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This paper provides a model of firm and industry dynamics that allows for entry, exit and
firm-specific uncertainty generating variability in the fortunes of firms. It focuses on the impact
of uncertainty arising from investment in research and exploration-type processes. It analyses the
behaviour of individual firms exploring profit opportunities in an evolving market place and derives
optimal policies, including exit, in this environment. Then it adds an entry process and aggregates
the optimal behaviour of all firms, including potential entrants, into a rational expectations,
Markov-perfect industry equilibrium, and proves ergodicity of the equilibrium process. Numerical
examples are used to illustrate the more detailed characteristics of the stochastic process generating
industry structures that result from this equilibrium.

I. INTRODUCTION

A salient feature of firm-level data is the great variability in the fate of similar f,trms over
time. Manifestations of this variability include simultaneous entry and exit in an industry,
simultaneous firm-level job creation and destruction, and variability in growth rates, found
in the analysis of firm and establishment level panel data sets. These indications of differ
ences in outcome paths among firms persist even after one controls for the firm's entry date,
location, and industry, and therefore for time, location, and industry specificdifferences in
economic environments. Moreover they tend to be associated with a remarkable degree
of heterogeneity among firms in the same industry in both levels and movements over
time in the variables that we typically want to analyse (industry output shares, investment,
productivity, etc.).' We provide a model of industry behaviour which, because it incorpor
ates idiosyncratic or firm-specific sources of uncertainty, can generate the variability in
the fortunes of firms observed in these data.

There is a policy, as well as a descriptive, need for such a model. In a world where
firms differ, policy and environmental changes are likely to have different impacts, and
lead to different responses, in different firms. Since these responses are frequently nonlinear

l. Partly due to increased data availability, there has been a resurgence in the analysis of firm level panels
over the last decade; see Evans (I 987a, b), Dunne et al. (1988), Pakes-Ericson (1990), Davis-Haltwinger (1992),
and the literature cited in those articles. These articles also contain references to the extensive empirical literature
on the nature, extent, and implications of the variation in performance paths among firms.
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54 REVIEW OF ECONOMIC STUDIES

functions of the changing variable (entry and exit reflecting an extreme nonlinearity), any
analysis of their effects, even if only an analysis of their aggregate impacts (say on industry
supply or productivity), requires both the underlying distribution of firms by the source
of response heterogeneity, and the (equilibrium) response of that distribution to the given
policy or environmental change.' Of course, policy issues are often more directly related
to the heterogeneity in the distribution of responses per se, as in, for example, the analysis
of the effects of a policy or an environmental change on job turnover, on market structure,
or on default probabilities. In these situations the whole focus is on characteristics of the
distribution of the response heterogeneity, and hence the need for a structural model that
allows for idiosyncratic uncertainty becomes even stronger.

Models of industry dynamics allowing for firm heterogeneity and/or idiosyncratic
shocks have begun to appear in the literature, beginning with the models of intrinsic,
initially unknown and unchanging "types" which are slowly revealed through economic
activity, by Jovanovic (1982) and Lippmann-Rumelt (1982).3 Another class of models
emphasizes the sunk cost nature of initial investments whose relative profitabilities change
over time in response to outcomes of some exogenous process; see Dixit (1989) and
Lambson (1992). Both classes of models deal with large, perfectly competitive industries.
In addition there are game-theoretic duopoly models exploring possible characteristics of
alternative dynamic equilibria; see Maskin-Tirole (1988), Rosenthal-Spady (1989), Budd
et al. (1993), and Cabral-Riordan (1992), and in the technology "race" literature see
Vickers (1986), Beath et al. (1987), and Dutta et al. (1993). Finally, there is a growing
body of literature emphasizing the need for such models in empirical work (e.g. Thomas
(1990); Olley-Pakes (1991», and beginning to implement them in policy analysis (Berry
Pakes (1993), Hopenhayn-Rogerson (1993».

The purpose of this paper is to provide a model which allows for heterogeneity and
idiosyncratic shocks, and which is general enough to serve as a framework for empirical
work. In Section II the model of an industry and its equilibrium are presented. The industry
model is based upon a stochastic model of the entry and growth of a firm through the
active exploration of its economic environment. The firm invests to enhances its capability
to earn profits in an environment characterized by substantial competitive pressure from
both within and outside the industry. The stochastic outcome of a firm's investment, the
success of other firms in the industry, and competitive pressure from outside the industry
(both in the market and through entry) determine the "success" of the firm, i.e. its profit
ability and value. If success is limited, a deterioration in the profitability of the firm can
lead to a situation in which it is optimal to abandon the whole undertaking. This endogen
izes exit behaviour; and provides a natural way of accounting for selection in the process
of determining the evolution of the industry.

We close the model by showing the existence of a Markov-perfect Nash equilibrium
in the investment, entry, and exit decisions of each firm. Firms maximize their present
discounted value given expectations about the evolution of their competition. At equilib
rium those expectations are fully consistent with the process generated by the optimal

2. See Geweke (1985), and Pakes-McGuire (forthcoming) for related discussions and numerical examples.
The importance of explicitly accounting for heterogeneity in response patterns when analysing the aggregate
impacts of changes comes out clearly in the recent empirical work that uses disaggregate data, e.g. Thomas
(1990) or Olley-Pakes (1991).

3. These models were a natural dynamic extension of the static models of industry equilibrium with
heterogeneity among agents; see Lucas (1978), Kihlstrom-Laffont (1978), and the summary in Brock-Evans
(1985). Hopenhayn (1992) provides a hybrid model in which perfectly competitive firmsare subject to exogenous
productivity shocks, but do not engage in Bayesian learning as they know the distribution of those shocks. See
further discussion in Section III below.
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decisions of all firms within or entering the industry. Thus we show the existence of a
rational expectations equilibrium with a finite number of heterogeneous agents subject to
idiosyncratic shocks. These results are presented and discussed in Section III, where we
further characterize that equilibrium as an ergodic stochastic process, and note the implica
tions of that result for interpreting the observed dynamics of industry equilibria. Section
III concludes by relating our results to those of a number of other dynamic industry
models.

Our model is general enough to encompass a wide variety of specific models of
competition. The answers to many questions of interest, however, depend on details of
the functional forms which determine the fine structure of any application. Hence we have,
elsewhere, developed a computational algorithm which computes and characterizes the
equilibria associated with the different functional forms that can be fed into our model
(see Pakes-McGuire, (forthcoming)). Section IV uses this algorithm to compute and
analyse a particular example: a Coumot-Nash, homogeneous product, version of our
model in which firms are differentiated with respect to their efficiencyof production. These
efficiencies evolve with the outcomes both of a research and exploration process and of
an aggregate process which shifts the costs of factors of production to the industry. We
then provide a brief comparison of these results to the results from a differentiated product
version of our model used as the example in Pakes-McGuire (forthcoming). Section V
concludes with a summary and discussion of potential extensions, focusing primarily on
steps that would allow us to make more intensive use of the model in interpreting data.
Finally, proofs of the more important of our results are gathered in a technical appendix.

II. AN INDUSTRY MODEL

A. Overview

The active force in our model is an entrepreneur/firm exploring a speculative idea, a
perceived profit opportunity in some industry." To learn the value of the opportunity, a
firm must invest to enter the industry and then in developing and, possibily, in exploiting
it. Investment to enter is a sunk cost, perhaps partially recoverable if there is some scrap
value realizable on exit. The quantity of investment, together with parameters describing
the evolution of the market and the competition, determine the distribution of outcomes
from the exploratory activities of an active firm in each period.

Favourable outcomes from its own investment activity tend to move the firm towards
"better" states; states in which its idea can be embodied in a good or service likely to be
marketed more profitably. Favourable outcomes of direct competitors, or advances in
alternatives to the industry's products, tend to move the firm toward less profitable states.
Indeed, a firm whose investment activity generated a string of relatively unsuccessful
outcomes may well find itself in a situation in which its idea is not perceived to be worth
developing further, so that the enterprise is best liquidated and its salvageable resources
committed to an alternate use. Hence the model generates exit as a natural outcome of
an evolutionary process.

The opportunity (technology) provided by this industry is open to all, so that the
only distinction among firms is their achieved state of "success" (index of efficiency),
OJElL, in exploiting it.s The state, OJ, of each firm within the industry is measured relative
to an alternative which reflects the strength of competition outside the industry. It changes

4. We do not explore the nature of the firm, but take it to be a unitary maximizing agent.
5. Z is the ordered set of all integers; Z+ is the set of non-negative integers.
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56 REVIEW OF ECONOMIC STUDIES

over time as a result of autonomous factors which shift the demand and/or cost parameters
of alJ firms producing in the industry. Therefore higher co indicates that the firm is in a
stronger (more profitable) position relative to both other firms in, and competition from
outside, the industry. There is a set of states, ,ren, at which new firms may enter the
industry after making a sufficient investment. We denote the industry structure at any
point of time by s= {Sw}ClJEzEZ~ ; S provides the number of firms at each possible co state.
The state couple, (co, s), determines the entire distribution of the firm's current and future
profits, and hence the firm's viability as an enterprise.

Precisely how the state (co, s) affects payoffs to the firm depends on the nature of
competition and thus the associated type of within-period market equilibrium. That will
determine the "strength" of the competition faced, and hence which states are "better"
for the firm. For our theoretical results we do not need to be precise about the nature of
the equilibrium in the spot market for current output. We wiJI require that it generates a
complete preorder, >-, over s, which unambiguously defines the strength of the competi
tion. That is, we assume that, no matter what the firm's co, current profits are (weakly)
decreasing in s in the sense of >-. Also, conditional on any s, current profits are (weakly)
increasing in (the natural order of) co. Hence many models of the interaction among firms
(including price taking "competitive" models) abide by our assumptions."

The state (co, s) changes as a result of the outcomes of the firm's own investment and
development efforts, the outcomes of the efforts of other firms operating in the same
market, and with changes in the overall market environment, i.e. in demand, input costs,
and science and technology, in which it is embedded. The firm's own level of investment,
denoted by XtE ~+, is chosen to maximize the expected present discounted value of profits
as a function of all information available at t. We assume this information to include the
history of all past states and of the firm's own past investment decisions, i.e.
{(cot', st'), x,.}t'<t; the current state, (COt, Sf); and the probability laws governing the evolu
tion of that state over time, including the law governing the impact of the firm's own
investment on that evolutionary pattern. Of course, those probabilities are determined, in
part, by the investment decisions of all firms in or entering the industry. We assume that
the firm does not directly observe the investments of its competitors, and hence cannot
make decisions based on them.'

The dynamics of the model are thus generated by the stochastic outcomes of the
firm's investments and the outcome of an exogenous process reflecting improvements
made by competition outside the industry. Outcomes of this exogenous stochastic process
generate a correlated non-positive stochastic shift in all the firm's co's, reflecting, for
example, increases in the quality of goods outside the industry that vie for the consumer's
dollar (and/or increases in factor costs). It is, therefore, a source of continuous dynamic
competitive pressure that forces all firms in the industry to struggle to maintain profits
and survive. It can also induce a positive correlation in the profits of different firms in the
same industry, a phenomenon we often observe in data." Also, it is assumed that the
outcomes of the exogenous process generating increases in the knowledge stock outside
the industry are embodied in the new generations of potential entrants to this industry;
otherwise entry would eventually die out, and with it the industry. That is, the new

6. Two illustrative examples involving Nash equilibrium in prices and quantities are developed and numeri
caJJyanalysed in Pakes-McGuire (forthcoming) and Section IV.

