for computing Markov-perfect

 Nash equilibria. The advantage of the Markov-perfect framework is that it is flexible enough
 to reproduce important aspects of reality in a variety of market settings. As a result, we

 hope that our article and (perhaps improved) versions of the associated algorithms will

 eventually be a part of a tool kit that allows researchers to go back and forth between
 the implications of economic theory and the characteristics of alternative datasets.

 1. Introduction

 * One of the more striking features of data on plants or firms is the degree of hetero-

 geneity among firms in the same industry in both the levels and the movements over time

 of the variables we are typically interested in (shares in industry output, investment, pro-

 ductivity, etc.). The nature of these differences will generally have important conse-
 quences for the way we analyze issues of interest.

 That this is true even if we are only after the aggregate impacts of a policy or an

 environmental change (say the effect of a change in input prices on industry output, or
 the effect of an investment tax credit on productivity) is a result of the fact that when
 firms are differentially situated, their responses will typically be different nonlinear func-

 tions of the changing variable (entry and exit are extreme examples of these nonlinearities).
 As a result, the sum of the individual responses (or the aggregate response) will depend
 on the detailed characteristics of the distribution of response patterns. Interestingly, the

 importance of explicitly accounting for heterogeneity in response patterns has been a theme
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 of recurrent emphasis in the (recent) empirical literature, which uses micro panel data to

 study the impacts of policy and environmental changes.'
 Moreover, often we are after more detail on the distribution of response patterns than

 just the sum of the individual responses. Indeed, frequently what we would like to know

 is how that distribution is related to the primitives of the problem. Obvious examples in

 which this more detailed knowledge is of primary interest are easy to come by in almost

 all aspects of economics. Analyses of the link between default probabilities and the market

 for finance capital and of the effects of regulatory changes on market structure are ex-

 amples that occur repeatedly in the finance and industrial organization literatures; we focus

 on the effects of regulatory changes in the numerical analysis below. More recently, the

 finding that almost all of the variance in gross job creation and gross job destruction is

 within-time-period, within-industry variance (see Davis and Haltwinger, 1990) makes any

 analysis of the causes or the effects of job turnover in labor markets highly dependent on
 the detailed characteristics of the equilibrium distribution of responses from dynamic het-

 erogeneous agent models. (For an analysis of this dependence in one particular setting,

 see Hoppenhayn and Rogerson (1993).)

 Once our models acknowledge the fact that agents do differ, and grant that their

 actions may impact on one another, then the computation of the responses needed to ana-

 lyze the kinds of issues discussed above can become quite demanding. This article pro-

 vides an algorithm for computing Markov-perfect Nash equilibrium responses (Maskin and

 Tirole, 1988a, 1988b) for a class of dynamic heterogeneous-agent models that is rich

 enough to reproduce many of the features of firm-level datasets. Our intention is to provide
 a tool to help researchers do descriptive and policy analysis in a setting that allows them

 to go back and forth between the implications of economic theory and the information in
 these datasets.2

 We illustrate by numerically analyzing the equilibria from a differentiated-products
 version of the Ericson and Pakes (forthcoming) model of industry dynamics. The model

 focuses on the heterogeneity and idiosyncratic uncertainty induced by the random out-

 comes of investment (or research and exploration) processes.3 In it firms invest to develop

 profit opportunities (improved goods or techniques of production, or larger stocks of fixed

 inputs). The outcomes of the investment process are uncertain. Positive outcomes lead the

 firm to states in which it earns more profits. If the outcomes generate lesser increments

 than those of competitors (both inside and outside the industry) the firm's profits deteri-

 orate, and may lead to a situation in which it is optimal to abandon the whole undertaking
 (this endogenizes exit behavior and provides one way of accounting for selection in the
 nature of the evolutionary process).

 A firm's supply to the spot market for current output, and its current profits, depend

 on its own level of development, a vector that provides the level of development of the

 other firms currently active in the industry (this vector will be referred to as the industry
 structure) and the level of development of alternatives outside the industry. The level of

 development of the outside alternative evolves exogenously. Entry, exit, and investment

 ' For two examples, see Thomas's (1990) analysis of the impact of changes in FDA regulations on the

 rate of innovation in the pharmaceutical industry and Olley and Pakes's (1991) study of the impact of dereg-

 ulation on aggregate productivity growth in the telecommunication equipment industry.

 2 For a discussion of some of the issues that would arise in obtaining estimates of the parameters of

 models such as those computed here, see Pakes (1992) and the literature cited there.

 3 There is more than one source of idiosyncratic uncertainty that firms react to, and different sources are

 likely to be more relevant to analyzing behavior in different industries. It is analytically easy to incorporate

 exogenous (say demand or factor cost) uncertainty into the framework presented here, provided the alternative

 possible realizations of that uncertainty do not reorder the relative efficiencies of the firms in the industry (see,

 e.g., Dixit (1989)). If, as in Lambson (1991), relative efficiencies are affected by price realizations, then a

 more substantive modification of our algorithm is required.
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 decisions (which determine the levels of development of the actors in the industry) are
 made to maximize the expected discounted value of future net cash flow conditional on
 the current information set. That information set includes a distribution for the vector

 determining the industry structures in future years conditional on the current structure. The
 equilibrium notion insists that this distribution is in fact consistent with optimal investment
 behavior by all incumbents and potential entrants. Because we restrict strategies to be
 measurable functions of the set of variables which determine either current production
 costs or current demand conditions (to use the terminology of Tirole (1989), to "payoff
 relevant" state variables), our equilibrium is Markov-perfect Nash in investment strategies
 in the sense of Maskin and Tirole (1987, 1988a, 1988b). Alternatively, using the earlier
 terminology of the differential (or difference) game literature, the equilibrium is a closed-
 loop no-memory (or feedback) equilibrium (see Basar and Olsder (1982), Starr and Ho
 (1969), and the literature cited in these references).

 At the heart of this equilibrium is a stochastic process that generates the industry

 structures the model emits. That process is ergodic, but its more detailed characteristics

 depend on the precise values of the model's parameters. This fact motivates our devel-
 opment of the algorithm for computing the equilibria.4 We then use that algorithm to do
 more detailed analysis of special cases of the model. Here we begin by simply illustrating
 the kind of output that can be produced through the numerical analysis of dynamic equi-
 librium models that allow for idiosyncratic uncertainties.

 We then move on to a numerical analysis of the effects of different institutional ar-
 rangements on market structure and on welfare for one particular set of demand and cost
 functions. The analysis compares five different institutional structures to one another and
 to the outcomes of the actions of a social planner. Those institutional structures are the
 following: a free-entry Markov-perfect equilibrium; an initial temporary monopoly fol-
 lowed by free entry; free entry with an institutional constraint that limits the market share
 of the largest firm to be below some fixed fraction of the overall market; free entry with
 institutionally induced incremental sunk entry costs (a license must be obtained to enter
 the market); and a "perfect" cartel. The results from these experiments illustrate the po-
 tential usefulness of the computational techniques for policy and descriptive analysis, and
 they also provide some insights into the implications of the institutional arrangements we
 analyze.

 The algorithm we suggest for computing Markov-perfect Nash equilibria is analyti-
 cally simple but may be computationally demanding, particularly if the industry we are
 describing tends to have a large number of firms active in a given period. Section 5 of
 the article begins with an explicit consideration of the computational burden of the al-
 gorithm and then introduces approximation techniques designed to make computation eas-
 ier. We focus on techniques based on polynomial approximations to the value function.

 Define a grid point to be a combination of the value of a firm's own state variable
 and a list of the state variables of all the firm's active competitors. The approximation
 techniques are based on fitting a polynomial to the value of being active at a small number
 of grid points, and then using the polynomial coefficients obtained from this fit to predict
 the value function at other grid points as needed.

 The major result of Section 5 is analytic. It shows that provided the value function
 of a given agent is symmetric in the state vectors of its competitors, then the number of

 4 Hoppenhayn and Rogerson (1993) also consider computation of equilibrium in heterogeneous-agent models.
 They assume that all agents are zero measure and all sources of uncertainty are idiosyncratic, show that under
 their conditions the industry structure converges to a fixed s* (and stays there), and then provide a simple way
 of computing s*. Judd (1990) has computed Markov-perfect equilibria for two-agent models with no entry and
 exit, and Hansen and Sargent (1990) provide a computational algorithm for a class of heterogeneous-agent

 models that allow for linear decision rules and equilibria (they assume quadratic preferences, linear technologies
 and information sets, no discrete choices, and that continuous choices are always interior).
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 polynomial coefficients one needs to determine for a given order of approximation is in-

 dependent of the number of agents active in the market. This result implies that the number

 of grid points we need to evaluate at each iteration of the fixed point calculation does not

 depend on the number of firms active in the industry. We close this section with a sum-

 mary of some early results on the fit of the approximation for our problem.

 Section 2 begins with a brief description of each of the primitives of the model,

 starting with the profit function, then the other primitives determining incumbent behavior,

 and finally those determining the behavior of entrants. For each primitive we outline the

 general characteristics it must possess and then go over the detailed example used in the

 numerical analysis. We then give a verbal characterization of optimal policies and the

 nature of equilibrium (for more detail, see Ericson and Pakes (forthcoming)). In Section

 3 we introduce the computational algorithm,5 in Section 4 we provide the numerical re-
 sults, and in Section 5 we consider its computational burden and the approximation tech-

 niques. Section 6 is a short summary.

 2. The model

 * The state variables determining the firm's perception of its opportunities are an index

 of the firm's own efficiency level (to) and a vector determining the efficiency levels of
 its competitors (s). Formally, (to, s) C fl x S C 2 x 2S+, where 2 denotes the integers,
 so co is integer-valued and s = [si], where si is the number of firms at efficiency i [for
 i C 2]. The profit function maps each possible combination of these states into the real
 numbers, or v(, *): Q x S -> R.

 This representation of the profit function is a reduced form for the equilibrium in the

 spot market, and the detailed characteristics of the market that lead to this equilibrium can
 vary from example to example. This allows our algorithm to be used in a variety of market

 settings. Assumption 1 (with the verbal description following it) provides the conditions
 on the profit function used in Ericson and Pakes (forthcoming). Together with the other
 conditions to be introduced presently, this assumption insures that any dynamic equilib-
 rium generated by the algorithm developed here will have the properties reviewed below.

 Assumption 1.

 (i) Tr(, -) is nondecreasing in co for all s C S, and there exists a complete preorder on S,
 say A, such that 7r(, -) is nonincreasing in s, ordered by >, for all co;

 (ii) for all s C S, lim(t+x)1T(co, s) '? < oo and lim(,_)7I(, s) < (1 - p3)4, whereas

 for all cl and all s C Sj(ca), where Sj(c) = {s E S | Tos 0 n,

 IT(Cv, s) - (1 - 3)0 + o(l/n).

 Part (i) of this assumption states that profits are increasing in the efficiency parameter

 (co) and that one can order industry structures (S) such that profits are decreasing in that

 order. In (ii), 0 is the scrap or exit value of the firm and /3 is the discount rate, so (1 - 8)34
 is the annuity value of the recoverable assets of the firm should the firm exit. Roughly

 then, in addition to bounding profits, (ii) insures that (for given s) there is an cv low
 enough, and (for given to) there is a level of competition (an s) stiff enough, to force

 5 We have put both Gauss and C code for our algorithm, together with a description of that algorithm

 (in both PCL and PostScript format), on our computer system (Pakes, Gowrisankaran, and McGuire, 1993).

 They can be accessed using FTP by any Internet user. To do so, the user should FTP to "econ.yale.edu," use

 "anonymous" as login, and his or her own username as password. Then the user should change directory to

 "pub/mrkv-eqm" and copy all needed files. There is a "read-me" file to start you off. We note that the Gauss

 version is significantly (about one hundred times) slower than the C version, and that even the C version is

 two to three times as slow as the version of the algorithm used in this article.
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 profits below what a firm would earn on its assets by investing them in an alternative

 activity.

 Quite a wide range of markets generate profit functions with these characteristics.
 The example in this article uses a profit function from a differentiated product model of

 the sort analyzed intensively in the recent industrial organization literature (see Anderson
 and De Palma (1992) for more detail on the theoretical and Berry, Levinsohn, and Pakes
 (1993) for more detail on the empirical analysis of such models). Elsewhere we have used

 our algorithm to analyze a homogeneous product market with constant marginal costs that
 vary across firms (see Ericson and Pakes, forthcoming) and a homogeneous product market
 with constant common marginal costs up to a capacity constraint that varies across firms
 (see Berry and Pakes, 1993).

