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The Identification Power of Equilibrium
in Simple Games

Andres ARADILLAS-LOPEZ
Department of Economics, Princeton University, Princeton, NJ 08544

Elie TAMER
Department of Economics, Northwestern University, Evanston, IL 60208 (tamer@northwestern.edu)

We examine the identification power that (Nash) equilibrium assumptions play in conducting inference
about parameters in some simple games. We focus on three static games in which we drop the Nash
equilibrium assumption and instead use rationalizability as the basis for strategic play. The first example
examines a bivariate discrete game with complete information of the kind studied in entry models. The
second example considers the incomplete-information version of the discrete bivariate game. Finally, the
third example considers a first-price auction with independent private values. In each example, we study
the inferential question of what can be learned about the parameter of interest using a random sample of
observations, under level-k rationality, where k is an integer ≥ 1. As k increases, our identified set shrinks,
limiting to the identified set under full rationality or rationalizability (as k → ∞). This is related to the
concepts of iterated dominance and higher-order beliefs, which are incorporated into the econometric
analysis in our framework. We are then able to categorize what can be learned about the parameters in a
model under various maintained levels of rationality, highlighting the roles of different assumptions. We
provide constructive identification results that lead naturally to consistent estimators.

KEY WORDS: Equilibrium vs rationality; Identification; Partial identification.

1. INTRODUCTION

In this article we examine the identification power of equilib-
rium in some simple games. In particular, we relax the assump-
tion of Nash equilibrium (NE) behavior and assume that players
are rational. Rationality posits that agents play strategies that
are consistent with a set of proper beliefs. The object of interest
in these games is a parameter vector that parameterizes payoff
functions. We study the identified features of the model using a
random sample of data under a set of rationality assumptions,
culminating with rationalizability, a concept introduced jointly
in the literature by Bernheim (1984) and Pearce (1984), and
compare those to what we can learn under Nash. We find that in
static discrete games with complete information, the identified
features of the games with more than one level of rationality are
similar to those obtained with Nash behavior assumption but
allowing for multiple equilibria (including equilibria in mixed
strategies). In a bivariate game with incomplete information, if
the game has a unique (Bayesian) NE, then there is convergence
between the identified features with and without equilibrium
only when the level of rationality tends to infinity. When there
are multiple equilibria, the identified features of the game under
rationality and equilibrium are different: smaller identified sets
(hence more information about the parameter of interest) when
equilibrium is imposed, but computationally easier to construct
identification regions under rationality (i.e., no need to solve
for fixed points). In the auction game that we study, the situ-
ation is different. We follow the work of Battigalli and Sinis-
chalchi (2003) where, under some assumptions given the valu-
ations, rationalizability predicts only upper bounds on the bids.
We show how these bounds can be used to learn about learn
about the latent distribution of valuation. Another strategic as-
sumptions in auctions resulting in tighter bounds is the concept
of P-dominance studied by Dekel and Wolinsky (2003).

Economists have observed that equilibrium play in noncoop-
erative strategic environment is not necessary for rational be-
havior. Some can easily construct games in which NE strategy

profiles are unreasonable, whereas others can find reasonable
strategy profiles that are not Nash. Restrictions once Nash be-
havior is dropped typically are based on a set of “rationality”
criteria, as has been enumerated in numerous works under dif-
ferent strategic scenarios. In this article we study the effect of
adopting a particular rationality criterion on learning about pa-
rameters of interests. We do not advocate one type of strategic
assumption over another, but simply explore one alternative to
Nash and evaluate its effect on parameter inference. Thus, de-
pending on the application, identification of parameters of in-
terest certainly can be studied under strategic assumptions other
than rationalizability. We provide such an example.

Because every Nash profile is rational under our definition,
dropping equilibrium play complicates the identification prob-
lem, because under rationality only, the set of predictions is
enlarged. As Pearce noted, “this indeterminacy is an accurate
reflection of the difficult situation faced by players in a game,
because logical guidelines and the rules of the game are not
sufficient for uniqueness of predicted behavior.” Thus it is in-
teresting from the econometric perspective to examine how the
identified features of a particular game changes as weaker as-
sumptions on behavior are made.

We maintain that players in the game are rational, where
heuristically, we define rationality as behavior consistent with
an optimizing agent equipped with a proper set of beliefs or
probability distributions about the unknown actions of others.
Rationality comes in different levels or orders, where a profile is
first-order rational if it is a best response to some profile for the
other players. This intersection of layers of rationality consti-
tutes rationalizable strategies. We study the identification ques-
tion for level-k rationality for k ≥ 1. When we study the identi-
fying power of a game under a certain set of assumptions on the
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strategic environment, we implicitly assume that all players in
that game are abiding exactly by these assumptions and playing
exactly that game. This is important, because theoretical work
has challenged the multiplicity issues that arise under rational-
izability. For example, Weinstein and Yildiz (2007) showed that
for any rationalizable set of strategies in a given game, there is
a local disturbance of that game in which these are the unique
rationalizable strategies. This ambiguity about what is the exact
game being played is why it is important to study the identified
features of a model in the presence of multiplicity.

Using equilibrium as a restriction to gain identifying power is
a well-known strategy in economics. The model of demand and
supply uses equilibrium to equate the quantity demanded with
quantity supplied, thus obtaining the classic simultaneous equa-
tion model. Other literature in econometrics, such as job search
models and hedonic equilibrium models, explicitly use equi-
librium as a “moment condition.” In this article we study the
identification question in simple game-theoretic models with-
out the assumption of equilibrium by focusing on the weaker
concept of rationality, k-level rationality and its limit rational-
izability. This approach has two important advantages. First, it
leads naturally to a well-defined concept of levels of rational-
ity, which is attractive practically. Second, it can be adapted to
a very wide class of models without the need to introduce ad
hoc assumptions. Ultimately, interim rationalizability allows us
to do inference (to varying degrees) both on the structural pa-
rameters of a model (e.g., the payoff parameters in a reduced-
form game or the distribution of valuations in an auction) and
on the properties of higher-order beliefs by the agents, which
are incorporated into the econometric analysis. The features of
this hierarchy of beliefs characterize what we call the rational-
ity level of agents. In addition, it is possible to also provide
testable restrictions that can be used to find an upper bound on
the rationality level in a given data set.

Level-k thinking as an alternative to Nash equilibrium be-
havior also has been studied by Stahl and Wilson (1995), Nagel
(1995), Ho, Camerer, and Weigelt (1998), Costa-Gomes, Craw-
ford, and Broseta (2001), Costa-Gomes and Crawford (2006),
and Crawford and Iriberri (2007). These models depart from
equilibrium behavior by dropping the assumption that each
player has a perfect model of others’ decisions and replacing
it with the assumption that such subjective models survive k
rounds of iterated elimination of dominated decisions. Thus
each player’s subjective model about others’ behavior is consis-
tent with level-k interim rationalizability in the sense of Bern-
heim (1984). For identification, the aforementioned articles as-
sume the existence of a small number of prespecified types,
each of which is associated with a very specific behavior. For
example, a particular type of player could perform two mental
rounds of deletion of dominated strategies and best response to
a uniform distribution over the surviving actions. Using care-
fully designed experiments, previous researchers sought to ex-
plain which type best fits the observed choices. This article dif-
fers from the aforementioned works by focusing on bounds for
conditional choice probabilities that can be rationalized by be-
liefs that survive k steps of iterated thinking. We look at the
largest possible set of level-k rationalizable beliefs but assume
nothing about how players choose their actual (unobserved) be-
liefs from within this set. In addition, we focus on situations in

which the researcher ignores how “rational” players are and in
which other primitives of the game also are the object of inter-
est: payoff parameters in discrete games or the distribution of
valuations in an auction. In an experimental data set, the last set
of objects are entirely under the control of the researcher, and
strong parametric assumptions typically are made about behav-
ioral types.

In Section 2 we review and define rational play in a nonco-
operative strategic game. Here we mainly adapt the definition
provided by Pearce. We then examine the identification power
of dropping Nash behavior in some commonly studied games
in empirical economics. In Section 3 we consider discrete static
games of complete information. This type of game is widely
used in the empirical literature on (static) entry games with
complete information and under NE (see, e.g., Bjorn and Vuong
1985; Bresnahan and Reiss 1991; Berry 1994; Tamer 2003; An-
drews, Berry, and Jia 2003; Ciliberto and Tamer 2003; Bajari,
Hong, and Ryan 2005). Here we find that in the 2 × 2 game
with level-2 rationality, the outcomes of the game coincide with
Nash, and thus econometric restrictions are the same. In Sec-
tion 4 we consider static games with incomplete information.
Empirical frameworks for these games have been studied by
Aradillas-Lopez (2005), Aguiregabiria and Mira (2007), Seim
(2002), Pakes, Porter, Ho, and Ishii (2005), Berry and Tamer
(1996), and others. Characterization of rationalizability in the
incomplete information game is closely related to the higher-
order belief analysis in the global games literature (see Morris
and Shin 2003) and to other recently developed concepts, such
as those of Dekel, Fudenberg, and Morris (2007) and Dekel, Fu-
denberg, and Levine (2004). Here we show that level-k rational-
ity implies restrictions on player beliefs in the 2 × 2 game that
lead to simple restrictions that can be exploited in identification.
As k increases, an iterative elimination procedure restricts the
size of the allowable beliefs that map into stronger restrictions
that can be used for identification. If the game admits a unique
equilibrium, then the restrictions of the model converge toward
Nash restrictions as the level of rationality k increases. With
multiple equilibria, the iterative procedure converges to sets of
beliefs that contain both the “large” and ”small” equilibria. In
particular, studying identification in these settings is simple, be-
cause we do not need to solve for fixed points, but simply iterate
the beliefs toward the predetermined level of rationality k. In
Section 5 we examine a first-price independent auction game,
where we follow the work of Battigalli and Sinischalchi (2003).
Here for any order k, we are only able to bound the unobserved
valuation from above. Finally, in Section 6 we conclude.

2. NASH EQUILIBRIUM AND RATIONALITY

In noncooperative strategic environments, optimizing agents
maximize a utility function that depends on what their oppo-
nents do. In simultaneous games, agents attempt to predict what
their opponents will play, and then play accordingly. Nash be-
havior posits that players’ expectations of what others are doing
are mutually consistent, and so a strategy profile is Nash if no
player has an incentive to change strategy given what the other
agents are playing. This Nash behavior makes an implicit as-
sumption on players’ expectations. But, players “are not com-
pelled by deductive logic” (Bernheim) to play Nash. In this
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article we examine the effect of assuming Nash behavior on
identification by comparing restrictions under Nash with those
obtained under rationality in the sense of Bernheim and Pearce.
Here we follow Pearce’s framework and first maintain the fol-
lowing assumptions on behavior:

• Players use proper subjective probability distribution, or
use the axioms of Savage, when analyzing uncertain
events.

• Players are expected utility maximizers.
• Rules and structure of the game are common knowledge.

We next describe heuristically what is meant by rationalizable
strategies; precise definitions have been given by Pearce (1984),
for example:

• We say that a strategy profile for player i (which can be a
mixed strategy) is dominated if there exists another strat-
egy for that player that does better no matter what other
agents are playing.

• Given a profile of strategies for all players, a strategy for
player i is a best response if that strategy does better for
that player than any other strategy given that profile.

To define rationality, we use the following notation. Let Ri(0)

be the set of all (possibly mixed) strategies that player i can play
and R−i(0) be the set of all strategies for players other than i.
Then, heuristically, we have the following:

• Level-1 rational strategies for player i are strategy profiles
si ∈Ri(0) such that there exists a strategy profile for other
players in R−i(0) for which si is a best response. The set
of level-1 strategies for player i is Ri(1).

• Level-2 rational strategies for player i are strategy profiles
si ∈Ri(0) such that there exists a strategy profile for other
players in R−i(1) for which si is a best response.

• Level-t rational strategies are defined recursively from
level 1.

Note that by construction, Ri(t) ⊆ Ri(t − 1). Finally, ratio-
nalizable strategies are ones that lie in the intersection of the
R’s as t increases to infinity. In the complete information game
of Section 3, we show that there exists a finite k such that for
Ri(t) = Ri(k) for all t ≥ k. In the incomplete information mod-
els of Sections 4 and 5, we show that we can have Ri(t) ⊂ Ri(k)
for all t > k. In all of these settings, a strategy is level-k rational
for a player if it is a best response to some strategy profile in
Ri(k − 1) by his opponents. Iterating this further, we arrive at
the set of rationalizable strategies. Pearce provided properties
of the rationalizable set; for example, NE profiles are always
included in this set, and the set contains at least one profile in
pure strategies.

3. BIVARIATE DISCRETE GAME WITH
COMPLETE INFORMATION

Consider the following bivariate discrete 0/1 game where tp
is the payoff that player p obtains by playing 1 when player −p
is playing 0. Parameters α1 and α2 are of interest. The econo-
metrician does not observe t1 or t2 and is interested in learning
about the α’s and the joint distribution of (t1, t2). (See Table 1.)
Assume also, as in entry games, that the α’s are negative. In this

Table 1. Bivariate discrete game

a2 = 0 a2 = 1

a1 = 0 0, 0 0, t2
a1 = 1 t1, 0 t1 + α1, t2 + α2

example and the next, we assume that we have access to a ran-
dom sample of observations (y1i, y2i)

N
i=1, which represent, for

example, market structures in a set of N independent markets.
To learn about the parameters, we map the observed distrib-
ution of the data (the choice probabilities) to the distribution
predicted by the model. Because this is a game of complete
information, players observe all of the payoff-relevant informa-
tion. In particular, in the first round of rationality, player 1 will
play 1 if t1 + α1 ≥ 0, because this will be a dominant strategy.
In addition, if t1 is negative, then player 1 will play 0. But when
t1 + α1 ≤ 0 ≤ t1, both actions 1 and 0 are level-1 rational; ac-
tion 1 is rational because it can be a best response to player 2
playing 0, whereas action 0 is a best response to player 2 play-
ing 1. The set R(1) is summarized in Figure 1. Consider, for ex-
ample the upper right corner. For values of t1 and t2 lying there,
playing 0 is not a best response for either player. Thus (1,1)

is the unique level-1 rationalizable strategy (which is also the
unique NE). Consider now the middle region on the right side,
that is, (t1, t2) ∈ [−α1,∞) × [0,−α2]. In level-1 rationality, 0
is not a best reply for player 1, but player 2 can play either 1 or
0; 1 is a best reply when player 1 plays 0, and 0 is a best reply
for player 2 when player 1 plays 1. However, in the next round
of rational play, given that player 2 now believes that player 1
will play 1 with probability 1, then player 2’s response is to
play 0. Thus R(1) = {{1}, {0,1}} while the rationalizable set
reduces to the outcome (1,0). Here R(k) = R(2) = {{1}, {0}}
for all k ≥ 2. In the middle square, we see that the game pro-
vides no observable restrictions; any outcome can be potentially
observable, because both strategies are rational at any level of
rationality. Note also that in this game, the set of rationalizable
strategies is the set of profiles that are undominated. This is a
property of bivariate binary games.