7. Hence this is a game with imperfectly observable actions or in the terminology of Maskin-Tirole (1993)
a "game of moral hazard with simple type spaces."

8. Without the exogenous process, any outcome which leads to an increase in profits for one firm would
necessarily reduce the profits of its rivals.
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generation of entrants brings with it knowledge which was not available to previous
generations.

A new entrant incurs a sunk cost of entry, x", and then takes a full period to set up
the specific fixed capital with which it enters. The precise state of entry depends on the
"quality" or "efficiency" of the entering finn, i.e. on how "good" its idea or innovation
is relative to the achieved standards of the industry. This we assume to be unknowable
ex-ante; an idea must be tried, and time, money and effort invested, before competitiveness
can be precisely known. Hence there is only a common knowledge distribution, P( coo), over
the potential entry states, ne

, indicating the uncertainty of both entrants and incumbents as
to the competitiveness of potential entrants."

B. The assumptions

The opportunity presented to each firm by the industry is defined by model primitives,
which are common knowledge to all actual and potential participants:

{A(co, s),p(co'lco,:), qm(.f'ls), [m(s), P(coo), {x~}~=d, cP, c(co), f3}(m.s)Enxs.

We describe these objects, then present the assumptions required for our general model.
The state space is n x S c Z x Z'f , where S is a set of counting measures on Z. The

structure of the industry, that is s, the list which counts the number of firms in each state
co, is just such a measure. The function A(co, s) gives the payoff or profits of a firm from
its current production and sales activities. It is a reduced form, reflecting the equilibrium
of the industry spot market, and its detailed characteristics can vary from example to
example. p(co'l co, x) is a firm's transition function: it gives the probability of shifting into
state co', conditional on being in state co and investing amount xe lR+. qm(s'ls) provides
the firm's beliefs about the transition probabilities for the other firms in, or entering, the
industry, given that it is in state co. Here s=s-em, where em is a vector with one in the
co-th place and zero elsewhere; sis a measure providing the location of the finn's competi
tors. Thus next period's industry structure will be s'=s' +em', where s' includes any new
entrants and co' is the new state achieved by the firm in question.

The triple [111(S), P(roo), {x:n}~=d characterizes the conditions of entry into the indus
try. The number of entrants stimulated by any structure (state of competition), s, is given
by the function m(s). The initial investment required to begin the process of entry is x~o

which may depend on the number of firms simultaneously entering. Finally, the state, coo,
at which a new firm enters the industry is determined by the probability distribution P(· )
with support [supp (p)]ne

•

The parameter cP gives the opportunity cost of being in the industry; it is the amount
recoverable on exit. The function c(co) gives the unit cost of activity level x, so that
investment activity costs c(co) . x, and current net revenues or profits are given by:

Ru», s; x) = A(co, s) - c(co)' x.

Finally, f3 is the common discount factor of all the agents in the model.
We use the following assumptions for our general results.

A.O mencz; sEScZ'f, with 2:: a complete pre-order on S.
A.I f3e(O, I); cPelR.

(I)

9. We assume Of' is bounded above, implicitly limiting the progress that can be made in the area/niche
of this industry while remaining outside the industry. We also show that there is a lower bound below which
rational entry would never occur.
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A.2 VOJ, C(OJ)E[~, 00), ~>o.

A.3 VSES, JimtU->oo A(OJ, s) = A< 00 and limtU -+ - 00 A(OJ, s) < (1- P)cP. A(·) is non
decreasing in OJ for all s, and is non-increasing in s, ordered by >-, for each ar.
Finally, VOJ, VSESn(m), A(OJ, s)~ (1 - tJ)cP+ o(~), where Sn(m)== {sES/LtU'~tU
sOJ,~n}.

AA VmEO, Vx~o,p( 'IOJ, x) is formed from the convolution of two distributions
with finite connected support: 1l'('/m,x) with supp(1l')={m'lm'=m+r,r=
0, ... ,k.} ;Po= {P'1}~k2 with supp (Po)e {m'lOJ' = OJ + 17, 11 = -k2 , ••• ,O}.
1l'( 'Im, x) is stochastically increasing, continuous in x, on/ox (mIOJ, x) <0, 01l'/
ox (m'/m, x»O and concave at each m'E{m+ 1, ... , m+n}, and 1l'(m'lm,O)

{
I if OJ' = tU

= °otherwise •

A.S m(s) firms enter in each period, m: S-+1L.+. Each entrant pays x:n > fJcP, non-
decreasing in the number of entrants, m. The entry process is completed at the
beginning of the succeeding period, when each entrant becomes an incumbent
at some state mOEOeeO with probability P(mo)=L:=_k2P'1'ne(mo- 11). ne is a
compact connected set.

A.6 There exists a regular Markov transition kernel, Q:Z~ x Z~ -+[0, 1], i.e.:

VBeS, VSES, LS'ED Q(s'!s)=Prob {S'+IEBls,=s},

with range S(s)={s'IQ(s'ls) >O} #0, such that the functions qtU(.~'ls)=

L'1 qtU(s'ls, 11)Po(11) are the consistent marginal transition probabilities derived
from it for s=s-eOJ . The stochastic kernels Q and qtU have the Feller property,
i.e. each maps the space of continuous functions on S, C(S), into itself.

A.7 (a) There exists a constant M< 00, such that, for all SES, m(s)~M.
(b) The set of potential feasible industry structures, S e Z~ , is compact.

(A.3) gives the consequences of spot market competition. Whatever the structural
model that lies behind A(m, s), we require it to have the property that if we increase the
number of competitors with m's at least as large as the firm's own OJ then, eventually, the
firm's profits will fall to less than (1 - fJ)cP, the annuity value of the recoverable assets
obtained by the firm when it exists. Similarly we require that no matter the competition
inside the industry, there is sufficient competition from outside that a firm whose OJ drops
low enough will eventually find its profits to be less than (1 - fJ)cP.

(AA) implies that m' = OJ + r + 11, where the realization of t is determined by the
outcome of the firm's expenditures and has a distribution given by n('1 OJ, x), while the
realization of 11 is determined by the outcome of the process defining the outside alternative,
and has a distribution given by p«. Consequently p{OJ'=zlm, x, 11} :=n(z- 111m, x) and
p{OJ' = z]m, x} :=L'1' n(z -1]'1OJ, x)P'1" Similarly the distribution of both entering states (in
A.S) and of the likely locations of one's competitors (in A.6) are also obtained by first
conditioning on 11. Note that if x=o the firm's OJ cannot improve, and will, in fact,
stochastically decay with negative realizations of 11. The assumptions on the derivatives
of n(') are only used to insure the uniqueness of the firms choice of level of investment;
only continuity and stochastical monotonicity are fundamental.

(A.5) describes the entry process, incorporating the impact of the negative drift on
firms engaged in the process of entry. It is essentially a free-entry assumption. 10 It also
indicates that the real sunk cost of entry is x' - PcP, as any entrant could recover cP next

10. There are many possible entry assumptions that could be inserted here without affecting the general
nature of the theoretical results. We did not delve further into this both because the free entry assumption
seemed the natural place to start, and because so little is known about empirically relevant alternatives.
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period by immediately exiting after becoming an incumbent. The last two assumptions
are auxiliary in the sense that they are used to restrict agents' perceptions, and then are
shown to be natural consequences of an equilibrium given those perceptions.

C. The incumbent's decision

An incumbent firm makes decisions to maximize the expected present value of net cash
flows. At any time t and state (m" s,), it must decide to continue or to exit the industry,
and if it stays in operation, it must decide how much to invest. It thus solvesII

W,(m" s,) ::max{ sup eo E,[ L~=, p~-'R(m~, s~; x~)X ~ + (X~-I - X~)cfIl(m, s)], cfI}, (2)
{Xt. Xt}t=t

where X~ is the continuation decision [X~= 1~ continue; X~=O ~ exit], and x~~O is the
amount to be invested, in period 'T. Clearly, X~=O implies that, for all (J'~'T, Xu=xu=O.
For any given {x o X~}, the distribution used to form the expectation in (2) can be derived
from the firm's perception of the Markov transition kernel for its competitors, {ql»(.f'ls)} ,
and the controlled Markov process governing the evolution of the firm's own state,
{p(m'lm, x) }.12

In any state, the incumbent firm compares the expected present discounted value of
remaining in the industry, assuming optimal future decisions, to the opportunity cost of
remaining, ¢. If the latter is larger, it exits, foregoing R(m, s; 0) and all potential future
earnings in the industry. If not, it invests x ~0, receives R(m, s; x), and retains the option
of further activity in the industry starting in a new state (ai', s') next period.

This formulation has an inherently stationary Markovian structure. That is, the cur
rent state, (m" s,), and the current decision, x, and z" are sufficient to completely deter
mine its dynamics, i.e, the evolution to the next state, (m'+I, St+I). This implies that the
optimal investment strategy, if it exists, can be chosen from the class of stationary Markov
strategies, vastly simplifying its analysis.'? Thus we are justified in writing x(m, s) and
z(m, s); that is, both the investment and shutdown decisions are stationary functions of
only the current state (m, s).

This together with boundedness implies that if a solution exists to the entrepreneur's
problem it must satisfy the Bellman equation

V(m, s)=max [sup {R(m, s; x)+ p.L 'L' L ' V(m', s')p(m'lm, x, 1]')QI»(s'ls, 1]')P71'}' cfI],
. x~O 71 S I»

(3)

as can readily be seen by substitution. In any state the optimal policy thus involves first
choosing a level of investment that maximizes the expression in braces on the r.h.s, of (3).
This requires selecting an investment level equalizing current marginal costs with the
marginal change in the expected present value of the states that might be realized next

II. See Chapter 9 ofStokey, Lucas, and Prescott (1989) for more detail on setting up related intertemporal
optimization problems.

12. This distribution can be explicitly written using the Chapman-Kolmogorov equation. See Doob (1953,
p.88).

13. This is a standard result of the literature on optimization in a Markovian environment. See, for
example, Dynkin and Yushkevich (1975, p. 148), or Stokey, Lucas, Prescott (1989, Chapter 9.1). Of course it
involves non-trivial behavioural assumptions about firms' responses to the industry's strategic situation; see
Mashkin-Tirole (1993).
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period. When the expected future value generated by optimal investment is less than or
equal to the opportunity cost of the entire enterprise, tfJ, then the optimal decision is to
liquidate the enterprise.

D. The entrant's decision

(5)
otherwise.

An entrant faces a similar optimization problem, with the added uncertainty as to where
he will be, once in the industry. Entry decisions are taken at the beginning of each period,
and the process of entry takes a fun period (A.5); firms deciding to enter in period t
become incumbents at the beginning of period t + I. Attempted entry is successful upon
payment of the sunk cost, X~I' which depends on the number of firms, m, entering at t.
As an incumbent at some mO, the new firm at t + 1 invests (or exits) to solve (3), i.e, to
generate the maximal value, V(mo, s.; I), where s.« 1includes all entrants from the preceding
period. Any potential entrant must evaluate this expected value of optimal behaviour in
the industry, labeled Ve(s, m), relative to the cost of entry, x~o both of which depend on
the number of new firms entering in that period. Note that this is an expectation over all
the states COoE!r at which the firm might enter, and is the same ex-ante for all potential
entrants.