 We now derive the profit function for the differentiated product model used in our

 examples. Index goods by j, where goods j = 1, . .. , N are the goods produced by the
 firms competing in the industry, and good 0 is the outside good (a composite of all other

 goods). Each consumer purchases at most one good from the industry. The utility con-

 sumer r derives from purchasing and consuming good j is given by

 Urj = VjP + Erj, (1)

 where v; is an index of the quality, and pj* is the price of, good j, r [=1, ... , M] indexes
 different consumers, and the Erj represent differences among consumers in the value they

 attach to good j. Consumer r chooses good j if and only if she prefers it over all the
 alternatives, that is, if for q = 0, 1, ..., N,

 Erj - Erq - [vq - Vj] + [P4 - pq ]

 = [V Vo - [v - Vo] + [pM - P -[pa - 0p0]

 = g[9oq]- g(t)j] + Pj- Pq, (2)

 where Pq = Pq*- pon CUq = gl[Vq -Vo], and g( ) is increasing, concave, and bounded.
 In the specification we compute C(q = vq- vo (so that g-1 is the identity) over most pos-
 sible values of vq - vo, so it is easiest to think of co in this way. We introduce g( ) to put
 an upper bound on profits without having to explicitly introduce the factors generally
 thought to bound profits in empirical work.6

 Note that (2) implies that consumer choices are determined entirely by the quality
 and prices of the goods marketed in this industry relative to the quality and price of the
 outside alternative (adding a consumer-specific constant to all alternatives does not change
 behavior, so we have subtracted the utility from the outside alternative from all choices
 making it our "numeraire"). As a result, when we refer to increases in the quality (w) or
 the price (p) of a product we mean increases relative to the quality or the price of the
 outside alternative, and in our notation the quality of a product will decrease whenever
 the improvements to it are not as great as the improvements in the outside alternative.

 Note also that movements in vo will cause synchronized movements in the relative effi-
 ciencies-in the w's-of all firms in the industry, and this in turn will generate a positive

 correlation in their profits. Because movements in the v; will tend to generate negative
 correlations in the profits of the firms in an industry, dealing explicitly with the outside
 alternative allows us to rationalize the positive correlations in the profits of firms within
 an industry that we often observe in the data.

 6 g generates decreasing marginal utility to increments in the relative quality of the goods marketed in
 this industry, and this in turn generates an upper bound to profits. A more detailed model would explicitly

 incorporate the income constraints of consumers and decreasing marginal utility of income (see, e.g., Berry,

 Levinsohn, and Pakes, 1993). This would have similar effects on demand patterns but would be computationally

 more burdensome.
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 Let the set C[coj; p, s], where s is the vector providing the number of firms at
 each co, be the set of E's that satisfy the set of inequalities in (2), and hence induce the

 choice of good j. Then assuming the Erj to be drawn from independent (both across prod-
 ucts and across individuals) extreme value deviates with distribution function

 G(E ' e*) = exp[- exp(-E*)], the probability that a randomly chosen consumer will choose

 good] is

 a[of ; p, s] = f dG(E) = exp[g(c&j) - + >I q exp[g(c) - Pq]}. (3)
 CSC[coj;p,s]

 If there are N firms in the market, no fixed costs of production, and constant marginal

 costs equal to mc, then it can be shown that if firms choose prices to maximize profits,

 a unique Nash equilibrium exists (Caplin and Nalebuff, 1991) and satisfies the vector of

 first-order conditions

 -Ipj - Mc] aj [1-UjI + aj = 0 (4)

 for j = 1, .I. , N. Profits are then given by

 i7[ac, s] = {p[O), s]- mc}Mc[ ), s], (5)

 where M is the number (or measure) of consumers in the market, and it is understood that

 the price and share vectors are calculated from the spot-market equilibrium conditions in

 (3) and (4).7

 We now specify the laws of motion for (a), s). The distribution for (tot+l - Ct tt+j9
 conditional on different amounts invested (x) in product development, is given by the

 family IP = {P( I x), x E R+}. Assumption 2 provides the characteristic of IP assumed in
 Ericson and Pakes (forthcoming).

 Assumption 2. The elements of [P are obtained as the distribution of the difference of two

 nonnegative random variables, v, and v, representing, respectively, the increments in ef-
 ficiency resulting from the firm's own investments and increases in the quality of the

 outside alternative. v1 is stochastically increasing in x, has probabilities that are continuous

 functions of x, and has realizations that are independent across firms. Further,

 p(vl = 0 | x = 0) = 1, and the support of v1 is a finite connected set (uniformly over x).
 v is independent of x, has realizations that are common across firms, and has finite con-

 nected support.

 Note that there can be no increment in efficiency from the firm's own investment

 process when there is no investment, and when there is investment that increment is sto-

 chastically increasing (in the first-order dominance sense) in the amount invested. v is an

 exogenous random variable that represents the force of the competition from outside of

 the industry. Because r = v, - v, the possibility of advances outside the industry both
 puts positive probability on negative values of r and induces a correlation across firms in
 realizations of i-.

 The proof that this profit function satisfies part (ii) of Assumption 1 and is monotone increasing in co

 is straightforward. If h(s) = >, exp[g(Coq) - p{0o(oq, s)}], then one can verify that IT(co, SI) ? X7 (co, S2) if
 h(s1) ? h(s2), so h() orders S, and part (i) is also satisfied.
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 The example used in the computations puts

 X= v1-v (6)

 where

 with probability ax/(1 + ax)
 t0 otherwise

 and

 _ I with probability 8
 { otherwise.

 Note that if we make the time period per decision small relative to the time period in the
 data, several realizations of 7 can occur in a period whose length is equal to the time
 between observations. This allows us to generate rich distributions of observable incre-
 ments from the simple specification in (6). (In such a case we would want to adjust the
 other parameters of the problem, e.g., the discount rate, in accordance with the length of
 a data period.)

 To choose optimal investment and exit policies, incumbents also need a perceived

 distribution for the number and efficiencies of their future competitors. If we let 3t+I be
 the vector of competitors' efficiencies, that is,

 St+ I = St+, -e[w<+1], (7)

 where e[cotwl] is a vector that puts one in the I)t+l spot and zero elsewhere, then the per-
 ceived distribution of gt+I conditional on St will be written as

 'f^ {tII st} = ,,+I qw{+ I1 I St, Vt+I}p{Vt+ },

 where v is the realization of the increment in efficiency of the outside alternative. Note

 that q?W{ I *} embodies the incumbent's beliefs about entry and exit.
 Ericson and Pakes (forthcoming) make the following assumptions on the formation

 of beliefs and then show that these assumptions will indeed be satisfied in the equilibrium
 they derive.

 Assumption 3. (i) m(s) firms enter in each period, where m: S->9I+. Each entrant pays
 an amount Xe > 8YP, which is nondecreasing in m (as above, 'P is the sell-off value of
 the firm and /8 is the discount rate). The entry process is completed at the beginning of
 the second period when each entrant becomes an incumbent at state a)/e c ge C Q with
 probability pe(.). gle is a compact connected set, and for all s, m(s) ' mi < cc.

 (ii) There exists a regular Markov transition kernel Q[ I *]: S x S -> [0, 1] such that the
 kernels {qW[S' I s]} can be derived from Q as the transition probabilities for the competitors
 of a firm at w, i.e., as the transition probabilities for ? = s - e(w). The stochastic kernels,
 Q and qW, are weakly continuous; i.e., the operators formed by using either to compute
 expectations takes the space of continuous bounded functions on S into itself. Finally, the
 set of feasible industry structures is compact.

 Given that q'( I s) provides the incumbent's perceived distribution of the market
 structure of its competitors, the Bellman equation for the firm's maximization problem
 can be written as
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 V(c, s) = max(PP, sup(X?O)

 [T(, s) - cx + / E V(w + r, s^ + e[w + D]) qW[j I s, v] p(-r x, v) p(v)]}, (8)

 where c is the cost of a unit of investment. If 'P is greater than the expected discounted
 value of net cash flows from staying in operation conditional on optimal behavior in each

 future period (the second argument after the max operator), the firm shuts down.

 Moving to entry, we used the following simple entry model for our analysis. Entry

 is assumed sequential from an unlimited pool. Each entrant pays a (sunk) setup fee of

 xe(m), obtains a draw from pe(.), and begins operation in the next period at the o-location
 generated by that draw. Potential entrants enter if the expected discounted value of net
 cash flow from entry exceeds xe(m) 8

 Formally, if q,,[S^ I s, v] provides the perceptions of the mth potential entrant of the
 distribution of future market structures and

 Ve[s, m] = 83 E VI(O)e, ? + e((t)e)]qm.i[? I s, v] P1 )e I V] p(v),

 then

 o if Ve[s, 1] ? xe(1), else

 M min{m E j+: xe(m) < Ve[S, m], Ve[S, m + 1] < Xe(M + 1)}.

 Note that the distribution of entering o's is fixed over time. Thus the "ability" of

 entrants progresses at the same pace as the "ability" of the outside world (in terms of our
 example, it advances with the ability of the outside alternative). If this were not the case,
 entry would eventually go to zero and stay there.

 In the numerical analysis we set Xe(1) = Xe and Xe(2) = Ao, so the maximum number

 of entrants in any given decision period is one (the maximum number of entrants in any
 time interval depends on the number of decision-making periods in that time interval),
 and

 I foroe =W* if v=O
 PktIe I VI] I for cle = Cl* - 1 if v = 1, (10)

 that is, if the outside alternative does not go up during the setup period, the entrant enters
 at c*&, otherwise entry is at o* - 1.

 Several of Ericson and Pakes's (forthcoming) results on optimal policies have an im-
 pact on the nature of our computational algorithm. We gather these into our Proposition
 1, and explain them thereafter.

 Proposition 1. (i) There exist three boundaries in x > moo, say cl(s), cl(s), and co(s), with
 the following properties: (a) x(o, s) = 0 if (0 ? [s(s), co(s)] C 2; (b) x(o, s) = 0 if and
 only if co ' (0(s); and (c) if inf[w(s)] = co, infj[q(s)] = co, and sups[C(s)] = iC, then co,
 co, and co, are all finite.

 (ii) There exists an m* < c such that for all m > m* and all s E S, Ve(s, m) M 4.

 8 Much more complicated entry models are consistent with our assumptions, but in the absence of em-
 pirical information indicating which complications are relevant, we stayed with the model above. We should

 note, however, that a slightly more general entry model is programmed into some versions of our algorithm.

 In the more general case, the potential entrant's cost of entry is a random draw from a distribution with support

 [xel(m), xe(m)], and this distribution is stochastically increasing in m. The model with random entry costs has
 certain computational advantages over the model that does not (see Section 3).
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 (iii) There exists an N* < oK such that for all n ' N* and all

 s E Sn(M) = {s E S I tsh,'l}, V (1 s) < 1.

 Proof. See Ericson and Pakes (forthcoming), propositions 1 and 2.

 Proposition 1(i)(a) follows from boundedness of the value function, as this implies

 that for sufficiently large w the increment in the value function resulting from an increment

 in w is very small. Because the return to investment is determined by the increment in

 the value function generated by higher values of w, the boundedness of that function en-
 sures that investment will be zero for all w greater than some co(s). Because firms cannot

 improve their quality index without some investment, states above co(s) are "coasting states"
 from which the firm's w can only deteriorate (and will stochastically). So there is an upper

 bound to the achievable w states conditional on s, and because S is compact there is an

 overall upper bound. Similarly, the possibility of exit generates a lower bound for the

 observed w states, co. Note that this implies that we can, without loss of generality, assume
 c fo = {1, ... , K}.

 Proposition 1 (ii) states that there is an upper bound to entry in any period (m*),

 whereas 1 (iii) states that there exists an industry size (N*) such that whenever there
 are N* or more incumbents there will be no more entry. It follows that there will never

 be more than N* + m* firms active in a given period, and because each must have an
 W E {1, . . ., K}, the cardinality of S (the number of attainable industry structures) is no
 greater than KN*+m*. So there is only a finite number of elements in S.

 Ericson and Pakes (forthcoming) also provide a formal definition and proof of the

 existence of a rational expectations Markov-perfect Nash equilibrium under these as-

 sumptions. Here we suffice with a narrative description of that equilibrium. In it, firm
 behavior (incumbent and entrant) depends on the perceived distributions of industry struc-

 tures formalized in the transition functions, q[ |I *]. On the other hand, the investment,
 entry, and exit choices generated by that behavior, together with the known distributions
 of X- given alternative values of x and pe(.), generate an objective distribution of industry

 structures. The model is considered consistent for a Q[ I ] if and only if the objective
 distribution generated by the investment, entry, and exit decisions that result from a per-

 ceived distribution of industry structures equal to Q[ I *] is in fact Q[ I *]. Any such
 Q[ I *] (and there may be more than one of them) will be associated with a rational-
 expectations, Markov-perfect, Nash equilibrium.