3.1 Implications of Level-k Rationality

A random sample of observations allows us to obtain a con-
sistent estimator of the choice probabilities (or the data). The
object of interest here is θ = (α1, α2,F(·, ·)), where F(·, ·) is
the joint distribution of (t1, t2). One interesting approach to
conduct inference on the identified set, �I , is to assume that
both t1 and t2 are discrete random variables with identical sup-
port on s1, . . . , sK such that P(t1 = si; t2 = sj) = pij ≥ 0 for
i, j ∈ {1, . . . , k} with

∑
i,j pij = 1. Thus we make inference on

the set of probabilities (pij, i, j ≤ k) and (α1, α2). We highlight
this for level-2 rationality. In particular, we say that

θ = ((pij), α1, α2) ∈ �I

if and only if

P11 =
∑

i,j

pij
(
1[si ≥ −α1; sj ≥ −α2]

+ l(1,1)
ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]

)
,
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Figure 1. Rationalizable profiles in a bivariate game with complete information.

P00 =
∑

i,j

pij
(
1[si ≤ 0; sj ≤ 0]

+ l(0,0)
ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]

)
,

P10 =
∑

i,j

pij
(
1[si ≥ 0; sj ≤ 0] + 1[si ≥ −α1;0 ≤ sj ≤ −α2]

+ l(1,0)
ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]

)
,

and

P01 =
∑

i,j

pij
(
1[si ≤ 0; sj ≥ 0] + 1[0 ≤ si ≤ −α1; sj ≥ −α2]

+ l(0,1)
ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]

)

for some (l(1,1)
ij , l(0,0)

ij , l(0,1)
ij , l(1,0)

ij ) ≥ 0 and l(1,1)
ij + l(0,0)

ij +
l(0,1)
ij + l(1,0)

ij = 1 for all i, j ≤ k. The l’s can be thought of as
the “selection mechanisms” that choose an outcome in the re-
gion where the model predicts multiple outcomes. We treat the
support points as known, but this is without loss of general-
ity, because those also can be made part of θ . The foregoing
equalities (and inequalities) for a given θ are similar to first-
order conditions from a linear programming problem and thus
can be solved rapidly using linear programming algorithms. In
particular, consider the objective function in (1). Note first that
Q(θ) ≤ 0 for all θ ’s in the parameter space. Moreover,

θ ∈ �I

if and only if Q(θ) = 0.

Q(θ) = max
vi,...,v8,(l

(1,1)
ij ,l(0,0)

ij ,l(0,1)
ij ,l(1,0)

ij )

−(v1 + · · · + v8) s.t.

P11 −
∑

i,j

pij
(
1[si ≥ −α1; sj ≥ −α2]

+ l(1,1)
ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]

)

= v1 − v2,

P00 −
∑

i,j

pij
(
1[si ≤ 0; sj ≤ 0]

+ l(0,0)
ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]

)

= v3 − v4,

P10 −
∑

i,j

pij
(
1[si ≥ 0; sj ≤ 0]

(1)
+ 1[si ≥ −α1;0 ≤ sj ≤ −α2]
+ l(1,0)

ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]
)

= v5 − v6,

P01 −
∑

i,j

pij
(
1[si ≤ 0; sj ≥ 0] + 1[0 ≤ si ≤ −α1; sj ≥ −α2]

+ l(0,1)
ij 1[0 ≤ si ≤ −α1;0 ≤ sj ≤ −α2]

)

= v7 − v8,

vi ≥ 0; (
l(1,1)
ij , l(0,0)

ij , l(0,1)
ij , l(1,0)

ij

) ≥ 0;
l(1,1)
ij + l(0,0)

ij + l(0,1)
ij + l(1,0)

ij = 1 for all 1 ≤ i, j ≤ k.

First, note that for any θ , the program is feasible; for exam-
ple, set (l(1,1)

ij , l(0,0)
ij , l(0,1)

ij , l(1,0)
ij ) = 0 and then set v1 = P11 −

∑
i,j pij1[si ≥ −α1; sj ≥ −α2] and v2 = 0 if P11 −∑

i,j pij1[si ≥
−α1; sj ≥ −α2] ≥ 0, or set v2 = −(P11 − ∑

i,j pij1[si ≥ −α1;
sj ≥ −α2]) and v1 = 0 and similarly for the rest. Moreover,
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θ ∈ �I if and only if Q(θ) = 0. We can collect all of the parame-
ter values for which the foregoing objective function is equal to
0 (or approximately equal to 0). A similar linear programming
procedure was used by Honoré and Tamer (2006). The sampling
variation comes from having to replace the choice probabilities
(P11,P12,P21,P22) with their sample analogs, which results in
a sample objective function Qn(·) that can be used to conduct
inference.

More generally, and without making support assumptions,
a practical way to conduct inference with one level of ratio-
nality, say, is to use an implication of the model. In particular,
under k = 1 rationality, the statistical structure of the model is
one of moment inequalities,

Pr(t1 ≥ −α1; t2 ≥ −α2) ≤ P(1,1) ≤ Pr(t1 ≥ 0; t2 ≥ 0),

Pr(t1 ≤ 0; t2 ≤ 0) ≤ P(0,0) ≤ Pr(t1 ≤ −α1; t2 ≤ α2),

Pr(t1 ≥ −α1; t2 ≤ 0) ≤ P(1,0) ≤ Pr(t1 ≥ 0; t2 ≤ −α2),

Pr(t1 ≤ 0; t2 ≥ −α2) ≤ P(0,1) ≤ Pr(t1 ≤ −α1; t2 ≥ 0).

The foregoing inequalities do not exploit all of the informa-
tion, and thus the identified set based on these inequalities is not
sharp. But these inequality-based moment conditions are sim-
ple to use and can be generalized to large games. Heuristically,
then, by definition the model identifies the set of parameters
�I such that the above inequalities are satisfied. Moreover, we
say that the model point identifies a unique θ if the set �I is
a singleton. Figure 2 shows the mapping between the predic-
tions of the game and the observed data under Nash and level-k
rationality. The observable implication of Nash is different de-
pending on whether or not we allow for mixed strategies. In
particular, without allowing for mixed strategies, in the middle
square of Figure 2(a), the only observable implication is (1,0)

and (0,1); however, it reverts to all outcomes once the mixed
strategy equilibrium is considered. To get an idea of the identifi-
cation gains when we assume rationality versus equilibrium, we
simulated a stylized version of the foregoing game in the case
where tp is standard normal for p = 1,2 and the only object of
interest is the vector (α1, α2). We compare the identified set of
the foregoing game under k = 1 rationality and NE when we

consider only pure strategies. Figure 3 shows that there is iden-
tifying power in assuming Nash equilibrium. In particular, un-
der Nash, the identified set is a somehow tight “circle” around
the simulated truth, whereas under rationality, the model pro-
vides only upper bounds on the alphas. But if we add exoge-
nous variations in the profits (X’s), then the identified region
under rationality will shrink. In the next section we examine
the identifying power of the same game under incomplete in-
formation.

4. DISCRETE GAME WITH
INCOMPLETE INFORMATION

Consider now the discrete game presented in Table 1 but un-
der the assumptions that player 1 (2) does not observe t2 (t1)
or that the signals are private information. We denote player
p ∈ {1,2}’s opponent by −p. We let Ip denote the signals used
by player p to obtain information about t−p, where tp ∈ Ip could
be a special case. Player p holds beliefs about his opponent’s
type conditional on Ip, and those beliefs can be summarized by
a subjective distribution function. Let π2(I1) denote player 1’s
subjective probability of entry for player 2, and define π1(I2)

analogously for player 2. Given his beliefs, the expected utility
function of player 1 is

U(a1, t1,I1) =
{

t1 + α1π2(I1) if a1 = 1

0 otherwise.

Similarly, for player 2, we have

U(a2, t2,I2) =
{

t2 + α1π1(I2) if a2 = 1

0 otherwise.

Both players are assumed to be expected-utility maximizers
who make choices simultaneously and independently. (This in-
cludes NE behavior as a special case.) This yields threshold-
crossing decision rules

Y1 = 1{U(1, t1,I1) ≥ 0}, Y2 = 1{U(1, t2,I2) ≥ 0}. (2)

Incomplete information makes it impossible for player p to ran-
domize in a way that makes his opponent exactly indifferent be-
tween his two actions. In addition, because we focus on the case
where tp is continuously distributed, the event U(1, tp,Ip) = 0
occurs with probability 0. Our assumptions differ from NE be-

(a) (b)

Figure 2. Observable implications of equilibrium (b) versus rationality (a).
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(a) (b)

Figure 3. Identification set under Nash and 1-level rationality. Shown the identified regions for (α1, α2) under k = 1 rationality (a) and
Nash (b). We set in the underlying model (α1, α2) = (−.5,−.5). The model was simulated assuming Nash with (0,1) selected with probability
one in regions of multiplicity. Note that in (a), the model only places upper bounds on the alphas, whereas in (b) (α1, α2) are constrained to lie
a much smaller set (the inner “circle”).

cause we do not impose the restriction that subjective beliefs
are consistent with players’ actual behavior. Again, here we as-
sume that both α1 and α2 are negative.

4.1 Implications of Level-1 Rationality

We maintain the expected utility maximization assumption
and the resulting decision rules (2). In the first round of ratio-
nality, we know that for any belief function, or without making
any common prior assumptions, the following hold:

t1 + α1 ≥ 0 	⇒ U(1, t1,I1) = t1 + α1π2(I1) ≥ 0

∀π2(I1) ∈ [0,1],
(3)

t1 ≤ 0 	⇒ U(1, t1,I1) = t1 + α1π2(I1) ≤ 0

∀π2(I1) ∈ [0,1].
Well-defined beliefs satisfy π2(·) ∈ [0,1]. This implies that
if player 1 is an expected-utility maximizer and holds well-
defined beliefs, then he must satisfy

t1 + α1 ≥ 0 	⇒ a1 = 1

and

t1 ≤ 0 	⇒ a1 = 0.

Now, let 0 ≤ t1 ≤ −α1. For a player that is rational of order
1, there exists well defined beliefs that rationalizes either 1 or
0. Thus when 0 ≤ t1 ≤ −α1, both a1 = 1 and a1 = 0 are ra-
tionalizable. So, the implication of the game are summarized
in Figure 4. Note here that the (t1, t2) space is divided into
nine regions: four regions where the outcome is unique, four re-
gions with two potentially observable outcomes, and the middle
square where any outcome is potentially observed. To make in-
ference based on this model, we need to map these regions into
predicted choice probabilities. To obtain the sharp set of para-
meters that is identified by the model, we can supplement this

model with consistent “selection rules” that specify, in regions
of multiplicity, the probability of observing the various out-
comes, which would be a function of both (t1,I1) and (t2,I2).
The probabilities can be given a “structural” interpretation in
which they would be interpreted as proper selection mecha-
nisms. Given the level-1 behavioral assumptions, the only valid
selection mechanisms are those that can be produced (rational-
ized) by the choice rules (2) for some well-defined beliefs. Ex-
pected utility maximization explains [through (2)] how players’
choices are produced in an incomplete information environ-
ment given beliefs. Finally, let the joint distribution of (t1, t2)
be noted by F(·).

Result 1. For the game with incomplete information, let the
players be rational with order 1 (level-1 rational) and write
Wp ≡ tp ∪ Ip. Then the choice probabilities predicted by the
model are

P(1,1) =
∫

III
dF +

∫

II
SII
(1,1)(W1,W2)dF

+
∫

VI
SVI
(1,1)(W1,W2)dF +

∫

V
SV
(1,1)(W1,W2)dF,

P(0,0) =
∫

VII
dF +

∫

VIII
SVIII
(0,0)(W1,W2)dF

(4)

+
∫

IV
SIV
(0,0)(W1,W2)dF +

∫

V
SV
(0,0)(W1,W2)dF,

P(0,1) =
∫

I
dF +

∫

II
SII
(0,1)(W1,W2)dF

+
∫

IV
SVI
(0,1)(W1,W2)dF +

∫

V
SV
(0,1)(W1,W2)dF,

where Si
j ≥ 0 are such that for example, SII

(1,0) + SII
(1,1) = 1, and

so on, and I, II, III, IV, V, VI, and VIII are regions for (t1, t2)
shown in Figure 4.
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Figure 4. Observable implications of level-1 rationality.