Assumptions (A.5) and (A.6) imply that

Ve(s, m) =f3'L'l' L s' L
wm

Lwo V(mo, s' +ewo+£om)' 1{(COo -ij')

Xn;~I1l"e(mJ-ij')'qo(s'ls,ij')'P'l'?;tfJ, (4)

where £om::;: L;:~ 1 emJ, and qO( . I.) is the marginal of Q( . I.) for incumbents only.i" The
given firm enters at mO with probability P(coo). The other m>: I entrants come in each at
their own mJ according to the same probability distribution, adding the vector of entrants,
mm, to the old incumbent's new stucture s',

If Ve(s, m) ~X~l for all m ~ 1, then no entry can optimally take place: the expected
value of being in the industry at some mO cannot justify the sunk cost of even one entrant.
We assume that, in each period, ex ante identical firms decide to enter sequentially until
the expected value of entry falls sufficiently to render further entry unprofitable. That
occurs when Ve(s, 111+ 1) - X~n+ I~O< Ve(s, m) - X~f; m is then the number of new firms
that rationally enter. Formally, the number of entrants into any industry structure s is
thus given by the function:

m(s) == {O if Ve(s, m) ~X~I for all m ~ 1,
min {mEZ+1 Ve(s, m»x~" Ve(s, m+ l)~x:n+d

E. The equilibrium

We study the dynamic equilibrium of the industry arising from the competitive interaction
of firms both within and entering the industry. All firms know the structure of the industry,
s, their place in it, os, and the likely impact of their own investment. Firms also have beliefs,
q;,,(. ), about how the structure of the industry, and hence the states of its competitors, will
change. The industry is said to be in dynamic equilibrium when the process generating
the change in industry structure is accurately reflected in the beliefs of each of the firms

14. qO(.) is given by a multinomial distribution from the lsi independent transitions with probabilities
p( . I" .), ignoring the entrants induced by the structure s. See the Remark in Section E below.
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entering or active in the industry. Thus the equilibrium is one of "rational expectations",
where optimal decisions are based on the true distribution of future states generated by
the optimal behaviour of all incumbents and potential entrants.

Formally, we define an equilibrium for this industry as the 6-tuple,

[( V(w, s), x(w, s), X(w, s), Q(s'ls), m(s)}cm.s)EL, i],

with L=O x Sand 0= (0, ... ,K), K < 00, such that

6.a 'I(w, s)EL' V(w, s) satisfies (3):

V(w, s)=max [R(w, s; x(w, s»+ p. {L IJ, L m' L s' V(w', s' +em')

x qm(S'ls, l1')P[w'/(O, x«(O, s), l1']PIJ'}' lP]
6.b '1«(0, s)EL' x«(O, s) and X«(O, s) solve (3) and satisfy:

{ - c(w) +p. L IJ, L m' V(w'l co, s, 11')·Px(w'l ca, s, 11')· PIJ'} . x( os, s) = 0,

{V(w, s) -lP}· [X(w, s) -1] =0,

where V(w'lw,s, 11')=Ls' V(w',s'+em.)qm(s'ls, 11');

6.c V(s', S)ESX S, Q(S'IS)=L'1 Pr1 QIJ(s'ls), with

QIJ(s'ls) =LYE'W(S'IS) n.;:o mIJ(YOj, ... ,YKjlsj)' m~(YOj, ... ,YKjlm(s»,

(6)

where Y=[Y(;]EZY+I)2, Yij is the number of firms shifting to sf from Sj,
CW(s'IS)={YEZ~K+1)2IY·e=s',e· Y=(m(s),s)}, m'1(yjlsj) is the multinomial
probability of Yj= (YOj, ... , YKj) firms out of Sj going to the states i=0, ... , K,
conditional on 11, and m~(Yjlm(s» is the same for the m(s) new entrants:"

6.d 'IsES, equation (5) determines the number of entrants, 111(S): "It, m1 >0 if and
only if XI~ Ve(.~I' 1) [defined in (4)], where m,=m(s,)=min {mEZ+lx~n~

V e
(s1, m), V e

(S" m + 1) < X~t+ 1};

6.e There is an exogenously given initial state, SO ES.

Remark. The definition assumes that the number of states can be bounded above
and below as proved in Proposition l. The optimal policy, {x(w, s), X(w, s)}, and (A.4)
together define Markov transition probabilities from each active state I, to each feasible
state), conditional on each possible value of 11 as n() - 171/, x(l, s» =Pjl (11, s). For every
s, equilibrium defines a matrix of transition probabilities for incumbents as
pes)=L IJ, PIJ,P(n', s) where P( 11, s) =[Pjl( 11, s)1~=o. These transition probabilities, together
with the distribution of incumbents along the rows of this matrix and the entry rule,
determine QIJ(s'ls) in (6.c). To actually compute Q,,(s'ls), note that the multinomial
theorem implies that the Sj firms in state (0 =) allocate themselves among the K + 1 possible
states, relabeled {O, ... , K}, with probabilities, conditional on progress (11) outside the

15. Y is a matrix summarizing one way that the vector s' might have been generated, and 1?I(s'ls) is the
set of all feasible such matrices. A row i of Y shows the numbers of firms moving into state i, while a column
of Y, )'j, shows the allocation of firms in statej among new period's states, i=O, ... , K. The first column shows
the allocation of new entrants among the states within Ot'c [0, K] c 71+ .
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industry given by

(7)____..:0--__• -(-.)-,}. n~o [Pj/(ll)]yj/,
YK,] .

{
s/

m,,(Yjlsj) == ( .)" ( .) ,.
YO']' YI,.!.

A similar expression gives the distribution of the m(s) entrants over the states in
nec{O, ... , K}, with conditional probabilities nst n) given by 1l'e(CO

O- 77 ). Thus Q,,(s'ls),
as defined in (6.c), is the probability that optimal investment strategies will generate a
shift in the structure from s to s' conditional on the outside competition making a positive
advance of 77 (all incumbents and entrants drift downward by as much as 77 if their
investment efforts fail to yield a counteracting advance). It follows that Q(s'ls) is the
unconditional probability that S,+I =s' when s,=s. Finally, qw(s'\s, 77) is just the condi
tional marginal distribution over the competing firms:

(8)

In equilibrium, all firms optimize with respect to a given distribution of future states
(industry structures), Q( . Is), and their optimal decisions generate industry transitions
with precisely the distribution used in their optimization (6.c). Q( . Is) is derived by aggre
gating the incumbent firms' transition probabilities, p(co'l co, x(co, s», where x(co,s) is the
optimal investment strategy, with the distribution of the In new entrants, n: 1 P(coJ),
where investment, entry and exit are all optimal given the individual state ana industry
structure, and that state and structure evolve according to the anticipated distribution.
The dependence of current market returns, A(co,s), on structure s (A.3) insures that the
spot market for current output dears.

This equilibrium is also a Nash equilibrium in investment strategies defined for all
(co, s)-nodes in the game tree. By assumption, firms take the distribution of outcomes of
others' decisions as fixed, thereby choosing their exit and investment decisions indepen
dently of others in the industry. As the optimal strategies and transition probabilities are
functions only of payoff-relevant states, (co, s)EL, the equilibrium is a Markov-Perfect
Nash Equilibrium in the sense of Maskin-Tirole (1988, 1993). Agents solve dynamic pro
gramming problems that are interdependent only through those variables, so their invest
ment strategies, x(co,s), remain optimal at every state, regardless of how that state was
reached, against the optimal decisions of all other agents."

At the heart of this dynamic equilibrium is a (time-homogeneous) Markov process,
(S, Q( "'), i), on the space of industry structures (counting measures of firms in the
industry), S, defined Q, a transition kernel determing the distribution of s.; 1 conditional
on all alternative possible values of s, and by so, the initial state (see Section III.C below).
A realization of this process is a unique sequence {s,}~o where so=so and s, is a realization
from the distribution Q( ·Is,-I). Associated with each such realization of this process are
the sequences: {m,}, the optimal entry process derived from (6.d); {@,}, the highest exit
states defined by @,=max {colx(co,s,)=O}; and {};}, the number of firms that exit in
period t.], == L;'=o sw". The notion of equilibrium guarantees that the distribution of these
sequences is generated by the optimal investment strategies of both incumbents and poten
tial entrants and that the spot market for current output always equilibrates.

All decisions within a period are understood to be taken simultaneously, based on
common knowledge of the industry structure, s., the number of entrants that this structure

16. This is an immediate consequence of the dynamic programming formulation and the consistency of
all firms' problems at equilibrium.
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will calJ forth, m, = 111(S,), the exit states that the structure generates, {mlca ~@,(s,)}, and
the distribution of future states that will arise from that structure, Q( . Is,). While m, new
firms are entering, incumbents either rationalJy exit [z(m, St) =0] or invest x(OJ,Sf) ~O
generating their transition probabilities which at equilibrium will collectively, when com
bined with the distribution of new entrants, precisely coincide with those given by the
common knowledge distribution Q(s'ls,). This yields the new industry structure at the
beginning of the next period in which again entry, exit, and investment decisions will be
made. To close the model we need to show that these decisions can be consistently taken,
i.e. that such a stochastic dynamic equilibrium exists.

III. RESULTS

A. Characterizing optimal agent behaviour

The primary agent in this model is an incumbent firm. The first result shows that an
optimal solution exists to the decision problem (2), giving well-defined investment and
exit decisions and a well-defined value to the firm (3), and then characterizes the optimal
policies. Entrants are distinguished only in the initial period of their entry; thereafter they
are incumbents. Here the only question that needs to be answered is how many find it
profitable to sink x~n in order to enter the industry. Our second result shows that it is finite
in any period, and indeed will be zero if competition within the industry is sufficiently
strong. These results imply that the state space S is compact, as assumed (A.7.b) for
some of the results characterizing incumbent behaviour. They also allow us to show the
consistency of our assumptions about the industry structure transition probabilities (A.6),
setting the stage for a proof of existence of equilibrium.

Proposition 1. Consider the firm's decision problem (2). Under assumptions (A.O)
through (A.7):

(a) There exist (i) a unique V(OJ, s), V: Z x Z~~IR+, monotonic increasing in ta,
uniformly bounded, and satisfying (3) ; (ii) an x < 00 anda unique optimal investment
policy (function), x(OJ, s), x:z x Z~~IR+, with x(OJ, s)~x; and (iii) an optimal
termination policy x(m,s), X:ZxZ~~{O,1}; solving (2) [or (3)] for
V(m,S)EZ x Z~.

(b) There exist two finite boundaries in Z x Z:::, @(s) and o1(s), such that x(m, s) =0
if(m,s)EC=C/uCu, where C/={(m,s)IOJ<@(s)} and Cu={(OJ,s)IOJ>o1(s)},
and there exists a finite lower bound @(S)EZ such that z(m, s)=O if and only if
(m, s)E{(m, s)lm~@(s)}=L. Further~infs@(s»-oo, and sups o1(s)< 00.