 The industry structures generated by this equilibrium will all be K-dimensional vectors

 of bounded integers, i.e., S = {s = [si, ... , Sk]: ljsj < N* + m*}, with sj providing the
 number of firms at w = j (for j = 1, ... , K). So the heart of the equilibrium is a sto-
 chastic process for industry structures [for {sJ}], defined on (Soo, S, P). This process is
 Markov, i.e., if s' = (s, ,sti, ... ., si), then

 Pr{s,+1 = s' I st = Pr[st+I = s St] = ,Q[S s't]

 with transition kernel Q[ ] and initial condition so (assumed in S).
 The Ericson-Pakes article also proves that this transition kernel is ergodic. The er-

 godic result implies that no matter so, the initial industry structure, st, will, in finite time,
 wander into one particular subset, say R, of the possible industry structures (S). Once in
 this set there is no probability of communicating with states outside of R (all other states
 are transient). The states in R all communicate with one another (with finite expected
 transition times), so every point in R is visited infinitely often. Eventually, the sample

 frequencies of landing on the various points in S goes to g*, the unique probability mea-
 sure whose support is R and satisfies ,u*Q = ,g*. Consequently, sample averages of all
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 random variables that are functions of s will converge to their expected values with respect

 to the probability distribution given by g*.
 Note that though (1 /T)Is, --> *A (with probability one), st itself never settles down.

 Rather, the structure of the industry is in perpetual flux. Depending on the nature of Q[ I ],
 we may expect the industry to go through periods when output is concentrated in the hands

 of a small number of large firms, and then, perhaps as a reaction to a sequence of new

 inventions, to fracture into an industry composed of a large number of approximately
 equally sized firms. Of course, even over periods when the industry structure remains

 relatively stable, there will be heterogeneity in the outcomes of the active firms, with rank
 reversals and simultaneous entry and exit as the normal course of affairs.

 It is worth emphasizing, however, that the actual nature of the limit distribution, i.e.,

 of )u* (whether in fact it does include both relatively fractured and relatively concentrated
 structures), and the nature of the pattern of likely transitions between elements in that limit

 distribution (do we cycle over the divergent types of structures, or are there Poisson-type
 events that take us more directly from one type of structure to another?), depends on the

 nature of the primitives of the model: the profit function, the discount rate, the sunk costs

 of entry and exit, and the parameters determining the impact of investments. These in turn
 can be varied with the demand and cost patterns or with the technological opportunities

 and the institutional structure of the industry one wants to analyze.
 What the ergodic theorem tells us is that if we are willing to let limit properties

 suffice, then we can analyze them, and how they react to different values of our param-
 eters, without specifying initial conditions. It is silent on both the characteristics of the
 limiting averages and the likelihood of the alternative sample paths that could lead to them.

 On the other hand, if we could actually compute the transition kernel, Q[ I ], we could
 provide descriptive and welfare analysis of the impact of alternative events on both the

 ergodic distribution of industry structures and the sequence of industry structures ema-
 nating from the actual initial conditions prevalent in an economy. We turn to this com-

 putational task now.

 3. Computational algorithm

 * This section provides a computational algorithm that allows us to solve for the equi-

 librium strategies and the resulting stochastic process generating {s(t)} for different param-
 eterizations of the model.9 The next section uses the algorithm developed here to compute
 and compare the sequence of industry structures that would be generated by varying the

 parameters of the example detailed above in a way that approximates alternative institu-

 tional regimes.
 We begin with the problem of computing the optimal policies, i.e., of computing

 {X(ao, s), x(w), s), Ve(s, m)}. Once we have these policies, the transition kernel Q[ I *] can
 be either derived analytically (see Ericson and Pakes (forthcoming) or estimated from the
 empirical distribution of simulated sample paths for industry structures when the simulated
 paths are obtained by simulating the outcomes from use of the optimal policies by all
 incumbents and potential entrants (see below).10

 To obtain the equilibrium policies we compute the value of being active for different

 values of a firm's own, and its competitors', state variables: VW, ): fl x S R-> R. It is
 easiest to think of our algorithm as starting with the value function for an environment

 9 We note that the problem of estimating the model's parameters breaks down into subproblems that allow

 one to obtain estimators of subvectors of those parameters without actually computing the underlying dynamic

 stochastic equilibrium. See Pakes (1992) for a discussion of feasible estimation strategies for this class of

 models.

 1O The estimates of the transition probabilities from any single simulated sample path will yield (uniformly)

 consistent estimates of the transition probabilities from the recurrent class of states.

This content downloaded from 138.51.13.8 on Mon, 07 Jan 2019 16:24:24 UTC
All use subject to https://about.jstor.org/terms



 PAKES AND McGUIRE / 565

 that limits the number of active firms to N. We then push N up until it no longer constrains

 the problem.-"
 Starting with N = 1, or the monopolist's problem, we look for the value function

 and the optimal policy when only one firm is allowed to be active. When

 N = 1, S = {e(Z); ( { Q},

 or the set of possible industry structures is just the set of vectors with one at the N element

 and zero elsewhere. Temporarily assume that the boundaries for fl = [i, w + 1, ..,
 are known, and let k = co - w. The Bellman equation for the monopoly case is

 V(w) = max {<P, sup(XO0) 7T(w) - cx + 3 ET V(w + r) p(r x)}. (11)

 Equation (11) defines a fixed point to the operator T: RDk -> Rk defined pointwise
 by

 Tl(w) = max {<P, sup(XO0) iT(w) - CX + P 1T 1(w + r)p(-r x)}.

 Standard arguments show that this operator is a contraction mapping with modulus f8 (the
 classic reference here is Blackwell (1965)). As a result, there is a unique vector {V(w)} E R k
 that satisfies (11) and it can be calculated as follows. Start with 10(w), any bounded func-
 tion from fl to OR [e.g., 1T(t)]. Calculate 11 = Ti0 pointwise and iterate (with the ith it-
 eration calculated as 1i = Tl -1) until

 max. I 1(N) - li-l(0) =)l() - l'l()) ? K,

 where K > 0 is any desired degree of accuracy. The contraction mapping theorem assures
 us that this will occur in a finite number, say i = *, of iterations and that

 Ik1*(W) - V(W))I ? K(1 - 8s

 We now come back to the problem of setting Ql, the support for w. As noted in Section
 2, provided our regularity conditions are satisfied, the solution to the monopoly problem

 will generate a couple, say [wm, Co%] with the property that the monopolist exits if and
 only if w < wi), and the firm does not invest whenever w > Com. Because it is easy to
 compute the fixed point for the monopolist's problem (even for large k), we compute it

 for a connected subset of 2 that is large enough to contain [Lw, Co'm] and let the computation
 determine these bounds.

 These bounds to w are valid only for the monopoly problem (for N = 1). However,

 as noted in Section 2, there exists an w such that x(w, s) = 0 whenever w C o (regardless

 of s, or the industry structure). Ericson and Pakes (forthcoming) show that wCtm-C w, i.e.,
 if w is low enough to induce a monopolist to exit, it is low enough to induce exit when

 more than one firm can be active. Therefore, wo is a lower bound for fl in all subsequent
 calculations.

 Also recall that there is an co, such that x(w, s) = 0 whenever w c co (no matter s).
 Because there is an upper bound to the support of the increments in w achievable in any
 given period, say a, and a firm that does not invest cannot have an improvement in its
 w, the existence of co generates an upper bound to fl (co + X - 1). We have not formally
 shown that 63m > Co, but this has been true in every example we have actually computed,

 " Of course, computational efficiency often dictates circumventing parts of this procedure in actual prob-
 lems.
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 so our algorithm uses Com + F - 1 as the upper bound to fl for all N and then, after solving

 for the value and policy functions at a given N, checks to see whether they result in zero
 investment for all o - Com. If this condition were not satisfied we would have to recompute

 the optimal policies with a lengthened f. 12

 We now come back to the computational problem when N = 2 assuming that

 = [tmw~m + 1, ... ( Cim + F- 1] =[1, ... , k]. This is the crux of the explanation
 of our algorithm, and we provide it in three parts. We begin with an informal description

 of our algorithm, follow by formalizing it, and conclude by comparing our algorithm to

 the most obvious alternatives.

 The Bellman equation for a firm whose a) = a), and which has a single competitor
 with an a) = 2, say V[Wo, (02], is given by

 V[&1, (02] = max {f(, sup(X1O) IT((01, (02) - cx

 + Pr1,1T2,V V[(01 + 1ri + V, ?o2 + T2 + v]p[ri1 I X1, V]P[2 I X2, V]P(V)} (12)

 for (a), (0W2) E Q2. Now for each such (0I, (02) we also have a second Bellman equation,
 the Bellman equation for the competitor. Because the model assumes that all the primitives
 of the problem are symmetric, that second Bellman equation is obtained by permuting the

 arguments in (12); that is, it is calculated from (12) as V(o2, oD). A Nash equilibrium
 solves for (the exit and investment) policies, and the associated value functions, for this
 couple of Bellman equations simultaneously.

 Our algorithm computes the Nash equilibrium policies and values iteratively. Let V()

 and xi( ) be the value function and optimal policies computed in the ith iteration, and set

 V0(W1, (02) = l*(w1): the "converged" value function from the monopolist's problem. The
 ith iteration starts with the policy and value functions from iteration i - 1. In calculating

 the policies for the ith iteration we distinguish (WI, (02) points at which Vl((02, WI) > 4
 from points at which this condition is not satisfied. The first subset of points have a com-
 petitor which, according to the i - Ith iteration of the value function, would remain ac-
 tive. Because N = 2, there will be no entry at these points. The second subset of points

 are points at which there may be an entrant.
 For the points at which there is an incumbent competitor, substitute xi-l((2, WLI) for

 x2 and V-l(.) for V(Q) on the right-hand side of the two-firm Bellman equation in (12),
 and use the result to evaluate the first firm's future under alternative possible x choices.

 Then the optimal choice of x, that is, x'((0, (02), can be found as the solution to the Kuhn-
 Tucker conditions

 XiyT1 2V ViV[I1W + TI + V9 W2 + T2 + V]p[I72 I Xl((02, (0), V]

 {dfP[1 I xI(1, (02), v]/dxi}p(v) - C//} = 0, Xi((01 02) > 0- (13)

 Using symmetry we obtain the ith interation's value for the competitor's optimal x, i.e.,
 for x'((02, OI), by simply permuting the indices in (13) and resolving this equation. This

 gives us each element of the couple {xf((0, (02), xAo2, W01)} solely as a function of the
 output from iteration i - 1.13

 12 We note that it is often possible to reduce the size of fQ as N increases, and this will increase the
 computational efficiency of the algorithm.

 13 We are implicitly assuming that there is a unique solution to the Kuhn-Tucker equations in (13). As

 noted in Ericson and Pakes (forthcoming), sufficient conditions for this to occur are that the sign of p'(r I x)

 is equal to the sign of i, and the sign of p" (r I x) is the negative of the sign of i, for all T $& 0. This condition
 is satisfied in the example computed in Section 4. For cases in which there is more than one solution to (13),

 choose the solution that maximizes the right-hand side of (12) when we substitute xi(o2, oi) for x2 and V1()
 for V( ) in that expression.
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 Note that an alternative solution procedure would be to substitute x (co2, Wo ) for

 xiI(@o2, OI) on the right-hand side of (13), combine this with the analogous Kuhn-Tucker
 equation for xAo2, oI), and solve this system of Kuhn-Tucker equations simultaneously
 for the couple {xco1, o2), xi(o2, Wo,)}. This would require us to solve a nonlinear system
 of equations in the investments of all incumbent competitors at each grid point at each

 iteration of the algorithm; such a procedure is much more computationally burdensome

 then the one used here (it almost squared the computational times for our examples).

 Because we solve (13) for each (WI, W2) couple separately, we never need to solve for
 more than a zero to a single equation in a single variable. Moreover, a judicious choice

 for PD can ease the computational burden involved in solving for the optimal x choice

 significantly. Indeed, in the example used in the numerical analysis below there is an

 analytic expression for x' oI, (02) as a function of last iterations policies and values, and
 this decreases significantly the computational burden at each iteration.

 We now come back to the subset of (oI, (02) at which Vi-((02, WoI) = (D. This is the
 subset in which there is a possibility of entry. Calculate

 Vi(1 90i) = E Vil@(, 0I + 7 + v)p'[W I V]pIT I X-(()I, (02), V] p(v), (14)

 the i - Ith iteration's analogue of the value of entry in (9).
 If V(1l, Wo) ? xe(1), then the value of entry is greater than the sunk cost incurred at

 entry, and entry will occur. In this case we replace P[T2 I xi-((02, W), v] with pe'[ I v]
 and W2 + T2 + v with w on the right-hand side of (13) and solve the resultant Kuhn-Tucker

 equations for x'(co, (02). If Ve(l, W0I) < Xe(1), we replace both W2 + T2 + v and

 P[T2 I xilI((W2, s, V] with 1 on the right-hand side of (13) and then solve for x(Wo, (0)2). 14
 We have provided a procedure for solving for x'(ol, W2) for all (co, (02) E f12. vi)

 can now be calculated as

 Vi[WI, (02] = max{f(, irT(Wo, (02) - Cx((01, (02)

 + 81,T,T2,v Vl[(lth + Ti + V, ()2 + 72 + V]

 P[TI I X(1, (02), V]p[72 I xi0o2,o1), V]p(V)},

 where it is understood that if Vi-l(o2, oI) = (D (so there is no incumbent competitor), we
 substitute 4r[wl] for 4r[wl, (02] and either (0 with probability pe(o) or 1 with probability one
 (according as V"(1, oI) is greater than or less than xe(1)) for w2 + r2 + v and the prob-
 ability P[r2 I X2, v].