The functions S are unknown and represent “selection” func-
tions that represent the probabilities of selecting a particular
outcome in a region of multiplicity. Suppose, for simplicity, that
Ip = tp, so that players condition their beliefs only on the real-
ization of their own type. The (sharp) identified set �I , is the
set of parameters where there exists proper selection functions
S such that the predicted choice probabilities in (4) are equal
to the ones obtained from data. The restrictions in (4) can be
exploited by, for example, discretizing the joint distribution of
(t1, t2), such as discussed for the complete-information case,
to construct the identified set. The latter, �I , is the set of pa-
rameters for which the equalities in (4) are satisfied for well-
defined selection functions. Implications of the foregoing set
of equalities is a set of moment inequalities constructed by ex-
ploiting the fact that the S functions are probabilities and thus
are positive. So, for example, an implication of Result 1 is that∫

III dF ≤ P(1,1) ≤ ∫
III dF + ∫

II∪III∪V∪VI dF, where the bounds
of this inequalities do not involve the unknown functions S.

Next we analyze the behavior of players who assume that
their opponents are (at least) level-k rational for k ≥ 1. Level-2
rational players are those whose second-order beliefs for their
opponent are compatible with the bounds implied by (3). As
we show, by eliminating beliefs that violate (3), we are able to
reduce the set of level-2 rational beliefs from the entire [0,1] in-
terval to a segment of it. Further rounds of iterated thinking will
refine these bounds even more. Unlike in the Bayesian Nash
equilibrium (BNE) case, we do not impose the requirement that
beliefs are correct; we will rule only out those that are not com-
patible with the assumption that opponents are level-k rational.

4.2 Implications of Level-k Rationality

Level-1 rationality is characterized simply by expected utility
maximization and any arbitrary system of well-defined beliefs.
We now generalize the results of the previous section by char-
acterizing bounds for beliefs that are compatible with assuming

that opponents are level-k rational. This means that, for exam-
ple, level-2 rational players are all of those whose beliefs are
consistent with the bounds implied by (3). As we show later, by
eliminating beliefs that violate (3), we will be able to reduce the
set of level-2 rational beliefs from the entire [0,1] interval to a
segment of it. Level-3 rational players are those whose beliefs
are compatible with the bounds for level-2 rational beliefs. This
iterative construction can then be used to characterize bounds
for level-k rational beliefs. Each “round of rationality” refines
these bounds by deleting all beliefs that assign positive proba-
bility to opponents’ dominated strategies. As a reminder, the re-
alization of tp is privately observed by player p, who conditions
his beliefs about the expected action of his opponent on the re-
alization of signals Ip, with tp ∈ Ip being a special case. The
true distribution of (t1 ∪ t2 ∪ I1 ∪ I2) is common knowledge
to both players. This is the common prior assumption. Even
though it plays no role in the analysis of level-1 rational behav-
ior, the common prior assumption is important for higher levels
of rationality. We consider strategies (decision rules) for player
p that are threshold functions of tp,

Yp = 1{tp ≥ μp} for p = 1,2. (5)

It follows from the normal-form payoffs in Table 1 that this
family of decision rules includes those of all expected utility-
maximizing players in this simple binary choice game with in-
complete information. Level-1 rational players and those who
play a BNE are two special cases. In the construction of his ex-
pected utility, player p forms subjective beliefs about μ−p that
can be summarized by a probability distribution for μ−p given
Ip. These beliefs are derived as part of a solution concept. They
may include BNE beliefs as a special case (in which case all
players know those equilibrium beliefs to be correct). Here let
Ĝ1(μ2|I1) denote player 1’s subjective distribution function for
μ2 given I1, and define Ĝ2(μ1|I2) analogously for player 2.
A strategy by player p is rationalizable if it is the best response
(in the expected-utility sense) given some beliefs Ĝp(μ−p|Ip)
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that assign zero probability mass to strictly dominated strategies
by player −p. A rationalizable strategy by player p is described
by

Yp = 1

{

tp + αp

∫

S(Ĝp)

E[1{t−p ≥ μ}|Ip,μ]dĜp(μ|Ip) ≥ 0

}

,

(6)

where the support S(Ĝp) excludes values of μ that result in
dominated strategies within the class (5). Throughout, we fo-
cus on the case where μ−p is continuously distributed condi-
tional on Ip, and ignore the distinction between strictly and
weakly dominated strategies. Note that the subset of ratio-
nalizable strategies within the class (5) is of the form μp =
−αp

∫
S(Ĝp)

E[1{t−p ≥ μ}|Ip,μ]dĜp(μ|Ip). In this setting, ra-

tionalizability requires expected utility maximization for a
given set of beliefs but does not require those beliefs to be cor-
rect. It only imposes the condition that S(Ĝp) exclude values of
μ−p that are dominated. We eliminate such values by iterated
deletion of dominated strategies.

Now we describe the iterative procedure that restricts S(Ĝp)

by iterated dominance. As before, we maintain that the signs of
the strategic interaction parameters (α1, α2) are known. Specif-
ically, suppose that αp ≤ 0. Then, repeating arguments from the
previous section on k = 1–rationalizable outcomes, looking at
(6), we see that we must have eventwise comparisons

1{tp + αp ≥ 0} ≤ 1{Yp = 1} and
(7)

1{tp < 0} ≤ 1{Yp = 0}.
Decision rules that do not satisfy these conditions are strictly
dominated for all possible beliefs. Therefore, the subset of
strategies within the class (5) that are not strictly dominated
must satisfy Pr(tp + αp ≥ 0) ≤ Pr(tp ≥ μp) ≤ Pr(tp ≥ 0) or,
equivalently, μp ∈ [0,−αp]. All other values of μp correspond
to dominated strategies. In this setup, we refer that to the subset
of strategies that satisfy μp ∈ [0,−αp] as level-1 rationalizable
strategies. Note that, as before, these μ’s do not involve the
common prior distributions.

Level-2 rational players are those whose beliefs are consis-
tent with assuming that their opponents are level-1 rational.
Without any further assumptions, level-2 rational players are
those whose beliefs about others satisfy (7). Consequently, a
level-2 rational player must have beliefs that assign zero proba-
bility mass to values μ−p /∈ [0,−αp]. As before, we impose no
further requirements (such as having unbiased beliefs). A strat-
egy is level-2 rationalizable if it can be justified by level-2 ra-
tionalizable beliefs, that is,

μp = −αp

∫ −α−p

0
E[1{t−p ≥ μ}|Ip,μ]dĜp(μ|Ip),

where player p’s beliefs Ĝp(·|Ip) satisfy Ĝp(0|Ip) = 0 and
Ĝp(−α−p|Ip) = 1; that is, those beliefs give zero weight to
level-1–dominated strategies. Moreover, the expectation within
the integral is taken with respect to the common prior condi-
tional on Ip, which includes player p’s type. Thus, exploiting
this monotonicity, it is easy to see that for an outside observer,
the subset of level-2 rationalizable strategies must satisfy

μ1 ∈ [−α1E[1{t2 ≥ −α2}|I1],−α1E[1{t2 ≥ 0}|I1]
]

and

μ2 ∈ [−α2E[1{t1 ≥ −α1}|I2],−α2E[1{t1 ≥ 0}|I2]
]
.

Level-k rational players are those whose beliefs are consistent
with assuming that their opponents are level-(k − 1) rational.
Note that this definition is a statement about a player’s higher-
order beliefs up to order k − 1; specifically, any player who
believes that his opponent undertakes (at least) k − 1 rounds of
iterated deletion of dominated strategies in the construction of
his expected utility will be a level-k rational player. By induc-
tion, it is easy to prove the following claim.

Claim 1. If αp ≤ 0, then a strategy of the type Yp = 1{tp ≥
μp} is level-k rationalizable if and only if μ1 and μ2 satisfy

μp ∈ [0,−α−p] ≡ [μL
p,1,μ

U
p,1], for k = 1 and p ∈ {1,2};

μ1 ∈ [−α1E[1{t2 ≥ μU
2,k−1}|I1],−α1E[1{t2 ≥ μL

2,k−1}|I1]
]

≡ [μL
1,k,μ

U
1,k], for k > 1; (8)

μ2 ∈ [−α2E[1{t1 ≥ μU
1,k−1}|I2],−α2E[1{t1 ≥ μL

1,k−1}|I2]
]

≡ [μL
2,k,μ

U
2,k], for k > 1.

The bounds described in (8) contain any set of beliefs that
can be rationalized after k − 1 rounds of iterated deletion of
dominated strategies. We present identification results based on
this entire range with no additional restrictions on how level-k
players actually choose their beliefs from within this space of
rationalizable beliefs.

Remark 1. Any level-k rational player also is level-k′ ratio-
nal for any 1 ≤ k′ ≤ k − 1. Also, for p ∈ {1,2}, with probability
1, we have that [μL

p,k,μ
U
p,k] ⊆ [μL

p,k−1,μ
U
p,k−1] for any k > 1,

with strict inclusion if αp �= 0 and t−p has unbounded support
conditional on Ip. This monotonic feature of bounds (as k in-
creases) is a consequence of the payoff parameterization in the
game. Note also that these bounds are a function of Ip, the in-
formation on which player p conditions his beliefs.

The two statements in Remark 1 follow because conditional
on Ip, the support S(Ĝp) of a k-level rational player is contained
in that of a k−1–level rational player. In fact, if there is a unique
BNE (conditional on Ip), then S(Ĝp) will collapse to the single-
ton given by BNE beliefs as k → ∞. Whenever warranted, we
clarify whether a k-level rational player is “at most k-level ratio-
nal” or “at least k-level rational.” For inference based on level-2
rationality, we can use inequalities similar to (4) to map the ob-
served choice probabilities to the predicted ones; in particular,
we can use the thresholds from Claim 1 to construct a map be-
tween the model and the observable outcomes using (5). This
is illustrated in Figure 5 for the case where Ip = tp (i.e., play-
ers condition their beliefs exclusively on the realization of their
own type). There Pt1(·) denotes the conditional distribution of
t2|t1, with Pt2(·) defined analogously. We see that, moving from
level 1 to level 2, the middle square shrinks. As we show later,
higher rationality levels (properly speaking, further rounds of
deletion of dominated strategies) will shrink it further. The set
of choice probabilities predicted by the model with level-k ra-
tional players can be characterized by generalizing Result 1.
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Figure 5. Observable implications of level-2 rationality.

Result 2. Let

πL
p (1;Ip) = 0 and πU

p (1;Ip) = 1

for p = 1,2, and let for k > 1,

πL
1 (k;I1) = E

[
1{t2 + α2π

U
2 (k − 1;I2) ≥ 0}|I1

]
,

πU
1 (k;I1) = E

[
1{t2 + α2π

L
2 (k − 1;I2) ≥ 0}|I1

]
,

πL
2 (k;I2) = E

[
1{t1 + α1π

U
1 (k − 1;I1) ≥ 0}|I2

]
,

πU
2 (k;I2) = E

[
1{t1 + α1π

L
1 (k − 1;I1) ≥ 0}|I2

]
.

Using the notation in Section 2, the space of strategies for
level-k rational players is

Rp(k) = {
Yp = 1{tp + αpπ−p(Ip) ≥ 0} :

π−p ∈ [πL−p(k; ·),πU−p(k; ·)]
}

for p = 1,2.

In the next section we parameterize the types tp to allow for
observable heterogeneity and provide sufficient point identifi-
cation conditions based exclusively on the restrictions implied
by level-k rationality.

4.3 Identification With Level-k Rationality in
a Parametric Model

From here on, we express tp = X′
pβp − εp, where Xp is ob-

servable to the econometrician, εp is not, and βp must be es-
timated (along with αp, the strategic interaction parameter for
player p). Player p observes the realization of his own Xp and
εp, where the latter is only privately observed. We also allow
the possibility that some elements in Xp are private information
to player p and, as before, denote the vector of signals used by
player p to condition his beliefs by Ip. Throughout, we assume
(ε1, ε2) to be continuously distributed, with scale normalized to
1 and unbounded support. The results that follow only require
that for each player p, the support of εp be larger than that of

X′
pβp for all possible realizations of I−p. For simplicity, we as-

sume that ε1 is independent of ε2 and denote their cumulative
distribution function (cdf) as Hp(·) for p = 1,2. Conceptually,
we can extend the result that follow and obtain constructive
identification results for the case where ε1 and ε2 are corre-
lated, but we do not deal with that case here. For simplicity, we
limit ourselves to the case where beliefs are conditioned on ob-
servables to the researcher; that is, Ip is observable. We define
the identified set of parameters and then provide an objective
function that can be used to construct the identified set. This
function depends on the level k of rationality that the econo-
metrician assumes ex ante. We discuss the identification of k,
then we provide a set of sufficient conditions to guarantee point
identification under some assumptions. These point identifica-
tion results provide insight into the kind of “variation” needed
to shrink the identified set to a point. Our results can be ex-
tended to cases where beliefs are conditioned on unobservables
to the researcher, as long as the joint distribution of all un-
observables in the model is assumed known, possibly up to a
finite-dimensional parameter.

As in the previous section, we make a common prior assump-
tion. This assumption is only needed to compute bounds on be-
liefs for levels of rationality k that are strictly larger than 1.
Specifically, we assume that H1 and H2 are common knowl-
edge among the players, and also assume that the econometri-
cian knows these common prior distributions. We assume that
players use the true distributions as their priors for payoff co-
variates Xp and signals Ip, both of which are observed by the
econometrician. Implicitly, we also assume that the true values
of βp and αp are common knowledge to both players. Given
this setup, we can construct bounds on beliefs iteratively. For
any parameter value and any “rationality level,” these bounds
are identified, and they constitute the foundation for our identi-
fication results.