(c) There exists a random variable, T: Z x Z~~Z+, T( mo, so)= inf {t~0/(mo, so)=
(OJo, so) and (m" s,)EL}, associating each initial state, (OJo, so), with thefirst time,
t, such that x, == X( m" s,) = 0, where (OJ" s,) is the state achieved in period t under
the optimal policy {x(m, s), z(m, s)}. T(mo, so)< 00, a.s. and is stochastically
increasing in OJ.

Proof See Appendix.

An incumbent firm in state m facing an industry structure s has an expected present
discounted value of V(m, s). When V(OJ, s) = q" it will optimally exit the industry. This is
the case at all (m, s) with m~@(s). Hence we will never observe a firm with an efficiency
less than f!J =min {f!J(S)ISES}. When V(m, s) > lP, the firm pursues an optimal investment
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policy, x(m, S)E[O, .il. earning a current cash flow of R(m, s) =A(m, s) -c(m)x(m, s). Part
(b) of the proposition proves the existence of boundaries @(s), and roes), such that
x(@(s)-r,s)=x(ro(s)+r,s)=O, for all r~l. Since to cannot increase in value without
some investment (A.4), and the distribution of increments to m has finite support, an
immediate consequence of this optimal behaviour is that we will never find a firm at m
states higher than ro=max {ro(s)+kdsES}. Thus (A.4), (A.7), and the first Proposition
imply that the relevant set of states is the compact, connected interval {@, ... , ro}c 7L;
the compactness of n in our definition of equilibrium (6) is satisfied and,-by relabelling,
we can set n = {O, I, ... , K}. The space of admissible structures, then, is no greater than
(K + I)-dimensional: S c 7L~ + I ell':' .

The results in (a) to (c) provide a fairly detailed characterization of incumbent behav
iour. Part (a) guarantees that incumbent behaviour is well defined and shows that the
valuation of optimal behaviour satisfies the natural monotonicity property in m; greater
success gives a higher value. Part (b) gives two types of "coasting" states, Cu and C/, in
which the firm neither invests in, nor exits from, the industry. Coasting in "successful"
states, Cu , reflects the optimal response to a situation in which the expected marginal gain
to further advance is outweighed by the marginal cost of further investment, c(m). Recall
that the return to investing is an increase in the probability of transiting to higher to, The
value of these increments is given by the "slope" of the value function. Since the value
function is bounded that slope must eventually becomes less than the marginal cost of
(even zero) investment. There are also states in which A(m, s) is low, x(m, s) goes to zero,
and yet the firm does not leave the industry. Indeed the firm can choose to stay in the
industry even in situations where it is optimal to shut down current production (possibly
incurring a fixed cost for mothballing its plant). In these cases fixed costs are incurred,
and exit values are foregone, because of the likelihood that an improved future condition
(s,+ I ~s,) will lead to a situation where it pays to produce and invest again.

There is, however, a limit to such lower coasting. When (m, S)EC, E(~colco, s) <0 as
x(co, s)=O, and hence co drifts lower with probability LT/<oPT/ (A.4). This will reduce the
value of the enterprise, V(cof, Sf), unless there is a countervailing shift in s so that s'<s.
Indeed, without a random "improvement" in s, parts (b) and (c) insure that the firm will
enter a true "liquidation state", (m,s)EL, where V(co,s)=cP indicates the optimality of
exit from the industry. That this occurs in finite time with probability one, despite the
possibility of exogenous improvements, is the principal content of part (c).

Proposition I characterizes firm behaviour in an industry in which active exploration
and learning through investment is required for survival. We know that eventually all
firms will die, but the life cycle of the firm can include a variety of behaviours, including
periods of active struggle and learning (x,>O), with its successes (m'+1 >m,) and failures
(m,+ I ~ m,), periods of coasting on the successful outcomes of past efforts wherein no
exploratory investment takes place but profits are derived from previous development,
and, possibly, periods of coasting wherein a firm earns no profits and its current prospects
warrant no further investment, but there is some probability that the market will
"improve" (s,+ I ~s,), which deters the firm from exit. Due to outside competition (Po)
and entry (mm) the state is inexorably moving in a direction unfavourable to the firm.
Only through active investment (x> 0) can the firm hope to counteract this pressure. Yet,
despite its best efforts, the firm must eventually succumb and liquidate, even though
phenomenal profits may have been earned between birth and death. This situation is
schematically illustrated, along with several possible sample paths for a firm, in Figure I.

Despite the finite life of firms, it might be possible for entry rates to generate an
unboundedly growing industry. It might be possible for either a countable set of firms to
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decide to enter at some s[V(co,s»x~n, Vm~1], or for there to be a steady excess of
entrants over exitors, thus violating (A.7).17 To bound the size of the industry, we provide
a direct proof of the fact that V(co, s) can be made arbitrarily close to q, for all (ro, s) by
increasing the number of active firms in the industry. This will imply that m(s) is finite
for all sE7L~ + I and that there exists an N < 00 such that

S={sE7L~+Jllsl=L~=osw~N}, (9)

i.e. S is compact. Hence (A.7) is justified and w.l.o.g. we can normalize the full state space
to L={(ro,S)E7LX7L~+llroEnc:7L+,SESc:7L~+I}, where n={O, ... ,K}. This is a key
step both in showing the existence of an equilibrium and in computing it.

To prove this, we fix ca and an arbitrary structure s and consider a sequence of
industry structures that increases the number of firms at co, i.e. {snC ro)}:=I , where sn(ro) =
s +n . ew • The following proposition shows that no matter which ro and s we fix, as n
increases, the value to being in the industry at that ro falls to the exit value. Consequently
enough entry will, in fact, choke off further entry, and there can never be more than a
finite number of firms at any roo

Proposition 2. Let sn(ro)=s+n' ew. UnderAssumptions (A. 0) to (A.6),for all roEn,
and all sE7L~:Jimn-+~ V(ro,sn(ro»=q" i.e. Ve>03n& such that n~n& implies
V(ro, Sn(ro» < q,+ e.

Corollary 2.t. There exists an M < 00 such that, Vm~M, Ve(s, m) ~X:n, 'riSES.

Corollary 2.2. There exists an N < 00 such that Ve(l, s) <xL i.e. m(s) =0, for all
sESn(l) with n?;.N.

B. Existence of equilibrium

First note that assumptions (A.6) and (A.7) need no longer be imposed; they were made
merely to facilitate analysis of a single firm in the industry. They are a consequence of the
more basic assumptions, and our definitions of equilibrium transitions and entry decisions
(6.c-d). (A.7) was shown to hold in the corollaries to Proposition 2, while (A.6) follows
from the following proposition.

Proposition 3. Under assumptions (A.O)-(A.5), assumption (A.6) holds with Q(. I.)
defined using (6.c) and (7), when qw(s'ls) is defined by equation (8).

We can now prove the existence of a rational expectations equilibrium for this model
of active exploration and learning through investment. This closes the model by showing
that the assumptions on the industry structure and its evolution used to determine optimal
behaviour are in fact consistent with that behaviour. To do so, we show that given Q( . Is),
as defined in (6.c), the optimal decisions of incumbents solving (3) and entrants satisfying
(4) generate transition probabilities which aggregate to form Q( ·Is). This requires a fixed
point argument that is outlined in the Appendix. In essence, it involves showing that

17. We note that if V(-) were isotone to 2:on S [i.e. "1m, S.»-Sz=> V(m,sl)~V(m,sz)], then new entrants
would increase s' driving V(', Sf), and hence Ve(s, m), down, eventually choking off entry. Unfortunately, the
subtleties generated by the interactions among agents (particularly in entry deterrence), imply that it is not in
general true that V(-) is isotone in s, so that one cannot use this fact to stop entry (or induce exit) as the
number of firms in the industry grows. See, for example, the discussion of Figure 2 in Section IV.
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investment, entry and exit decisions depend continuously on the distribution of future
states, which in turn depends continuously on those decisions. The continuous compound
function maps a compact, convex space of probability distributions into itself, and hence
has a fixed point: a rationaJJy anticipated Markov transition function Q( . Is).

Theorem 1. Under Assumptions (A.O)-(A.5) there exists an equilibrium (6), satisfying
conditions (6.a-e).

This theorem shows both existence of equilibrium and that the preceding results for
a firm in the industry are valid at equilibrium. Due to the autonomous structure of the
model the equilibrium is characterized by stationary valuation of states, stationary optimal
investment strategies, and stationary Markov transition probabilities. Yet the sequence of
states for any firm, and, indeed, the sequence of (almost surely finite) structures for the
entire industry, are truly random realizations from an underlying stochastic structure. This
structure is determined by the specific values of the parameters of the model, and by our
equilibrium conditions. We now turn to its analysis.

c. Equilibrium dynamics

This dynamic equilibrium is characterized by a remarkable degree of flux. Active firms
are truly heterogeneous, distinguished by their "state of success," m, and have truly
idiosyncratic outcomes to even identical investment decisions. Multiple rank reversals
(according to criteria such as sales, profitability, employment) are possible during the life
of any collection of firms (cohort), as is simultaneous entry and exit (@(s)< mOEOe

) . All
firms die in finite time (a.s.), yet new firms continually enter to try their fortune in the
evolving industry. Thus the structure of the industry can change dramatically over time,
although it must remain finite (Corollary 2.2). In view of this continual change, the
question of characterization of the "average" structure of the industry and its relation to
the industry's long-run evolution arises.

Among the things that we would like to know are whether the industry structure
settles down into some recurrent pattern and, if so, the characteristics of that pattern. For
example, does the industry survive forever, or might it fade away as fewer and fewer firms
enter while old firms exit one after another? If the industry does survive, is there a sense
in which we can speak of a long-run average number of firms, or structure, for the industry?
What determines these and other characteristics of the process defined by the industry
equilibrium, and how do they change in response to perturbations of various environmental
and policy parameters? This section proves a result which lies at the heart of our ability
to answer these questions: the ergodicity of the stochastic process defined by the industry
equilibrium. IS Some direct implications of this ergodicity will be noted outright, but
answers to many of the more interesting questions about the nature of the ergodic distribu
tion will depend on the detailed characteristics of functional forms in our model. We begin
to explore some of these in an example in Section IV.

Before turning to a formal analysis, we would like to emphasize two points on its
relevance. First, one of the advantages of an explicit dynamic model such as ours is that
it allows us to study the distribution of the entire sequence of structures that the industry
passes through and not just some notion of a limit structure. Our focus here on long run

18. Here we use ergodicity in the wide sense: a stochastic process is said to be ergodic if it converges to
a stationary ergodic process. See Halmos (1956) or Friedman (1970).
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averages stems from the fact that, at least in the absence of a specific empirical example
with a particular value for So, if one wants to investigate the effect of a policy or environ
mental change on the (distribution of the possible) structures of the industry, a natural
place to start is to investigate the effects of these changes on the time-average of the
structures the industry will pass through. This leads us immediately to the question of
whether there is a time-average, in particular one that is independent of initial conditions,
to which all sequences converge. Second, for these limiting results to be appropriate,
our behavioural assumptions might have to provide an adequate approximation to those
prevalent in the industry over fairly long time periods.