 We have just described informally how we calculate policies and values for the ith
 iteration from the policies and values at iteration i - 1 for all (Wo, (02) C f12. We now
 introduce notation that allows us to turn this description into an iteration of a fixed point
 calculation.

 Let l(Wo, (02) = [l(WoI, (02), 12(WI, WA2)] C [R. R] and

 1= (l1, 12) E [(R+)k, (O+)kXk] = LI >x L2 = L.

 The couple (11, 12) provides k2 candidate values for investment and the value function,

 14 Note that we have assumed that when there is a possibility of entry, the entry decision is made before

 the investment decisions of incumbents. We could have had the entry decision made after the investment de-

 cisions, and this difference in the timing of moves might result in a different equilibrium.
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 respectively. Starting with the value for 1 at the i - Ith iteration of the algorithm, we
 compute the ith value by applying the operator T: L -> L defined pointwise by

 T1(WI, )-= [TI1(wI~, (0)2), T21 (CO I, WA2),

 where the T : L -> Lb, for i = 1, 2, are defined as follows. let I{f} be an indicator function
 and define

 I(W1o, W2) = I{12@o2, (I) - (I > O}

 and

 I2Go1, W2) = '{I34,IV l2 1(o, 01 + r + v)pe[0 I V]p[Ir lI '1(W1, 02), V]p(V) ?> X,

 so that II(W,, W2) equals one if the i - Ith iteration's values indicate that a competitor at
 (C(2, WI) would remain active and zero otherwise, and I2(@oi, o92) equals one if an entrant
 would enter were the competitor to drop out and zero otherwise; let

 TI1(c)1, I2) = I10)19 &O2) argmax-R+ [-cx + P T1,T2,V 12 [a0i + TI + V, &2 + r2 + V]

 P[Ti I X, v]p[r2 I li1o(2, o1) v] p(v)} + [1 - I11, &02)] argmaxx(R+

 [-CX + (3 T1,T2 121[W01 + r1 + iT'2 (012((0lI I2) + {1- I2(01 02)}]

 PLT1 I x, v] {pe[w |] I2(cA1, (02) + [1 - I2(c1, (02)]} p(V)]

 whereas

 T21(QoI, (2) = II(CtIo, W02) max [4), r7T((1, I 2) - cT l 1 ( 0) I2) + P YT,T2, P 12 [01 + Ti

 + v , (02 + T2 + v]p[Tl I TIl( 1 , I02), V] P[72 l1(1(02, 09), V] p(v)} + [1 - II (02)]

 max [(I, 7(wj) - cT11(o1, W2) + 8y,,T2,V l2l [WI + TI + v9, IA2((1, 2)

 + {1 - '2((01, (02)}]P[T17| Tl(a)1, 02), V] {pe[ I V] I2(0l, 02) + [1 - I2(WI, 02)]} p(V)].

 Given li we compute 1'+ = Tfi, and repeat this computation iteratively until 11li - li-11 '? K
 for some sufficiently small K, or until some preset upper bound to the number of iterations
 is reached."5

 If we do converge to a fixed point, say 1*, then 1* and 12* provide, respectively, the
 investment policy and the value function from a Markov-perfect Nash equilibrium when
 there is a preset upper bound of two to the number of firms ever active. To formally check
 that l* is indeed an equilibrium we need only note that any such solution, together with
 the exit policy x(WI, W2) = 1 if and only if 12*(WI, W2) > (P and the Markov transition
 matrix that the solution generates, satisfies the equilibrium conditions (condition 6) in
 Ericson and Pakes (forthcoming). More intuitively, it is clear that at 1* each incumbent
 and potential entrant (i) uses as its perceived distribution of the future states of its com-
 petitors the actual distribution of future states of its competitors and (ii) chooses its policies
 to maximize its expected discounted value of future net cash flow given this perception
 of the distribution of the future states of its competitors.

 '5 It is often useful to keep track of both III' - l'll and IIl' - I"II, as the two norms can be useful in
 isolating causes of problems as they occur.
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 Having found a Markov-perfect Nash equilibrium with N = 2, we now push N up to

 3 and do the iterative calculation again, starting at 10l(01, W2, (03] = 1*{w)1, max[cO2, O13]},
 with the obvious change in the dimensionality of 1 and L. The iterative procedure for N = 3
 is analogous to the procedure for the N = 2 case. However, now either one, both, or none
 of a firm's competitors may exit and, depending on both the number of competitors exiting
 and the results of the entry calculation, there may be either zero, one, or two entrants.

 On the other hand, there is a further simplification that can be used when N > 2.

 Note that symmetry implies that V[o1, o92 = KI, (03 = K2] = V[o1, (1)2 = K2, (03 = K1] for
 any (01, KI, K2) E Q3; that is, we may reorder the competitors of a firm without affecting
 either that firm's value or its optimal policy. If we impose this property at each iteration

 of the algorithm, we need not calculate values and policies for all (oi1 (12, (0)3) E 33 but
 rather we can restrict ourselves to the subset {f(&, ()2, (0)3) I ((01, (12, (03) E f13 and (02 ? (0)3}.
 Analogously, for the N-firm equilibrium we can restrict our calculation to the subset of

 points in {(wl1, *2, ... , (0N) I , (01,2, **..., (N) E IN. and (0i 1 ' wi, for i = 3, .. ., N}.
 We discuss this symmetry property and its implications for the computational burden of
 the algorithm extensively in Section 5.

 After finding the Markov-perfect Nash equilibria for N = 3, we restart this procedure
 with N = 4 and continue restarting until we reach an N where, for all s with

 Es(w) = N, Ve(s, 1) < xe. At this N there are no possible industry structures with N firms
 active at which an entrant would want to enter. The minimal N that satisfies this condition
 (and such an N will exist provided the assumptions of Section 2 are satisfied) is an upper
 bound to the number of firms that will ever be in the industry (provided, of course, that
 the initial s has no more than N firms).16

 We now provide a brief discussion of possible convergence and uniqueness problems
 with our algorithm. We begin with convergence and note that there is no guarantee that
 the algorithm just described does converge. In fact, we found two problems that would
 periodically cause iterations to cycle back and forth between two or more points (values
 of 1).

 First, there were cases in which the points in a cycle differed only in whether there
 was entry at one or more values of the state vector (in the simplest case, entry at iteration
 i induced a policy function from the entrant's competitors at i that caused the potential
 entrant to stay out at i + 1, which in turn induced the policy function that caused entry

 at i + 2, and so on). This reflects the fact that entry induces a discontinuity in the function
 determining the incumbent's value of the future (that function jumps when the last iter-
 ation's value of entry passes an entry threshold). To circumvent the convergence problem
 caused by the entry discontinuity, we wrote a version of the algorithm that allowed entry
 costs to be random. In it the potential entrant's cost of entry is a random draw from a

 continuous distribution, say pce(.), with support [Xei, Xe,] where xel(1) > f3'F. If the value
 of entry at a particular point is K, then this version of the algorithm assumes incumbents
 perceive themselves to be facing a distribution of future competitors with no entrant with
 probability 1 -_Pce(K), and they perceive themselves to be facing a distribution with an
 entrant with probability Pce(K). This made the incumbent's policies a smooth function of
 the last iteration's value of entry and seemed to do away with cycling problems that could
 be attributed to entry. 17

 16 In our computations we often stopped at an N at which there were still a few points with Es(X) = N
 at which there was entry, and substituted the policies from this calculation into the output program which
 determined the ergodic class of points (see below). We found that if the ergodic class did not contain points
 with Es(w) = N at which there was entry (or contained only a small number of points at which this was true),
 then we could stop at this N without distorting the policies too much for our purposes.

 17 Note that we have implicitly assumed here that, as in our numerical example, there is a maximum of
 one entrant per computational period. An analogous procedure is still feasible, though somewhat more com-
 putationally demanding, when there is a possibility of more than one entrant per period.
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 The second problem occurred only rarely but is related to the nonuniqueness issue.

 Nonuniqueness can often be caused by situations in which one firm out of two (or several

 firms out of many) must exit, but either exiting would generate an equilibrium. A related

 phenomenon can cause cycling in our algorithm. That is, starting with an iteration in which

 both firms exit, the next-iteration policies for the two firms are derived from a situation
 in which both perceive that their competitor will exit. This induces each to stay in, which

 in turn induces both to exit in the following iteration, and so on.
 We also wrote a version of our algorithm with a feature designed to circumvent this

 problem, but unlike the version of our algorithm with random entry costs, it is significantly

 more computationally burdensome than the original. In this version of our algorithm we

 assume there is an order to the exit decisions. The firms higher in the order make their
 exit decision knowing the current iteration's exit decisions by firms lower in the order.

 Our ordering has firms with lower values of a) making their exit decision first. Thus, in

 the three-firm case with (03 ? W2 ? WI, if at the i - Ith iteration li-12[cw3, WI, w2] = P,
 the firm with W = W2 makes its ith iteration's exit decision based on whether

 li-12[cW2, WI, 1] > (F (recall that a 1 in the third slot indicates a value when there is no
 third competitor). Note that to order all exit decisions and calculate policies in this manner,
 we must also provide an order to two firms with the same value of (W, S) and then calculate
 different policies for them. That is, this version of the program must distinguish among
 the s(w) firms at the same (w, s). This increases the dimension of the state space of the
 computation (we need to keep track of both the (a), s) of the firm and the "order" of the
 firm among the s(w) firms at a particular w, at least if s(w) > 1), and hence the compu-
 tational burden of the algorithm. Still, in the cases where cycling seemed to be caused by
 the type of scenario described above, using this more complicated version of our algorithm
 did tend to stop the cycling problem.'8

 Finally, we note that even after ordering exit there may be more than one Nash equi-
 librium to our problem. As a result, even if we do converge to a solution there is no
 guarantee that it is the only solution. We have computed several of our examples (in-

 cluding those discussed here) from different initial conditions, and we have always con-
 verged to the same fixed point, so nonuniqueness does not seem to be a problem with the
 simple functional forms we are currently using.

 Having described our algorithm and some of the problems with it, we now briefly
 compare it to some of the more obvious alternative algorithms. We begin with a natural
 extension of the computational algorithm for the single-firm problem to problems with
 many firms. Again we start with the two-firm problem and the Bellman equation in (12).
 The alternative algorithm is also iterative. Start with any feasible policy function and use
 it to construct a distribution for a firm's competitor's T2 conditional on the alternative

 possible values of (wi, W2) say {P0[T2 I (WI, W2), v]}. Now substitute these distributions into
 (12) for {p[-12 I X2, v]}. This produces what would be the first agent's Bellman equation
 were that agent to hold beliefs about its competitors' behavior that resulted in

 {P0[72 I (WI, W2), v]}. Standard arguments show that this Bellman equation is the fixed
 point of a contraction mapping. That fixed point can be computed in precisely the same
 way as we computed the fixed point to the contraction mapping for the single-firm problem

 (see above; any bounded guess for the initial value of V( ), say V0(WI, W2) = IT(WI, W2)
 or V0(wj, W2) = V(wj), will do).

 18 There are more traditional ways of modifying iterative algorithms to aid convergence, and we tried
 some of them with a fair bit of success early on in our work. "Dampening" procedures seemed particularly

 useful. These keep in storage a weighted average of the value functions of the last several iterations, and use

 this weighted average to form policies. Later in our research, when we thought that we could isolate the causes
 of the cycles that led to nonconvergence when we found a convergence problem, we switched to algorithms

 which attacked those causes directly whenever they occurred. We did this even though the dampening pro-

 cedure, which is less computationally demanding than the procedures we suggest in the last two paragraphs,

 often did quite well.
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 This contraction mapping produces a policy and a discounted future value for each

 incumbent and potential entrant at every value of (wi, W2). Consequently, it allows us to
 form the transition probabilities that those policies imply, say {p1 [T2 I (Wh, W2), v]}. Noth-
 ing, however, assures us that P1[T2 I (coi, W2), v] = P0[s2 I (cWI, c2), v] for every
 (W I, W2) E f2. Thus the first agent's beliefs about what its competitors would do will not,
 in general, turn out to be equal to what those competitors would actually do given the
 chance to choose their own policies (which implies that we are not at a Markov-perfect
 Nash equilibrium). As a result, we update the perceived distribution of the competitors'

 policies to {P1[E2 I (Wi, W2), v]}, substitute this distribution into the Bellman equation in
 (12) for {p[T2 I x2, v]} and compute the optimal policies and values from this contraction
 mapping. The algorithm continues iterating in this fashion until a suitable convergence
 criterion has been met.