Iterated Dominance and Bounds for Beliefs. For ease of ex-
position, we assume that both players condition on the same
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vector of signals, which we denote by I . This would include the
case where the only source of private information for player p is
εp and I = X1 ∪X2. We will return to the more general case and
allow for I1 �= I2 later. As in Section 4.2, we derive bounds for
the range of rationalizable beliefs iteratively by deleting those
that assign positive probability to opponents’ dominated strate-
gies. For each player p, let

πL−p(θ |k = 1,I) = 0, and πU−p(θ |k = 1,I) = 1,

and for k ≥ 2, let

πL
1 (θ |k,I) = E

[
H1

(
X′

1β1 + α1π
U
2 (θ |k − 1,I)

)|I];
(9)

πU
1 (θ |k,I) = E

[
H1

(
X′

1β1 + α1π
L
2 (θ |k − 1,I)

)|I];
πL

2 (θ |k,I) = E
[
H2

(
X′

2β2 + α2π
U
1 (θ |k − 1,I)

)|I];
πU

2 (θ |k,I) = E
[
H2

(
X′

2β2 + α2π
L
1 (θ |k − 1,I)

)|I]
,

where πL−p(θ |k,I) and πU−p(θ |k,I) are the lower and up-
per bounds for level-k rationalizable beliefs by player p for
Pr(Y−p|I). Given our foregoing assumptions, these bounds are
identified for any θ and k. In the case where we want to allow
for correlation in ε1 and ε2, the belief function for player p will
depend on εp, which would be part of a player-specific infor-
mation set, and Hp would be the conditional cdf of εp|ε−p. By
induction, it is easy to show that

[πL−p(θ |k;I),πU−p(θ |k;I)]
⊆ [πL−p(θ |k − 1;I),πU−p(θ |k − 1;I)]

with probability 1 in S(I). (10)

This monotonic feature holds even if players condition on dif-
ferent information sets. Moreover, the inclusion in (10) is strict
if the strategic interaction coefficients are nonzero and if εp has
unbounded support conditional on X′

pβp and I . Figure 6 depicts
this case for a fixed realization I , a given parameter vector θ ,
and k ∈ {2,3,4,5}.

Identified Set for θ Based on Level-k Rationality. Let Wp =
Xp ∪ I . It follows from the discussion in Section 4.2 (see Re-
sult 2) that the identified set for θ under the assumption that
players are level-k rational is given by

�I(k) = {
θ ∈ � :∃π1(·),π2(·) ∈ [πL

1 (θ |k; ·),πU
1 (θ |k; ·)]

× [πL
2 (θ |k; ·),πU

2 (θ |k; ·)]
such that E[Yp|Wp] = Hp(X

′
pβp + αpπ−p(I))

with probability 1 for p = 1,2
}
. (11)

We exploit the fact that under our assumptions, the bounds
for level-k rational beliefs are identified to characterize a set
�(k) that includes �I(k). Our characterization constructive and
based on conditional moment inequalities. To proceed, note that
player p is level-k rational if and only if

1{X′
pβp + αpπ

U−p(θ |k;I) ≥ εp}
≤ 1{Yp = 1}
≤ 1{X′

pβp + αpπ
L−p(θ |k;I) ≥ εp} with probability 1.

Recall that we are studying the case where αp ≤ 0 for p = 1,2.
These inequalities must hold with probability 1 for all realiza-
tions of (Xp, εp,I). It follows that level-k rational players must
satisfy

Hp
(
X′

pβp + αpπ
U−p(θ |k;I)

)

≤ E[Yp|Wp]
≤ Hp

(
X′

pβp + αpπ
L−p(θ |k;I)

)
with probability 1,

where Wp = Xp ∪ I . Define the set

�(k) = {
θ ∈ � : Hp

(
X′

pβp + αpπ
U−p(θ |k;I)

) ≤ E[Yp|Wp]
≤ Hp(X

′
pβp + αpπ

L−p(θ |k;I))

with probability 1, p = 1,2
}
. (12)

(a) (b)

Figure 6. Rationalizable beliefs for k = 2,3,4, and 5. (a) Belief iterations with a unique BNE. (b) Belief iterations with a multiple BNE.
Bounds for level-k rationalizable beliefs when I1 = I2 ≡ I (players condition on the same set of signals). The vertical axis shows level-k
rationalizable bounds for player 1’s beliefs about Pr(Y2 = 1|I). The horizontal axis shows the equivalent objects for player 2. The graphs
correspond to a particular realization I and a given parameter value θ .
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Clearly, if players are level-k rational, then we have �I(k) ⊆
�(k). If Xp ∈ I for both players, then it is easy to show
that �I(k) = �(k). This follows because the set [πL

1 (θ |k; ·),
πU

1 (θ |k; ·)] × [πL
2 (θ |k; ·),πU

2 (θ |k; ·)] is connected and the dis-
tributions H1 and H2 are continuous. The characterization �(k)
is constructive and is the one that we use even though it might
be a strict superset of the sharp set �2(k). This is because
dealing with the set �(k) is simple and computationally at-
tractive. To allow for the case where Wp has continuous sup-
port, we reexpress �(k) as the set of minimizers of an objective
function (see Dominguez and Lobato 2004). For two vectors
a,b ∈ R

dim(Wp), let

�p(θ |a,b; k)

= E
[(

1 − 1
{
Hp

(
X′

pβp + αpπ
U−p(θ |k;I)

) ≤ Pr(Yp = 1|Wp)

≤ Hp
(
X′

pβp + αpπ
L−p(θ |k;I)

)})

(13)
× 1{a ≤ Wp ≤ b}];

	p(θ |k) =
∫ ∫

�p(θ |a,b; k)dFWp(a)dFWp(b);

	(θ |k) = (	1(θ |k),	2(θ |k))′,
where the inequality a ≤ Wp ≤ b is elementwise and Wp ∼
FWp(·). Take any 2 × 2 positive definite matrix 
. The set in
(12) can be expressed as

�(k) = {θ ∈ � :	(θ |k)′
	(θ |k) = 0}. (14)

This is the definition of identified set for θ that we use under
the assumption that all players in the game are level-k rational.
More precisely, returning to Remark 1, �(k) is the identified
set if we assume that all players in the population are at least
level-k rational. By construction, �(k + 1) ⊆ �(k) for all k.
Methods meant for set inference can be adapted to construct a
sample estimator of �(k) based on a random sample of games
where all players are level-k rational for a given k. Note also
that, compared with the Bayesian Nash solution, here we do
not need to solve a fixed-point map to obtain the equilibrium;
rather, rationalizability requires restrictions on player beliefs,
which can be implemented iteratively. We formally show that
�(k) contains the set of BNE for any k > 0. Having �(k) = ∅
would reject the hypothesis that all players are at least level-k
rational.

Remark 2. Note that when k = 1, we do not need to spec-
ify the common prior assumption, because here beliefs play no
role. Thus results will be robust to this assumption. However,
depending on the magnitude of the αp’s, the bounds on choice
probabilities predicted by such a model (where k = 1) can be
wide.

Under certain conditions, the identified set in (14) would con-
sist only of θ0, the true parameter value. An example of this is a
case in which there exist realizations of the vector of signals I
where the players are “forced” to take one of their actions with
probability 1 regardless of their beliefs. To be concrete, suppose
that the linear index X′

pβp has unbounded support for both play-
ers, and suppose that both of them are at least level-2 rational
(i.e., they both perform at least one round of deletion of dom-
inated strategies). Then, if the vector of signals I is such that

there exist regions of S(I) such that S(X′
pβp|I) is concentrated

around arbitrarily large positive or arbitrarily large negative val-
ues, the identified set �(k = 2) defined in (14) would collapse
to a singleton θ0, the true parameter value. We refer to this as a
case of “informative signals” and formalize this point identifi-
cation result in the next section.

4.4 Sufficient Point Identification Conditions

In this section we study the problem of point identification of
the parameter of interests in the foregoing game. In particular,
we provide sufficient point identification conditions for level-1
rational play and for levels k > 1. These conditions can provide
insight into what is required to shrink the identified set to a
point (or a vector). Here we allow for the information sets to
be different; that is, player p conditions on Ip when making
decisions and allow for exclusion restrictions where I1 �= I2.
We start with sufficient conditions for level-1 rationalizability.

4.4.1 Identification Results With Level-1 Rationality. Let
θp = (βp, αp) and θ = (θ1, θ2); then we have the following iden-
tification result.

Theorem 1. Suppose that Xp has full rank for p = 1,2, and let
X ≡ (X1,X2); assume that αp < 0 for p = 1,2, and let � denote
the parameter space. Let there be a random sample of size N
from the foregoing game. Consider the following conditions:

A1.1 For each player p, there exists a continuously distrib-
uted X�,p ∈ Xp with nonzero coefficient β�,p and un-
bounded support conditional on X \ X�,p such that for
any c ∈ (0,1), b �= 0, and q ∈ R

dim(X−�,p), there exists
Cb,q,m > 0 such that

Pr(εp ≤ bX�,p + q′X−�,p|X) > m

∀X�,p : sign(b) · X�,p > Cb,q,m. (15)

A1.2 For p = 1,2, let Xd,p denote the regressors that have
bounded support but are not constant. Suppose that �

is such that for any βd,p, β̃d,p ∈ � with β̃d,p �= βd,p and
for any αp ∈ �,

Pr
(|X′

d,p(βd,p − β̃d,p)| > |αp|
∣
∣X \ Xd,p

)
> 0. (16)

If all we know is that players are level-1 rational, then the fol-
lowing hold:

a. If (A1.1) holds, then the coefficients β�,p are identified.
b. If (A1.2) holds, then the coefficients βd,p are identified.
c. We say that player p is pessimistic with positive proba-

bility if for any � > 0, there exists X� ∈ S(Xp) such that
Pr(Yp = 1|X) < Pr(εp ≤ X′

pβb0 + αp0 |X) + � whenever
Xp ∈ X�. If (A1.1) and (A1.2) hold and player p is pes-
simistic with positive probability, then the identified set
for αp is {αp ∈ � :αp ≤ αp0}. (Here we refer to the identi-
fied set as the set of values of αp that are observationally
equivalent, conditional on observables, to the true value
αp0 .)

The results in Theorem 1 imposed no restrictions on Ip. In
particular, players can condition their beliefs on unobservables
to the econometrician. A special case of condition (A1.1) is
when εp is independent of X. The condition in (A1.2) says how
rich the support of the bounded shifters must be in relation to
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the parameter space. Covariates with unbounded support satisfy
this condition immediately given the full-rank assumption. Fi-
nally, similar identification results to Proposition 1 hold for the
cases where αp ≥ 0 and α1α2 ≤ 0. The proof of Theorem 1 is
given in the Appendix.

4.4.2 Identification With Level-k Rationality. We now
move on to the case of rationalizable beliefs of higher order.
Our goal is to investigate whether a higher degree of rationality
will the task of point-identifying αp. To simplify the analy-
sis, we assume from here on that εp is independent of X and of
I ≡ (I1,I2). This assumption could be replaced with one along
the lines of (A1) in Theorem 1. We make the assumption that I
is observed by the econometrician; we relax it later. Again, de-
note the common prior assumption by Hp(·). The beliefs of the
players for any level-k rationality can be constructed as done in
the previous section. Our point identification–sufficient condi-
tions are summarized in Theorem 2.

Theorem 2. Suppose that there exists a subset X ∗
1 ⊆ S(X1)

where X1 has full-column rank such that for any X1 ∈ X ∗
1 , ε >

0, and θ2 ∈ �, there exist �∗
1ε

⊂ S(I1|X1) and �∗∗
1ε

⊂ S(I1|X1)

such that

for all I1 ∈ �∗
1ε

,

max
{
1 − E[H2(X

′
2β2 + �2)|I1],

E[H2(X
′
2β2 + �2)|I1] − E[H2(X

′
2β2 + �2 + α2)|I1]

}

< ε,
(17)

for all I1 ∈ �∗∗
1ε

,

max
{
E[H2(X

′
2β2 + �2 + α2)|I1],

E[H2(X
′
2β2 + �2)|I1] − E[H2(X

′
2β2 + �2 + α2)|I1]

}

< ε.

A special case in which (17) holds is when there exists X2�
∈

(X2 ∩ W1) with nonzero coefficient in � such that X2�
has

unbounded support conditional on (X2 ∪ W1) \ X2�
. We can

call (17) an “informative signal” condition. Note that implicit
in (17) is an exclusion restriction in the parameter space that
precludes β2 = 0 for any θ2 ∈ �. If (17) holds, then for any
θ ∈ � such that θ1 �= θ10 , there exists either W∗

1 ⊂ S(W1) or
W∗∗

1 ⊂ S(W1) such that

H1
(
X′

1β1 + �1 + α1π
L
2 (θ |k;I1)

)

< H1
(
X′

1β10 + �10 + α10π
U
2 (θ0|k;I1)

)

∀W1 ∈W∗
1 , k ≥ 2;

(18)
H1

(
X′

1β1 + �1 + α1π
U
2 (θ |k;I1)

)

> H1
(
X′

1β10 + �10 + α10π
L
2 (θ0|k;I1)

)

∀W1 ∈W∗∗
1 , k ≥ 2.

Therefore, for any k ≥ 2, the level-k rationalizable bounds for
player 1’s conditional choice probability of Y1 = 1|W1 that cor-
respond to θ will be disjoint with those of θ0 with positive
probability. Consequently, if (17) holds and the population of
player 1’s are at least level-2 rational, θ10 is identified. By sym-
metry, θ20 will be point-identified if the foregoing conditions
hold, with the subscripts “1” and “2” interchanged.

For the case in which I1 = I2 = X and the only source of pri-
vate information in payoffs is εp, Figures 7 and 8 illustrate four
graphical examples of how the “informative signals” condition
(17) in Theorem 2 yields disjoint level-2 bounds.

The ability to shift the upper and lower bounds for level-2
rationalizable beliefs arbitrarily close to 1 or 0 is essential for
the point-identification result in Theorem 2. For simplicity, the
intercept �1 is subsumed in X′

1β1 in the labels of these figures.