Formally, the evolution of the equilibrium structure of the industry, s, is given by

(10)

where J[{m > @(St-I)}] is a diagonal matrix whose diagonal elements are either unity [if
o > @(s,- ,)] or zero, mm(Sr--I) is the realization of the counting measure giving the location
of firms paying their entry fee in t - I, and 'prime' indicates a realization from the distribu
tion qO( '1' ).19 Here equilibrium transition probabilities, entry, and exit are defined in
(e.b-d). By Proposition 2, the state space, S, for this stochastic process is compact, and
hence finite. Let Q(s, s') be the stationary transition matrix of the equilibrium transition
probability function Q(s'ls) defined in (6.c). Then ss: {s,}~o is a Markov process with
stationary transitions given by the lSI x lSI-matrix Q and with distribution [sample path
probabilities]

for a specific path of = (st, Sh ... ) when the process begins in state so. Similarly Pv is the
distribution of this Markov process when the initial state has probability V s of being in
state (having structure) s. Therefore, the distribution of industry structures evolving from
an initial SO after n periods can be written

(ll)

where o:v is the n-th iterate (power) of Q and ~s is the (IS! -l)-dimensional simplex.
That is, p,,(v) is an lSI-vector whose elements P".s give the probabiality that the structure
of the industry, with initial distribution v, is in state s after n periods.

This notation enables us to formulate our principal result on industry equilibrium
dynamics: the evolution of the industry is ergodic in that the stochastic process defined
by the industry equilibrium possesses a unique limiting distribution of structures.

Theorem 2. Under Assumptions (A.O) through (A.5) at equilibrium (6):
(a) The stochastic process s= {st}~oe(Soo,@Y) with initial state SO is Markov with

stationary transitions Q(s, s') and distributions P», where f/ is the a-field of all
subsets of S.

(b) The state space, S, contains a unique,positive recurrent communicating class ReS.
(c) There exists a unique, invariant probability measure, u", on S such that

P: = [mQ(s, s)r' for se R, and P: =Ofor seS\R, wheremQ(s, s') is the Ps-expecta
tion of the time offirst reaching state s',

(d) VSES, p,,(s) ""'''-00u",

19. qO(.) is defined in note 16 above. Also see the Remark in Section II.E.
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Corollary. PI'· is the distribution ofa stationary, ergodic Markov process with transi-
. Q' *Q- *tion ,I.e. Jl - Jl .

Ergodicity of the equilibrium process generating industry structures has a number of
empirical implications. First, it implies that the industry structure evolves in a non
degenerate, though increasingly regular, way over time, so that there never is a "limit"
structure of the industry. Indeed, all viable industry structures, that is all structures in the
recurrent class ReS, are realized infinitely often. Thus, just as there is continual flux in
the relative position of firms in the industry, there is continual change in the industry
structures that those firms comprise, showing that there is much less of a relationship
between structure and behaviour, and indeed between structure and the welfare properties
of the resulting equilibrium, than traditional models assume. 20 A given industry structure
generates investment, exit, and entry decisions as optimal responses to the valuation of
the opportunity presented by the industry. The idiosyncratic outcomes of these investment
decisions, together with the evolution of the state of competition from outside the industry,
determine the structure of the industry at the beginning of the next period, a structure
that is only probabilistically related to the structure which generated it. Though all firms
eventually die, entrants replenish the population of active firms, and hence the industry
of this model lives forever, eventually going through all the epochs determined by its
recurrent states and its transition kernel.

Another consequence of ergodicity is that, after some time, a certain stochastic regul
arity will appear in the evolution of the industry. If the initial structure is transient,
sOeS\R, then a finite (a.s.) time will be spent shifting to some recurrent structure, seR.
Thereafter, the portion of time spent in any state J: e R will approach the invariant probabil
ity of that state, Jli: limT-+oo IIT'L I~=J1.i. Thus the structure of the industry, Sf' while
shifting randomly in response to the idiosyncratic outcomes of optimal decisions by firms,
will spend more time near "natural" states, with a "natural" number of incumbents,
entrants and exits. What is "natural" will depend on the values of the underlying param
eters of the industry, 0= {A('), c('), t/J, {3, m, 1l'(. ),Po, P, X~n, 1r}, and will be reflected
in the mass of the invariant measure over the set of recurrent structures. Thus, over time,
structures that are natural or normal for this industry will reveal themselves as more likely
by their more frequent occurrence: time averages will approximate state averages, i.e. the
ergodic distribution, Jl *.

A final consequence of ergodicity is that the influence of any initial situation systemat
ically fades, becoming irrelevant for the future evolution of the industry. As Theorem 2.d
indicates, the actual distribution over industry structures, lin, evolving from any initial
structure, so, (or distribution over structures, v), converges to the unique invariant distribu
tion, J1. *, hence losing any information that it contained about the initial condition of the
industry. Indeed, a strong Markov property (Freedman (1983), § 1.3) holds in this class
of models; the future is independent of the past conditional on any measurable (Markov
time) event. Thus two possible histories for the industry with different initial conditions
(structures), once they intersect in any state, as they must with probability one, have
identical distributions over future sample paths conditional on that intersection.

These ergodic characteristics of the model differentiate it from other stochastic
dynamic equilibrium models currently in the literature. Models of competitive industries
have a continuum of infinitesimal firms leading to a deterministic limit structure. In

20. This is clearly illustrated in the results of simulations discussed in Section IV below and in Pakes
McGuire (forthcoming),
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+ Jovanovic (1982) there is no entry or exit and a fixed distribution of active "good"
firms in the limit; in Hopenhayn (1992) the fixed limiting distribution incorporates entry,
exit and changing firm productivities due to continuing exogenous shocks. The Hopenhayn
model is ergodic, while learning models lack ergodicity as there is a time-invariant param
eter generating observable sequences that differentiates among firms. A simple nonpara
metric test based on a q,-mixing condition can be used to test for ergodic vs. nonergodic
models (Pakes-Ericson (1990». Lambson (1992) generates firm heterogeneity without
idiosyncratic shocks through hysteresis of entry/investment decisions. There the competi
tive industry equilibrium process may be ergodic if the exogenous market environment
process is first-order Markov.

The game-theoretic models of dynamic industry evolution are more specialized, all
assuming a duopoly structure. They generally focus on characterizing the optimal strategies
in a Markov-perfect equilibrium, and make more detailed progress by assuming specific
functional forms. Most of these models (Maskin-Tirole (1988); Rosenthal-Spady (1989);
Beggs-Klemperer (1992); Cabral-Riordan (1992» generate a deterministic evolution to
some fixed structure, perhaps with different firms at different times. Rosenthal-Spady
and Cabral-Riordan allow exit and entry to preserve duopoly despite the outcome of
competition. Only Maskin-Tirole can generate a non-trivial ergodic process (an Edgeworth
cycle) from the impact of randomized strategies. The most developed of these dynamic
duopoly models is that of Budd et al. (1993) which explores the optimal Markovian control
of a one-dimensional diffusion process of market state (share), building on an earlier
model of Harris (1988). Since the model has arbitrary boundary behaviour on a compact
interval, rather than endogenous entry and exit, the authors do not focus on the ergodic
distribution over industry states. Rather, four determinants of Markov perfect equilibrium
strategies are uncovered, and related to existing results in the dynamic duopoly literature.
Despite the vast structural differences from our model (continuous time and state space,
etc.), it seems that similar factors drive optimal investment behaviour in it.2 1 Finally, there
are a number of repeated "technology race" models of industry evolution, focused on
whether the industry exhibits growing dominance of one firm or alternating (technological)
leadership (Vickers (1986); Beath et al. (1987); Dutta et al. (1993». These models find
Nash equilibria with respect to a finite sequence of fixed technological innovations, thus
exhibiting simple dynamics. Only the Dutta et al. model is stochastic, but its dynamics
end after a second innovation (a refinement).

All of these models are distinguished from ours by the simplicity of their dynamics,
particularly in the limit (steady state); none allows simultaneously for an endogenously
determined industrial structure with finitely-lived, heterogeneous firms, endogenous entry
and exit, and dynamics whose only regularity is imposed by ergodicity of the limiting
distribution. Thus they do not provide as comprehensive or flexible a framework for
applied work as does the present model. Applications to date include an analysis of merger
activity (Gowrisankaran (1994); Berry-Pakes (1993», an analysis of the interaction
between for- and non-profit institutions in the Hospital industry (Gowrisankaran-Town
(1994», and an analysis of the evolution of productivity in the telecommunications equip
ment industry (Olley-Pakes (1991».

The general characterization in Theorem 2 still leaves many questions about the finer
structure of the equilibrium stochastic process. For example, does the unique stationary

21. Their "end point" effects (relief from effort) are immediate near and at coasting states, and the "self
reinforcing joint cost" effects seem evident in our simulations (Section IV and Pakes-McGuire (forthcoming».
We have not looked for the "joint profit" or "pattern of profit" effects, but believe that they could be found.
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ergodic distribution, to which the time-average of the industry structures eventually con
verges (see 2.d), possess a large number of small firms or a small number of large firms?
Are the industry structures of the recurrent class "similar", so that one can think of the
industry's structure "settling down" after some finite number of periods? Or does this
recurrent class contain very diverse structures, so that no matter how long the time period
elapsed since the "start up" of the industry we will still observe the industry structure
undergoing distinct evolutionary patterns? To the extent that the recurrent class contains
quite divergent industry structures, do the sample paths through these structures typically
cycle, and if so, with what periodicity, or are there Poisson-type events that cause relatively
quick and sharp discontinuities in the industry structure? Which structures of the recurrent
class generate large amounts of simultaneous entry and exit, and which generate periods
of high investment? Finally, and perhaps most importantly, how long will it generally take
before the industry's structure enters the recurrent class, and through what type of sample
paths does an industry typically pass before its recurrent pattern becomes evident? We
have begun to explore such questions, and how their answers change in different policy
or environmental settings, in some numerical examples. Some answers appear highly sensi
tive to precise functional forms or parameter values, while others seem more robust to
these detailed assumptions. We turn to one such example now, and compare it to others
that we have computed elsewhere.

IV. AN EXAMPLE

As an example, we consider a homogeneous product market having producers with differ
ent, but constant, marginal costs. Marginal costs, Ow, are determined by a firm specific
efficiency index and a common factor price index. Let -1] be the logarithm of the factor
price index and t that of the firm'5 efficiency index; then m == r + 1] and 0Q) = exp (-m).
Firms' R&D investments are directed at improving their efficiency of production (increas
ing their r). Factor prices (- TJ) are a non-decreasing stochastic process generating the
correlated negative drift in the state of the firms in the industry.