 Note that this algorithm has a fixed point calculation nested inside another fixed point
 calculation; i.e., to evaluate each iteration of the outer fixed point (the fixed point that

 iterates on the family {p1[T2 I (W2, W), v]}), we need to compute an inner fixed point (the
 fixed point that computes the value function and policies conditional on {p1[T2 | (W2, WI), v]}).
 Moreover, the inner fixed point is a fixed point of the same dimension as the outer fixed
 point. This algorithm is thus much more computationally burdensome than our algorithm
 (its computational burden per iteration is just the burden of solving a single equation in
 a single variable many times).

 We conclude with two possible extensions to our algorithm. These are both designed
 to decrease the number of iterations our algorithm needs before convergence. The first is
 to use an analog of what is generally referred to as "policy iteration" in the literature that
 deals with the computation of solutions to single-agent dynamic problems (see the review
 in Rust (1992)). To do this, we would hold the policies constant at the values calculated
 at a given iteration and iterate on the value function in (12) until that function converges
 for the given set of policies. In terms of our previous notation we would hold 11 = li and
 apply the operator T2 repeatedly until 12 converges for the given value of li (it can be
 shown that this modified T2 operator is a contraction mapping, so the policy iteration step
 is guaranteed to converge). We would then use the "converged" value function to compute
 the i + Ith iteration policies (as discussed above). Our experience with policy iteration
 in computing the pointwise solutions discussed in this section is that, at least in the ex-
 amples computed to date, it was not helpful (it invariably increased the processing time
 needed for the computation).

 A second possibility is to iterate on the policies at each iteration holding the value

 function constant, a procedure we call "value iteration." That is, after calculating the ith

 iteration policies we would substitute xi(W2, wI) for xi- (W2, w) on the right-hand side of
 (12) and, still using Vi-'() for V(0), calculate new policies. Formally, this step holds
 12 = 12 and iterates on the operator T1 until 11 converges (or until a preset upper bound to
 the number of iterations is reached; note that the operator defined by this modification to
 T1 is not a contraction mapping). Alternatively, one could use any other nonlinear equation

 solver to obtain a simultaneous solution for the policies of all agents generated by V- 1)
 (for a discussion of the possibilities see Judd, forthcoming). For our examples, the simple
 types of value iteration we tried did not increase the speed of convergence of the algorithm.
 We note, however, that it is easy to add either value or policy iteration steps to the iterative
 algorithm developed here, and they may be more effective when applied to different
 problems. 19

 19 In Section 5 we consider the computational burden of our algorithm and note that for problems with
 a large number of firms we will have to give up on techniques based on pointwise fixed point calculations and
 move to techniques based on some form of approximation. In related work, discussed briefly in that section,
 we have developed and tried techniques based on polynomial approximations, and our limited experience with
 them indicates that both value and policy iteration do lead to improvements in performance when these tech-
 niques are used.
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 4. Numerical illustrations

 * The base case. To illustrate the type of equilibria that result from this class of dynamic

 heterogeneous agent models, we have computed the policy functions and simulated the

 equilibrium resulting from the differentiated product profit function in (5), the transition

 probability function in (6), and the following set of parameter values:

 8 (the probability that the outside
 alternative moves up) = .7;

 ,3 (the discount rate) = .925;

 Xe (sunk entry cost) = .2;

 (F (scrap value) = .1;

 M (size of market) = 5;

 a (determines the efficacy of investment in
 generating increases in efficiency) = 3,

 mc (marginal cost of production) = 5,

 A-) _ e- if a) *,
 e* [2-e-(@-*)] otherwise.

 A few comments on these parameter values will help to set the stage for the numerical

 analysis. The total current cost of producing the output of this industry works out to be
 about 25, so the sunk entry cost, i.e., Xe, is about 1/125th of the cost of production in a
 given period. That is, it is not very costly to enter in this, our base case. Note that an

 arbitrary unit can be attached to M (i.e., thousands, millions, ...), and the marginal cost
 is in those units (the cost of producing a thousand or a million units, ...). Finally the
 functional form chosen for g(w)), in particular the difference between g(w) and co for suf-
 ficiently large a), ensures both that profits are bounded, and that they are a "smooth"
 function of co.

 We began by computing the policies and value function of a monopolist facing this
 environment. Normalizing so that the monopolist's exit state is one, we found co, the

 highest value of a) at which there is still investment, to be 21. We then set pe(r = 3) = 8,
 so that a new entrant will enter at co = 3 with probability 8 and at w = 4 with probability
 1 - 8, and ran the algorithm described in Section 3. Note that we are assuming that entry
 costs are a known constant (xe) in these runs.

 The columns labelled "MP" in the tables to follow are a result of substituting the

 polices computed in the algorithm into an output program. The output program used these
 policies and a pseudo random number generator to generate 10,000 periods of industry
 evolution from an initial condition of an industry with one firm at co = 4, and then com-
 puted an assortment of statistics designed to describe the output from this run. The other
 columns in these tables were constructed in a similar way to the MP column except that

 they used policies that were computed with a change in either a behavioral assumption or
 a parameter value. We shall provide more details on these columns below, but for now
 suffice it to note the following: in the column labelled "a* - .65" we imposed an insti-
 tutionally created upper bound to the market share of the largest firm equal to .65; in the
 column labelled "xe = 2" we imposed an institutionally created tenfold increase in the
 sunk, cost of entry; in the column labelled "Coll." we used the parameters from the base
 case but assumed there was a perfect cartel controlling all pricing, investment, and entry

 and exit decisions; and in the column labelled "PP" we used the base case parameters but
 assumed there was a benevolent social planner controlling all pricing, investment, and
 entry and exit decisions.
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 TABLE 1 Characteristics of Ergodic Distribution

 6 = .7, a = 3, fi = .925, x. = .2, ? = .1, M = 5, mc = 5

 10,000

 Number of time periods: MP cr* = .65 x, = 2 PP Coll.

 % with 6 firms active .1 .2 .0 0 0

 % with S firms active 1.6 3.1 .3 .1 .1

 % with 4 firms active 35.3 33.3 1.2 5.8 1.1

 % with 3 firms active 63.0 63.3 17.1 44.5 23.1

 % with 2 firms active .0 .0 81.4 49.6 75.6

 % with entry and exit 13.1 11.5 .3 10.1 10.7

 % with entry only 4.8 4.8 .7 3.0 1.9

 % with exit only 2.0 2.5 .6 2.3 1.7

 % with entry or exit 20.1 18.7 1.6 15.4 14.2

 Notes: MP = Markov-perfect Nash equilibrium; o- = .65, MP with market share constrained to be below

 .65; x, = 2, MP with sunk entry costs increased to 2; PP = planner's problem; Coll. = perfect cartel.

 Table 1 provides some statistics that help describe the evolution of market structures

 that the various solutions generated. We shall focus on the Markov-perfect column first.
 The top part of the table indicates that the equilibrium process characteristically has either

 three or four firms active in a given period. The bottom part of the table, however, in-
 dicates that there was lots of entry and exit, so the firms active in equilibrium are not
 always the same three or four firms. Note also that entry and exit are positively correlated;
 in most years when there is entry there is also exit. This is in stark contrast to models of
 industry dynamics that do not allow for idiosyncratic sources of change, for these models

 characteristically predict either entry or exit, but not both, in the same period.20
 The firm-specific, or idiosyncratic, sources of uncertainty also generate a significant

 amount of job turnover (even though total demand for the industry's products barely changes
 from period to period). We calculated gross job creation and gross job destruction figures

 by assuming that the new jobs available during a year were proportional to the increases
 in output in firms that increased their output over that year, and the jobs destroyed during
 a year were proportional to the fall in output in firms that decreased their output over the

 year. On average, about 4% of the jobs were destroyed each year (with approximately the
 same percentage of new jobs created during the year); but that figure was surprisingly
 variant over subperiods (its standard deviation was about twice its mean). So there were

 periods in which the industry was undergoing a lot of flux, or churning, and periods in
 which it was more stable.

 About 1,800 firms participated in the industry during the 10,000 periods simulated
 (Table 2, columns MP). Most, however, remained active only a short number of periods.

 The modal lifespan was only one period, and the median was just barely two. On the

 other hand, the distribution of lifespans was extremely skewed, with a mean of 18.4 pe-
 riods and a standard deviation of 73.2. Firms that did survive the initial period went on

 to be part of the industry for long periods. Relatedly, both mortality and hazard rates
 decline markedly over the first seven or eight periods, giving the impression that there
 was an initial "learning" period (the hazard rates shown in the table are estimated, their
 standard errors being on the order of .005).

 Table 3 provides characteristics of the realized values of the firms that participated.
 The first point to note is that over 90% of the firms that participated in this industry had

 20 In U.S. manufacturing data, cross-industry analysis shows a positive correlation between entry and
 exit, but once we condition on a given industry and study its evolution over time we find that the sign (and

 the magnitude) of the correlation between entry and exit tend to vary by industry (see Dunne, Roberts, and

 Samuelson (1988) and the literature cited therein).
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 TABLE 2 Lifetime Distribution

 8i = .7, a = 3, fi = .925, x, = .2, 4) = .1, M = 5, mc = 5
 Number of time periods: 10,000

 Percent Implied Hazard Cumulative Percent

 Lifetime MP xe = 2 PP MP x, = 2 PP MP x, = 2 PP

 1 48.3 17.5 25.0 48.3 17.5 12.2 48.3 17.5 25.0

 2 24.7 14.6 44.0 47.7 19.6 24.0 73.0 35.0 68.9

 3 6.1 4.7 9.0 22.6 7.3 17.9 79.1 40.7 77.9

 4 3.6 8.5 4.4 17.2 14.3 17.9 82.7 49.1 82.3

 5 2.5 3.8 1.9 14.4 7.5 10.9 85.2 52.1 84.2

 6 1.3 2.8 2.2 8.8 5.9 8.9 86.5 55.7 86.5
 7 .8 1.9 1.4 5.9 4.5 4.1 87.3 57.2 87.9

 8 .7 .9 .8 5.5 2 4.8 88.1 58.5 88.6

 9 .7 .9 .5 5.9 2.9 5.7 88.8 59.5 89.2

 10 .3 1.9 .7 2.7 4.6 5.7 89.1 61.3 89.9

 Number Ever Mean Median Standard

 Active Lifespan Lifespan Deviation

 MP 1,800 18.4 2 73.2

 xe = 2 103 191.5 6 428.0
 PP 1,301 19.5 2 93.9

 Note: For explanation of the column heads, see the notes to Table 1.

 a net loss from their endeavor (generated negative realized values). Most got out early
 and lost a small amount, but there are those that invest for a while, never move up the

 "quality ladder," and eventually drop out, losing also their investments in the interim.
 Among the 9.4% whose realized values were positive, the mean realized value was a very
 high 10 (recall that the sunk cost of entry was only .2, so this implies a benefit/cost ratio

 TABLE 3 Realized Value Distribution
 8 = .7, a = 3, f8 = .925, xe = .2, '1 = .1, mc = 5, M = 5

 Realized Values Lifetime Sum of Realized Values

 Obs/Num MP o* = .65 xe = 2 MP MP a* = .65 xe = 2

 1 72.8 45.1 83.0 79 72.8 45.0 83.0

 2 52.6 38.9 34.0 247 125.4 84.0 117.0

 3 33.1 36.3 32.4 718 158.6 120.3 149.4

 4 32.7 35.7 28.4 118 191.3 156.0 177.8

 5 29.3 30.2 20.2 102 220.6 186.3 198.0

 10 22.8 21.2 15.7 5 343.8 301.3 282.6
 100 7.11 6.8 -4.43 215 1462.6 1313.9 294.6
 150 1.81 1.1 37 1700.8 1508.5

 170 .1 -.06 3 1717.6 1514.0

 171 -.05 -.07 2 1717.5 1514.0

 1491 -.10 -.7 4 1586.5 1336.1

 1800 -4.08 15 1282.1

 Standard Mean of Mean of

 Mean Median Deviation # Positive Positive # Negative Negative

 MP .69 - .1 4.09 170 10 1630 - .27

 a*= .65 .62 -.1 3.74 150 9.5 1465 -.28
 Xe = 2 2.22 -1.89 11.28 39 14.2 74 -2.5

 Note: For explanation of the column heads, see the notes to Table 1.
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 of 50), and the distribution of realized values was very skewed (about 3% of them earned

 57% of the total distribution of positive realized values).

 These parameter values generate an industry in which it is relatively cheap to start

 up and explore some new idea. Most startups are not successful. The few that are successful

 earn, on average, very high rates of return, and even among them the distribution is very
 skewed, so that the 2% or 3% most successful earn rates of return that are really quite

 phenomenal. Of course, eventually even the most profitable are taken over by better ideas

 and find it optimal to exit.