4.5 On Identification of Players’ Rationality Level

Without further structure, our setup is not capable of identi-
fying each individual player’s rationality level (measured by k).
Furthermore, without strong assumptions about the support of
εp relative to that of X′

pβp, it is not possible to reject a value of

(a) (b)

Figure 7. Graphical examples of informative signals, I.
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(a) (b)

Figure 8. Graphical examples of informative signals, II.

k on the basis of observed choices. But our setup is capable of
producing identification results for the value k0 such that play-
ers in the population are at most level-k0 rational. This refers
to the value such that the level-k0 bounds hold with probabil-
ity 1, but the level-(k0 + 1) bounds are violated with positive
probability in the population. In other words, our setup has the
potential to identify the rationality level k0 such that a portion
of players in the population have beliefs that violate the level-
(k0 + 1) rationalizable bounds. Whether or not we can iden-
tify k0 depends on how much we can identify about θ . If all
players are at least level-2 rational and the conditions for point
identification of θ described in Theorem 2 hold, then k0 would
be point-identified because Q(θ0|k) = 0 if and only if k ≤ k0,
where Q(θ |k) is as defined in (14). To see why this is not true
when θ is set-identified, refer to parts (a) and (b) following (19).
Otherwise, if the conditions for Theorem 2 do not hold, then
suppose that we maintain the assumption k0 ≥ 1 (the only in-
teresting case). We can start with k = 1 and construct �(1), as
defined in (14). Next, for any k ≥ 2, define

Q(k) = min
θ∈�(1)

Q(θ |k), (19)

where Q(θ |k) is as defined in (14). Then the following hold:

a. Q(k) = 0 for all k ≤ k0; however, Q(k) = 0 does not imply,
k ≤ k0.

b. Q(k) > 0 implies that k > k0.

Suppose that different observations in the data set correspond to
a game with a different level of rationality; then if Q(k) > 0 and
Q(k−1) = 0, we would reject the hypothesis (strictly speaking,
this would be a joint test of the rationality hypothesis and all
other maintained assumptions) that all of the population is at
least level-k rational. If we assumed ex ante that k0 ≥ k > 1,
then we could simply replace �(1) with �(k) in the definition
of Q(k) in (19). Alternatively, in settings where at least a subset
of the structural parameter θ is known (e.g., experiments), we
could evaluate whether players are at least level-k0 rational by

testing whether or not θ0 ∈ �(k0) (the identified set for level-k0
rationality). Otherwise, a test that would fail to reject �(k0 +
1) = ∅ would indicate that players are at most level-k0 rational.

4.6 Bayesian Nash Equilibria and Rationalizable Beliefs

As before, let Ip be the signal that player p uses to con-
dition his beliefs about his opponent’s expected choice, and
let I ≡ (I1,I2). The set of BNE is defined as any pair
(π∗

1 (I2),π
∗
2 (I1)) ≡ π∗(I) that satisfies

π∗
1 (I2) = E

[
H1(X

′
1β1 + α1π

∗
2 (I1))|I2

]
,

(20)
π∗

2 (I1) = E
[
H2(X

′
2β2 + α2π

∗
1 (I2))|I1

]
.

By construction, the set of rationalizable beliefs for I must in-
clude the BNE set for any rational level k. The following result
formalizes this claim.

Proposition 1. Let

R(I; k) = [πL
1 (θ |k;I2),π

U
1 (θ |k;I2)]

× [πL
2 (θ |k;I1),π

U
2 (θ |k;I1)]

denote the set of level-k rationalizable beliefs. Then, with prob-
ability 1, the BNE set described in (20) is contained in R(I; k)
for any k ≥ 1.

We present the proof for the case where αp ≤ 0 for p = 1,2,
on which we have focused. The proof can be adapted to all other
cases. We proceed by induction by first proving the following
claim.

Claim 2. Let π∗(I) ≡ (π∗
1 (I2),π

∗
2 (I1)) be any BNE. Then,

for any k ≥ 1, with probability 1, we have that π∗(I) ∈R(I; k)
implies that π∗(I) ∈R(I; k + 1) with probability 1.

Proof. If αp = 0 for p = 1 or p = 2, then the result
follows trivially. Suppose that α1 = 0; then πL

1 (θ |k;I2) =
πU

1 (θ |k;I2) = π∗
1 (I2) = E[H1(X′

1β1)|I2] and πL
2 (θ |k;I1) =

πU
2 (θ |k;I1) = π∗

2 (I1) = E[H2(X′
2β2 + α2π

∗
1 (I2))|I1] for all
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k ≥ 1. We focus on the case where αp < 0 for p = 1,2. Now
suppose that π∗(I) ∈ R(I; k) but π∗(I) /∈ R(I; k). Suppose,
for example, that πL

1 (θ |k + 1;I2) > π∗
1 (I2). Because α1 < 0,

this can be true if and only if

E
[
H1

(
X′

1β1 + α1π
U
2 (θ |k;I1)

)∣
∣I2

]

︸ ︷︷ ︸
=πL

1 (θ |k+1;I2)

> E
[
H1

(
X′

1β1 + α1π
∗
2 (I1)

)∣
∣I2

]

︸ ︷︷ ︸
=π∗

1 (I2)

.

For this inequality to be satisfied, it cannot be the case that
π∗

2 (I1) ≤ πU
2 (θ |k;I1). But this violates the assumption that

π∗(I) ∈ R(I; k); therefore, we must have πL
1 (θ |k + 1;I2) ≤

π∗
1 (I2). Suppose now that πU

1 (θ |k;I2) < π∗
1 (I2). This can be

true if and only if

E
[
H1

(
X′

1β1 + α1π
L
2 (θ |k;I1)

)∣
∣I2

]

︸ ︷︷ ︸
=πU

1 (θ |k+1;I2)

< E
[
H1

(
X′

1β1 + α1π
∗
2 (I1)

)∣
∣I2

]
.

For this inequality to be satisfied, it cannot be the case that
π∗

2 (I1) ≥ πL
2 (θ |k;I1). Once again, this violates the assumption

π∗(I) ∈ R(I; k); therefore, we must have πU
1 (θ |k + 1;I2) ≥

π∗
1 (I2). These results imply that we must have πL

1 (θ |k +
1;I2) ≤ π∗

1 (I2) ≤ πU
1 (θ |k + 1;I2). Following the same steps,

we can establish that we must have πL
2 (θ |k+1;I1) ≤ π∗

2 (I1) ≤
πU

2 (θ |k + 1;I1). Combined, these yield π∗(I) ∈ R(I; k + 1),
as claimed.

Proof of Proposition 1. Follows from Claim 2 and the
fact that level-1 rational players satisfy Hp(X′

pβp + αp) ≤
E[Yp|Xp] ≤ Hp(X′

pβp), which yields R(I; k = 1) = [0,1] ×
[0,1]. Consequently, R(I; k = 1) contains all BNE. It follows
from Claim 2 that R(I; k = 1) contains all BNE for all k ≥ 1.

4.7 BNE versus Rationalizability: Identification

Naturally, it is always guaranteed that one gets a weakly
smaller identified set with BNE assumptions, because the pre-
dicted outcomes based on equilibrium use stronger assumptions
on player beliefs. The size of the rationalizable outcome set de-
pends on the distance between the smallest and largest equilib-
ria [more precisely, the distance (in the unit square) between
the smallest and the largest equilibrium beliefs]. In the case of
a unique equilibrium, we can see that in the foregoing game and
as k → ∞, the predicted outcomes under both solution concepts
converge. This convergence feature is not a general property of
rationalizability, but rather is a consequence of the normal-form
payoff parameterization of the game. In addition, in the forego-
ing simple example, predicted outcomes based on rationality
of order k for any k are much easier to solve for, because they
do not require solutions to fixed-point problems, especially in
cases of multiple equilibria.

5. IDENTIFICATION IN FIRST–PRICE INDEPENDENT
PRIVATE VALUE AUCTIONS WITH

RATIONALIZABLE BIDS

This section considers a situation in which a population of
symmetric, risk-neutral potential buyers must bid simultane-
ously for a single good. We focus on a first-price auction with
independent private values, although our results can be adapted
to the case of interdependent private values and affiliated sig-
nals. As is usually the case in the econometric analysis of auc-
tions, the object of interest is the distribution of private val-
ues. Under the assumption that observed bids conform to a
BNE, nonparametric point identification for this distribution
has been established by, for example, Guerre, Perrigne, and
Vuong (1999). Thus equilibrium assumptions (and other condi-
tions) deliver point identification of the valuation distribution.
Here we relax the BNE requirement and assume only that buy-
ers are strategically sophisticated in the sense of Battigalli and
Siniscalchi (2003, henceforth BS). Other strategic assumptions
that can be used and that deliver qualitatively different results
than BS’s interim rationalizability is the P-dominance concept
introduced for auction setups by Dekel and Wolinsky (2003)
and used more recently by Crawford and Iriberri (2007). Here
we highlight just what can be learned with the BS setup and
compare that with BNE. BNE requires rational, expected utility
maximizing buyers with correct beliefs. Strategically sophis-
ticated buyers are rational and expected-utility maximizers, but
their beliefs may or may not be correct. This characterization in-
cludes BNE as a special case. The degree of sophistication will
be characterized using the concept of interim rationalizability.
As we show, this will lead to the notion of level-k rationalizable
bids for k ∈ N. We describe these concepts next.

Let F0(·) denote the distribution of vi, the private valuation
of bidder i. We assume F0(·) to be common knowledge among
the bidders, and focus on the case where F0(·) is log-concave
and absolutely continuous with respect to Lebesgue measure.
We assume its support to be of the form [0,ω) (i.e., normalize
its lower bound by 0) and allow, in principle, the case where
ω = +∞. Assume for the moment that the seller’s reservation
price p0 is equal to 0. We explicitly introduce a strictly positive
reservation price later.

5.1 Assumptions About Bidders’ Beliefs

Following BS, we assume that bidders expect all positive bids
to win with strictly positive probability and that this is com-
mon knowledge. This condition will ensure that it is common
knowledge that no bidder will bid beyond his or her valuation
irrespective of his or her beliefs. It also implies that every bidder
with nonzero private value will submit a strictly positive bid. In-
terim rationalizability will naturally produce only upper bounds
for rationalizable bids. Additional, ad hoc assumptions can be
made to characterize a lower bound. Therefore, with probabil-
ity 1, the number of potential bidders N is equal to the number
of actual bidders. (Only a bidder with valuation equal to 0 is
indifferent between entering the bid or not.) We restrict further
attention to beliefs that assign positive probability only to in-
creasing bidding functions. Formally, let B denote the space of
all functions of the form

B = {
b : [0,ω) → R+ : b(v) ≤ v, and v > v′ ⇒ b(v) > b(v′)

}
.

(21)
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We let N denote the number of potential bidders in the pop-
ulation and write B−i = BN−1. Beliefs for bidder i are prob-
ability distributions defined over a sigma-algebra �B−i , where
this sigma-algebra is such that singletons in B−i are measur-
able. The results that we analyze here do not depend on the spe-
cific choice of the sigma-algebra, as long as this choice satisfies
the singleton-measurability mentioned here (see footnote 10 in
BS). A conjecture by bidder i is a degenerate belief that assigns
probability mass 1 to a singleton {bj}j �=i ∈ B−i. The distribu-
tion of valuations F0(·) as well as N are common knowledge
among potential bidders. This is similar to the common prior
assumption made in the previous section.

As we show, restricting attention to beliefs in B will yield
rationalizable upper bounds for bids that also belong in B. It
also simplifies the analysis by, for example, ruling out ties in
the characterization of players’ expected utility. Finally, as we
argue below (and formally shown in BS), restricting attention
to beliefs in B implies that BNE-optimal bids are always ratio-
nalizable.

5.2 Implications of Level-k Rationality in Bids

Here we follow the setup in BS, with our notation differing
from that of previous sections. We have a population of N risk-
neutral potential buyers bidding simultaneously for a single ob-
ject. With a 0 reservation price of 0, we can interpret N as the
number of observed bids that is common knowledge among the
bidders. Each bidder i observes his valuation vi, independent of
those of other bidders with an identical log-concave, continuous
distribution F0(·). The highest bid wins the object, ties are bro-
ken at random and only the winner pays his bid. The space of
beliefs on which we focus assigns probability 0 to ties. There-
fore, the decision problem for bidder i can be expressed as

max
b≥0

(vi − b)P̂ri

[
max
j �=i

b(vj) ≤ b
]
, (22)

where P̂ri(·) denotes bidder i’s subjective probability, derived
from his beliefs and knowledge of F0(·). (Strictly speaking,
what matters is that ties have probability 0 for the most pes-
simistic conjecture.) For level-1 rational bidding, any bidder i
whose bids satisfy

b ≤ vi ≡ B1(vi;N ) with probability 1 (23)

are called level-1 rational bidders. Any expected-utility maxi-
mizer bidder i must be level-1 rational regardless of whether or
not his beliefs live in B−i. Thus we have the following:

Result (BS). Any bid with bi ≤ vi is level-1 rational.

This was proved by BS, who also showed that the bound is
sharp; that is, that for any bid in the bound, there exists a con-
sistent and valid level-1 belief function for which that bid is a
best response. This result is interesting because in this setup, the
bids cannot be bound from below. This situation is in marked
contrast to the BNE prediction. Note that the bound above de-
pends on the continuity of the valuation and the assumption
that any positive bid has a positive chance of winning. In an-
other case where the valuations are assumed to take countable
values, Dekel and Wolinsky (2003) showed that a form of ratio-
nalizability implies tight bounds on the bidding function in the

limit as the number of bidders increases. Here we derive strate-
gies for identification of F(·) based on the results of BS, but
these strategies can be easily adapted to other strategic setups,
like those suggested by Dekel and Wolinsky.