The spot market equilibrium in this market is assumed to be Nash in quantities.
Letting q. be firm i's output, Q= L q;, andfbe the fixed cost of production, the profits of
our classic Cournot oligopolists are given by A;=p(Q)q;- O;q;- fwhere p(Q) = D- Q. It
is straightforward to show that the unique Nash equilibrium for this problem gives quanti
ties and price as qi=max {O,p*-O;} and p*=[D+L:;:1 O;]/(n*+l), where n" is the
number of firms with q*>O. Current profits can therefore be written as A(m,s)=
[p*(s)-OwY-fw, wherep*(s)=[D+L:w~w.sw·Owl/(n*+ I), and m*=min {mlqw>O}.22

To complete the specification we assume:

Ow = ye-w, with 1r(m'l m, x) = 1r(m' - mix) == 1r(r + 11lx),

( I )_ {aX/ ( I + aX) that r = t _{t-othat1J=O _
1r r x - , Po - , Cw - C,

1/(1 +ax) that r=O 0 that TJ=-l

Transitions in to are determined by the difference between the increment in efficiency of

22. This current profit function is, in many senses, an extreme alternative to the profit function used in
the example of our model analysed in Pakes-McGuire (forthcoming). It considers a differentiated product
industry in which all firms have the same (constant) marginal costs but are differentiated by the quality of the
product they produce; a quality which increases with successful research activity. In that example the spot
market equilibrium was assumed to be Nash in prices.
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production generated by the outcomes of the firm's own research activity (r), and the
increment in the factor price index (-'1). r can either increase by 1 or stay the same. The
probability of r increasing is an increasing function of investment, and the cost of a unit
of investment is independent of OJ. '1 either decreases by one or stays the same, but here
the probabilities are given by an exogenous process. In each period there is at most one
entrant who pays a setup cost of x" and enters in the following year at state OJO if the cost
of production has not increased in the interim, and at OJO -) if it did (11 = _).23

It is easy to see that this specification (together with an appropriate choice for Pand
t/1) satisfies all of (A.O) through (A.5), although (A.3) perhaps requires checking. Note
that

{[
D+Lk~CO. Sk' re-

k
_co]2 t}

A(OJ,s)=max • re -f, - ,
Is 1+)

Clearly A= (D + r)2, and A(OJ, s) is increasing in OJ and decreasing in s with the natural
vector pre-order. In particular, A(OJ, s)! - f as Sk increases at any k ~ OJ, or as OJ falls for
any s. Note that if A(OJ, s)=-fthen marginal cost is greater than price and the firm is
not active in the spot market. The same firm can, however, still be a participant in the
industry. That is, plants will bemothballed without being dismantled if there is sufficient
hope that the environment will improve to the extent that it will pay to bring the plant
back on line in the future.

As this example satisfies our assumptions, all of the results of Section III hold and
we have a well-defined dynamic equilibrium that generates an ergodic Markov process in
industry structures. To obtain the more detailed results, we substitute the specification
given above into the computational algorithm developed specifically for this model in
Pakes-McGuire (forthcoming), initialize the various parameters, and let that algorithm
calculate the policy functions for all (potential and active) firms. This allows the generation
of statistics that describe the industry structures, and the welfare implications, of the
Markov-Perfect Nash (MPN) equilibrium. We also calculate the optimal policies for both
a social planner and a multi-plant monopolist (or perfectly colluding cartel) faced with the
same cost and demand primitives as those generating the MPN equilibria, and then gener
ate the descriptive statistics and welfare measurements that emanate from the equilibria
obtained from these institutional environments. The colluder makes aU decisions (invest
ment, quantities marketed, entry, and exit) to maximize the expected discounted value of
the total profits earned in the market. Similarly the planner maximizes consumer surplus.24

Some of the results from these computations are listed in Table 1. All descriptive
statistics are obtained from simulation runs starting with one firm at the entry state [i.e.
So= ecoo) , and then using the computed policies to simulate from that point. Panel A and
B provide descriptive statistics from a 10,000period simulation run. Panel C provides the
distribution of expected discounted values from 100 independent simulation runs of 100
periods each.

Panel A indicates that this is an industry which is most often a duopoly, though in
a significant fraction (about a quarter) of the periods only one firm is active. Note that
"monopoly" positions here are built up solely from successful past research; a firm which

23. Note that by assuming that the period of time at which we actually observe new data points is larger
than the decision period of the model, this specification could allow for both many entrants and for richer
conditional distributions for the changes in OJ per data period, while stitt maintaining the computational advan
tages available when there are single step transitions.

24. There is a question of whether there is a feasible set of institutional arrangements which could lead
to an industry which follows either a colluder's or a planner's dictates.
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TABLE I

73

Simulated quantities from a homogeneous product model"

A. % of Simulated Periods with MPN Colluder Planner

I firm active 27·9 92·4 98·3
2 firms active 70·8 7·6 1·7
3 firms active 1·2 0 0
4 firms active 0·1 0 0
Entry and Exit 16·5 5·4 1·2
Entry or Exit 20·4 10·0 2·1

B. Average (standard deviation of)

Price 1·79 (0·35) 2·22 (0·36) ••
Total investment 1·05 (0'41) 0·68 (0'29) 0·84 (0'41)
Entry 0·19 0·08 0·02
Number active 1·74 (0·48) 1·08 (0·27) 1·02 (0'13)

4. Discounted Welfare

2. Discounted Net Cash Flow

3. Discounted Entry-Exit Fees

C. Welfare Runs (average and, in parenthesis, standard deviation of)

I. Discounted Consumer Benefits 27·4 6·6
(6'4) (5'5)
11·6 22·5
(5'4) (8'5)
2·5 1·0

(1'0) (1'0)
36·5 28·1

(11'9) (14'1)

••

58·8

*All runs are based on the specification described in the text with the following
parameter values D=4, f=0'2, x"=0'4, wO=4, 4J=0'2, c= I, S=0'7, a=3, p=
O'925. Panels A and B are obtained from a run which starts with one firm entering
the industry, goes 10,000 periods, and then calculates the appropriate descriptive
statistics. Panel C is obtained hy doing 100 runs, each starting with one entrant and
each lasting 100 periods. The appropriate discounted values are taken from each
run, and then their averages and standard deviations across runs are computed.
*. The welfare result for the planner can he read off the value function which is
computed exactly. The planner sets price equal to the marginal cost of the minimum
cost producer. This minimum marginal cost averaged 0·15 with a standard deviation
of 0·39.

is efficient enough will deter entry (a "persistence-of-dominance" effect). Of course, as
noted in our theoretical results, even the most efficient of firms will eventually decay and
be taken over by more successful competitors. Consequently it is not the same two or
three firms that are active in all of the periods. Indeed this industry exhibits substantial
entry and exit; there is entry in about 19% of the periods. Moreover entry and exit are
positively correlated, a fact which is consistent with the time series evidence in many
(though not all) industries (see Dunne et al. (1988», and which very clearly brings out
the need for allowing for idiosyncratic sources of uncertainty.

Figure 2 provides a section of the optimal investment policy surface. The vertical axis
gives the investment of a firm as a function of its own OJ (OJ.) and the OJ of a competitor
(OJ2) when no other firms are active. From the figure it is clear that the firm starts investing
at co =3 or 4 depending on the value of its competitor's co. Thereafter investment is an
initially increasing and then decreasing function of the firm's own OJ.

In another paper (Ericson-Pressman (1989» we note that the investment function
must be an initially increasing and then decreasing function of (f) for a monopolist with
functional forms for the primitives similar to the ones used here. The intuition behind this
result follows from the form of the value function. As investment increases the probability
of increments to (f), it will increase when those increments result in larger increments to
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Optimal Investment: Firm 1

FIGURE 2

the value function. Thus an initially convex and then concave value function will generate
an initially increasing and then decreasing policy function. Indeed, the value function for
all of our models has this property as it is bounded from both below and above. In the
case of a monopolist with a simple enough profit function we can show, in addition, that
the value function has only one point of inflection. Once we allow for free entry and
consider sections of the value function that hold competitors m's fixed, then there need
not be only one inflection point, but the initial convexity and eventual concavity of the
value function are maintained.

This implies that new entrants begin with a relatively low level of investment. As a
result most entrants will never actually overcome the negative drift imposed by advances
of their competitors both inside and outside the industry, and die at early ages. This
generates high mortality rates in an initial "learning" period, and a large fraction of
entrants whose realized discounted value of returns from participating in the industry are
negative. On the other hand the few new entrants who do get a good sequence of initial
draws begin to increase their profits and invest more, thereby increasing the probability
that they develop even further. Of course the successful firms will eventually pass over an
inflection point of the value function, and decrease their investment, at which point their
expected increment in to will fall. However once their m falls back to near the inflection
point their investment will pick up again, so that an initially successful firm will tend to
be productive for a long period of time. This, in turn, implies that both the lifetime and
the realized value distributions from our model tend to be very skewed (see also Pakes
McGuire (forthcoming); similar, in fact, to the life spans and value distributions reported
in the empirical literature."

Figure 2 also shows how the subtleties generated by the interactions among agents
can destroy any simple generalizations on the form of the value function. Consider

25. The literature on lifespan distribution is extensive; see Dunne et al. (1988), Pakes-Ericson (1990), and
the literature cited in those articles. There is less on value distributions, but a more substantial literature on
both the distribution of sales and profits, and persistence in the process generating the sales and profits of
different firms. Also see Evans (1987a, b), Hall (1987), and Mueller (1986), and the literature referred to therein.
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anyone of the sections in which 0)2 is low (0)2 ~ 5) and follow the investment pattern
of the first firm as its 0) increases. As before it is initially increasing until about 0) =
5, and then it decreases, but at 0) = 8 we see a surge of investment, which heads back
down after 0) = 9. The reason for the increase in investment at 0) = 8 is to deter entry.
It works out that a potential entrant finds it profitable to enter if there is one firm
in the industry at 0) =7, but not if there is one firm in the industry at 0) = 9. This
surge in investment destroys the simple characterization of the investment function
that we get if there are no potential competitors as in Ericson-Pressman (1989).

Coming back to the first panel of Table I, it is clear that both the planner, and the
colluder, tend to generate equilibria with fewer firms than does the Markov Perfect Nash
solution. Indeed, given that the optimal policy for both the planner and the colluder is to
have only one firm actually produce output in any period, the firm with the lowest Bon it
is somewhat surprising that either of these two institutional structures ever find it optimal
to have more than one firm active. They do because it is sometimes optimal for them to run
parallel R&D efforts (see Nelson (1960», and then only use the most efficient production
technique developed. Still the logic behind the fact that both the colluder and the planner
have less entry and generate less investment (panel B) than does the MPN solution is clear
enough; entry and investment decisions in the MPN solution depend on the expected
incremental cash flow going to the entrant and to the investor, and some of this cash flow
is taken away from (other) incumbents. Both the colluder and the planner internalize the
losses to incumbents and hence invest less (Mankiw-Whinston (1986». This result is
similar to that of the differential products example, although there the planner had dis
tinctly more entry and investment than the colluder due to the impact of product variety
on consumer surplus.

There are several other interesting aspects of the numerical results that are similar
to those obtained from the differentiated products case. First, note that though the
colluder generates an industry structure that looks much more like the planner than
does the industry structure from the MPN solution, the welfare generated by the MPN
solution is much higher and hence closer to that generated by the planner. The big
difference between the welfare results in the homogeneous and differentiated product
cases is that in the differentiated product example the welfare from the MPN solution
was generally within 2-3% of the welfare that a planner could generate, even when
equilibrium typically involved only two firms active, leaving little room for improvement
over the "free market". In the homogeneous product case, at least with parameters typ
ically generating only one or two active firms, the difference between the welfare generated
by the planner and that generated by the MPN solution seems to be much more substantial
(on the order of 40%).