 This pattern of high initial mortality rates and skewed returns and lifespan distribution

 for those few firms surviving the initial high mortality period has an analytic counterpart

 in the shape of the value function for this problem (that function can be computed directly
 from the output of the algorithm described in Section 3). If we hold the o's of all com-

 petitors constant and compute a section of the value function showing how it changes with
 changes in the firm's own o, we find it to be initially convex and then concave in o (see

 Ericson and Pakes (forthcoming) for a theoretical discussion of when this must happen).

 Because investment is, roughly speaking, an increasing function of the slope of the value

 function, we expect little investment at the initial low values of o. Recall that the change
 in (0 is stochastically increasing in investment, so the low investment levels will generate
 a downward drift in co at low (o-values, and hence high mortality rates. The odd entrant
 whose co does take a sequence of steps upward will begin to invest more, and continue

 to increase its investment, with the consequent improvement in the distribution of the
 increments in the firm's o, until its o passes the inflection point. From then on, increases
 in co will be accompanied by falling investment. However, should a firm with high o drop
 down to near the inflection point, its investment will start increasing again. As a result,

 mortality probabilities for a firm that has developed its c past its inflection point are very
 low, and a firm that has become successful is likely to be a profitable actor in the industry
 for some time. Note that any problem in which a firm has to develop its product somewhat

 before that product can be successfully marketed, and in which profits are bounded, will
 generate an initial convex, and a final concave, portion to the value function. So there is
 a broad variety of functional forms for which we ought to expect high initial mortality
 rates, reasonably long lifespans conditional on survival in the high-mortality period, and

 "coasting" states for very successful firms.

 Recall that there is free entry into this industry. As a result, the average of the realized

 discounted values of new entrants will be quite close to the sunk costs of entry (it will

 actually be slightly more than that because of integer problems and because of the fact
 that we have restricted there to be no more than one entrant in a period). If we limit
 ourselves either to rates of profit or market values of active firms, we obtain an indication
 of supernormal rates of return (average per-period profits of 5.42 and an average market
 value of over 20). This is, of course, a simple result of the fact that the observed data

 are dominated by firms that survived for long periods, and they indeed earned very high
 rates of return on their sunk investments. That is, because the observed data are selected
 on the basis of success, we ought to expect supernormal average returns for active firms
 even in the most "competitive" of industries.

 Tables 4 and 5 (again, in column MP) provide summary statistics on the distribution
 of the one-firm concentration ratio and on the sales weighted average of the price/cost
 ratio over the 10,000 periods, whereas Figure 1 plots the evolution of the one-firm con-
 centration ratio over a period. In 90% of the periods, the average markup was between
 27% and 44%.

 Relatedly, the industry is most often reasonably fractured. The one-firm concentration
 ratio averaged .39 in an industry in which there are almost always either three or four
 active firms. Periodically, however, a firm will surge ahead of its competitors and stay
 there for long periods, creating epochs in which the industry looks quite concentrated. For
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 FIGURE 1
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 example, there is an interval of forty periods between 320 and 360 when the concentration
 measure never falls below .4, averages about .6, and even goes through a ten-period stint
 at .8. For the next fifty periods the concentration ratio never goes above .4 and is almost
 always between .3 and .35. Note that these changes in industry structure occur quite nat-
 urally, without any change in the external environment.

 FIGURE 2
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 TABLE 4 One-Firm Concentration Ratios

 MP a* = .65 x, = 2 PP Coll.

 .95 quantile .62 .61 .63 1.0 1.0

 .90 quantile .5 .5 .63 .84 1.0

 .75 quantile .43 .43 .51 .52 .72

 .50 quantile .34 .34 .5 .5 .5

 .25 quantile .33 .33 .5 .46 .5

 .10 quantile .26 .3 .34 .33 .33

 .05 quantile .25 .25 .46 .33 .46

 Mean .39 .38 .51 .54 .60

 Standard deviation .11 .097 .09 .20 .20

 Note: For explanation of the column heads, see the notes to Table 1.

 UPolicy experiments. Once we have estimates of the relevant parameters and the abil-
 ity to compute the equilibria that result from them, it is easy to perform a host of exper-
 iments. This subsection provides some illustrations. We stress, however, that they are just
 that-illustrations. There is little empirical basis for picking the parameters we do and
 not much analytic knowledge of whether the qualitative results persist under alternatives.
 What we are providing is a series of examples of what can happen.

 We consider a set of perturbations to the equilibrium just described designed to in-
 vestigate the impacts of institutional change on both market structure and welfare. We
 calculate the welfare associated with each different problem as the discounted sum of the

 cash flows accruing to the active firms (profits minus investment), plus the discounted
 sum of exit fees minus entry costs, plus the consumer surplus generated by the products
 in existence in each period. The latter is calculated as

 fa[maxj(wj - p+ e)]dG(el, ... , e) = log j. exp(.1 - p), (15)

 where the equality is a result of the fact that GQ-) is multivariate extreme value (see McFadden,
 1981) and n is the number of active firms in the period.

 Recall that for any given institutional environment there will be a distribution of wel-
 fare results (generated by the outcomes of the investment processes and the process de-
 termining the value of the outside alternative). As a result, we simulate 100 runs for each

 TABLE 5 Price/Cost Ratios

 MP o'* .55 x, =2 Coll.

 Max 2.11 2.21 2.18 2.45

 .95 1.44 1.48 1.46 2.34

 .90 1.40 1.39 1.46 2.33

 .75 1.33 1.33 1.40 2.33

 .50 1.30 1.30 1.40 2.33

 .25 1.30 1.30 1.40 2.24

 .10 1.27 1.27 1.30 2.22

 .05 1.27 1.27 1.30 2.20

 Min 1.24 1.23 1.27 1.29

 Mean 1.33 1.32 1.41 2.30

 Standard deviation .085 .073 .099 .089

 Note: For explanation of the column heads, see the notes to Table 1.
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 institutional environment and then list the resulting means and standard deviations for the

 discounted net cash flow to the firms, the discounted consumer surplus, and total welfare.

 The initial condition for each institutional environment is an industry started by a

 single firm with a new product at an o = 4; i.e., so = e(4). In the first example we bestow
 monopoly power on the initial entrant for T periods and allow the free-entry Markov-

 perfect equilibrium with initial condition ST+1 = e(0T+1 ) thereafter. Next we consider a
 variant to this case in which the monopolist is allowed to produce as many products as it

 likes. In this case, which we call the perfect cartel, a single decision maker controls the

 pricing, investment, entry, and exit decision of each firm (or product). In the third case

 we assume an entry barrier in the form of a licensing fee that increases the sunk cost of
 entry by a factor of ten, from .2 to 2. The fourth case can be viewed either as a regulatory
 constraint or as a reaction of firms to the possibility of future regulatory constraints. In
 this case we assume that the firm is constrained to keep its market share below some o-*.

 Each of these alternatives is compared both to the original Markov-perfect equilibrium

 and to the market structures and welfare that would be generated by a benevolent social

 planner.

 We use a different (and much simpler) algorithm to calculate the policy functions for

 the cartel and the social planner. Let B(Wo1, ... ., on) be the one-period (or current) benefits

 to the decision maker when there are n firms active and their efficiencies are (WI , ... ., On)
 The social planner is interested in maximizing social surplus, so it sets each price equal

 to the common marginal cost and then calculates the one-period benefits from the con-
 sumer-surplus calculation in (15) above. The cartel is interested in maximizing the dis-
 counted sum of the total profits of all firms in the industry. In each period it chooses a

 vector of prices to maximize the total profits that could be generated from the n goods
 currently marketed and calculates

 max(p.. >nAEu(o), pj; I, * .*. , tons Pi, . . ., Pn) [Pj - mc], (16)

 where o(ijo1, pj; 0I,9 ... , * ns PI ... *, PO) the market share of the jth good given the prices
 and efficiencies of all goods marketed, is calculated as in (3) above.

 We calculate the value function for the planner and the cartel from the following

 recursion. If V'-'(0l, ... , On) is the i -1 th iteration of this function and we have ordered
 the co so that Woi ' coi1, then we calculate the ith iteration value function as

 V'((1. . . 9 () = max(qel,...,n) V'((lI, * .. . (Oq) , (17)

 where

 V'(cWj ..., COW) B(o1, ... ., (q) + (n - q)4 + max

 {SUp(X . Xq) -.c>Ix1 + > V 1(o4, . .. (4)i)P(o9 | ( x1, v) ... p(oqIoq, Xq, V)p(V);

 sup(xj.. xq) - c>jxj - Xe + E V1 (1;) ... , Wq (0e) P (()'I , I9 Xi, Iv) ...

 p((JI |oqq Xq, V)P(&We I V)p(V)}-

 If the first max over q for q E {1, ... n} is q*, then (n - q*) of the incumbents exit.
 The second max operator determines whether or not a new product is introduced in the

 following period.
 Table 6 provides the welfare results. We begin by comparing the various temporary

 monopolies to the Markov-perfect Nash equilibrium. The columns with the means of the
 discounted cash flows and of the discounted consumer benefits show that, as expected,

 there is a large distributive effect of going from one institutional environment to another.
 An infinitely lived monopolist will earn on average about three times as much as the total
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 TABLE 6 Social Welfare from Alternative Market Structures

 Total Firm Consumer Total

 Cash Flows Benefits Benefits'

 Benefits/ Standard Standard Standard
 Market Structure Mean Deviation Mean Deviation Mean Deviation

 Monopoly 207 66 96 17 303 83

 20-year monopoly

 then free entry 180 57 140 21 320 74

 10-year monopoly

 then free entry 146 54 186 31 331 71

 Markov-perfect Nash 70 26 301 65 369 68

 Perfect collusion 218 55 115 19 332 74

 Social planner 377

 a* = .65 61.7 15.1 289.7 64.4 349.6 67.4

 a* = .55 54.4 12.0 284.8 66.1 337.5 73.1

 Sunk costs = 2 76.5 26.3 293.4 55 361.5b 69.8

 Note: All calculations are based on 100 simulation runs and the parameter values in Table 1. Each simulation

 run uses the initial condition that there is only one firm active and it is at w0.

 'Total benefits are net cash flows plus consumer benefits minus the discounted value of entry fees minus

 exit fees (the latter only make a small contribution to the calculation).

 bThe mean of the discounted incremental entry fee is 7.8, when x, = 2.

 discounted net cash flows of all the competitors in a Markov-perfect Nash equilibrium.

 However, consumer surplus will be about three times as high when we allow for free

 entry. Because the two impacts of monopoly on welfare tend to offset one another, the
 total impact on welfare is not as dramatic. Still, monopolization does decrease welfare by

 about 20%.

 At least two caveats should be stressed here. First, these institutional arrangements

 restrict the monopolist to produce no more than one product. Although there may, de-

 pending on the source of monopoly power, be some limits on the number of goods a

 monopolist can market, a limit of one is somewhat artificial. The extreme alternative is

 to assume that the monopolist can market as many goods as it likes-but no one else can
 enter the industry. The monopolist would then become a perfectly colluding cartel: a cartel
 that controlled pricing, investment, and entry and exit decisions to maximize the sum of

 the expected discounted values of future net cash flows of all its members.
 The results of the welfare calculations for this institutional environment are given in

 the row labelled "perfect collusion" in Table 6. As compared to the single-product mo-
 nopolist, producer surplus, of course, goes up; but the increase is under 5%. Consumers

 now have a choice of products, however, and this increase in product diversity implies

 that the change in institutional structure also generates an increase in consumer surplus,
 in our case an increase of almost 20%. So the cartel, or the monopolist who is allowed

 to market many products, generates a measure of total welfare that is only 10% lower
 than the total welfare generated by the Markov-perfect Nash solution.

 The other point to note here is that the standard deviation of the welfare gains in any

 of the institutional regimes is about 20% of the average welfare gain in those regimes.

 This is about twice as large as the average difference in welfare between the collusive and

 the Markov-perfect regimes, and about the same size as the difference in welfare between
 the single-product monopolist and the Nash solutions. On average, then, differences in
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 welfare within any institutional structure are likely to be quite large, large enough to make

 us worry about case study comparisons of the impacts of different institutional regimes.
 We now compare these results to the solution to the social planner's problem. Recall

 that in each period the planner chooses all outputs, investments, entry, and exit to maximize

 social welfare given the technological constraints that are operative in the Markov-perfect
 Nash equilibrium.