Higher-Order Rationality. We now characterize the identi-
fied features in an auction with higher rationality levels. Focus
on bidders with beliefs in B−i. The most pessimistic assessment
in B−i is given by the conjecture b(vj) = B1(vj;N ) = vj for all
j �= i (the upper bound for bids for level-1 rational bidders). Be-
cause bidder i knows F0, his optimal expected utility for this
assessment is

max
b≥0

(vi − b)Pr
[
max
j �=i

B1(vj;N ) ≤ b
]

= max
b≥0

(vi − b)Pr
[
max
j �=i

vj ≤ b
]

= max
b≥0

(vi − b)F0(b)N−1

≡ π∗
2(vi;N ), (24)

where π∗
2(vi;N ) is the lower bound for optimal expected util-

ity (22) for all beliefs in B−i. The upper expected utility bound
for an arbitrary bid b is trivially given by (vi − b) for any possi-
ble beliefs. (No bidder would ever expect to win the good with
probability higher than 1.) Any bid submitted by a rational (i.e.,
expected-utility maximizer) bidder with beliefs in B−i must sat-
isfy

vi − b ≥ π∗
2(vi;N ) ⇒ b ≤ vi − π∗

2(vi;N ) ≡ B2(vi;N )

with probability 1. (25)

We refer to bidders who satisfy (25) as level-2 rational bidders.
Given our assumptions, B2(vi;N ) is increasing and concave
and satisfies B2(vi;N ) ≤ B1(vi;N ) = vi, with strict inequality
for all vi > 0. These and more properties were enumerated by
BS, who focused on a more general case that allows for interde-
pendent values. Therefore, B2 ∈ B. Let S2(·;N ) denote the in-
verse of B2(·;N ). We call level-3 rational bidders those whose
beliefs incorporate the level-2 upper bound (25). The most pes-
simistic assessment for level-3 rational bidders is the conjecture
b(vj) = B2(vj;N ) for all j �= i. The optimal expected utility for
this pessimistic assessment is

max
b≥0

(vi − b)Pr
[
max
j �=i

B2(vj;N ) ≤ b
]

= max
b≥0

(vi − b)F0(S2(b;N ))N−1

≡ π∗
3(vi;N ). (26)

Using the same logic that led to (25), the set of rationalizable
bids for level-3 rational bidders must satisfy

vi − b ≥ π∗
3(vi;N ) ⇒ b ≤ vi − π∗

3(vi;N ) ≡ B3(vi;N )

with probability 1. (27)

The level-3 upper bound for rationalizable bids, B3(·;N ) is
increasing and concave and satisfies B3(·;N ) ≤ B2(·;N ),
with strict inequality for nonzero valuations. To see why the
last result holds, recall that B2(vi;N ) = vi − π∗

2(vi;N ) ≡
B1(vi;N ) − π∗

2(vi;N ). Therefore, for any b, we have that
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Pr[maxj �=i B2(vj;N ) ≤ b] ≥ Pr[maxj �=i B1(vj;N ) ≤ b]. Im-
mediately, this implies that π∗

3(·;N ) ≥ π∗
2(·;N ) and thus

B3(·;N ) ≤ B2(·;N ). Because F0(·) is not assumed to have
point masses, all of the foregoing inequalities are strict for any
vi > 0. Proceeding iteratively, the level-k bound for rationaliz-
able bids is given by

bi ≤ vi − π∗
k(vi;N ) ≡ Bk(vi;N )

with probability 1, where

π∗
k(vi;N ) = max

b≥0
(vi − b)F0(Sk−1(b;N ))N−1 (28)

and Sk−1(·;N ) is the inverse function of Bk−1(·;N ). The level-
k upper bounds for rationalizable bids, Bk(·;N ), are increasing
and concave and satisfy Bk+1(v;N ) ≤ Bk(v;N ) for all k, with
strict inequality for all v > 0. Let bBNE(v;N ) denote the opti-
mal BNE bidding function, produced by self-consistent, correct
beliefs. BS showed that Bk(·;N ) ≥ bBNE(·;N ) for all k ∈ N. In
particular, this is true for limk→∞ Bk(·;N ), which is well de-
fined by the aforementioned monotonicity property of the se-
quence {Bk(·;N )}k∈N. Bidding below bBNE(·;N ) is always ra-
tionalizable for any rationality level k. All results presented here
are consistent with this type of behavior.

Example. Suppose that private values are exponentially dis-
tributed, with F0(v) = 1 − exp{−θv} and θ > 0. We have that
F0(v)/f0(v) = 1−exp{−θv}

θ exp{−θv} = 1
θ

exp{θv}− 1
θ

, which is an increas-
ing function of v for all θ > 0, establishing log-concavity of
F0. Figure 9 depicts Bk(·;N ), the level-k rationalizable bounds
for bids for the case where θ = −.25, N = 2 (two bidders),
and k = 1,2,3,4. This graphical example illustrates the fea-
tures described earlier for these bounds, namely Bk(·;N ), is
continuous, increasing, concave, and invertible and satisfies
Bk+1(v;N ) ≤ Bk(v;N ) for all k, with strict inequality for all
v > 0. For this particular example, the bounds corresponding to
k ≥ 5 are graphically indistinguishable from B4(v;N ).

5.3 Identification With Level-k Rationality in
a Parametric Model

In this section we exploit the foregoing bounds to learn about
the distribution of valuation given a random sample of bids. We
first focus on the hypothetical case where there is no reserve
price set by the seller and for each auction we observe all bids
submitted and also know N , the number of potential entrants. In
the next section we deal with the more general case where there
is a nonzero reserve price and only winning bids are observed.

We assume a semiparametric setting where F0 belongs to a
space of log-concave, absolutely continuous distribution func-
tions with support [0,ω) of the form

F�
v = {

F(·; θ) : θ ∈ �, and F0(·) = F(·; θ0)

for some θ0 ∈ �
}
. (29)

Here we also can think of � as a set of functions, in which case
the foregoing definition accommodates nonparametric analysis.
Denote the level-k upper bound that corresponds to F(·; θ) by
Bk(·;N |θ).

Level-1 Rationality. For rationality of level 1, the game pre-
dicts that

0 ≤ bl
i ≤ vl

i for all i = 1, . . . ,N , l = 1, . . . ,L.

This is a problem of inference with interval data. The b’s are
observed and the v’s are not, but we observe a bound on every
observation. The object of interest is the distribution function F
of the valuations v. (Here we can introduce auction heterogene-
ity that is observed.) This implies that

F0(t; θ) ≡ P(v ≤ t) ≤ P(b ≤ t) ≡ Gb(t).

Thus, with the first level of rationality, we can bound the valua-
tion distribution above by the observed distribution of the bids.
Here inference is handled below and is based on replacing the
observed bids distribution with its consistent empirical analog.

Figure 9. Level-k rationalizable bounds Bk(·;N ) for F0(v) = 1 − e−.25v, N = 2, and k = 1,2,3,4.
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Level-k Rationality. Similar to the foregoing, for level-k
and any θ ∈ �, we have that

0 ≤ bl
i ≤ vl

i − π∗
k(vi;N |θ) ≡ Bk(vi;N )

for all i = 1, . . . ,N , l = 1, . . . ,L.

Thus this means that if bidders are level-k rational, then

F(Sk(t;N |θ0); θ0) ≤ P(b ≤ t) ≡ Gb(t),

where, as before, Sk denotes the inverse function of Bk. Here
the bound is a bit more complicated, because the function S
also depends on F0. Using the notation of Section 2, the space
of strategies (bidding functions) for level-k rational players is

Ri(k) = {b ∈ B : b(·) ≤ Bk(·;N |θ)}.
As we did in Section 4.3, we characterize the identified set for
θ based on level-k rationality in terms of an objective function.

Proposition 2. Suppose that F0 belongs to a space of distrib-
ution functions as described in (29). Moreover, suppose that we
have a random sample of size L of auctions, each of which has
N bidders and where we observe all bids. Take k ∈ N

+, and let

�(θ |a, c; k) =
∫

(
1 − 1

{
Fb(b) ≥ F(Sk(b;N |θ); θ)

})

× 1{a ≤ b ≤ c}dFb(b), (30)

	(θ |k) =
∫ ∫

�(θ |a, c; k)dFb(a)dFb(c).

Then, under the sole assumption that all bidders are level-k ra-
tional, the identified set is

�(k) = {θ ∈ � :	(θ |k)2 = 0}.
If the following condition holds for a known k0, then a

stronger identification result can be obtained.

Assumption B1. Suppose that there exists k0 such that all
bidders are level-k0 rational and, with positive probability, bids
are equal to the level-k0 bounds; that is, suppose that Pr(bi ≤
Bk0(vi;N |θ0)) = 1 and Pr(bi = Bk0(vi;N |θ0)) > 0.

Proposition 3. Suppose that Assumption B1 holds, and let
�(k0) be as defined in Proposition 2. For θ ∈ �, let

Fc(θ) = {
θ ′ ∈ � : Bk0(vi;N |θ ′) < Bk0(vi;N |θ)

with probability 1
}
. (31)

Then the identified set is

�∗
0 = {

θ ∈ �(k0) : �θ ′ ∈ � such that θ ′ ∈Fc(θ)
}
. (32)

Consequently, if there exist θ ∈ �(k0) such that

F(·; θ) < F(·; θ) for all θ ∈ �(k0), (33)

then �∗
0 = {θ} and, consequently, θ0 = θ .

Under Assumption B1, θ /∈ �(k0) implies that θ �= θ0 and
θ ∈ �(k0) holds only if θ /∈ Fc(θ0). Suppose that we have
θ, θ ′ ∈ �(k0) such that θ ′ ∈ Fc(θ); then it cannot be the case
that θ = θ0, because then θ ′ ∈ Fc(θ0) would imply that θ ′ /∈
�(k0). Thus any such θ can be discarded as the true θ0. To see
how this result is constructive, suppose that F�

v is a space of
exponentially distributed valuations, Assumption B1 holds, and
the largest value of �(k0) is θ < ∞. This would immediately
imply that θ0 = θ . Figure 10 illustrates this result for the ex-
ponential distribution. As shown, if Assumption B1 holds with
k0 = 2 and if we know that {.25, .50, .75,1.00,1.25} ⊂ �(k0),
then it will follow immediately that θ0 ≥ 1.25. More generally,
as in previous sections, the characterization of the identified set
�(k) is amenable to recently developed set inference methods.

Figure 10. Level-2 upper bound for rationalizable bids for valuations with exponential distribution F(v) = 1 − e−θv and various levels of
θ (number of bidders is 2). If Assumption B1 holds with k0 = 2 and if we knew that {.25, .50, .75,1.00,1.25} ⊂ �(k0), then it would follow
immediately that θ0 ≥ 1.25.
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Remark 3. Let

B∞(·;N |θ) = lim
k→∞ Bk(·;N |θ). (34)

Given our assumptions, the results of BS can be used to
show that B∞(·;N |θ) exists and is a continuous, increasing,
concave, and invertible mapping that satisfies B∞(·;N |θ) ≥
bBNE(·;N |θ). Note that, unlike in the incomplete informa-
tion game, here rationalizable behavior does not converge to
BNE as k → ∞; in particular, bidding below BNE is ratio-
nalizable for arbitrarily large k. If the rationality bound k0 de-
scribed in Assumption B1 does not exist, then we must have
bi ≤ B∞(vi;N |θ) with probability 1. The results in Proposi-
tion 3 will follow if the conditions stated there hold for the
mapping B∞(·;N |θ).

5.3.1 Identification When Only Winning Bids Are Ob-
served. Suppose now that for each auction, we observe only
the winning bid and the number of actual (as opposed to po-
tential) entrants. We defer the introduction of nonzero reserve
prices by the seller to the next section. In particular, we observe
that

b∗ = max
i=1,...,N

bi. (35)

Under these conditions, it follows from the monotonic nature of
rationalizable upper bounds that if bidders are level-k rational,
with probability 1, then

b∗ ≡ max
i=1,...,N

bi ≤ max
i=1,...,N

Bk(vi;N |θ0)

= Bk

(
max

i=1,...,N
vi;N |θ0

)
≡ Bk(v

∗;N |θ0). (36)

Then we must have

Pr(b∗ ≤ b) ≥ Pr(Bk(v
∗;N |θ0) ≤ b) ∀b ∈ R. (37)

Because private values are iid, it follows that v∗ ∼ F(·; θ0)
N .

Let Fb∗(·) denote the distribution function of b∗, the highest
bid. Equation (37) then becomes

Fb∗(b) ≥ F(Sk(b;N |θ0); θ0)
N ∀b ∈ R, (38)

where, as before, Sk(·;N |θ) denotes the inverse function of the
upper bound Bk(·;N |θ). Clearly, by the nondecreasing proper-
ties of distribution functions, (38) holds for all b ∈ R if and only
if it holds for all b ∈ S(b∗) (the support of b∗). We conclude that
this implies that

Fb∗(b) ≥ F(Sk(b;N |θ0); θ0)
N ∀b ∈ S(b∗). (39)

Equation (39) can be used as earlier to conduct inference on the
set of consistent models. To do this, an objective function sim-
ilar to that in Proposition 2 can be used. The results in Propo-
sition 3 also would follow if Assumption B1 held for b∗. It ap-
pears that even if B1 were assumed to hold for all bids, then
we would have to explicitly assume that it holds for b∗, because
with heterogeneous beliefs, it is no longer true that the highest
bid corresponds to the highest valuation among potential bid-
ders.

5.4 Introducing a Binding Reserve Price

Suppose that there is a nonzero reserve price p0 set by the
seller and publicly observed by all potential buyers. We modify
Assumption B0 accordingly as follows.

Assumption B0′. Assume now that all bidders expect any bid
b ≥ p0 to win with strictly positive probability, and this is com-
mon knowledge. The implication of this for submitted bids is
that bi ≥ p0 if and only if vi ≥ p0. We restrict attention to be-
liefs that assign positive probability only to bidding functions
that are increasing for all v ≥ p0 and are equal to p0 for v = p0.
Formally, let B(p0) denote the space of all Borel-measurable
functions of the form

{
b : [0,ω) → R+ : b(v) < p0 ∀v < p0;

b(p0) = p0, and for all v > p0 : b(v) ≤ v

and v > v′ ⇒ b(v) > b(v′)
}
. (40)

We let N denote the number of potential bidders in the pop-
ulation and denote B−i(p0) = B(p0)

N−1. Beliefs for bidder
i are probability distributions defined over a sigma-algebra
�B−i(p0), where this sigma-algebra is such that singletons in
B−i are measurable. As before, conjectures are defined as de-
generate beliefs that assign probability mass 1 to a singleton
{bj}j �=i ∈ B−i. We maintain the assumption that F0(·) and N are
common knowledge among potential bidders.