More generally, in simulations we have consistently been surprised by the extent
to which institutional structures which generate "similar market structures" (similar
numbers of firms active, similar shares for the largest firms, similar entry and exit,
etc.) can have very different welfare implications, and institutional arrangements which
lead to very different market structures can generate very similar welfare results. Also
we have found surprisingly high standard deviations for the welfare results from any
given institutional structure. In this example, the average difference in total welfare
between the MPN and the Colluder's solution is less than the standard deviation of
the welfare results from either of them. This should make us wary about generalizing
from case study attempts to compare different institutional arrangements, even when
the case studies have a "laboratory perfect" comparison to make in the sense that the
other primitives of the model are the same in the two institutional arrangements being
compared.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/62/1/53/1568000 by U

niversity of Toronto Library user on 07 January 2019



76 REVIEW OF ECONOMIC STUDIES

V. CONCLUDING REMARKS

(AI)

We noted in the Introduction that models of firm and industry behaviour that allowed
for idiosyncratic, or firm-specific, uncertainties and entry and exit were required in order
to account for many of the phenomena exhibited in firm-level data sets. These phenomena
include: simultaneous entry and exit; strikingly different outcome paths from similar initial
conditions, investment strategies, and exogenous events; and industry structures that never
seem to remain stable. We also noted that the need for models which can account for
such phenomena is not merely descriptive, but indeed lies at the heart of our ability to
analyse many of the impacts of policy and environmental changes.

This paper has provided one possible model of firm and industry dynamics that can
account for these empirical phenomena. The focus has been on the basic logic and implica
tions of the model in a framework that is general enough to accommodate primitives that
could be thought appropriate for a broad number of industries in which research and
exploration processes are important. Even at this level of generality, however, the model
is rich enough to both generate empirically testable implications (Pakes-Ericson (1990»,
and to suggest nonparametric procedures for correcting for selection (induced by entry
and exit) and simultaneity (induced by endogenous input demands) problems when analys
ing firm's responses to policy and environmental changes (Olley-Pakes (1991».

However, many of the more detailed issues that one might want to analyse with the
model depend on the finer properties of the primitives of our model, (J, and are currently
buried in the relationship between those primitives and the nature of the equilibrium
process generating industry dynamics. For both policy and descriptive purposes we will
ultimately be interested in the relationship between each primitive and the recurrent class
of industry structures, the ergodic distribution on that class, and the nature of the transition
process into that class. This would enable us to analyse how a change in either a policy
variable (such as an R&D tax credit, or a tariff) or in the external environment (such as
a technical change that increased the effectiveness of external competition, or a shift in
the structure of demand), affect the nature of the equilibrium process generating industry
supply, productivity, shut downs, default probabilities, job creation and destruction at the
firm level, etc.

There are at least three (related) ways of proceeding to the more detailed analysis
required to unravel these relationships. In order of (what we believe to be) increasing
difficulty, they are: simulation based on assumed functional forms and particular param
eter values for all of the primitives (see Section IV), comparative dynamics within para
metric classes, and simulation based on estimated functional forms. We are pursuing all
three of these in related research.

APPENDIX26

Proof of Proposition I. (a) The only assertion not immediate from standard results is the monotonicity
of V(ro, s) in roo Existence, uniqueness and boundedness follow from the properties of the linear operator T,
T: 1.;c(Z x ZXJ)-+loo(Z X Z""),

Tu(0') == max {m.~x (A 0- - Co-X +P. Io-'el: uo-'p(0"/0', x», 4>},

26. Space limitations preclude full proofs. They can be found in Ericson-Pakes (1992).
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Let ml ~(.o2' By the contraction property of the linear operator T, V(m, s)=lim"_J> V"(m, s) where
V"(m, s) == TV"- '(o, s) == T"A(m, s). The proof follows by induction from (A3). Let monotonicity hold at step
n.

V" + '(m" s) - V" + '(m2' s) = TV"(m" s) - TV"(m2' s)

~A(ml, s) -A(m2, s)+ fJ· I". {IOOi [Imi V"(m;, S'+e"'i+e~q"""'2

x (s'ls, TOp(m~m2,x" 71') - Ii' Lmi V"(m2' s'+e...·, +e...j)q"""'2

x (s'ls, 71')P(~m2, x" 71')] . p( mil m" x, , 71/)} p",

= L". L"'i~ L j • [V"(m2,s/+e...j +emi)- V"(m; , S' +e...j +e...i)]

x q...,co2(s'ls, 71/) . p(m;lm" Xl, 71/)'p(m£lm2' Xl, 71/)'p".~O, (A2)

where x;==x"(mj,s); Sf, m; are similarly defined; s=s-e...,-eC02; q"',W2 is the marginal derived from either
qw/: qM\...lf/ls, 71/) ==I...;qMj(S'+e...)s, 71/), i=f:.j; and prime indicates next period's (random) realization of the
variable. The first inequality in (Al) is due to the use of x(m" s) at (m2, s) and substitution of the appropriate
marginal probabilities. The second follows from the monotonicity of A(m, s), c(m), V"(m, s) in m, since s' and
the associated probabilities must be identical at both m, as they arise from the same s and their firms invest
identically. The first step of the induction follows from an identical argument with A(m, s) in place of V"(m, s).

(b) From the first-order conditions given in equation (6.b), we know that x(m, s) >0 iff G(m, s)=

fJ· L,,· L .... V(m/lm, s, 71') . pAm/1m, x(m, s), 71/) . p".>c(m), where V(m/lm, s, 71/)==L; V(m', S'+e...·)q...(S'ls, 71/).

Part (a) shows that V(· )e[O, V] and that, by monotonicity in m, "Is, Iim"'_-.:7J V(m, s) = q, and Iim... _ oo V(m, s) =

V. Therefore "Is lim... _±oo G(m, s)=O, as the support of L .p..k)· p,,' is finite (k, +k2+ 1 elements) and
" A A

L .... I".px(m/I·) .P",=O. Letting p= max...· {L".p..«m/l· )p",}, G(m, s) <p' [V(m +kd') - V(m -k21' )]=p' e...!O
as m-+±oo. Define rg(s) :=min {mIG(m, s) > c(co)} and roes):=max {co~ IG(m, s) > c(co)}. Clearly rg(s) and roes)
are finite, for otherwise V cannot remain bounded. Further, x(m, s) = 0 for (m, s) e C== C/v CII , where
C/={(m,s)lm<rg(s)} and Cu=={(m,s)lco>m(s)}.

For a finite termination policy we need to show that, for each s, there exists an ~(s) > -00 such that
V(m, s) = q, for all m ~ ee(s). When x(m, s) =0,

V(m, s) =A(m, s) + P(l- r=l2 P ,,)Q...o(s, .) V(m, .) +Pr=l2 P"Q...,,(s, .) V(m + 11, '), (A3)

where Q...,,(s, .) is the s-th row of the finite-dimensional stochastic matrix representing q...(S'ls, 11) and V(m,')
is the column vector of firm values at m for each s. Let m(s)=min {coIA(m, s)~(1- fJ)t/>} and m*=
max... [{m < w(s)I'Vs, x(m, s)=O} ]>-00, as there are only finitely many seS (A.7.b). Then for all m~m* equa
tion (A3) holds, so we can write in matrix notation

(A4)

where QIlJ" is the stochastic transition matrix for each exogenous shock 11, VIlJ is the vector of values at co, and
A"V... =V...- V..._". Solving (A4) we get

[1- PQllJo]' V...=A...- fJ· L"P,,' Q...,,' AIlV....

;~ VIlJ=[I-PQllJor'Aco- P[I-PQllJor' L"PIl' Q"'Il' A"V...

~[I- pQ...orl(l- P);.- P[I- PQMorl
L"PIl' Q"'Il' AIlVIlJ~; (AS)

where; is a column vector with t/> for each structure s. Hence 'VseS, -00 < m ~m*, V(m, s) =t/>. For each s, let
rg(s) = max {ml V(m, s)= q,}, and let L= {em, s)lV(m, s)=t/>}. Then x(m, s)=O on Land X(co, s)= 1 elsewhere.

(c) The proof follows from demonstrating that all states (m, s)f/L are transient and hence will never be
reached after some finite (random) time, while all (m, s)eL are recurrent, indeed absorbing, i.e.
Prob {3f > II(co" s,)eL, (m o Sr)fL} =0. Since the probability of reaching L in finite time is strictly positive,
Doob (1953), Chapter V.3, implies the existence of the a.s. finite stopping time T(mo, so).

The stochastic monotonicity of T( . ) is shown by a coupling argument. Consider m2> m I and initial states
(m2, so) and (co" so). Denote (for this argument only) the underlying measure space by {U, I, P} with elements
u. Let m~(u) be the sample path arising from initial mj at ue U. For each ue U define the stopping time feU) =
min {/~Olm:(u)=m:(u)}, and the new sequence
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if m;(u) - m:(u) >0 for all t~ r(u),

otherwise.

(A7)

Note that: (a) the random sequence {m~,.v,}~{m:,s,} with probability one; (b) as the random sequence
{m:, .v,} is a Markov process and a stopping time is Markov, the distribution of {m: , .'I,} is the same as that of
{m:,s,}. Property (a), the monotonicity of V(·}, and the stopping rule imply that T(m~,s,}~T(m:,s,}a.s.
Property (b) and the continuous mapping theorem (Billingsley (1968» imply that the distribution of T(mt, .'I,)
is the same as that of T(m:, .'I,). Since the latter stochastically dominates T(m:, .'I,), the proof is complete. II

ProofofProposition2. Writing s; for sn(mO), letting p(mo.sn)«m, .'1)1 {x", x*} ) be the probability of reaching
(m, .'I) in t steps from (mo, .'In) under optimal investment and shutdown policies {x", x*}, and h(') be the
indicator function of the shutdown states,

ifJ s V(mo, .'In) = L;:o P' L:=o Ls (R(m, .'I; x(m, .'1»[1- hem, .'I)] +ifJh(m, s»~mo.s.)«m, .'1)1 {x", x*} )

~L:o P' L:=o 'Is (A(m, S)[l-[L(m, .'I)] + ifJh(m, s»~"'o.sn)«m, .'1)1 {x*, x*} )

~L;:o P' L:=o Ls [A(m, .'I) V (1- P)ifJ ]~(I)o.s.l(m, .'1)1 {x*, x*} )

where the first inequality is due to ignoring the cost of the optimal investment generating the transition probabilit
ies, and the second from using (1- fJ)ifJ in place of A(m, .'I) whenever it is larger. LetPro(sn, t, e,) be the probability
that a firm starting at (mo, .'In) will have m,~ m, conditional on a particular t-period sequence, e, of realizations
of the exogenous process and the decision structure {x", x*}. By (A3),

A(m,s)~Aro(n)= sup A(m,s)=(1-p)ifJ+9(n)
(slI;w·~",s",.~n)

for SESn(m), where O(n) is monotone-decreasing to zero in its argument. Hence, for any of the n firms starting
at mo, we can write

ifJ~ V(mo, .'I,,)