 Perhaps the most striking point to be made here is that in terms of welfare there is

 not much difference between the planner's solution and the Markov-perfect Nash solution

 (the planner does about 2% better). That is, for this set of parameters a planner could not

 do very much better than the Nash free-entry solution. On the other hand, the planner
 generates a market structure that is quite different from the Markov-perfect Nash solution;

 indeed, in many ways the market structure generated by the planner is more similar to the

 market structure generated by perfect collusion (see the columns labelled PP and Coll. in

 Tables 1 to 5). For example, the entry and exit rates generated by a colluder are almost

 the same as those generated by the planner (and these are only three-fourths of the rates

 generated by the Nash free-entry solution), both the colluder and the planner generate

 markets in which there are typically two or three firms active whereas the Nash free-entry

 solution typically has three or four firms active, and the one-firm concentration ratio gen-
 erated by the planner is much closer to that of the colluder than to that of the Nash solution
 (though it does fall in between the two). Indeed, the only really striking difference between
 the planner's solution and the collusive solution is in price/cost ratios. The planner's is
 one, always. The colluder averages 2.3, a number markedly higher than in any of the

 other regimes we examine.
 Table 7 sheds some further light on the relationship between the planner's, the col-

 luder's, and the free-entry Nash solution. It compares the investment and number of active

 firms generated by the alternative institutional environments. The planner typically mar-
 kets fewer products and generates less investment than does the Nash free-entry solution.
 This is because the entrant and the investor in the Nash game do not take account of the

 negative effects of their investment and entry decisions on the profits of their competitors,
 whereas the planner's actions take account of all externalities. The planner does, however,

 generate an equilibrium with both more firms and more investment than the equilibrium
 generated by perfect collusion. This is because the planner takes account of the increase

 in consumer as well as producer surplus generated by entry and increases in product qual-

 ity, whereas the colluder takes account only of the effect of entry and investment decisions

 on producer surplus.21
 Before leaving this comparison we should emphasize that our computations for the

 "collusive" case simply assumed that there was some outside authority that could ensure
 that the collusive agreement was maintained (e.g., a legal source of monopoly power).
 We have not considered whether one could support such a regime with an implicit system

 TABLE 7 Average Investment and Number of Active Firms Under Alternative Institutional
 Arrangements

 Investment Active Firms

 Markov-perfect Nash 2.57 3.4
 = .65 2.56 3.4
 e= 2 1.97 2.2
 Planner 1.95 2.6

 Perfect collusion 1.75 2.3

 21 For a theoretical discussion of the social optimality of the entry rates generated by a free market, see
 Mankiw and Whinston (1986) and the literature cited therein. Note that Mankiw and Whinston assume that

 their planner can control entry rates but not (as our planner does) postentry behavior.
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 of punishments (recall that for this type of collusion to be self-sustaining it must also deter

 all but the collusively optimal entry); so there is a sense in which this is as extreme a

 degree of collusion as one could ever find. On the other hand, it is not clear that as the

 degree of collusion increases the welfare measure decreases, so it might well be that less

 collusive institutional structures (say, a regime that could control the prices and investment

 strategies of incumbents, but could not control entry) would generate lower welfare.

 We move next to the results from the simulation experiments in which we set the

 upper bound to market share, i.e., or*, to .65. In these runs, firms choose prices to max-
 imize their profits conditional on the price choices of their competitors and the market-

 share constraint (as a result, firms whose a) would induce a market share of .65 or more
 if there were no upper bound choose to increase their price and lose customers). At an = .65

 the market-share constraint has only moderate bite; the unrestricted Markov solution has

 about 4% of the observations with o- ' .65, whereas once we restrict market share, firms
 at higher values of a) invest less, so that in the restricted runs, the constraint is binding

 just under 1% of the time. The columns labelled or* = .65 in the tables show that the

 market structures generated by the model with the market-share restriction are very similar

 to those generated by the model without it. Indeed, it would be hard to tell the difference
 between the two institutional arrangements based on the observables listed in these tables.

 On the other hand, though the change in institutional regime has only a small effect on

 market structure, it does have a noticeable effect on welfare (welfare falls by over 5%).
 Moreover, both components of welfare fall, i.e., total firm cash flows and consumer sur-

 plus, so that there is not even a distributive reason for the market-share restriction-at

 least for this set of parameters. The fall in consumer benefits probably results from the

 fact that the market-share constraint forces firms with very high co to raise price, as the

 top 5% of the price/cost margins are higher when the market-share restriction is imposed
 (Table 5). Decreasing or* to .55 just moves all variables further in the same direction (now

 the fall in welfare is about 9%).

 What happens if we go back to our base case but increase the sunk cost of entry by
 a factor of 10 (from .2 to 2)? Total net cash flows to producers go up somewhat, but
 consumer surplus goes down even more, so that total welfare falls, but only by about 3%.
 Indeed, if we assume that the incremental sunk costs were institutionally created, had no

 administrative costs associated with them, and were recycled to consumers in another

 form, then they should be added to the total benefits in the table. When we did this
 calculation we found that the effect of the increase in the sunk cost of entry on welfare
 was not noticeable.

 Though this change in sunk costs has only small effects on total welfare, it has sur-

 prisingly dramatic effects on market structure. The columns in Tables 1-5 that are labelled

 Xe = 2 describe the market structures generated by the simulated runs when sunk costs
 were set equal to 2. The increase in sunk costs cuts out almost all entry (entry occurred
 in about 20% of the periods in the case but in only 1% of the cases after the sunk cost
 increase), and it changes the correlation between entry and exit from positive to negative.
 It also generates an equilibrium in which new entrants last much longer (see Table 2),
 and the one-firm concentration ratio is both much higher (it goes from .39 to .52) and
 much more stable over time (its standard deviation goes from .11 to .09). In sum, the
 increase in sunk cost generates a much more stable and "concentrated" industry.

 Note, however, that the price/cost margins are not too different than what they were
 under our base case. The price/cost margins are quite similar in all cases in which there
 is free entry. The relative constancy of price/cost margins, together with the fact that
 entry and investment were higher in the free-entry Nash than in the planner's solution,
 provides some indication of why we would not expect welfare to fall too much as a result
 of the sunk cost increase. Indeed, it is likely that there is a level of incremental entry costs

 that generates a larger value for the welfare measure than the free-entry Nash solution
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 does. On the other hand, it could not beat it by much, as the Markov-perfect Nash solution

 is very close to the planner's solution.

 The latter two cases provide an interesting comparison. The effect of the market share

 restriction on welfare was large, but its effect on market structure was almost imperceptible.

 On the other hand, the effect of the increase in sunk costs on market structure was dra-

 matic, but its effect on welfare was almost imperceptible. It is reasonably clear then, that
 once we allow for the complexities of the investment, entry, and exit processes, there is

 no simple way to relate changes in the descriptive statistics we generally use to describe

 market structure to changes in welfare.
 We conclude this section by reemphasizing that these results are for a set of parameter

 values chosen more or less at random; we have made no attempt to examine their ro-

 bustness. The section was not written to provide a set of policy prescriptions. Rather, we
 had three more modest goals. The first was to provide an illustration of the detail that can

 in fact be generated by simple dynamic equilibrium models with idiosyncratic uncer-

 tainty-detail that is a salient feature of datasets on firms. The second was to illustrate

 some of the likely problems with other approaches to the analysis of industry behavior.

 Finally, we hope we have illustrated the potential benefits from actually going to data and
 obtaining reasonably reliable estimates of the primitive parameters needed to analyze the
 nature of equilibrium.

 5. Computational burden and approximation techniques

 * We have calculated equilibria for two to six firms (i.e., N = 2, ... , 6) for a variety
 of problems. The policies and value functions for a six-firm equilibrium typically take

 about five hours to compute on our Sun Sparc 1 workstation. Further, the time required

 to calculate these equilibria usually went up by a factor of about five every time we moved
 N up by one. These types of calculations indicate that though the computational techniques
 discussed above may well be adequate for either analyzing industries with a small number
 of firms, or as a teaching tool, we will need to improve on them before they can be used

 to analyze larger markets. This section begins with a brief discussion of the magnitude of
 the computational problem and then introduces approximation techniques designed to re-
 duce the computational burden of the algorithm.

 The time required to compute the fixed point that determines optimal policies and the

 value of those policies is roughly the multiple of (i) the time per grid point evaluation,
 (ii) the number of grid points evaluated at each iteration, and (iii) the number of iterations

 until convergence. We begin by considering the number of grid points.
 Note first that the number of distinct grid points is ke, where N is the maximal number

 of firms ever active and k is the number of distinct elements in fQ. So if there were no
 further simplifications, the number of distinct grid points grows exponentially in N. Luck-
 ily, symmetry22 implies that

 V((w1, (02, . * * , (OJN) = V(w)1 (I9 r(2) . * * , ()-Qr(N)) (18)

 for any N - 1 dimensional vector rT = [IT(2), ... , iT(N)] which is a permutation of
 (2, ... , N). It follows that we need not evaluate the value function at each distinct grid
 point. Indeed, the number of points one needs to evaluate is the number of distinct N-element

 vectors withW2 ? W3 ..., ? (BwN and 1 'w i '< k, for i = 1, ..., N. That number can
 be computed from the following proposition.

 22 In probability theory a function that satisfies (18) would be called "exchangeable" in its last N - 1
 arguments. We started out using this terminology but were persuaded to change to "symmetric" to conform to
 terminology used by economic theorists.
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 Proposition 2. The number of distinct sequences [w1, l.., wN], with w i- wi-I and
 wc E [L, ..., k], say S(k, N), is given by

 (K + N - I (K + N- 1)!
 S(k, N) = N K-i!N

 Proof. See Pakes (1992), Lemma 32.

 Proposition 2 implies that the number of grid points that need to be evaluated grows
 as a (kth-order) polynomial in N.

 We have used (18) to reduce the dimension of the fixed-point calculation in the nu-
 merical analysis that underlies all the examples we have computed to date. So the com-
 putational times given above, times that we argued were too large to make it feasible for
 us to use our techniques on industries with large numbers of firms, already incorporate

 the savings that symmetry allows for. As a result, we looked for approximations that
 reduce the number of grid points even further. Below we show how we can manipulate
 simple approximation techniques in a way that reduces dramatically the number of grid
 points that need to be evaluated. Indeed, these techniques make the number of grid points
 that need to be evaluated at each iteration independent of N.

 Still, at each grid point we do evaluate, we need to evaluate the value function at

 every achievable industry structure in the following period. Taking our example, recall
 that the firm's research endeavors could lead its PI to equal either zero or one, whereas
 the increment in value of the outside alternative could have the same realizations. So if
 n is the number of incumbents that remain active, there are 2'+' industry structures to
 evaluate with no entry, and the same number with entry. Proposition 2 can be used to
 reduce the number of distinct industry structures that need to be evaluated, but this still
 leaves us with a number of structures that grows as a kth-order polynomial in n.

 In a separate article, Pakes and McGuire (1992) show how one can combine a moment

 generating function technique similar to that introduced in Kortum (1992), with the ap-
 proximation techniques introduced below to lead to an algorithm that both does away with
 the dependence of the number of grid points on N and decreases the computational burden
 at each grid point. That article integrates those techniques into the algorithm we are about
 to describe, adds policy and value iteration steps, and then provides some results on both
 the computational burden and the numerical accuracy of the resulting procedure .23

 Our goals for this section are more modest. We begin by showing how easy it is to
 incorporate approximations into the algorithm outlined in Section 3. We then show how
 the symmetry property in (18) reduces the dimensionality of the fixed-point calculation
 when the approximations are used. Finally, we conclude with some brief comments on
 how well the approximating functions did in fitting the value functions from the pointwise
 calculations given in our example.

 This latter step should be regarded as a first step in evaluating the algorithm that uses

 our approximations. The procedure looks to see if there is a member of the class of ap-
 proximating functions that provides an adequate fit to the true value function. If such a
 function does not exist, then a technique that iterates across members of the class of ap-
 proximating functions looking for a function that provides an adequate approximation to
 the true function is not likely to be successful.

 The approximation techniques we consider attempt to reduce the computational bur-
 den of the iterative procedure by fitting the value function at only a small fraction of the
 points in S and then using the information obtained from those values to predict the value

 23 The combination of approximation techniques used in Pakes and McGuire (1992) also makes the com-
 putational burden of the fixed point calculation independent of the fineness of the grid (of K in our notation).
 As a result, they apply equally to problems with continuous as well as discrete state spaces.
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 function at other points as needed. More generally, all we require is an approximation to

 a function that determines optimal policies at any point in S, and there are many different
 ways of doing this. Taylor and Uhlig (1990) review and compare several different ap-

 proximating techniques in the context of computing equilibria for a representative agent

 stochastic growth model. Judd (1990) sketches a general framework and computes equi-
 libria from models with two agents (and no entry or exit), and Marcet (1992) reviews

 progress in this field.

 Many of these techniques fit polynomials in a set of functions that span, or form a

 basis for, a "rich enough" collection of approximating functions (the Chebyshev or Le-

 gendre polynomials, for example) to a small set of points, and then use the fitted poly-
 nomial to predict the other points as needed. We begin by showing how to embed such
 approximations into the computational algorithm described in Section 3.

 The heterogeneous agent problems we are interested in are by nature multidimen-

 sional, the dimensionality of the state vector for any given agent going up with the number

 of other agents active in the market. So our polynomial approximating functions will be

 maps from gQN into OR. A functionf which takes gQN into BR is a polynomial of order A if
 for all o E &lN

 A p-hii P

 f (c&l ,J CN) =a ..E (hl, . .. , hN) &J1 * ** N
 p=O hN=O h, =O

 E a(h) w(h) (19)
 hE H(N)

 where h={h, ..., hN}E H(N), H(N) = {h EN hi ' A}, and a(h) E R for all
 h E H(N).