A consequence of a binding reserve price is that the number
of potential bidders N no longer may be equal to the number
of bidders who participate in the auction. Potential bidders with
valuation vi < p0 will not submit a bid. Beliefs for valuations
v < p0 will be irrelevant for participating bidders, except for
the fact that it is common knowledge that vj < p0 implies that
bj < p0 with probability 1 for all potential bidders. As in the
case of zero reservation price, restricting attention to beliefs in
B(p0) will yield rationalizable upper bounds that also belong in
B(p0). It also rules out ties in the characterization of expected
utility for bidders with valuation v ≥ p0 (the only ones who par-
ticipate in the auction). As in the case of zero reservation price,
restricting attention to beliefs in B(p0) will imply that BNE-
optimal bids are always rationalizable.

5.4.1 Level-k Rationalizable Bids With a Nonzero Reserve
Price. The construction of rationalizable upper bounds will
follow the same interim-rationalizability steps as in Section 5.2.
Any bidder i with vi ≥ p0 whose bids satisfy

b ≤ vi with probability 1 (41)

is called level-1 rational. Higher-rationality levels are charac-
terized as before. The decision problem for any bidder i with
vi ≥ p0 now can be expressed as

max
b≥p0

(vi − b)P̂ri

[
max

{
p0,max

j �=i
b(vj)

}
≤ b

]
, (42)

where P̂ri(·) denotes bidder i’s subjective probability, derived
from his beliefs and knowledge of F0(·). The optimal bid for
any assessment in B−i(p0) for any bidder with vi = p0 will al-
ways be vi = p0. Focusing on the case where vi > p0, the most
pessimistic assessment in B−i(p0) is given by the conjecture
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that “b(vj) = vj for all j �= i such that vj ≥ p0.” The optimal ex-
pected utility for this assessment is

max
b≥p0

(vi − b)F0(b)N−1 ≡ π∗
2 (vi;N ,p0), (43)

which follows because P̂ri[max{p0,maxj �=i vj} ≤ b] =
F0(b)N−11{b ≥ p0}. (Recall that F0, N , and p0 are common
knowledge among bidders.) Using the same arguments that fol-
lowed (24), level-2 rational bidders with vi ≥ p0 must satisfy

p0 ≤ b ≤ vi − π∗
2 (vi;N ,p0) ≡ B2(vi;N ,p0). (44)

B2(vi;N ,p0) is the level-1 rationalizable upper bound for all
bidders with vi ≥ p0. It is continuous, increasing, and invert-
ible for all vi ≥ p0, with B2(p0;N ,p0) = p0. In particular, the
inverse function of B2(·;N ,p0) is well defined for all values
and bids ≥ p0. As before, we denote this inverse function by
S2(·;N ,p0). Note that in general, (43) has corner solutions;
that is, there exists a range of valuations vi > p0 such that
π∗

2 (vi;N ,p0) = (vi − p0)F0(p0)
N−1. This of course will not

impact the continuity, monotonicity, and invertibility properties
of the upper bound B2(·;N ,p0) for values vi ≥ p0. Nothing can
be said about rationalizable upper bounds for vi < p0, except
that they lie strictly beneath p0. Bounds for such a range of valu-
ations are irrelevant for the optimal decision process of bidders.
Proceeding iteratively, the level-k bound for rationalizable bids
is given by

bi ≤ vi − π∗
k(vi;N ,p0) ≡ Bk(vi;N ,p0), where

π∗
k(vi;N ) = max

b≥p0
(vi − b)F0(Sk−1(b;N ,p0))

N−1 (45)

and Sk−1(·;N ,p0) is the inverse function of Bk−1(·;N ,p0),
well defined for all values and bids ≥ p0.

5.4.2 Identification With Level-k Rationality When Only
Winning Bids Are Observed. If we replace Assumption B0
with B0′, then all of the results in Section 5.3.1 hold with a
binding reserve price for all vi ≥ p0 and bi ≥ p0. Consider a
semiparametric setting such as that described in (29), where the
distribution of valuations is allowed to depend on the publicly
observed reserve price p0,

F�,p0
v = {

F(·; θ,p0) : θ ∈ �, and F0(·;p0) = F(·; θ0,p0)

for some θ0 ∈ �
}
. (46)

Let Bk(·;N |θ,p0) denote the level-k upper bound for ratio-
nalizable bids that would be induced by a given distribution
F(·; θ,p0) ∈ F�,p0

v , and let Bk(·;N |θ,p0) denote its inverse
function. Let b∗ denote the winning bid, and let Fb∗(·;p0)

denote its distribution function (given p0). Note that b∗ is
maxi=1,...,N bi, truncated from below at p0. This automatic
truncation ensures that the bounds in (45) are satisfied. As men-
tioned previously, bids below p0 may not satisfy these bounds.
If bidders are level-k rational, then for any reserve price p0, we
must have

Fb∗(b;p0) ≥ F(Sk(b;N |θ0,p0); θ0,p0)
N ∀b ∈ S(b∗|p0),

(47)

where S(b∗|p0) is the support of b∗ given p0. This result is the
equivalent to (39).

Proposition 4. Suppose that F0 belongs to a space of distrib-
ution functions as described in (46). Moreover, suppose that we
have a random sample of size L of auctions, each of which has
N bidders and where we observe only the winning bid in every
auction. Let the reservation price p0 be known. Define

�(θ |a, c; k,p0)

=
∫

(
1 − 1

{
Fb∗(b;p0) ≥ F(Sk(b;N |θ,p0); θ,p0)

N })

(48)
× 1{a ≤ b ≤ c}dFb∗(b;p0),

	(θ |k,p0) =
∫ ∫

�(θ |a, c; k,p0)dFb∗(a;p0)dFb∗(c;p0).

Then, under the sole assumption that all bidders are level-k ra-
tional, the identified set is

�(k,p0) = {θ ∈ � :	(θ |k,p0)
2 = 0}.

Now suppose that we assume that winning bids satisfy Assump-
tion B1 for some k0. For any θ ∈ �, let

Fc(θ,p0) = {
θ ∈ � : Bk0(vi;N |θ ′,p0) < Bk0(vi;N |θ,p0)

with probability 1
}
,

(49)
�∗

0(p0) = {
θ ∈ �(k0,p0) : �θ ′ ∈ �(k0,p0)

such that θ ′ ∈ Fc(θ,p0)
}
.

Then the identified set is

�∗
0 = {

θ ∈ � : θ ∈ �∗
0(p0)

with probability 1 (with respect to p0)
}
. (50)

Note that the identification result in (50) requires that we
explicitly assume that Assumption B1 holds for winning bids.
With a nonzero reserve price, the number of actual bidders in
a given auction may differ from N . The characterization of
the identified set in Proposition 4 still can be constructive in
this case if we assume that N is the same across all auctions
in the population, and if the number of actual bidders is ob-
served. For the �th auction, denote the latter by I�. Therefore,
I� = ∑N

i=1 1{vi ≥ p0�
} and

E[I�] = NEp0�

[
F
(
p0�

; θ0,p0�

)]

⇒ N = E[I�]
Ep0�

[F(p0�
; θ0,p0�

)] , (51)

where Ep0�
[·] denotes the expectation taken with respect to the

reserve price, which is assumed to be observed for any given
auction. The foregoing result is the basis for identifying N . It
then follows that Proposition 4 is a constructive identification
result.

5.4.3 Identification Results for the Rationality Level k0 in
Assumption B1. Suppose we assume that there exists a finite
k0 ≥ 2 that satisfies the conditions of Assumption B1 (otherwise
see Remark 3). The results in Proposition 3 are constructive
when k0 ≥ 2 is assumed to be known. Naturally, we would be
interested in having an identification result for both θ and k0

simultaneously.
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Proposition 5. Let �(k) and 	(θ |k) be as defined in Propo-
sition 2. Define

	(k) = min
θ∈�(2)

	(θ |k)2. (52)

Then, if Assumption B1 is satisfied with k0 ≥ 2, the following
results hold:

a. 	(k) = 0 for all k ≤ k0; however, 	(k) = 0 does not imply
that k ≤ k0.

b. 	(k) > 0 implies that k > k0.

It follows from Proposition 5 that any k′ such that 	(k′) > 0
can be ruled out as the true k0 described in Assumption B1,
implying that there is a subset of bidders who are strictly less
than level-k′ rational. At the same time, the set {k ∈ N :	(k) =
0} includes all k ≤ k0 and also includes some values k > k0.

6. CONCLUSION

In structural econometrics models, assumptions are implic-
itly grouped into behavioral assumptions and other auxiliary
assumptions. Behavioral assumptions usually are unchallenged
in identification analysis, and thus econometricians focus on the
robustness of estimation results to those auxiliary assumptions
(which are not implied by theory, such as functional forms and
distributional assumptions). In this article we have explored the
identifying role that some behavioral assumptions play. Mainly,
we examined the identification power of equilibrium in three
simple games. We replaced equilibrium with a form of ratio-
nality (i.e., interim rationalizability) that includes equilibrium
as a special case, and compared the identified features of the
game under rationality and under equilibrium. The games that
we studied are stylized versions of empirical models considered
and applied in the literature, and thus insights provided here
can be carried over to those empirical frameworks. We do not
advocate dropping the equilibrium assumptions from empirical
work, however; rather, we have simply examined the identify-
ing power of equilibrium in these simple setups. For example,
it is not clear that we would want to drop equilibrium in a first-
price auction, because the underlying interim-rationalizability
based model may not provide strong restrictions on the ob-
served bids as they relate to the underlying valuations. Ulti-
mately, the researcher faces the usual trade-off between robust-
ness and predictive power, requiring a balancing act guided by
the economics of the particular application at hand. We also do
not advocate using rationalizability per se as the basis for strate-
gic interaction. Other frameworks are available in the literature,
but, we note that the form of rationalizability used here has re-
ceived much attention from game theorists (see, e.g., Morris
and Shin 2003; Dekel et al. 2007; and references cited therein).
Moreover, interim rationalizability allows us to incorporate the
concept of higher-order beliefs into the econometric analysis
through what we have defined here as rationality levels.

Some questions remain to be answered, and we leave these
for ongoing and future work. As far as our results here, we
are concerned with identification. A natural extension would
be to study the statistical properties of estimators proposed
herein and apply those estimators in empirical examples. An-
other important question is the issue of sharpness and whether
the inequality-based inference procedures implied by the model
deliver wide identified sets for parameters (as compared to the

sharp identified sets). These interference procedures are attrac-
tive because of they lead to simple to compute estimators. More
work needs to be done to look for other estimators that deliver
sharp inferences. Another avenue of research is to extend some
of the ideas to dynamic setups. It is well known that inference
in dynamic games is difficult when one tries to account for the
presence of multiple equilibria. Recent important contributions
to this field have been made by Aguiregabiria and Mira (2007),
Bajari, Benkard, and Levin (2007), Pesendorfer and Schmidt-
Dengler (2004), and Pakes, Ostrovsky, and Berry (2005) (see
also Berry and Tamer 1996). The identification question is com-
plicated mainly due to the complexity of the underlying eco-
nomic model and say beliefs off the equilibrium, where no data
are available. From a practical perspective, estimating dynamic
games while allowing for generation of different data points
by a different equilibrium is a difficult problem because it in-
volves solving for multiple fixed points in a complicated non-
linear problem; thus relaxing equilibrium in this setting might
lead to enormous computational advantages because there is
not need to solve for these fixed points. It also may be possi-
ble to examine the identification power of other strategic con-
cepts that would be natural in dynamic settings, such as the self-
confirming equilibria of Fudenberg and Levine (1993). In addi-
tion to examining the robustness to equilibrium assumptions,
these identification framework can be used to study whether in-
ference under these different strategic frameworks is more prac-
tically useful for applied researchers. We leave these topics for
future research.
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APPENDIX: PROOFS

Proof of Theorem 1

From our previous analysis, we know that both players are
level-1 rational if and only if, with probability one in S(X),

Pr(ε1 > X′
1β1, ε2 > X′

2β2|X)

≤ Pr(Y1 = 0,Y2 = 0|X)

≤ Pr(ε1 > X′
1β1 + α1, ε2 > X′

2β2 + α2|X),

Pr(ε1 ≤ X′
1β1 + α1, ε2 > X′

2β2|X)

≤ Pr(Y1 = 1,Y2 = 0|X)

≤ Pr(ε1 ≤ X′
1β1, ε2 > X′

2β2 + α2|X),
(A.1)

Pr(ε1 > X′
1β1, ε2 ≤ X′

2β2 + α2|X)

≤ Pr(Y1 = 0,Y2 = 1|X)
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≤ Pr(ε1 > X′
1β1 + α1, ε2 ≤ X′

2β2|X),

Pr(ε1 ≤ X′
1β1 + α1, ε2 ≤ X′

2β2 + α2|X)

≤ Pr(Y1 = 1,Y2 = 1|X)

≤ Pr(ε1 ≤ X′
1β1, ε2 ≤ X′

2β2|X).