~L:o Il'[Le, Lro Pro(Sn, t, e,) L~:~ Aro(k+ l) (n ~ 1)[PIO('ntr-Pro(' )]"-k-I Pee,)l
~ 4J +L;:o 13'[Le, Lmp"..(· ) L~:~ O(k+ 1) (n ~ 1)lPro( .n'n-Pro(.»)",k- I Pee,)] (A6)

where (Z) is the number of k-combinations of n objects, and Pee,} is the probability of the realization, e, of the
exogenous process. Let fen, t) be the function in the large square brackets in (A6). Clearly fen, t) ~..4 and
'1;:013' . ..4 = (1-13)-'..4 < 00. Hence, by the Lebesgue Dominated Convergence Theorem for sums, it suffices to

show that vt, Iimn _ oo f (n, t) =0, for which it further suffices that 'rim,

Pro(-)L~~~ 8(k+ O(n-l)lPro(. }t[l-pro(' »)"-k-I_O
k "-00

for a.e. e.. Now note that (k+ l)/(n-I)=argmaxp {pk+
I(1_p)"-k-I}. Thus, 'rIN~n-l,

L~:~ 8(k+ l)(n~ l)[pro(' }t+ '[l-Pm(' »)".k-I

~O . L:=-o' (n~ I)(:~ :r ~ I (n::~2r-k-' +O(N+ I)

=0. "N-I (n-I) ... (n-k). (k+ l)k+1 . (n-k-2)"'k-1 +9(N+ l)
L...k=O (n-I}k+' k! n-I

5, 0 . ("N --I (k+ I)k; I). _1_+ O(N+ I).
- L...k=O k! n-I

Now fix e > 0 and let "1 be the minimum It such that 0(" + I) ~ e/2 and "2 be the smallest n~ n I - I such that

O. ""I-I (k+ l)k+! . _l_<~
L...k=O k! n2- 1=2'

Hence (A 7) holds, so that for n~ n«, V(mo, .'In) ~ E as required. II
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Proof of Corollary I. We use Proposition 2 to show that for any s, 3M < 00 such that 'rim ~ M,
V''(s,m)<s~xM' We do so here only for n"={mO-k2 , ••• ,mO}: all entry occurs at a single mO+77; the
general case with distributed entry is an immediate consequence. Then V"(s, m) =

fJ L" {L
s
' V(mo+ 77, m . eroo 1 'I +s')l(s'ls, 77)} P'I , and, for each of a finite number of 77'S and each s', V(·) ~,p+ e

for m ~M by Proposition 2, giving the desired result. II

Proof ofCorollary2. For the industry to remain finite we must show that all entry ceases with a sufficiently
large number of firms. In Lemma I we show that there can never be more than a finite number of firms at any
mE{1, K} without their all desiring to exit the industry immediately. Letting Nro be that number for each m,
N=L~=I N(lJ is so large that for 'rISES,,(l), 'rIn~N, V"(s,m)<xL 'rIm~l.

Lemma I, For each m, 3Nro such that 'rIn ~ Nro' V(m, s +n . ero) =,p.

Proof Proposition 2 gives an nro such that for all n~nro V(m, s+ n- ero) <,p+ e. We now show that by
increasing n sufficiently we can drive the continuation value, VC

( . ) [the expression within braces in equation
(3)], below ,p. At each m there are two cases to consider: (a) x(m .) =0 and (b) x(m, .) >0.

Case (a): x(m,' )=0 implies VC(m, s+n' e,o)~A(m,s+n' ero)+ fJ· V(m, s+n' ero)' But Assumption (A.3)
says that 3n: such that A( m, s +n: . ero) < (I - fJ)4J - e. Hence, for n~min {nro, n:},
VC(m, s+n . ero ) < (1- fJ)4J- e+ fJ4J+ fJe< 4J.

Case (b) : x( m, . ) >° implies that there is a positive probability of advancing to any
m'E {m - ka, ... , m +k l } . Hence there exists an 11* such that with probability I - el there are at least
nro~ ''I firms at ta +k l • Therefore, letting V=suP1; V(m, s),

VC(m, s+ ll*ero) ~A(m, s+ll*ero) +fJ(l- el)(4J+ e) + fJelV

~(l- fJ)4J- e+ fJ(l- el)(4J+ e) + fJelV

< 4J-S- fJs,4J+fJSIV+ fJ(l- SI)S = 4J+ (V- 4J )fJSI- (1- fJ(l- SI»e,

where e comes from (A3) as in case (a) [n* ~ n:]. Hence we need only choose n > n* so large that
(V-,p )fJsl<(l-fJ(l-el»e. II

Proof of Proposition 3. See Ericson-Pakes (1992).

Proofof Theorem1. For existence we need to show the mutual consistency of four fundamental mappings:
(i) v:n xs-+[4J, V]elR; (ii) x:nxs-+[O,.X]elR+; (iii) fe:S-+l'!.s; and (iv) Ve:MxS-+[4J, heIR; where
M={O,1, ... , M} is the set of numbers of potential entrants, I'!.s is the set of probability measures with support
in the finite set S, i.e. a simplex of dimension lSI-I, and 2 is the conditional probability distribution generated
by the Markov transition kernel, Q. Given Q characterizing the behaviour of the industry structure, s (6.c),
individual firm optimization generates an x (6.b) which solves equation (6.a) yielding both an optimal valuation
of m-states and industry structures, V, and optimal exit from that structure. V together with Q then generate
the value of entering the industry, V" (4), that determines the number of new entrants, m(s) (6.d). The optimal
investment, exit, and entry decisions of firms in turn define (see (A4), (AS» a transition probability function,
2, for the industry structure through equations (6.c) and (7). An equilibrium will exist iff the resulting 2 is
the same as that which determined the optimal valuation and investment functions of firms in the industry. We
use a fixed-point argument to show that there exists such a 2, and hence appropriate Q, V, x, and V" functions
also exist, all satisfying the required properties (6.a-d).

Each of these mappings, V, x, i?J, V", can be represented by a point in a compact subset of real Euclidean
space: VE[4J, V]0xs, xe[O, x]OXs, fee (I'!.s)s, and V"e[4J, V]MXS. Define a mapping C: (I'!.s)s-+[O, .i]oXs x
[4J, V]0xS x [4J, V]MXs, which takes a market structure transition function into an optimal investment policy and
optimal valuation function for any firm in the industry, and an optimal valuation for any firm considering entry.
It is generated by the solution to the Bellman equation (3) for a given transition probability function for industry
structures and by equation (4). Define lfI. [0, .,,]0XSx [4J, V]0xS x [4J, V]MX s-+(I'!.s)s, a mapping which takes an
optimal investment policy and state and entry valuations into a market-structure transition function. It is
determined by equations (6.c) and (7). Finally, define the mapping "1/: (l'!.sY"-+(l'!.s)s by the composition j/'=
lfI 0 C.

Lemma 2. t; is a continuousfunction.
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Proof. As argued in Ericson-Pakes (1992), , is continuous as the composition and product ofcontinuous
functions. II

Lemma3. '" is a continuous function.

Proof. See Ericson-Pakes (1992) for the proof that 'I' is a continuous function, as the composition of
continuous functions. II

Lemma4. There exists :r e(l!s)s such that Z* = 1""(Z*).

Proof. The function 1"" is continuous as the composition of two continuous functions, and (l!s)s is clearly
convex and is compact, so the result follows from Brouwer's Fixed Point Theorem. II

Thus there exists a Z such that the V and x functions satisfying equations (6.a) and (6.b) generate the
transition kernel Qsatisfying equations (6.c) and (7). The remaining condition (6.d) is an immediate consequence
of preceding Propositions, while (6.e) is an arbitrary initial condition. II

Proof Theorem 2. (a) This is an immediate consequence of Proposition 3 when we define the elements
of the matrix Q to be given by the equilibrium transition kernel: Q(s, s') =Q(s'ls), incorporating optimal exit
and entry, as well as investment, decisions. The Kolmogorov consistency theorem insures that the measure P,
is uniquely given by:

Ps{g,=s, for t=O, I, ... , r} =es' n;:~ Q(s" S,+I). (AS)

(b) The existence of a unique positive recurrent communicating class will beshown through a series of lemmata.

Lemma S. There exists a positive recurrent communicating class, ReS.

Proof. This is immediate as S is compact (finite). II

Lemma6. There exists an s such that, VseS, s-.s, i.e. 3ns~ I such that Ps{gn,= s} > O.

Proof. Let $"=(0, ... ,0, N, 0, ... ,0) where N>O is a finite number of firms at mO = min ne
• We will show

in two stages that there exists a finite trajectory, {so, s" ... , S7'}' with positive Ps-probability such that So=S
and sr=s.

(i) For all s let s' be defined as follows: s~=O, s~=s",+, for all m#mo, m~re(s), and
s~o=s"'o+ I+m(s). Thus competition of all firms outside the industry inexorably advances, while the
investments of all active firms fail to yield any success. Then (see Assumptions (A.4) and (A.S»

Q(s, S')=P_I . n",~,!,(S) [1r(mlm, x(m, s»]ls"". P(mO)lm(s>l >0,

as must be any finite product of these transition and entry probabilities. Repeat until all active firms
have dropped (at some rd to mO or lower:

This occurs in finite time as the initial industry structure is finite (Corollary 2).
(ii) For all se{sls",=O Vm>mO} let s' be defined as follows: s~=O, m>mo; s~o=smo+m(s);S~o_l=O;

s~ = s; + I, m < m°- I. Again outside competition advances, while all active inside firms, except those
at mO, fail to generate any success with their investment. Firms at mO succeed in holding their own.
Again such a transition has strictly positive probability:

Q(s, S')=P_I . [1r(mo+ limO, x(mo, s»]ls.,ol

. n",ew [1r(mlm, x(m, s»]ls.,1 . P(mo)'m(s)1 >0,

where W={menlre(s)~m<mO}. Repeat until all firms below mO have exited the industry. Again
finiteness of the industry insures that this will occur in finite time 1"2. This yields, at T= r, + 1"2, S=ST=
(0, ... ,0, N, 0, ... ,0), where N=argmin" {m(O, ... ,0, n, 0, ... ,0) =O} =nmo+r;:'rl+' m(s/). II

Lemma7. see.

Proof. This is immediate as R is positive recurrent.
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Lemma 8. Let seS he any recurrent state. Then [e R, R is the only recurrent class, and SfR implies that
s is transient.

Proof. That seR must hold follows from Theorem 1.55, Freedman (1983). Hence R is unique and anys,R must be transient. II

(c) This is an immediate consequence of the existence of a single positive recurrent class: see Freeman
(1983), Theorems 1.81, 1.88.

(d) p,.= vQ" (13) and hence converges iff the matrix Q" does so. By Freedman (1983, Theorem 1.68),
lim".... co Q"(s, s') =0 if s' is transient (s'jR), and by Theorem J.69(c), if s' is recurrent (s'eR) then

lim Q"(s, s') q>Q(s, s')
11-+"" mQ(s', s')

where 9'Q(s, s')=Ps{~n=s' for some n~O}, P, is defined in (A8), and mQ(s', s') is defined above. Notice that,
for all n, vQ" is a probability measure. Hence u; converges to some probability measure, lim P"= 1C (say). Now
notice that 1CQ=(lim vQ")Q= v lim Q"' Q= v lim Q"=lim vQ"= 1C so that 1C isan invariant probability measure
for Q. Howevert, by part (c) above, p. is the only (unique!) invariant probability measure, and therefore
1C=p*. H

ProofofCorollary 3. That p*Q= p. was shown in Theorem 2. That Pp ' (A8) is stationary is an immediate
consequence of the fact. Let u, be the r-th period distribution starting from u":

P, = P,-tQ=' .. = p*Q' = p.Q'-t = ... = p.Q= p*.
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