 The collection of all such polynomials obtained by varying a, together with the usual

 operations of addition and scalar multiplication, is a vector space (over the real numbers),
 say VA. It can be shown that a basis for this vector space can be formed from the functions
 w(h) with h varied over HN, as in (19) above (see Hoffman and Kunze (1972)).24

 The iterative procedure used to calculate the fixed point defining the value function

 for our problem can be modified to find an approximating polynomial, a V E 'A, as
 follows. Define a set of basis points, say the vectors w(j E= fN, and compute the vector

 of basis functions for each of those points, say w(w(), where w: N-> RJ, for j = 1, 2.
 Here J is the number of basis functions, and we require the basis points to generate at
 least J linearly independent values for those basis functions. Starting at some initial guess

 for the vector a, let the estimate of the coefficients at the i - Ith iteration of the recursive
 calculation be a'-. These coefficients determine the ith iteration's approximation to the
 value function at any state, say co*, as

 Vl [)*] = w(w)*) 'a . (20)

 Substitute (20) for V(-) on the right-hand side of equations (12), (13), and (14) at each of
 the basis points. This system can be used to calculate the ith iteration's entry, exit and
 investment policies in precisely the same way as (12), (13), and (14) were used to update
 the optimal policies in Section 3. Next, substitute these policies together with 1V1 into
 the right-hand side of the Bellman equation in (12). The left-hand side of that equation
 now gives us a new value function, say V*'(-), at each of the basis points. We choose a'

 24 We note that the following discussion could be generalized by looking for an approximation in a vector
 space spanned by the tensor products of g(w,) for suitably chosen g() or by looking for an approximation to
 a monotone function of V() instead of an approximation for V() itself. This added generality is often helpful

 when one knows something about the properties of V( ) and can choose transformations that make it easier for

 the basis functions to mimic those properties.
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 to minimize the Euclidean distance between w(w)'a1 and V*i(-) at the basis points. That
 is, if W is the matrix formed from the rows w(w'),

 ai = [WIW]lW1V*i. (21)

 Now iterate on this procedure until convergence is achieved (where we define convergence

 in terms of closeness of the value functions and of the policies between adjacent iterations).

 Have we gained much from using the approximation? Unfortunately, without further

 restrictions, the number of functions needed to form a basis for VA, and hence the min-

 imum number of points at which we need to fit the value function for this approximation,
 still grows as a polynomial in N (though this time as a polynomial of order A rather than
 of order k). However, we have not yet used the fact that the value function is symmetric

 in the vector (w)2, ... . &4N). If we restrict our search to the subspace of 'VA that satisfy the
 restriction that, for all &)N E QN9

 V((wt I (9 2, * ... * ,(N) = V(h ( IT 9 r(2) , ... , &4r(N)), (22)

 for any N - 1 dimensional vector Or = (Ir2, ... . rTN) which is a permutation of (2, ... , N),
 we reduce the number of required basis functions dramatically. Indeed, provided N > A,
 the number of required basis functions becomes independent of N. That is the content of
 the following proposition.

 Proposition 3. The space of polynomials of order A satisfying equation (22), together
 with the usual operations of addition and scalar multiplication, is a vector space, say

 V16 C 'VA, with dimension
 A p

 diml E E` I\i- 9()
 p=O i=O

 where l\(i) is the number of partitions of the number i (see below). Further, if

 N ' A, dim V`6 = qp(A). Note that q(A) is independent of N.

 Proof. The fact that addition and scalar multiplication preserves partial symmetry proves
 that the subspace of functions satisfying (22) is a vector space. The proof of the proposition
 is a result of the following lemma.

 Lemma. An f E VA is also a member of VA, if and only if for all h E HN,

 af(hl, h2, ... , hN) = af(hl, h7(2), .. ., hr(N)

 for any [Ir(2), ... , ir(N)] which is a permutation of (2, ... , N).

 Proof. (See Appendix 1 of Pakes (1992).)

 Define mj(h) to be the jth-largest element in the vector (h2, ... , hN) for j = 1, ... , N - 1
 (using any tie-breaking rule that preserves the natural order of pairs that are ordered).
 Then the lemma implies that we can form a basis for V`6 by simply adding together the
 basis functions from VA that have

 af (hl, h2, ... , hN) = af(hl, M2, ... ., MN)

 for each distinct value of the vector (h1, M2, ... , MN)).
 What remains is to determine the number of distinct a coefficients this generates. Let

 p(h) be the order of the basis function corresponding to a(h), that is, p(h) = 1h(i). Then
 the number of distinct a coefficients generated by h vectors with p(h) = p, and a particular
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 value of hl, is the number of ways the number p - h, can be allocated among N - 1
 locations (without regard to order). If N ? A ? p - h, this is simply the number of par-

 titions of p - hl, or L\(p - hj) (see below). For example, if p = 5 and h, = 1, we look
 for the number of ways in which we can partition the number 4 (which is 5: (4), (3, 1),

 (2, 2), (2, 1, 1), and (1, 1, 1, 1)).

 Consequently, the number of distinct a coefficients required to generate all distinct

 coefficients for the pth-order basis functions is T(p), where

 p

 T(p)= E I\(i).
 i=O

 9p(A) is derived by summing this equation over p = 0, 1, ... , A. Q.E.D.

 To use this proposition we need a set of basis functions for 1/j, and we now outline
 how to obtain them.25 The two distinct first-order coefficients implied by the theorem are

 a(l; 0, ... , 0) and a(O; 1, ... , 0). Consequently, the basis functions associated with

 these coefficients are wc and Ei=2Wi. The four distinct second-order coefficients are
 a(2; 0, ..a.), a(1; 1, 0, ...), a(O; 1, 1, ...), and a(O; 2, 0, ...) with basis functions

 ~i, E &)i 2 E Ec)ioi2, and Ei2 .
 i=2 ii=2 i2=2 i=2

 More generally, the A(p - j) pth-order coefficients with h, = j are

 a(j; p - j, 0, ... ), a(j; p - j - 1, 1, 0, ... ), a(j; p - j - 2, 2, 0, 0, ...)9

 a(j; p - j - 2, 1, 1, 0, ... ), ... , a(j; 1, 1, . .. , 1, 0, . . .

 with associated basis functions

 N N N

 (d i, E h ail j 1 E h-j- Ih-j-2 2 IRY > ,4i (1 > ilj (ti2, 9 I E i i2
 i=2 ilsi2=2 ilsi2=2

 N N

 Ct0l E I (ti2 ( 3 9 ... ., W I (ti I(ti2 . . . (Oi(p -j)-
 isi2,i3=2 ilji2... i(p-j)=2

 The general formula for /\(q) requires fairly detailed notation (see, for example, Abra-

 mowitz and Stegun (1972)) so for convenience we provide a listing of A(q) and qP(q) for
 q= 1, ... , 12, in Table 8.

 Recall that if a A-order polynomial is a good approximation to the value function,

 then we need only calculate the value function at qp(A) points. Table 8 indicates that
 qp(12) = 854. For comparison, the pointwise technique used to calculate the results re-
 ported earlier required calculating the value function at 639,000 points, and this for a

 vector of parameters that generated an ergodic distribution of industry structures with an
 upper bound of six active firms. Thus, even for industries with a moderate number of
 firms, polynomial approximations that are restricted to the subspace of symmetric poly-
 nomials should allow us to cut the number of points at which we evaluate the value func-
 tion by several orders of magnitude.

 A first step towards a numerical analysis of the quality of the approximation we get
 from embedding the symmetric basis into our algorithm can be obtained by simply fitting

 25 The same proposition and basis functions apply to polynomial approximations to any function that
 satisfies the symmetry restriction in (22) and ought, therefore, to be useful in a variety of economic applications.

 For example, Berry, Levinsohn, and Pakes (1993) use these results to reduce the dimensionality of a polynomial

 approximation to the optimal instrument formula in their econometric analysis of demand and supply in dif-

 ferentiated product markets.
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 TABLE 8 Number of Basis Functions for qth-Order Exchangeable

 Polynomials

 q A(q) ;p(q)

 0 1 1

 1 2 3

 2 3 7

 3 4 14

 4 5 26

 5 7 45

 6 11 75

 7 15 120

 8 21 186

 9 30 276

 10 41 407

 1 1 55 593

 12 75 854

 the calculated value function for one or more of our examples to the symmetric basis. We
 now provide a brief summary of our results from these tests to date.

 Pakes (1992) reports on the fit of the value function per se from such an approxi-
 mation. The results were encouraging for two reasons. First the measure of fit obtained
 from the symmetric basis for a given order of approximation was, as the theorem suggests
 it should be, pretty much independent of the number of firms active in the market. Second,

 the results were not noticeably different when, instead of fitting the coefficients by pro-
 jecting the calculated value function at all grid points onto the exchangeable basis, we fit
 the polynomial to a small number of points first (the points that were mod 3 in the vector
 sense) and then used the resulting coefficient estimates to predict the value function on
 the entire set of grid points.

 The measures of fit we obtained from projecting the symmetric basis onto the true

 function were extremely good by traditional standards, especially given that we were using
 only sixth-order approximations. On the other hand, it is not clear how one should interpret

 these numbers, because our primary interest is not in reproducing the value functions per
 se but rather in reproducing the policies that those value functions imply. In this context,
 measures of goodness of fit of the policies generated from our approximation might be
 more useful than measures of fit from the value function per se.

 We can obtain the policies implied by our approximations by substituting the ap-
 proximation to V(-), say V(-), for V(-) in the left-hand side of equations (12), (13), and

 (14) and computing the policies that this approximation generates. Note, however, that a
 recursive approximation algorithm would use the policies that are the output of this cal-
 culation as input into a second-step approximation to the value function, and iterate on
 this procedure. The iterative procedure is likely to generate an internal consistency between
 the errors in the approximating functions and the errors in the policies that will be absent
 in our one-step procedure. As a result, we might expect to get a better fit from the policies
 generated from the iterative algorithm than we get from the one-step procedure we report
 here.

 The results from the one-step procedure were better for investment than for entry and

 exit. Largely this is because the investment policy is a smooth functional of the value
 function, whereas entry and exit policies are, by their very nature, discrete responses. Of
 course, some averaging over time goes on for the exit and entry policies, so that if entry
 is missed in one period, it may well be compensated for in the next, but at least in some
 respects the impacts of these errors did not seem to "average out" over the 10,000 sim-
 ulated periods. For example, the approximated policies for the case we computed had

This content downloaded from 138.51.13.8 on Mon, 07 Jan 2019 16:24:24 UTC
All use subject to https://about.jstor.org/terms



 588 / THE RAND JOURNAL OF ECONOMICS

 about 15% of the equilibrium points with five or more firms active, whereas the actual

 fixed point calculation had five or more firms active in only 3% of the cases. On the other

 hand, the approximations generated simulations that were almost exactly on the mark for
 total investment, the average price-cost ratio, the average of the share of the largest firm,
 and the welfare measures. So if it were these latter statistics that one were interested in,

 the approximation error would have been acceptable.
 We note again that we might do better on the entry and exit policies by fitting the

 polynomial approximation technique directly into the recursive calculation, and that there

 are many details of the approximation procedure that can be varied in order to try to

 improve its performance (including increasing the order of the approximation), so these

 results should be treated as preliminary. The most important lesson we learned from them

 is that we will have to be quite careful when approximating policies that are not smooth
 functionals of the value function. Pakes and McGuire (1992) report on several techniques

 designed to help the recursive algorithm circumvent this problem.

 6. Summary

 * This article developed a simple algorithm for computing Markov-perfect Nash equi-

 libria. The advantage of the Markov-perfect framework is that it is flexible enough to

 reproduce important aspects of reality in a variety of market settings. As a result, we hope
 this article and (perhaps improved versions of) the algorithms will eventually be a part of
 a tool kit that allows researchers to go back and forth between the implications of economic

 theory and the characteristics of alternative datasets.
 Section 3 used the computational algorithm to compute the equilibria of a differen-

 tiated product version of the Ericson-Pakes model of industry dynamics. The numerical
 results were quite detailed and served to illustrate the relationship between observable

 magnitudes, welfare results, and policy alternatives in a much more realistic setting than
 could have been investigated using analytic techniques. On the other hand, those results
 are dependent on the particular range of parameter values analyzed in Section 3, and these
 were not chosen to mimic the behavior of any particular industry.

 Section 5 discusses the computational burden of the algorithm. That discussion in-
 dicated that the pointwise calculations that underlie the computational framework dis-

 cussed in Section 2 will have to be abandoned when analyzing behavior in industries in
 which there are typically a large number of active firms. As a result, we show how the

 algorithm can be modified to make use of approximations. We then provide a proposition
 showing that these modifications make the dimension of the basis (and hence the dimen-
 sion of the fixed point calculation) needed to fit a polynomial approximation independent
 of N (and not very large).
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