We denote the true parameter value by θ0. To prove part a, take
any β̃1 �= β10 such that β̃�,1 �= β�,10 . Given this and the support
properties of X�,1, for any scalar d, we can observe either of the
following two events with positive probability: (a) X′

1β̃1 + d >

X′
1β10 or (b) X′

1β̃1 < X′
1β10 + α10 . Take case (a) first. With d =

α1 (arbitrary), if β̃2,�β2,�0 > 0, then we can make β̃ ′
2X2 → +∞

and β ′
20

X2 → +∞. By Assumption (A1), this yields Pr(ε1 ≤
X′

1β̃1 + α1, ε2 ≤ X′
2β̃2 + α2|X) → Pr(ε1 ≤ X′

1β̃1 + α1|X) and
Pr(ε1 ≤ X′

1β10 , ε2 ≤ X′
2β20 |X) → Pr(ε1 ≤ X′

1β10 |X) < Pr(ε1 ≤
X′

1β̃1 + α1|X). Therefore, with positive probability as X2 ex-
plodes, Pr(ε1 ≤ X′

1β̃1 + α1, ε2 ≤ X′
2β̃2 + α2|X) > Pr(ε1 ≤

X′
1β10 , ε2 ≤ X′

2β20 |X) > Pr(Y1 = 1,Y2 = 1|X), which violates
(A.1). If β̃2,�β2,�0 < 0, then the result is easier to obtain by
making β̃ ′

2X2 → +∞ and β ′
20

X2 → −∞. For case (b), drive
β̃ ′

2X2 → −∞ and β ′
20

X2 → −∞ if β̃2β20 > 0, or β̃ ′
2X2 → −∞

and β ′
20

X2 → +∞ if β̃2β20 > 0. In either case, we eventu-

ally obtain Pr(ε1 > X′
1β̃1, ε2 > X′

2β̃2|X) > Pr(ε1 > X′
1β10 +

α10, ε2 > X′
2β20 + α20 |X) > Pr(Y1 = 0,Y2 = 0|X), which vio-

lates (A.1). This establishes the identification of β�,1; an analog
proof shows that β�,2 is identified, which proves part a.

To establish part b, focus on the worst-case scenario and take
θ̃ �= θ0 where β̃d,p �= βd,p0 but β̃�,p = β�,p0 for p = 1,2; the
parameters of the unbounded-support shifters are fixed at their
true values. Here identification must rely on the properties of
Xd,p, the bounded-support shifters. The condition in the state-
ment of the proposition ensures that (a) or (b) hold even if we
fix β̃�,p = β�,p0 . To complete the proof of b we proceed as in
the previous paragraph. (Note that we now have β̃�,pβ�,p0 > 0.)
The case where β̃d,p �= βd,p0 and β̃�,p �= β�,p0 is straightforward
along the same lines.

Now we proceeded to part c. Consider θ̃ to be equal to θ0
element-by-element except for α̃1 �= α10 , and recall that the
parameter space of interest has αp ≤ 0. Clearly, none of the
lower bounds in (A.1) evaluated at θ̃ will ever be larger than
the corresponding upper bounds evaluated at θ0, and none of
the upper bounds evaluated at θ̃ will ever be smaller than the
corresponding lower bounds evaluated at θ0. Therefore, with-
out further assumptions, θ̃ and θ0 are observationally equiva-
lent and α1 is not identified. The only way that we can pro-
ceed is by adding more structure on Pr(Y1,Y2|X). We have
Pr(ε1 ≤ X′

1β10 + α10) ≤ Pr(Y1 = 1|X) ≤ Pr(ε1 ≤ X′
1β10); there-

fore, Pr(ε1 ≤ X′
1β10 + α̃1) > Pr(Y1 = 1|X) only if α̃1 > α10 .

Thus θ̃ can violate (A.1) only if α̃1 > α10 . For any such α̃1,
let � = Pr(ε1 ≤ X′

1β10 + α̃1) − Pr(ε1 ≤ X′
1β10 + α10) > 0.

By the assumption in part c, there exists a subset X1 ∈ S(X1)

such that Pr(Y1 = 1|X) < Pr(ε1 ≤ X′
1β10 + α10) + � = Pr(ε1 ≤

X′
1β10 + α̃1). Make X′

2β20 → +∞, and the lower bound on
the fourth inequality in (A.1) will be violated. This establishes
part c. Any θ̃ �= θ0 where α̃p �= αp0 and either β̃�,p �= β�,p0 or
β̃d,p �= βd,p0 can be shown to be not observationally equivalent
to θ0 using the same arguments as in the previous paragraphs
given the assumptions in parts a and b.

Proof of Theorem 2

Suppose that there exists a subset of realizations in X ∗
1 ⊂ X ∗

1
such that

X′
1β1 + �1 + α1 > X′

1β10 + �10 + α10 ∀X1 ∈X ∗
1. (A.2)

By continuity of the linear index and of the distribution H1, for
any X1 ∈X ∗

1, we can find a pair 0 ≤ pL(X1) < pU(X1) ≤ 1 such
that

H1
(
X′

1β1 + �1 + α1pL(X1)
)

< H1
(
X′

1β10 + �10 + α10pU(X1)
)
. (A.3)

To see why pL(X1) and pU(X1) exist, fix pU(X1) = 1. By conti-
nuity, there exists a small enough δ > 0 such that pL(X1) ≥ 1−δ

satisfies (A.3). If condition (17) in Theorem 2 holds, then there
exists W∗

1 ⊂ S(W1) such that

min
{
E[H2(X

′
2β2 + �2 + α2)|I1],

E
[
H2

(
X′

2β20 + �20 + α20

)|I1
]}

≥ pL(X1) ∀W1 ∈W∗
1 , (A.4)

max
{
E[H2(X

′
2β2 + �2)|I1],E

[
H2

(
X′

2β20 + �20

)|I1
]}

≤ pU(X1) ∀W1 ∈W∗
1 .

Note trivially that because αp ≤ 0 everywhere in �, we have
that

min
{
E[H2(X

′
2β2 + �2 + α2)|I1],

E
[
H2

(
X′

2β20 + �20 + α20

)∣
∣I1

]}

≤ max
{
E[H2(X

′
2β2 + �2)|I1],E

[
H2

(
X′

2β20 + �20

)|I1
]}

with probability 1.

By definition, we have that

E[H2(X
′
2β2 + �2 + α2)|I1] = πL

2 (θ |k = 2;I1) and
(A.5)

E
[
H2

(
X′

2β20 + �20

)|I1
] = πU

2 (θ0|k = 2;I1).

Combining (A.4) and (A.5), we have that

πL
2 (θ |k = 2;I1) ≥ pL(X1),

(A.6)
πU

2 (θ0|k = 2;I1) ≤ pU(X1) ∀W1 ∈W∗
1 .

Combining (A.3) and (A.6), we have that

H1
(
X′

1β1 + �1 + α1π
L
2 (θ |k = 2;I1)

)

≤ H1
(
X′

1β1 + �1 + α1pL(X1)
)

< H1
(
X′

1β10 + �10 + α10 pU(X1)
)

≤ H1
(
X′

1β10 + �10 + α10π
U
2 (θ0|k = 2;I1)

)

∀W1 ∈W∗
1 . (A.7)

This corresponds to the case described in the first line of (18).
Next, suppose that (A.2) does not hold but there exists a subset
of realizations X

∗∗
1 ⊂ X ∗

1 such that

X′
1β10 + �10 + α10 > X′

1β1 + �1 + α1 ∀X1 ∈ X ∗∗
1 . (A.8)
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Repeating the same arguments as before and exchanging θ and
θ0, we arrive at the equivalent of (A.7), namely

H1
(
X′

1β10 + �10 + α10π
L
2 (θ0|k = 2;I1)

)

< H1
(
X′

1β1 + �1 + α1π
U
2 (θ |k = 2;I1)

)

∀W1 ∈ W∗∗
1 . (A.9)

This corresponds to the case described in the second line of
(18). The last remaining possibility is that neither (18) nor (A.8)
holds. In this case,

X′
1β10 + �10 + α10 = X′

1β1 + �1 + α1 ∀X1 ∈ X ∗
1 . (A.10)

Because X1 has full column rank in X ∗
1 , (A.10) implies that

β10 = β1 and �10 +α10 = �1 +α1. Because θ1 �= θ10 , we must
have either

�1 > �10 or �1 < �10 . (A.11)

Suppose that �1 > �10 . This immediately yields X′
1β1 + �1 >

X′
1β10 + �10 for all X1 ∈ X ∗

1 . By continuity, we can find a pair
0 ≤ pL(X1) < pU(X1) ≤ 1 such that

H1
(
X′

1β1 + �1 + α1pU(X1)
)

> H1
(
X′

1β10 + �10 + α10pL(X1)
)
. (A.12)

To see why pL(X1) and pU(X1) exist, fix pL(X1) = 0. By con-

tinuity, there exists a small enough δ > 0 such that pU(X1) ≤ δ

satisfies (A.12). If condition (17) in Theorem 2 holds, then there
exists W∗∗∗

1 ⊂ S(W1) such that

min
{
E[H2(X

′
2β2 + �2 + α2)|I1],

E
[
H2(X

′
2β20 + �20 + α20)|I1

]}

≥ pL(X1) ∀W1 ∈ W∗∗∗
1 , (A.13)

max
{
E[H2(X

′
2β2 + �2)|I1],E

[
H2

(
X′

2β20 + �20

)|I1
]}

≤ pU(X1) ∀W1 ∈W∗∗∗
1 .

Using the definitions of πL
2 (θ |k = 2;I1) and πU

2 (θ0|k = 2;I1)

[e.g., eq. (A.5)], we obtain

πU
2 (θ |k = 2;I1) ≤ pU(X1),

(A.14)
πL

2 (θ0|k = 2;I1) ≥ pL(X1) ∀W1 ∈W∗∗∗
1 .

Using (A.12), this yields

H1
(
X′

1β1 + �1 + α1π
U
2 (θ |k = 2;I1)

)

> H1
(
X′

1β10 + �10 + α10π
L
2 (θ0|k = 2;I1)

)

∀W1 ∈W∗∗∗
1 . (A.15)

This corresponds to a case like that described in the second line
of (18). If �1 < �10 , then the same arguments as before while
exchanging θ with θ0 would lead us to conclude that there exists
a set W4∗

1 ⊂ S(W1) such that

H1
(
X′

1β10 + �10 + α10π
L
2 (θ0|k = 2;I1)

)

> H1
(
X′

1β1 + �1 + α1π
U
2 (θ |k = 2;I1)

)

∀W1 ∈ W4∗
1 . (A.16)

We have now established (18) in Theorem 2 for the where case
k = 2. The cases where k > 2 follow immediately by recalling
the monotonic property of rationalizable bounds, which says
that, with probability 1,

H1
(
X′

1β1 + �1 + α1π
L
2 (θ |k + 1;I1)

)

≤ H1
(
X′

1β1 + �1 + α1π
L
2 (θ |k;I1)

) ∀k ≥ 1

and

H1
(
X′

1β1 + �1 + α1π
U
2 (θ |k + 1;I1)

)

≥ H1
(
X′

1β1 + �1 + α1π
U
2 (θ |k;I1)

) ∀k ≥ 1.

To see why this implies that the rationalizable bounds for
player 1’s conditional choice probabilities are disjoint with pos-
itive probability for all k ≥ 2, recall that the level-2 bounds are
given by

[
H1

(
X′

1β1 + �1 + α1π
U
2 (θ |k = 2;I1)

)
,

H1
(
X′

1β1 + �1 + α1π
L
2 (θ |k = 2;I1)

)]
(for θ ),

(A.17)[
H1

(
X′

1β10 + �10 + α10π
U
2 (θ0|k = 2;I1)

)
,

H1
(
X′

1β10 + �10 + α10π
L
2 (θ0|k = 2;I1)

)]
(for θ0).

It follows from our results that the level-2 rationalizable bounds
for θ are disjoint from those of θ0 with positive probability.
Because the bounds for k > 2 are contained in those of k =
2 with probability 1, it follows immediately that these bounds
are also disjoint for k > 2. It follows that if the population of
player 1 agents are at least level-2 rational, then any θ with θ1 �=
θ10 will produce level-2 bounds that are violated with positive
probability. Thus no such θ can be observationally equivalent
to one that has θ1 = θ10 , and, consequently, θ10 is identified.
Naturally, if the same conditions of Theorem 2 hold when we
exchange the subscripts “1” and “2,” then θ20 will be identified.

[Received November 2007. Revised February 2008.]
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Victor AGUIRREGABIRIA

Department of Economics, University of Toronto, Toronto, Ontario M5S 3G7, Canada
(victor.aguirregabiria@utoronto.ca)

In this article we study the identification of structural pa-
rameters in dynamic games when we replace the assumption
of Markov perfect equilibrium (MPE) with weaker conditions,
such as rational behavior and rationalizability. The identifica-
tion of players’ time discount factors is of especial interest.
Identification results are presented for a simple two-period/two-
player dynamic game of market entry-exit. Under the assump-
tion of level-2 rationality (i.e., players are rational and know
that they are rational), a exclusion restriction and a large-
support condition on one of the exogenous explanatory vari-
ables are sufficient for point identification of all structural para-
meters.

1. INTRODUCTION

Structural econometric models of individual or firm behavior
typically assume that agents are rational in the sense that they
maximize expected payoffs given their subjective beliefs about
uncertain events. Empirical applications of game-theoretic
models have used stronger assumptions than rationality. Most
of these studies apply the Nash equilibrium (NE) solution,
or some of its refinements, to explain agents’ strategic be-
havior. The NE concept is based on assumptions on play-

ers’ knowledge and beliefs that are more restrictive than ra-
tionality. Although there is no set of necessary conditions
for generating the NE outcome, the set of sufficient condi-
tions typically includes the assumption that players’ actions
are common knowledge. For instance, Aumann and Branden-
burger (1995) showed that mutual knowledge of payoff func-
tions and of rationality, along with common knowledge of
the conjectures (actions), imply that the conjectures form a
NE. But this assumption on players’ knowledge and beliefs
may be unrealistic in some applications; therefore, it is rel-
evant to study whether the principle of revealed preference
can identify the parameters in players’ payoffs under weaker
conditions than NE. For instance, we would like to know
whether rationality is sufficient for identification. It is also rel-
evant to study the identification power of other assumptions
that are stronger than rationality but weaker than NE, such
as common knowledge rationality (e.g., everybody knows that
players are rational; everybody knows that everybody knows
that players are rational). Common knowledge rationality is
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